Isotopic, biomarker, and trace elements of a 65 cm long sedimentary core from Lake Cantara south in Adelaide, Australia were measured in an effort to trace environmental change clues in the southern Hemisphere. The geochemical results suggest coherent climatic change evidence for the late Holocene. Beside the sedimentary change history such as a marine water invasion during the studied period of time, these chemical signals may suggest the climate change clues in this southern hemisphere salt lake environment. Particularly, enrichment and depletion of heavier isotope in sedimentary carbonates (δ^{13}C and δ^{18}O values), highly branched isoprenoid (HBI) biomarker distribution, as well as the fluctuation of trace and major metal elements and total organic carbon (TOC), all suggested the clear impact of Medieval Warmth and the following Little Ice Age climate change in this southern hemisphere costal environment, supporting the global aspects for these climate events during late Holocene history.

Late Holocene Isotopic and Molecular Signals in Saline Sediments of Lake Cantara South, Australia

WANG Ruiliang1 and ZHANG Shuichang2

1 Brookhaven National Laboratory, Upton, NY 11973, USA
2 Key Laboratory of Petroleum Geochemistry, PetroChina, Beijing 100083, PRC

Isotopic, biomarker, and trace elements of a 65 cm long sedimentary core from Lake Cantara south in Adelaide, Australia were measured in an effort to trace environmental change clues in the southern Hemisphere. The geochemical results suggest coherent climatic change evidence for the late Holocene. Beside the sedimentary change history such as a marine water invasion during the studied period of time, these chemical signals may suggest the climate change clues in this southern hemisphere salt lake environment. Particularly, enrichment and depletion of heavier isotope in sedimentary carbonates (δ^{13}C and δ^{18}O values), highly branched isoprenoid (HBI) biomarker distribution, as well as the fluctuation of trace and major metal elements and total organic carbon (TOC), all suggested the clear impact of Medieval Warmth and the following Little Ice Age climate change in this southern hemisphere costal environment, supporting the global aspects for these climate events during late Holocene history.

* Corresponding author. E-mail: rlwang@bnl.gov