Mechanism of Na and K Substitutions in Bioapatite Within Salty Area

LI Zhen

College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing 210093, China

Introduction

Na and K are two most important cations in salty water, and also are two typical ions in animals’ body fluids. The mineral, bioapatite, is a form of carbonated hydroxylapatite, which makes up over 50 wt.% of bones of animals. The study of Na and K in bone mineral of vertebrate and fish living in salt waters, therefore reveals inner biogeochemistry cycle within salty areas. The whale bone was used to investigate the chemistry of bioapatite as its huge bone size allows precise investigation of the biogeochemistry.

X-ray fluorescence analyses of the whale’s bioapatite show an average Ca/P atomic ratio of 1.7. with an average composition of $\text{(Ca}_{8.40}\text{Mg}_{0.20}\text{Na}_{0.54})\text{[(PO}_{4})_{4.87}\text{(CO}_{3})_{1.13}]\text{(OH)}_{0.87}$.

Compared to the lamb femur and elk antler, the whale bone has 60 wt% more Na, although both minor elements are even less than one-twentieth of the weight of the major element Ca in all studied samples (see Table 1). Concentrations of Na$_2$O in the Acros synthetic OHAP (0.08 wt%) and in the tooth enamel (0.40 wt%) are lower than in the whale bone.

Na is the third most abundant element (excluding oxygen) in the whale bioapatite, following the major elements Ca and P. The substitution of carbonate for phosphate is known to be coupled with that of Na for Ca in bioapatites, which leads to co-incorporation of carbonate and sodium in bone. This complex substitution mechanism is well illustrated by the whale bone.

The abundant Na in salty water can elevated the Na concentration via coupled substitutions in bone mineral. However, K ions in bone mineral is limited due to its large sizes.

Table 1 Compositions (wt%) of the ashed whale bone, lamb femur, elk antler, Acros synthetic OHAP, and NIST 1486 bone meal (for calibration) based on XRF analysis.

<table>
<thead>
<tr>
<th></th>
<th>K$^+$</th>
<th>Ca$^{2+}$</th>
<th>Na$^+$</th>
<th>P</th>
<th>Atomic Ratio (Ca+Mg+1/2Na)/P</th>
<th>Ca/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whale</td>
<td>0.01</td>
<td>36.8</td>
<td>1.4</td>
<td>16.5</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Lamb</td>
<td>0.05</td>
<td>37.8</td>
<td>0.8</td>
<td>18.0</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Elk</td>
<td>0.02</td>
<td>38.6</td>
<td>0.9</td>
<td>18.1</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Acros</td>
<td>0.01</td>
<td>39.2</td>
<td>0.1</td>
<td>18.2</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>NIST-1486</td>
<td>0.03</td>
<td>26.8</td>
<td>0.5</td>
<td>12.4</td>
<td>1.8</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Acknowledgement

I thank Dr. Vivian de Buffrénil and Dr. Olivier Lambert for the MNHN whale bone sample. I also thank Dr. Rex Couture and Prof. Robert Dymek at Washington University in STL for the XRF analyses.

References