鄂东南地区鸡笼山矽卡岩金矿床的辉钼矿 Re-Os 同位素年龄及其构造意义

王建^{1,2)},谢桂青²⁾,陈风河¹⁾,朱乔乔²⁾,李伟²⁾,张志远²⁾

1)河北省地矿局探矿技术研究院,河北燕郊,065201;2)中国地质科学院矿产资源研究所,北京,100037

内容提要:鄂东南地区是我国长江中下游 Cu-Au-Fe-Mo 成矿带中最重要的组成部分之一,其中鸡笼山金矿是 是区内典型的大型砂卡岩金矿床。本文利用 Re-Os 同位素定年方法对鸡笼山金矿床进行了成矿时代测定,获得了 辉钼矿的 Re-Os 同位素模式年龄范围为 147.7±2.4~151.6±4.0Ma,等时线年龄为 148.6±1.5Ma,与矿区内花 岗闪长斑岩 SHRIMP 锆石 U-Pb 年龄 151.6±0.7Ma 相吻合,也与鄂东南地区其他矿田的成矿时代基本一致。鸡 笼山砂卡岩金矿床可能形成于岩石圈伸展构造背景。硫同位素值为-2.5%~5.5%,均值为 2.84‰,具有明显的 塔式效应,反映了成矿物质具有岩浆来源的特征;辉钼矿中 Re 含量为 174.3×10⁻⁶~871.4×10⁻⁶,平均为 476.2 ×10⁻⁶,表明成矿物质来源属于壳幔混源型。

关键词:辉钼矿;Re-Os同位素定年;硫同位素;鸡笼山金矿;鄂东南

鄂东南地区是长江中下游多金属成矿带的重要 组成部分,已在矿床分布、矿床地质、成矿过程和成 矿作用进行了大量研究,积累了丰富的基础地质资 料并取得了许多重要认识(舒全安等,1992;薛迪康 等,1998;谢桂青等,2006,2009;Xie G Q et al., 2007,2011;LiJW et al.,2009)。前人对成矿时代 的确定主要通过与成矿有关的岩体的 K-Ar 和 Rb-Sr 等时线法间接获得,由于这些方法范围较宽且具 不确定性(周询若等,1994),不利于区域成矿规律和 构造背景的理解;近年来,辉钼矿 Re-Os 可以精确 测得矿床的成矿年龄(Mao J W et al., 2006)。鸡 笼山花岗闪长斑岩体是控制该矿床成矿的主要因 素,鸡笼山金矿的形成在时间上与岩体关系密切。 本文在详细研究该金矿矿床特征基础上,挑选了矿 区内5件辉钼矿样品进行 Re-Os 同位素定年,结合 区内成矿年龄数据较准确的厘定矿床的成矿时代, 并结合 S 同位素和辉钼矿中 Re 含量数据探讨成矿 其成矿物质来源。

1 地质背景

长江中下游地区位于扬子板块以北和大别造山

带以南(图1)。鄂东南地区地处长江中下游成矿带 西端,是长江中下游成矿多金属成矿带重要的组成 部分(谢桂青等,2006;毛景文等,2009;Mao J W et al.,2011; 瞿泓滢等,2012), 包括鄂东和九瑞矿集 区。鄂东南地区内地层从志留系到第四系均有出 露,各时代地层发育较为完整,以三叠纪大冶组灰 岩、蒲圻组砂页岩、侏罗纪武昌组含煤砂页岩和自流 井组砂质碎屑岩、灵乡组、大寺组火山岩和火山碎屑 岩分布广泛;区内主要含矿地层为三叠系大冶组的 灰岩和白云质灰岩。该地区构造褶皱、构造十分发 育,构造线总体呈(NW) NWW 向,西部撒开,东部 收敛,褶皱构造主要为近 EW 向,断裂构造主要分 为 NE-NNE 和 NW-NWW 向两组;其中区内 Cu-Au 矿田主要受 NW-NWW 向阳新-瑞昌深大断裂 及 NE-NNE 向郯庐深大断裂过江南延段控制(舒广 龙,2004)。近年来,通过辉钼矿 Re-Os 和 SHRIMP 锆石 U-Pb 精确定年研究,鄂东南地区厘定出晚侏 罗世一早白垩世初(斑岩一)砂卡岩 Fe-Cu-Au 多金 属大规模成矿事件,与侵入岩存在密切的时空关系 (Xie G Q et al, 2007; Li J W et al, 2007); 该地区岩 浆活动频繁,相关侵入岩主要为辉长岩、闪长岩、石

No. 8

2014

注:本文为中央级公益性科研院所基本科研业务费专项资金 K0902 和国土资源部公益性行业课题(200911007-18 和 201311136)、科学技术部 973 课题(2007CB411407)资助。

收稿日期:2013-07-08;改回日期:2014-05-06;责任编辑:黄敏。

作者简介:王建,男,1985年生,地质工程师,从事地质勘查和科研工作, Email: beijingwangjian@163.com。通讯作者:谢桂青,男,1975年生,研究员,地球化学专业, Email: guiqingxie@sohu.com。

图 1 鄂东南地区鸡笼山矽卡岩金矿床大地构造位置图(谢桂青等,2006;毛景文等,2009) Fig. 1 The tectonic map of the Jilongshan skarn Au deposit in southeastern Hubei (Xie Guiqing et al.,2006; Mao Jingwen et al.,2009)

英闪长岩、花岗闪长岩、石英二长岩和花岗岩,其中 与 Cu-Au 成矿有的关以石英闪长岩、花岗闪长(斑) 岩最为重要(翟裕生等,1992;Xie G Q et al., 2007; 周涛发等,2008;Li J W et al., 2009;谢桂青等, 2009;Xie G Q et al., 2011;徐耀明等,2012)。该 地区内矿产资源丰富,矿床类型主要可以分为:砂卡 岩 Fe 矿床,如程潮、金山店、铁山(Cu)Fe 矿;砂卡 岩 Cu 矿床,如铜绿山(Fe) Cu 矿床;斑岩一砂卡岩 铜矿,如丰三洞(Mo)Cu 矿床、铜山口(Mo)Cu 矿 床;砂卡岩 Au 矿床,如鸡笼山(Cu)Au 矿床、鸡冠嘴 (Cu)Au 矿床、桃花嘴 Cu(Au)矿床。

2 矿床地质特征及采样位置

前人已对鄂东南地区重要的砂卡岩铁铜金多金 属矿床的地层、岩浆岩、构造、矿体特征、矿物组合和 蚀变分带进行了详细的研究和总结(常印佛等, 1991;翟裕生等,1992;舒全安等,1992;Zhao Y M et al.,1999;谢桂青等,2008a,2008b)。本研究以 鸡笼山砂卡岩金矿床为研究对象,重点研究其成矿 年龄成矿时代、成矿物质来源。

矿区出露的岩石主要有花岗闪长斑岩、三叠世 大冶组碳酸盐岩和长兴组灰岩,矿体(图 2)产于花 岗闪长斑岩与白云质灰岩接触带及其附近,多沿接 触带呈北西向分布,区内构造控制岩体矿体走向,多 向南陡倾。该矿床主要由南、北2个主矿体和多个 小矿体组成,两个主矿体的Cu、Au储量占总矿床储 量的80%以上。北主矿体主要分布来岩体北缘接 触带上,呈似层状,NW 向延伸,倾向 SW,向 SE 侧 伏,长550m,平均厚4.3m,延伸250~300m,是一个 伴生 Pb-Zn-Au 矿体的 Cu-Au 矿体。南主矿体主要 分布在岩体南缘的大理岩舌状体接触带上,矿体呈脉 状或似脉状,边部呈分枝状延伸于大理岩层间破碎带 中,倾向 SW,向 SE 侧伏,长 600m,宽 6.33m,延伸 60 ~300m,为Cu-Au矿体。围岩蚀变强烈,主要有矽卡 岩化、钾化、硅化、碳酸盐化等;根据脉体相互穿插关 系、矿物组合、生成顺序及成矿温度,可将鸡笼山金 矿的蚀变矿化阶段划分为:砂卡岩阶段(石榴石、透 辉石组合)、退化蚀变阶段(绿帘石、金云母组合)和 石英一硫化物阶段(自然金、黄铜矿组合为主),对应 于三个阶段的热液蚀变温度分别为 400~680℃、 300~450℃、126~386℃(闭忠敏等,2008)。

硫化物阶段自然金和黄铜矿密切共生,主要呈 块状、浸染状、网脉状和角砾状产出,根据该北主矿 体 24ZK7内岩体、砂卡岩接触带、围岩等不同位置 Cu-Au品位垂向变化表(图 3a)显示:自然金和黄铜 矿具有良好的相关性,在Cu、Au品位变化呈良好的 正相关。辉钼矿主要发育在石英硫化物阶段,主要 呈浸染状产于砂卡岩铜金矿石(图 3b)中,另外一

图 2 鄂东南地区鸡笼山矽卡岩金矿床地质略图(据闭忠敏等,2008)

图 3 (a)—鸡笼山砂卡岩金矿床北主矿体 Cu-Au 品位垂向变化曲线图(据 24Zk7); (b)—WJ247 辉钼矿呈脉状,产于砂卡岩中;(c、d)—WJ247,在反射光下,辉钼矿与黄铜矿共生;Mo—辉钼矿;Ccp—黄铜矿 Fig. 3 (a)—The Cu-Au grade vertical graph of the north orebody in the Jilongshan skarn Au deposit(24ZK7); (b)—WJ247 Molybdenite vein in the skarn; (c,d)—WJ247 Mo and Ccp, in the reflected light; Mo—molybdenite; Ccp—chalcopy rite

表1 鄂东南地区鸡笼山矽卡岩金矿床辉钼矿样品取样位置表

Table 1 Re-Os dating data from the molybdenites of the Jilongshan skarn Au deposit in southeastern Hubei

序号	样号	样品描述	采样位置
1	WJ247	钼铜金矿石,产于砂卡岩中	170 中段主运输巷转弯处 12m
2	WJ267	钼铜金矿石,产于砂卡岩中	210m 中段 28 穿脉口
3	WJ323	呈脉状,穿插花岗闪长斑岩体	440m 中段-44204 穿脉 35m 处
4	WJ328	辉钼矿化矽卡岩	440m 中段-44204 穿脉 28m 处
5	WJ602	呈脉状,产于砂卡岩中	90m 中段 35-1 采场

种呈细脉状石英硫化物脉穿插岩体。镜下鉴定显示,辉钼矿与黄铜矿密切共生(图 3c、3d),由于金主要以包体金、粒间金赋存与铁铜硫化物中,镜下未观察到自然金、黄铜矿共生的现象,但是化学分析显示铜金品位具良好的正相关性,所以可以认定辉钼矿Re-Os年龄基本能够准确代表鸡笼山金矿床的成矿年龄。本次工作在鸡笼山砂卡岩金矿床井下五个不同位置采集了5件含辉钼矿样品,采样位置较分散,兼顾不同中段,不同产状,具备良好的代表性。具体采样位置和产状见表1。

3 测试方法

3.1 辉钼矿

含辉钼矿样品经分离挑选,辉钼矿的纯度均大于 99%。辉钼矿颗粒较粗,为避免大颗粒辉钼矿中 由于 Re 和 Os 的失偶而引起的测年误差(Selby et al.,2004),测试前将辉钼矿样品研磨到 0.05~ 0.1mm。辉钼矿样品 Re-Os 同位素测试工作在国 家地质实验测试中心 Re-Os 同位素实验室完成的。 分析方法及程序详见 Shirey 等(1995),Du A D 等 (1995),Du Y S 等(2004),现简述如下。

准确称取待分析样品,通过长细颈漏斗加入到 Carius 管(一种高硼厚壁大玻璃安瓿瓶)底部。缓慢 加液氮到有半杯乙醇的保温杯中,调节温度到摄氏 -50~-80℃。放装好样的 Carius 管到该保温杯 中,通过长细颈漏斗把准确称取的¹⁸⁵ Re 和¹⁹⁰ Os 混 合稀 释剂加入到 Carius 管底部,再加入 2mL 10mol/L HCl,4mL 16mol/L HNO₃、1mL30% H₂ O₂当管底溶液冰冻后,用丙烷氧气火焰加热封好 Carius 管的细颈部分。放入不锈钢套管内。轻轻放 套管入鼓风烘箱内,待回到室温后,逐渐升温到 200oC,保温 24h。在底部冷冻的情况下,打开 Carius tube,并用 40mL 水将管中溶液转入蒸馏 瓶中。

于 105~110℃ 蒸馏 50min, 用 10mL 水吸收蒸出的 OsO4。用于 ICPMS(等离子体质谱仪测定)测

定 Os 同位素比值。将蒸馏残液倒入 150mL Teflon 烧杯中待分离铼。将第一次蒸馏残液置于电热板 上,加热近干。加少量水,加热近干。重复两次以降 低酸度。加入 10mL 5mol/L NaOH,稍微加热,转 为碱性介质。转入 50mL 聚丙烯离心管中,离心,取 上清液转入 120 mL Teflon 分液漏斗中。加入 10mL 丙酮,振荡 5min,萃取 Re。静止分相,弃去水 相。加 2mL5mol/L NaOH 溶液到分液漏斗中,振 荡 2min,洗去丙酮相中的杂质。弃去水相,排丙酮 到 150mL 已加有 2mL 水的 Teflon 烧杯中。在电 热板上 50℃加热以蒸发丙酮。加热溶液至干。加 数滴浓硝酸和 30% 过氧化氢, 加热蒸干以除去残存 的锇。用数毫升稀 HNO3溶解残渣,稀释到硝酸浓 度为2%。备 ICPMS 测定 Re 同位素比值。如含铼 溶液中盐量超过 1mg/mL,需采用阳离子交换柱除 去钠。

采用美国 TJA 公司生产的 TJA X-series ICPMS 测定同位素比值。对于 Re:选择质量数 185,187,用 190 监测 Os。对于 Os:选择质量数为 186,187,188,189,190,192。用 185 监测 Re。用 TJA X-series ICPMS 测得的 Re,Os 和¹⁸⁷Os 的空白 值分别为(0.0157±0.0008)×10⁻⁹,(0.0001± 0.0002)×10⁻⁹和(0.0000±0.0001)×10⁻⁹,远小于 所测样品中铼、锇含量,不会影响实验中铼、锇含量 的准确测定。

3.2 S同位素

进行 S 同位素分析的样品首先经粉碎,然后在 双目镜下挑选提纯,使之纯度达 99% 以上,再选取 黄铁矿粉末样 50mg,将样品和氧化亚铜按 1:10 比 例混合均匀并研磨至 200 目左右,在真空度达(2.0 ×10⁻¹⁰)状态下加热,进行氧化反应,反应温度为 980℃,生成二氧化硫气体。在真空条件下,用冷冻 法收集二氧化硫气体,使用 MAT253 气体同位素质 谱仪分析硫同位素组成。S 同位素测试工作在核工 业地质研究所实验室完成,分析仪器型号为 MAT-251EM 型质谱仪,并以 VCDT 为标准,硫同位素参 考标准 DZ/T0184.14-1997《硫化物中硫同位素组 成的测定》,测试结果以 CDT 为标准,记为 δ³⁴ S_{V-CDT},分析精度优于±0.2‰。

4 测试结果

挑选了 13 件鸡笼山金矿床中的硫化物进行了 硫同位素分析,其中包括 10 件黄铁矿及 3 件辉钼 矿,同时收集了前人的硫同位素分析结果列于表 2。 分析结果显示: δ^{34} S_{V-CDT}值=1.1‰~5.5‰,平均值 为 3.8‰,其中辉钼矿的 δ^{34} S_{V-CDT}值=2.5‰ $\sim 5.0\%$

ICP-MS测试 Re-Os 含量的不确定度包括样品 和稀释剂的称量误差、稀释剂的标定误差、质谱测的 分馏校正误差、待分析样品同位素比值测量误差。 置信水平 95%。模式年龄的不确定度还包括衰变 常数的不确定度(1.02%),置信水平 95%。

鸡笼山砂卡岩金矿床的5件辉钼矿样品使用 ICP-MS方法进得测定,得到模式年龄为147.7± 2.2~151.6±4.0Ma(2σ),加权平均年龄为149± 1Ma(图4),样品模式年龄十分接近(表3)。采用

表 2 鄂东南地区鸡笼山矽卡岩金矿床硫同位素数据一览表

Table 2 Re-Os dating data from the molybdenites of the Jilongshan skarn Au deposit in southeastern Hubei

样号	测试矿物	δ^{34} SV-CDT($\%_0$)	岩(矿)石名称	样号	测试矿物	δ^{34} SV-CDT($\%_0$)	岩(矿)石名称
WJ387	黄铁矿	4.2	花岗闪长斑岩岩体	9	黄铁矿	2.5	矽卡岩
W J385	黄铁矿	4.3	矽卡岩铜矿石	10	黄铁矿	1.4	矽卡岩
WJ383	黄铁矿	5.3	退化蚀变矽卡岩	11	黄铁矿	2.8	大理岩
WJ371	黄铁矿	5.1	矽卡岩化大理岩	12	黄铁矿	3.8	花岗岩闪长斑岩
WJ366	黄铁矿	4.0	石英黄铁矿脉	13	黄铁矿	3. 3	花岗岩闪长斑岩
WJ350	黄铁矿	4.1	斑铜矿矿石	14	黄铁矿	3. 3	矽卡岩
WJ328	黄铁矿	5.5	矽卡岩化黄铁矿	15	黄铁矿	1.1	矽卡岩
W J324	黄铁矿	4.3	花岗闪长斑岩岩体	16	黄铁矿	3.5	矽卡岩
WJ322	黄铁矿	4.3	花岗闪长斑岩岩体	17	黄铁矿	5.5	花岗岩闪长斑岩
WJ262	黄铁矿	5.5	石英黄铁矿脉	18	黄铁矿	3.0	花岗岩闪长斑岩
WJ322	辉钼矿	2.2	产于矽卡岩中	19	黄铁矿	4.5	花岗岩闪长斑岩
WJ267	辉钼矿	1.6	产于矽卡岩中	20	黄铁矿	2.5	含金矿石
WJ247	辉钼矿	1.2	石英硫化物脉	21	黄铁矿	5.0	黄铜矿矿石
1	黄铁矿	2.1	矽卡岩	22	方铅矿	-2.5	铅锌矿石
2	黄铁矿	1.8	矽卡岩	23	方铅矿	3.4	矽卡岩
3	黄铁矿	1.0	矽卡岩	24	黄铜矿	0.4	石英硫化物脉
4	黄铁矿	1.2	矽卡岩	25	黄铁矿	-1.9	矿脉
5	黄铁矿	1.7	矽卡岩	26	雄黄	2.5	
6	黄铁矿	3. 3	矽卡岩	27	雌黄	0.9	
7	黄铁矿	2.5	矽卡岩	28	黄铁矿	5.6	0 市岩
8	黄铁矿	3.3	矽卡岩	29	黄铁矿	6.1	0 卡岩

资料来源:WJ样品来自本文;1~11,来自贾宝剑,2012;12~21,来自张轶男,1999;22,来自伍超群,1993;23~25,来自徐耀通,1992;26~29, 来自张振儒等,1989。

表 3 鄂东南地区鸡笼山矽卡岩型金矿中辉钼矿 Re-Os ICP-MS 同位素数据

Table 3 Re-Os ICP-MS isotope data of molybdenites from the Jilongshan skarn Au deposit in Southeast Hubei Province

编号	样重(g)	Re ($\times 10^{-6}$)		普 Os (×10 ⁻⁹)		187 Re (×10 ⁻⁶)		187 Os (×10 ⁻⁹)		模式年龄 (Ma)	
		测定值	2σ	测定值	2σ	测定值	2σ	测定值	2σ	测定值	2σ
WJ247	0.00502	383.0	3.1	0.5430	0.3688	240.7	1.9	600.0	4.9	149.4	2.1
WJ267	0.00519	871.4	7.4	0.0755	0.1692	547.7	4.7	1360	12	148.9	2.2
WJ323	0.00531	174.3	1.4	0.0793	0.2667	109.5	0.9	274.2	2.3	150.1	2.1
WJ328	0.00559	2419.6.	57.1	0.2614	0.6413	1520.8	35.9	3845	35	151.6	4.0
WJ602	0.00572	764.7	8.3	0.0241	0.0214	480.6	5.2	1184	11	147.7	2.4

ISOPLOT 软件(Ludwig, 1999), 187Re 衰变常数 1.666×10⁻¹¹ a⁻¹, 绘制等时线图和计算年龄及误 差,不确定度 1.02%。所获得的 5 件样品数据进 行¹⁸⁷ Re-¹⁸⁷ Os 等时线拟合得到等时线年龄为 148.6 ±1.5Ma,初始 Os 为(2.5±4.8)×10⁻⁹ (MSWD= 1.2),所得到的等时线年龄与相应的模式年龄平均 值几乎一致(图 5)。

图 5 鄂东南地区鸡笼山金矿床中辉钼矿 Re-Os 同位素等时线 Fig. 5 Molybdenite Re-Os isochron diagram of the Jilongshan Au deposit in Southeastern Hubei

5 讨论

5.1 成矿物质来源

硫同位素能够指示成矿物质来源,一般认为地 幔 δ^{34} S 接近于 0±3%。鸡笼山砂卡岩金矿床硫同 位素 δ^{34} S_{v-cor} 值 为 $-2.5\% \sim 5.5\%$,均值为 2.84%;其中,花岗闪长斑岩体的 δ^{34} S(均值 4.1%) 大于砂卡岩的δ³⁴S(均值2.3%)大于含金矿石的δ³⁴S(均值1.7%),具有岩浆分异含矿流体成矿作用的特点。同时,硫同位素的变化范围较窄,主要集中于+0.9%~+5.5%,平均值为3.2%,表明矿石中硫 源与是相对均一的,分布直方图(图6)也显示其分 布具有明显的塔式效应,均值分布于地幔硫值范围, 反映了成矿物质岩浆来源的特征。

图 6 鄂东南地区鸡笼山金矿床中 S 同位素塔式分布图
Fig. 6 Histogram map of sulfur isotope data in the
Jilongshan skarn Au deposit in southeastern Hubei
1-石英脉;2-砂卡岩;3-含金矿石;4-花岗闪长斑岩
1- Quartz vein;2-skarn;3-gold orebody;4-granodiorite porphyry

已有研究表明辉钼矿中 Re 含量可以指示成矿物质来源(毛景文等,1999; Mao J W et al.,1999),即与幔源、I 型、S 型花岗岩有关的矿床,地幔到壳幔 混源再到地壳,矿石中 Re 含量呈一个递减数量级; Stein 等(2001)也得出类似结论。本文研究获得鸡 笼山金矿床中辉钼矿的 Re 含量为 174.3×10⁻⁶~ 871.4×10⁻⁶(表 3),平均为 476.2×10⁻⁶,辉钼矿的 Re 含量与全球各地的斑岩一砂卡岩型铜钼矿床中 辉钼矿中 Re 含量接近(Mao J W et al.,1999, 2006; Berzina et al.,2005),矿区内辉钼矿的高 Re 含量暗示了部分地幔物质参与了鸡笼山砂卡岩金矿 床的成矿作用,也表明鸡笼山金矿床的成矿物质可 能源于壳幔混源。

5.2 成矿时代厘定

辉钼矿产出的地质特征、辉钼矿 Re-Os 年龄测 定以及与成矿密切相关的侵入岩 SHRIMP 锆石 U-Pb 年龄研究表明,辉钼矿 Re-Os 年龄能够精确地代 表硫化物的形成时代(Suzuki et al.,1996; Selby et al.,2004; Mao J W et al.,2008)。本次研究鸡笼山 矽卡岩金矿床中辉钼矿颗粒较细,未受到失耦作用 的影响,获得的5件辉钼矿样品 Re-Os 同位素等时 线年龄为148.6±1.5Ma,与样品模式年龄149.0± 1Ma 基本一致;辉钼矿与铜金矿密切共生,辉钼矿 硫同位素来源相同,表明该等时线年龄可以准确代 表鸡笼山金矿的成矿年龄。鸡笼山金矿床处于花岗 闪长斑岩与围岩(大理岩)的接触带及其附近。鸡笼 山岩体花岗闪长岩 SHRIMP 锆石 U-Pb 年龄为 151.6±0.7Ma(王建等,2014),与矿床中辉钼矿 Re-Os 同位素年龄 149.0±1Ma 基本一致,说明鸡 笼山砂卡岩型金矿床在形成时代上与岩体近于同时 形成,标志着两者之间有着密切的成因关系。

长江中下游地区砂卡岩型 Cu-Fe-Au 矿床分布 于侵入岩与围岩的接触带上,成岩成矿为同一构造 岩浆事件的产物(Pan et al.,1999;Sun et al.,2003; Mao J W et al.,2006)。前人对鄂东南地区 Cu-Fe-Au 矿床的主要成矿时代(表 4)进行大量研究显示: 该地区成矿应属于同一期成矿事件,若以最新地层 年代表白垩纪和侏罗纪以 145.5±4.0Ma 为分界线 (Gradstein et al.,2004)来判断,鸡笼山金矿床矿化 于晚侏罗世一早白垩世,属燕山晚期中酸性岩浆与 相关热液上侵定位的产物,是长江中下游成矿带早 白垩世多金属成矿事件的一部分。

5.3 构造背景

如前文所述,鸡笼山砂卡岩金矿床在时间和成 因上均与花岗闪长斑岩密切相关,成岩成矿形成于 同一构造背景。鄂东南地区位于长江中下游多金属 成矿带的重要组成部分,大多数学者认为该地区砂 卡岩型铜铁金矿床形成于岩石圈伸展构造背景 (Zhai Y M et al., 1996; Mao J W et al., 2006; 谢 桂青等,2008b),同时古太平洋板块俯冲对长江中 下游地区的影响有待进一步研究探讨特别是岩石圈 伸展的时限和深部过程。

孙卫东等(2008)推测约在 145~125Ma 期间, 洋中脊俯冲到长江中下游,并且可能形成板片窗,是 形成该成矿带及其相关岩体的主要原因。毛景文等 (2008)认为晚侏罗世到早白垩世,华北与华南两大 板块运动的不协调性可能暗示了在 144~130Ma 之 间沿长江中下游地区曾经历过俯冲板片的撕裂过

表 4 鄂东南地区 Cu-Au-Fe-Mo 矿床同位素年龄精测数据

Table 4	Precise age	data of th	he Cu-Au-Fe-Mo	deposits in	southeast Hubei	province
I uble I	I recibe age	unun or u	le ou mu re mo	ucposites in	Southeast Huber	province

矿床名称	样品	测试方法	年龄(Ma)
鸡笼山(铜)金矿床	砂 卡岩矿石中辉钼矿	3件样品 Re-Os 同位素等时线年龄,模式年龄为 148.9 ±2.2~150.1±2.1Ma	149.5±1.2
铁山铁矿床	磁铁矿矿石中的金云母	金云母的 ⁴⁰ Ar- ³⁹ Ar 年龄	140.9±1.2
程潮铁矿床	磁铁矿矿石中的金云母	金云母的 ⁴⁰ Ar- ³⁹ Ar 年龄	132.6 \pm 1.4
金山店铁矿床	磁铁矿矿石中的金云母	金云母的 ⁴⁰ Ar- ³⁹ Ar 年龄	131.6 \pm 1.2
铜绿山(铁金)铜矿床	磁铁矿矿石中的金云母	金云母的 ⁴⁰ Ar- ³⁹ Ar 年龄	140.3 \pm 1.1
铜绿山(铁金)铜矿床	砂卡岩化花岗闪长岩中的含铜辉钼矿	5 件样品 Re-Os 同位素等时线年龄,模式年龄为 136.3 ±1.9~138.1±1.8Ma	137.3±2.4
鸡冠嘴(铜)金矿床	方解石、黄铜矿、钾长石和辉钼矿 共生	5 件样品 Re-Os 同位素等时线年龄,模式年龄为 137.1 ±1.9~138.8±1.9Ma	138.2±2.2
丰山洞铜多金属矿床	花岗闪长斑岩中辉钼矿	1件样品 Re-Os 同位素等时线年龄,模式年龄为 144.0 ±2.1Ma	144.0±2.1
阮家湾钨铜钼矿床	花岗闪长斑岩中辉钼矿	1件样品 Re-Os 同位素等时线年龄,模式年龄为 143.6 ±1.7Ma	143.6±1.7
千家湾铜金矿床	砂卡岩矿石中辉钼矿	1 件样品 Re-Os 同位素等时线年龄,模式年龄为 137.7 ±1.7Ma	137.7±1.7
铜山口铜钼矿床	钾化带和绢云母化蚀变带中辉钼矿	2 件样品 Re-Os 同位素等时线年龄,模式年龄为 143.5 ±1.7Ma~142.3±1.8Ma	142.9±1.8
城门山铜矿床	石英脉中辉钼矿	5个样品 Re-Os 等时线年龄,模式年龄范围为 139.3~ 144.2 Ma	141±3
7411山門サ/木	石英斑岩中浸染状辉钼矿	6个样品 Re-Os 等时线年龄,模式年龄范围为 136.4~ 144.0 Ma	137±3

数据来源:本文;吴良士等,1997;谢桂青等,2006,2008a,2009;赵海杰,2010。

程。谢桂青等(2008b)通过对鄂东南地区的侵入岩 年代学和成因研究认为该地区存在两期重要岩浆活 动,早期侵入岩具有高 Sr 低 Y 和无负铕异常,暗示 当时地壳较厚;而晚期侵入岩具有低 Sr 高 Y 和负 铕异常,表明岩石圈已明显减薄,表明岩石圈已明显 减薄(Xie G Q et al, 2008)。因此鄂东南地区晚侏 罗世矽卡岩金矿床可能与岩石圈减薄事件具有密切 的成因联系。

6 结论

(1)S同位素和辉钼矿中 Re 含量暗示鸡笼山金 矿床的成矿物质可能源于壳幔混源,反映其成矿物 质具有岩浆来源的特征。

(2)鸡笼山金矿床辉钼矿 Re-Os 等时线年龄为 148.6±1.5Ma,结合矿物共生组合和铜金相关性, 暗示辉钼矿年龄基本上能代表鸡笼山砂卡岩金矿床 的成矿年龄;该成矿年龄与成矿岩体 SHRIMP 锆石 U-Pb 年龄(151±1Ma)较为一致,表明两者之间有 着密切的成因关系,暗示鸡笼山金矿床属于燕山晚 期中酸性岩浆与相关热液上侵的产物,其形成于岩 石圈伸展构造背景。

致谢:野外地质工作期间得到了中国黄金集团 鸡笼山金矿总工杨庆雨、地测部部长熊伟及地质组 王昆、谢涛、徐立奎等同志的大力支持和帮助;中国 地质科学院国家地质实验室测试中心杜安道老师、 李超老师,核工业地质实验中心刘牧老师及实验人 员在论文实验过程中给予了热情的指导和帮助;审 稿专家给论文提出了许多建设性的意见,在此一并 致以谢忱!

参考文献

- 闭忠敏,杨松.2008.鸡笼山砂卡岩金(铜)矿床地质矿产特征、物质 来源及成矿机制研究.矿产与地质,22(6):496~502.
- 常印佛,刘湘培,吴言昌.1991.长江中下游铁铜矿成矿带.北京:地 质出版社,1~379.
- 贾宝剑. 2012. 湖北省阳新县鸡笼山金铜矿床成因与找矿方向研究. 北京:中国地质大学.
- 黎形, 倪守斌. 1990. 地球和地壳的化学元素丰度. 北京: 地质出版 社, 10~25.
- 孙卫东,凌明星,汪方跃,丁兴,胡艳华,周继彬,杨晓勇.2008.太平 洋板块俯冲与中国东部中生代地质事件.矿物岩石地球化学 通报,27:218~225.
- 毛景文,张作衡,张招崇,杨建民,王志良,杜安道.1999.北祁连山 小柳沟钨钼矿床 Re-Os 同位素测年及其意义.地质论评,45 (4):412~417.
- 毛景文,谢桂青,郭春丽,袁顺达,程彦博,陈毓川.2008.华南地区中

生代主要金属矿床时空分布规律和成矿环境.高校地质学报, 14:510~526.

- 毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿 带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2): 109 ~119.
- 瞿泓滢,王浩琳,裴荣富,姚磊,王永磊,郑志刚.2012.鄂东南地区与 大型砂卡岩型铁矿床有关的铁山和金山店岩体的锆石 LA-ICP-MS 年齡和 Hf 同位素组成及其地质意义.岩石学报,28(1): 147~165.
- 舒全安,陈培良,程建荣.1992.鄂东铁铜矿产地质.北京:冶金工业 出版社.1~510.
- 舒广龙.2004.湖北丰山矿田成矿地质背景及斑岩成矿系列与微细 浸染金矿.长沙:中南大学:64~65.
- 王建,谢桂青,姚磊,朱乔乔,李伟.2014.鄂东南鸡笼山砂卡岩型金 矿床花岗闪长斑岩的成因:地球化学和锆石 U-Pb 年代学约束. 矿床地质,33(1):137~152.
- 伍超群,杨洪之.1993.鸡笼山砂卡岩型金铜矿床地球化学特征及成 矿模式.地质与勘探,29(8):52~57.
- 吴良士, 邹晚秋. 1997. 江西城门山铜矿铼锇同位素年龄研究. 矿床 地质, 16(4): 376~381.
- 谢桂青,毛景文,李瑞玲,张祖送,赵维超,屈文俊,赵财胜,魏世 昆.2006.鄂东南地区 Cu-Au-Mo-(W)矿床的成矿时代及其成矿 地球动力学背景探讨:辉钼矿 Re-Os 同位素年龄.矿床地质, 25(1):43~52.
- 谢桂青,李瑞玲 蒋国豪,赵财胜,侯可军.2008a.鄂东南地区晚中生 代侵入岩的地球化学和成因及对岩石圈减薄时限的制约.岩石 学报,24(8):1703~1714.
- 谢桂青,毛景文,李瑞玲,蒋国豪,赵财胜,赵海杰,侯可军,潘怀军. 2008b.鄂东南地区大型砂卡岩铁矿床金云母⁴⁰ Ar-³⁹ Ar 同位素 年龄及其构造背景初探.岩石学报,24:1917~1927.
- 谢桂青,赵海杰,赵财胜,李向前,侯可军,潘怀军.2009.鄂东南铜绿 山矿田砂卡岩型铜铁金矿床的辉钼矿 Re-Os 同位素年龄及其 地质意义.矿床地质,28(3):227~239.
- 徐耀通.1992.论鸡笼山金铜矿床成矿地球化学特征初探.地质与勘 探,28:80~81.
- 徐耀明,蒋少涌,朱志勇,周巍,孔凡斌,孙明志.2012.九瑞矿集区山 上湾矿区石英闪长玢岩和花岗闪长斑的年代学、地球化学及成 矿意义.岩石学报,28(10):3306~3324.
- 薛迪康, 葛宗侠, 张宏泰, 胡惠民, 杨明银. 1997. 鄂东南铜金矿床成 矿模式与找矿模型. 武汉: 中国地质大学出版社, 161~169.
- 翟裕生,姚书振,林新多.1992.长江中下游地区铁铜(金)成矿规律. 北京:地质出版社,1~120.
- 张铁男.1999.长江中下游及其邻区重要含金(铜)矽卡岩矿床地质 地球化学特征.北京:中国地质科学院.
- 张振儒,孙伟. 1989. 方铅矿中次显微金的电子显微镜研究. 地质与 勘探, 5: 40~41.
- 赵海杰. 2010. 湖北铜绿山砂卡岩型铜铁矿床地球化学及成矿机制. 北京:中国地质科学院.
- 周涛发,范裕,袁峰.2008.长江中下游成矿带成岩成矿作用研究进 展.岩石学报,24(8):1665~1678.
- 周询若,任进.1994.长江中下游中生代花岗岩.北京:地质出版社. 1~118.

- Berzina A N, Sotnikov V I, Economou-Eliopoulos M and Demetrios G E. 2005. Distribution of rhenium in molybdenite from porhpyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26(1-2): 91~113.
- Du A D, He H L, Yin N W, Zou X Q, Sun Y L, Sun D Z, Cen S Z and Qu W J. 1995. A study of the Rhenium-Osmium geochronology of molybdenites [J]. Acta Geologica Sinica (English Edition), 8: 171~181.
- Du Y S, Qin X L and Tian S H. 2004. Mesozoic magmatic to hydrothermal process in the Tongguanshan ore field, Tongling, Anhui Province, China: Evidence from xenoliths and their hosts. Acta Petrologica Sinica, 20(2): 339~350.
- Gradstein F M, Ogg J G, Smith A G, Bleeker W and Lauranse L J. 2004. A new geologic time scale, with special reference to Precambrian to Neogene. Episodes, 27: 83~100.
- Li J W, Pei R F, Zhang D Q, Mei Y X, Zang W S, Meng X G, Zeng P S, Li T J and Di Y J. 2007. Geochemical characteristics of the Yanshanian intermediate-acid intrusive rocks in the Tongling mineralization concentration area, Anhui province, and their geological implications. Acta Geoscientica Ainica, 28 (1): 11~22.
- Li J W, Zhao X F, Zhou M F, Ma C Q, de Souza Z S and Vasconcelos P. 2009. Late Mesozoic magmatism from Daye region, Eastern China: U - Pb ages, petrogenesis and geodynamic implications. Contrib. Mineral. Petrol, 157, 383 ~409.
- Ludwig K. 1999. Isotope/Ex, version 2. 0: A geochrological toolkit for Microsoft Excel. Geochronology Centre, Berkeldy, Special Publication la.
- Mao J W, Zhang Z C, Zhang X H and Du A D. 1999. Rheniumosmium isotope dating of molybdenite in the Xiaoliugou W(Mo) deposit in North Qilianshan Mountains and its geological significance. Geochemica Cosmochemica Acta, 63: 1815~1818.
- Mao J W, Wang Y T, Lehmann B, Yu J J, Du A D, Mei Y X, Li Y F, Zang W S, Stein H J and Zhou T F. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metalloenic implications. Ore Geology Reviews, 29: 307~324.
- Mao J W, Xie G Q, Bierlein F, Qu W J, Du A D, Ye H S, Pirajno F, Li H M, Guo B J and Li Y F. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta, 72: 4607~4626.
- Mao J W, Franco Pirajno, Nigel Cook. 2011 Mesozoic metallogeny in East China and corresponding geodynamic settings—An introduction to the special issue. Ore Geology Reviews, 43:1 ~7.
- Pan Y and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze

River) metallogenic belt, east China: Intrusion and wall rockhosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15:177~242.

- Selby D and Creaser R A. 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotope analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim. Cosmochim. Acta, 68: 3897~ 3908.
- Shirey S B and Walker R J. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Anal. Chem. , 67: 2136~2141.
- Stein H J, Markey R J, Morgan J W, Hannah J L and Schersten A. 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova, 13: 479~486.
- Sun W D, Xie Z and Chen J F. 2003. Os-Os dating of copper and molybdenum meposits along the middle and lower reaches of the Yangtze River, China. Economic Geology, 98: 175~180
- Selby D and Creaser R A. 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim. Cosmochim. Acta, 68: 3897~ 3908.
- Suzuki K, Shimizu H and Masuda A. 1996. Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochim. Cosmochim. Acta, 60: 3151~3159.
- Xie G Q, Mao J W, Li R L, et al. 2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei. China. Mineralogy and Petrology, 90(3-4): 249~270.
- Xie G Q, Mao J W, Li R L and Bierlein F P. 2008a. Geochemistry and Nd-Sr isotopic studies of Late Mesozoic granitoids in the southeastern Hubei Province, Middle-Lower Yangtze River belt, eastern China: Petrogenesis and tectonic setting. lithos, 104: 216~230
- Xie G Q, Mao J W, Zhao H J. 2011a. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River belt (MLYRB). East China. Lithos, 125: 693 ~710.
- Zhai Y S, Xiong Y Y, Yao S Zand Lin X D. 1996. Metallogeny of copper and iron deposits in the eastern Yangtze Carton, eastcentral China. Ore Geology Review, 11: 229~248.
- Zhao Y M, Zhang Y N and Bi C S. 1999. Geology of gold-bearing skarn deposits in the Middle and Lower Yangtze River valley and adiacent regions. Ore Geology Review, 14: 227~240.

Re-Os Dating of Molybdenite from the Jilongshan Skarn Au Deposit in Southeast Hubei Province, Middle-Lower Yangtze River Belt and Its Tectonic Significance

WANG Jian^{1,2)}, XIE Guiqing²⁾, CHEN Fenghe¹⁾, ZHU Qiaoqiao²⁾, LI Wei²⁾, ZHANG Zhiyuan¹⁾

1) Institute of Prospecting Technology, Hebei Mine Bureau, Yanjiao, Hebei, 065200;

2) Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037

Abstract

Southeast Hubei Province is one of the most important part of the Cu-Au-Fe-Mo metallogenic belt in the middle-lower Yangtze River in China, the Jilongshan Au deposit is a large skarn gold deposit in this area. This paper use Re-Os isotope dating method for the determination of timing of the Jilongshan gold deposit. The molybdenite Re-Os isotopic model age range from 147.7±2.4 to 151.6±4.02Ma with an isochron age of 148.6±1.5Ma, which is alomost similar to zircon SHRIMP U-Pb age of 151.6±0.7Ma of granodiorite porphyry in the Jilongshan Au skarn deposit. These data are alos consistent with skarn Cu-Fe mineralization age in Southeast Hubei. The Jilongshan skarn Au deposits may be formed in lithosphere extension tectonic setting. Sulfur isotope values are $-2.5\% \sim 5.5\%$ with an mean value of 2.84%, eflecting that the characteristics ore-forming material originated from magmatic origin. The content of Re in molybdenite is $174.3 \times 10^{-6} \sim 8714 \times 10^{-6}$, with an average value of 476.2×10^{-6} , indicating that the sources of ore-forming are deried from a mixture of crust and mantle material.

Key words: molybdenite; Re-Os isotopic dating; sulfur isotope; Jilongshan Au deposits; southeastern Hubei