6月

微束微区 X 荧光矿物探针及应用

葛良全,杨强,曾国强,杨海,谷懿 成都理工大学"地学核技术"四川省重点实验室,四川成都,610059

在矿产资源勘查过程中,对显晶质或隐晶质矿 物的物质成分分析主要采用电子探针方法。这类探 针分析仪器必须安置在温度、湿度适宜的实验室, 而且该方法对待分析岩、矿石的制样要求十分严格, 需要将采集的岩、矿石磨成薄片甚至镀上导电膜。

自上世纪 90 年代以来,随着导管 X 光学和 X 光聚焦技术的发展, 基于 X 射线全反射原理研制的 毛细管 X 射线透镜可以将 X 射线束聚集到 20 微米 左右的焦斑直径,为能量色散 X 射线荧光分析提供 了微束 X 射线激发源。与传统的细孔径准直方式 X 射线束相比较,不仅在聚焦斑点直径上更小(前者 一般只能达到100 微米),而且单位面积上获得的X 射线束强度可提高 1000 倍。本文介绍了一种新型 微束微区 X 荧光矿物探针,该矿物探针以毛细管 X 射线透镜为 X 射线源发源, 以通用金相显微镜为微 动平台,以高能量分辨率的室温 Si-pin 探测器为 X 射线探测器。其显著特点是仪器轻便、易操作,可 分析光片样品或者原生岩矿样品,能够在野外实现 显微矿物的微区多元素定性、定量分析。在矿产资 源勘查中应用,可快速对地质体载体矿物中成矿元 素的快速分析,及时开展成矿规律研究,指导地质 找矿工作。在环境保护中应用,可快速对固、液、 气态中固体微粒的有毒、有害元素进行定性、定量 分析,开展环境污染物的溯源研究,为环境监测与 治理提供依据。1

物理基础 1

微束微区 X 荧光矿物探针对矿物元素定性定量 分析的物理基础是基于近代原子物理学中的莫塞莱 定律,当矿物中待测元素原子受到外界初级 X 射线 束照射时,原子内层电子获得能量逃逸,原子处于 激发态;在原子退激时,发出特征 X 射线。特征 X 射线能量与该原子的原子序数平方成正比,特征 X 射线强度 I₄与矿物中元素含量 C 可用下式描述:

$$I_x = \frac{KI_0C}{\frac{\mu_0}{\cos\alpha} + \frac{\mu_x}{\cos\beta}}$$
(1)

式中, I_0 为初级 X 射线束的强度; μ_0 和 μ_x 分 别为矿物样品对初级X射线和特征X射线的线衰减 系数; *a*和 *B*分别为初级 X 射线束和特征 X 射线束 的入射角和出射角; K 为与 X 射线探测器探测效率、 目标元素荧光产额、光电吸收系数和探测器-样品-激发源间的几何位置相关的常数。

对上式微分,可得单位元素含量产生的特征 X 射线强度,即微束微区 X 荧光矿物探针的灵敏度:

$$\frac{dI_x}{dC} = \frac{KI_0}{\frac{\mu_0}{\cos\alpha} + \frac{\mu_x}{\cos\beta}}$$
(2)

上式表明, 微束微区 X 荧光探针分析的灵敏度 与初级 X 射线束的强度成正比, 与矿物对初级射线 和特征 X 射线的线吸收系数成反比, 而且还与探针 探头的几何设计(如α、β和K)有关。显然, 增大 初级X射线束的强度、选择合理的几何布置有利于 改善探针的灵敏度。

探针仪组成和核心部件设计 2

2.1 仪器组成

从微束微区 X 矿物探针仪的工作原理角度,微 束微区 X 荧光矿物探针主要由微束 X 射线激发源、 微区 X 射线探测器、微动平台、主控电子线路单元 和 PC 上位机,以及微束微区 X 矿物探针软件组成。

2.2 微束 X 射线激发装置

为了实现矿物的微区分析,要求微束 X 射线激

Eamil: glq@cdut.edu.cn

发源将初级 X 射线束聚焦到较小的焦斑直径,同时 具有较高的 X 射线束强度以保证较高的分析灵敏 度。常规的获得细直径 X 射线束的方法是将 X 射线 束准直,一般只能达到 100 微米左右;由于 X 射线 在源点是以 4 π 立体角发射的,且遵循距离平方反 比的衰减规律,采用准直方式获得的小孔径 X 射线 束的强度将大大衰减。采用毛细管 X 射线透镜可以 将较大直径的 X 射线束通过 X 射线在毛细管中的 全反射聚集到 20 微米左右,X 射线束衰减量较小。 与传统的细孔径准直方式 X 射线束和比较,单位面 积上获得的 X 射线束强度可提高 1000 倍。因此, 微束 X 射线激发采用低功率 X 射线管与 X 射线透 镜相组合,前者出射 X 射线束设计为 2000 微米, 经 X 射线透镜后,在焦点上可获得 30-50 微米直径 的焦斑。

2.3 微区 X 射线探测器探测器、激发源与靶矿物 间的几何布置

在 X 射线荧光分析中,当 X (γ) 射线与物质 相互作用的时候,不仅会产生 X 射线,同时还会 发生相干散射和非相干散射,形成 X 射线仪器谱的 本底,本底计数的大小与探测器、激发源和矿物有 效探测面积的垂线夹角 β 和 α 大小有关;另一方 面,探测器的有效探测效率不仅与探测器本身材料 有关,也与夹角 α 和探测器与目标物体的距离 d 有 关。通过实验确定的最佳出射角和入射角为 35°, 最佳探测器与目标矿物的距离为 8mm。

2.4 三维微动显微成像平台

三维机械精密微动平台主要以微米级的精度 去完成样品微区的定位,并提供对分析点及表面等 的扫描运动。从微区分析的需要出发,三维机械精 密微动平台的定位精度应小于 10µm。为了便于野 外操作条件,并考虑到矿物显微镜在地矿行业的广 泛应用,野外微区 X 荧光矿物探针的三维微动平台 采用商品化的金相显微镜为平台,不仅可实现三轴 精密微动调节;而且配合 CCD 相机,可方便实现 显微成像。其中,光学放大倍数为 10-40 倍, CCD 相 机像素为 300 万。

3 性能指标与测试

3.1 焦斑直径

利用铜片在焦斑位置上的移动,得到计数率与位置的关系图。对测量结构进行微分后得到计数率

与位置的曲线图,取半高宽为目标微区的焦斑直径。经实测微区焦斑直径为41 微米。

3.2 准确度

利用电子探针标准物质对野外微束微区 X 荧 光探针的准确度进行了测试,共测量氧化物标样 35 个,硫化物标样 12 个,部分矿物主元素的测量结 果见下表。结果表明野外微束微区 X 荧光探针对矿 物微区分析结果与标准物质的推荐值之间的相对 误差在 20%以内。

表1 电子探针标准物质微束微区 X 荧光 探针公析结果对比

冰门为引出不为比								
样品名	元素	推荐含量 (%)	测量值 (%)	相对误 差(RSD)				
赤铁矿(Fe ₂ O ₃)	Fe	69.94	69.18	1.1%				
红钛锰 (MnTiO ₃)	Ti	32.06	35.93	12.1%				
钼铅矿 (PbMO ₄)	Pb	58.03	60.19	3.7%				
铌酸锂 (LiNbO3)	Nb	62.85	67.28	7.1%				
硫砷银矿 (Ag ₆ As ₂ S ₆)	As	15.14	17.98	18.7%				
砷化镓(GaAs)	As	51.80	54.72	5.6%				

3.3 成像放大倍数

在物镜为 10 倍状态下,通过游标卡尺直接测 量经 CCD 放大系统后显示器上输出图片尺寸,计 算出显微成像系统的放大倍数为 445 倍。

4 应用实例

4.1 岩石光片样品矿物微区多元素分析

利用野外微束微区 X 射线荧光探针对岩石光 片样品中矿物颗粒进行多元素微区分析,测量时间 100s,结果如下表:

表 2 岩石光片样品矿物微区 X 荧光测量结果(单位:%)

矿物名称(编号)	Ti	Cr	Mn	Fe	Ni	Cu	Zn
黄铜矿(FJS-1)	-	-	-	20.71	3.07	37.6	5.78
辉铜矿(KH-3)	-	-	-	6.76	4.77	49.74	6.41
黄铁矿(QX-1)	-	-	-	38.95	7.38	2.75	2.28
黄铁矿(X-1)	0.47	0.31	1.01	32.08	1.11	10.64	-
闪锌矿(砖红色)	0.04	0.02	0.03	1.38	0.16	1.59	69.83
闪锌矿(褐色)	0.52	0.55	0.62	6.40	0.29	0.74	46.66
闪锌矿(黑色)	0.50	0.60	0.47	0.60	0.26	0.84	39.04
二氧化硅	-	_	0.27	0.94	0.08	0.10	0.85

4.2 蚀变脉石矿物微区成矿元素分析

在野外及时了解热液蚀变过程中蚀变脉石矿

物中成矿元素含量的多少及其在空间上的变化,对 地质找矿工作和矿床成因研究都具有重要的指导 意义。表3是对某铜矿化点采集的矿化岩石样品中 长石矿物中金属元素的微区分析结果。测量点号的 间距是50-100 微米,点号由小到大反映的是矿化蚀 变由弱到强。从表3数据可看出,在微观上长石矿 物中铜、锌元素的含量随热液蚀变增强而增高。

表3	显微蚀变剖面测量结果	(単位:	CPS)
----	------------	------	------

点号	1	2	3	4	5	6	7	8	9	10	11
K	0.79	0.84	1.02	1.03	0.81	1.25	1.02	1.17	1.07	1.25	1.05
Ca	0.83	0.96	0.98	1.15	0.98	1.63	1.84	2.31	2.81	3.14	1.9
Ag	0.52	0.6	0.61	0.58	0.57	0.69	0.56	0.51	0.45	0.47	0.59
Ti	1.14	1.06	1.06	1.15	1.2	1.1	1.12	0.77	0.86	0.89	0.87
Cr	1.44	1.28	1.6	1.17	1.2	1.17	1.31	0.86	0.9	0.9	1.1
Mn	1.22	1.44	1.38	1.49	1.35	1.27	1.41	1.09	1.2	1.04	1.13
Со	0.99	1.27	1.2	1.19	0.94	1.12	1.19	1.02	1.17	1.03	1.08
Ni	0.68	0.94	0.81	0.715	0.81	0.795	1.07	0.87	1.06	1	1.15
Cu	0.99	1.3	1.44	1.45	1.74	2.73	5.64	5.81	6.87	9.19	6.14
Zn	0.725	0.91	0.62	0.68	0.88	0.96	1.52	1.53	1.75	2.03	1.39
Ga	0.21	0.21	0.24	0.27	0.42	0.29	0.4	0.35	0.39	0.35	0.34
Ge	0.56	0.39	0.725	0.67	0.71	0.38	0.37	0.38	0.38	0.26	0.42
Sr	0.265	0.22	0.21	0.27	0.2	0.27	0.55	0.79	0.87	1.05	0.94
Mo	0.095	0.12	0.07	0.075	0.145	0.09	0.08	0.04	0.04	0.08	0.04

4.3 降尘微粒中多元素分析

在成都市某校园及周边区域的 5 采样点(九教 侧坡、榕树园、家属区、芙蓉园门口、高速路口) 采集了降尘样品。每个样品随机抽取 20 个深色颗 粒,每个颗粒测量 250s,分析了钛、铬、锰、铁、 镍和铜等元素的含量,取 20 个颗粒的算术平均为 该采样点的元素含量,结果如下表。

表 4 降尘微粒微区 X 荧光测量结果(单位:%)

矿物名称(编号)	Ti	Cr	Mn	Fe	Ni	Cu
九教侧坡	3.55	1.48	2.36	16.43	2.26	3.23
榕树园	3.72	1.28	1.87	13.56	2.05	2.42
家属区	3.28	1.29	1.87	13.60	1.58	2.21
芙蓉园门口	2.51	1.09	1.67	7.72	1.95	2.06
高速路口	2.58	1.18	2.70	23.39	1.04	1.43

5 结论

基于能量色散 X 射线荧光分析原理和 X 光透 镜聚焦技术的野外微束微区 X 荧光探针能够对显 晶、隐晶质矿物开展微区成分分析,微区焦斑直径 可达 41 微米,在野外驻地条件下可定性、定量分 析原子序数大于 19 (钾)以上元素含量。该仪器具 有样品制备简单、分析快速、可野外应用等特点, 在地质普查找矿和环境监测中具有广泛的应用前 景。

致谢:本文得到 863 计划资源环境技术领域课题(课题编号 2010AA061863)的资助。

参考文献(5篇,略)