松潘一甘孜南部玛孜措石英闪长岩的地球 化学特征、同位素年龄及其构造意义

段志明¹⁾,张玉修^{2,3)},祝向平¹⁾,刘建辉⁴⁾,钟成全⁵⁾,曾璐^{2,3)}

1)中国地质调查局成都地质矿产研究所,成都,610081; 2)中国科学院计算地球动力学重点 实验室,北京,100049; 3)中国科学院大学地球科学学院,北京,100049; 4)北京离子探针 中心,北京,100037; 5)四川省蜀西地质工程勘测院,成都,611730

内容提要:玛孜措石英闪长岩体位于松潘-甘孜地体南部的甘孜地体内,地处鲜水河断裂带西南侧。岩体具高 钾(3.53%~3.86%)、富钙(4.91%~6.07%)、贫铝(14.60%~15.24%),铝饱和指数(A/CNK=0.80~0.89)偏低 的特征,岩石稀土总量较低,轻稀土中度富集,dEu介于 0.46~0.53 之间,Eu中度亏损,岩石(87 Sr/86 Sr);比值介于 0.707407~0.707640,表明岩浆起源于壳-幔混熔或下地壳物质的部分熔融,属下地壳重熔的 I 型高钾钙碱性花岗 岩系列。在微量元素构造环境判别图上,样品都落在岛弧区,反映了石英闪长岩具有与岛弧型花岗岩相似的地球 化学性质。岩体具较高的 Rb(60.1×10⁻⁶~85.9×10⁻⁶)、Cs(4.01×10⁻⁶~19.62×10⁻⁶)含量和 K₂O/Na₂O 比值 (1.31~1.82),反映源区可能与黑云母的脱水熔融有关。玛孜措石英闪长岩锆石 SHRIMP U-Pb 年龄为 221±2.0 Ma(MSWD=1.4),显示岩体侵位时代为晚三叠世;而全岩 Rb-Sr 等时线年龄为 207.0±2.0 Ma(R=0.9979),显示 岩体就位时代为晚三叠世晚期。玛孜措岩体形成于晚三叠世弧后构造环境,是幔源岩浆的底侵作用导致壳一幔混 熔的产物。

关键词:松潘-甘孜地体;玛孜措石英闪长岩;锆石 SHRIMP U-Pb 定年;Rb-Sr 同位素

松潘-甘孜地体位于青藏高原东缘,地处华北 板块、扬子板块和羌塘地体的结合地带,夹持于昆 南-阿尼玛卿构造带、金沙江构造带和龙门山逆冲断 裂带之间(Burchfiel et al., 1995; Dewey et al., 1988; Yin A, 2000; Zhang K J, 2002; 许志琴等, 2007; Zhang K J et al., 2012a, 2012b; 图 1a)。该地 体北以昆南-阿尼玛卿构造带与东昆仑-柴达木-西秦 岭地体相接,向西及西南以甘孜-理塘构造带与义敦 岛弧(或称中咱地体)相邻,后者以金沙江构造带相 接于羌塘地体(Roger, 1994; Xu Z Q et al., 1999; Zhang K J, 2001; Zhang K J et al., 2006, 2008, 2012a,2012b;Zhang Y X et al.,2014a,2014b)。新 生代以来强烈的隆升和剥蚀,以及金沙江、鲜水河和 东昆仑等左行走滑作用的影响,使松潘-甘孜地体向 东南挤出,并在东侧形成由新生代逆冲叠置岩片组 成的龙门山-锦屏山增生楔(Zhang K J,2001,2002; 许志琴等,2007)。

松潘-甘孜地体以发育巨厚(>5000 m)的三叠系 复理石为特征,它可能具有扬子型大陆基底(Zhang K J,2001,2002; Zhang Y X et al., 2014b),经晚古生代 一中生代(P2-T3)陆缘裂陷裂谷构造演化,至印支晚 期(T₃)褶皱成山,并受继后的陆内俯冲和汇聚作用叠 加改造(许志琴等,1992;Hou Z Q,1993;Roger,1994; 侯增谦等,1995;王宗秀等,1997;Huang M et al., 2003)。其巨厚的复理石堆积主要来自于中羌塘变质 地体和周边山系的剥蚀,而且南部和北部碎屑来源不 同(Nie S et al., 1994; Zhou D et al., 1996; Weislogel et al.,2006;Zhang K J et al.,2006,2008,2012a;Zhang Y X et al., 2006, 2014a, 2014b)。虽然该地体和周缘构 造带在新生代时期受到强烈改造(Wang C S et al., 2011; Zhang K J et al., 2012b), 但三叠系的变形主要 发生在晚三叠世或印支晚期(许志琴等,1992;Hsü K

2013

收稿日期:2012-12-24;改回日期:2013-03-17;责任编辑:黄敏。

注:本文为国家科技支撑计划课题(2006BAB01A01、2006BAB01A04、2006BAB01A05)、地质调查项目(1212010918033)、矿调「2006] 3-6 号、国家自然科学基金(40802048)、中国博士后科学基金(200801100、20080430458)、中国科学院"优秀博士学位论文、院长特别奖"获得者 科研启动专项资金(Y129012EA2)和中国科学院大学校长基金联合资助的成果。

作者简介:段志明,男,博士。高级工程师,岩石学和第四纪地质学专业。Email:duanzm2003@163.com。通讯作者:张玉修,男,博士。副 教授,地质学专业。Email:yushuzh@gmail.com。

J et al.,1995;Burchfiel et al.,1995;Zhang K J,2002), 北西走向的褶皱轴指示变形主要由北东一南西向挤 压作用造成(王二七等,2001;Zhang K J,2001,2002)。 由于其独特的造山过程和丰富的矿产资源,加之陡峭 险峻的山川地势及倒三角形的地貌,故被称为中国 "地质百慕大"(许志琴等,1992)。

松潘-甘孜地体的另一个显著特征是广泛出露 的印支期花岗质岩侵入体,这些花岗质岩不仅是岩 石圈深部地质作用的物质记录,而且是揭示地球动 力学过程的深部窗口,记录了壳-幔相互作用、岩石 圈演化的大量信息(Pitcher,1993;邓晋福等,1996; Petford et al.,2000)。一些学者对松潘-甘孜地体 内的一些岩体进行了年代学和岩石地球化学研究 (袁海华等,1994; Roger et al.,2004; 胡健民等, 2005; Zhang H F et al.,2006,2007a,2007b; Zhang C Z et al.,2007; 赵永久等,2007; Xiao L et al., 2007; Yuan C et al.,2010; 袁静等,2011),初步揭示 了这些花岗质岩类的时空分布和岩石学特征。但 是,是在什么时代、什么地球动力学背景下发生的这 种面状花岗质岩浆侵位呢?显然,与这些花岗质岩 类有关的侵位时代、地球化学特征,以及岩浆源区性 质和形成机制等,对研究松潘-甘孜地体乃至整个青 藏高原的构造演化都有重要意义。

本文根据锆石在岩浆作用过程中的化学稳定性,以及岩石元素-同位素示踪原理,对玛孜措石英 闪长岩体进行了高分辨率离子探针(SHRIMP)锆石 U-Pb和全岩 Rb-Sr 同位素测年,以利用可靠的同 位素年代学和地球化学数据来约束其形成时代和构 造属性,并讨论其构造意义。

1 地质背景

玛孜措石英闪长岩体地处松潘-甘孜地体南部 的甘孜地体内,介于 N30°54′~31°06′,E100°47′~ 101°08′之间,位于鲜水河断裂带西南侧(图 1a)。区

图 1 (a)松潘-甘孜地体区域构造简图和(b)松潘-甘孜地体南部玛孜措石英闪长岩分布略图 Fig. 1 (a) Simplified tectonic map of Songpan-Ganzi Terrance, (b) Simplified geologic map of Mazicuo quartz diorites, southern Songpan-Ganzi Terrane

1—扎尕山组;2—杂谷脑组;3—侏倭组;4—新都桥组;5—如年各组;6—石英闪长岩;7—冲洪积;8—班公错-怒江构造带; 9—甘孜-理塘构造带;10—金沙江构造带;11—昆南-阿尼玛卿构造带;12—逆冲断裂;13—片理产状;14—研究区;15—采样点;16—地名 1—Zhagashan Formation; 2—Zagunao Formation; 3—Zhuwo Formation; 4—Xinduqiao Formation; 5—Runiange Formation; 6—quartz diorite; 7—Alluvial; 8—Bangong-Nujiang tectonic belt; 9—Ganzi-Litang tectonic belt; 10—Jinshajiang tectonic belt; 11—southern Kunlun-Animaqen tectonic belt; 12—thrust fault; 13—attitude of schistosity; 14—study area; 15—sampling locations; 16—place name 内主要出露中一上三叠统扎尕山组(T₂zg)、杂谷脑 组(T₃z)、侏倭组(T₃zh)、新都桥组(T₃x),以及如年 各组(T₃r),其中扎尕山组一新都桥组为一套复理 石的细砂岩、粉砂岩、泥岩夹灰岩沉积,而如年各组 则为一套拉张裂离初期的碳酸盐岩夹火山岩建造。 除上述地质体外,区内还分布有呈岩株状产出的玛 孜措石英闪长岩体(T₃δo),岩体受北东向及北西向 构造控制,北东长11 km,南西宽4 km,面积约44 km²,侵入于上三叠统新都桥组(T₃x)中(图1b)。 玛孜措石英闪长岩体侵入界线呈锯齿状,岩体内缺 乏定向组构,并在围岩中形成宽100~500 m的石 榴石、堇青石、红柱石、长石石英热接触变质角岩带。

2 测试分析方法

2.1 地球化学分析方法

对采集到的石英闪长岩样品磨制薄片,再选择 相对新鲜者进行主量组分和微量元素综合测试。主 量组分由国土资源部西南矿产资源监督检测中心采 用原子吸收分光度法测试,分析精度优于1%;其中 FeO用容量法分析,烧失为1000℃时的烧失量。微 量元素由成都矿产资源监督检测中心分析,测试时, 首先采用酸溶方法对样品进行预处理,然后再利用 ICP-MS 法测定,分析精度优于5%,具体处理和分 析方法参见文献(如刘颖等,1996)。

2.2 SHRIMP U-Pb 年龄测试方法

锆石样品经过常规的粉碎、磁选和重选,然后在 双目镜下挑选晶形完好的颗粒,并和标准锆石 TEM 粘贴在环氧树脂表面,抛光后制成样靶,用于阴极发 光(CL)照相和随后的锆石 SHRIMP U-Pb 分析。 锆石 SHRIMP U-Pb 同位素分析在中国地质科学 院北京离子探针中心 SHRIMP Ⅱ型离子探针上完 成,测试过程中用标准锆石 SL13(年龄为 572 Ma, U含量为238×10⁻⁶)来标定所测样品的U、Th及 Pb 含量(Black et al., 2003),用 TEM(年龄为 417 Ma)进行年龄校正。样品数据采用 SQUID 和 ISOPLOT 软件(Ludwig et al., 2001, 2003)进行处 理,普通铅根据实测²⁰⁴ Pb 进行校正,采用²⁰⁶ Pb/²³⁸ U 年龄,其加权平均值具有 95%的置信度。详细的错 石分选、测试分析与数据处理方法参见文献 (Composton et al., 1984; Claesson et al., 2000; Black et al.,2003;张玉修等,2007)。

2.3 Rb-Sr 同位素年龄测试方法

石英闪长岩 Rb-Sr 同位素测试在天津地质矿产研究所同位素地质研究室的 Isoprobe-T 热电离质

谱上完成,全程本底稳定在 Rb=5.6×10⁻¹⁰ g,Sr=
3.8×10⁻¹⁰ g,分析过程中 NBS987 标样测定结果
为⁸⁷Sr/⁸⁶Sr=0.710253±0.000006(2δ),全岩 Rb-Sr
等时线年龄采用 ISOPLOT 标准程序(Ludwig, 2003)进行计算。

3 岩石学与岩石化学特征

玛孜措石英闪长岩体的岩性较均一,为灰、暗灰 色中一粗粒似斑状黑云角闪石英闪长岩。矿物粒径 2~7 mm,为中一粗粒似斑状花岗结构,块状构造。 似斑晶为斜长石和钾长石,粒径 7~10 mm,含量 5%~10%±。主要矿物成分:斜长石 50%~60%, 钾长石 10%~20%,石英 10%~15%,角闪石 5% ~8%,黑云母 3%~5%,辉石 1%~3%;其中斜长 石具环带结构。副矿物为锆石、磷灰石、榍石等。岩 石具高岭土化、绿泥石化和绿帘石化蚀变现象。

图 2 松潘-甘孜地体南部玛孜措石英闪长岩 K₂O-SiO₂ 与碱度关系图(据 Le Maitre et al., 1989)

Fig. 2 K_2O vs SiO₂ variation diagram for Mazicuo quartz diorites, southern Songpan-Ganzi Terrane(after Le Maitre et al., 1989)

玛孜措石英闪长岩的 SiO₂ 含量在 58.56%~ 63.10%之间(表 1)。Na₂O+K₂O 含量介于 5.92% ~6.28%,K₂O/Na₂O 比值为 1.31~1.82(岩石化 学从钠质向钾质演化),里特曼指数在 1.75~2.46 之间,在 Le Maitre 等(1989)的 K₂O-SiO₂ 与碱度关 系图解上位于高钾钙碱性岩浆岩区(图 2),反映了 玛孜措石英闪长岩的高钾钙碱性特征。岩石 Al₂O₃ 含量变化于 14.60%~15.24%之间,铝饱和指数 (A/CNK)为 0.80~0.89,A/NK 指数在 1.79~ 2.02之间,在LeManiar等(1989)的铝饱和指数图

表 1	松潘-甘孜地体南部玛孜措石英闪长岩岩石化学特征(主量组分	:%,微量元素:×10 ⁻⁶)
-----	------------------------------	-----------------------------

Fable 1	Petrochemical composition	data for Mazicuo	quartz diorites,	southern Songpan-Ganzi	Terrane
---------	---------------------------	------------------	------------------	------------------------	---------

(major: %, trace element: $\times 10^{-6}$)

样号	MZH1	MZH2	MZH3	MZH4	MZH5	MZH6	MZH7	MZH8
SiO_2	62.25	63.10	61.12	58.96	58.56	59.59	59.47	60.44
$\mathrm{Al}_2\mathrm{O}_3$	14.86	14.60	14.96	14.76	15.24	15.16	14.8	15.16
${ m TiO_2}$	0.57	0.66	0.60	0.62	0.51	0.49	0.65	0.61
$\mathrm{Fe}_2\mathrm{O}_3$	1.49	1.69	1.41	1.82	1.56	1.58	1.48	1.58
FeO	3.85	3.47	4.12	5.16	4.32	5.18	4.97	4.37
MnO	0.10	0.10	0.16	0.17	0.16	0.16	0.15	0.14
MgO	2.73	2.20	2.88	3.32	3.16	3.05	3.09	2.74
CaO	5.22	4.91	5.56	5.72	6.07	5.65	5.56	5.51
Na_2O	2.39	2.16	2.38	2.02	2.38	2.35	2.71	2.43
K_2O	3.53	3.71	3.72	3.68	3.65	3.86	3.54	3.85
P_2O_5	0.15	0.2	0.2	0.19	0.17	0.21	0.16	0.2
烧失量	2.40	3.07	2.74	2.51	3.26	2.58	2.90	2.56
总 量	99.54	99.87	99.85	98.93	99.04	99.86	99.48	99.59
La	18.7	23.4	23.6	20.9	19.7	38.9	19.5	36.7
Ce	32.8	40.1	40.9	37.6	34.7	68.3	34.3	63.4
Pr	4.09	4.99	5.13	4.85	4.47	8.02	4.39	7.54
Nd	16.3	19.2	20.0	18.8	17.5	29.3	17.5	27.6
Sm	3.55	4.19	4.34	4.15	3.90	5.22	3.70	4.99
Eu	0.56	0.67	0.75	0.62	0.58	0.84	0.56	0.80
Gd	3.25	4.14	4.16	3.95	3.51	4.71	3.38	4.51
Tb	0.51	0.61	0.62	0.60	0.59	0.71	0.56	0.70
Dy	3.14	3.65	3.82	3.49	3.42	4.13	3.42	4.06
Но	0.66	0.77	0.79	0.71	0.71	0.83	0.70	0.83
Er	1.93	2.20	2.26	2.11	2.05	2.38	2.02	2.33
Tm	0.29	0.35	0.36	0.32	0.32	0.36	0.31	0.36
Yb	1.96	2.29	2.34	2.16	2.13	2.36	2.06	2.35
Lu	0.32	0.37	0.38	0.35	0.34	0.38	0.34	0.38
Υ	16.9	20.0	20.4	18.7	18.4	21.7	18.2	21.1
Σ REE	104.96	126.93	129.85	119.31	112.32	188.14	110.94	177.65
$\sum Ce / \sum Y$	2.62	2.69	2.70	2.68	2.57	4.01	2.58	3.85
δEu	0.49	0.49	0.53	0.46	0.47	0.51	0.48	0.51
Rb	60.1	74.0	78.7	72.0	69.8	85.9	65.8	81.6
Cs	4.01	11.35	17.47	13.30	9.93	19.62	7.27	14.84
Ba	651	832	875	801	775	950	750	904
Th	4.6	6.2	6.6	5.9	5.8	7.3	5.4	6.7
Ta	0.95	1.20	1.25	1.17	1.04	1.47	0.97	1.29
Nb	5.71	7.82	8.21	6.96	6.32	10.12	6.01	9.31
Zr	86	108	108	104	98	119	94	112
Hf	2.1	2.6	2.6	2.5	2.4	3.0	2.2	2.8

解上位于偏铝质花岗岩区(图 3)。总体来看,该石 英闪长岩具高钾($3.53\% \sim 3.86\%$)、富钙($4.91\% \sim 6.07\%$)、贫铝($14.60\% \sim 15.24\%$),铝饱和指数 (A/CNK < 1.05)偏低的特征,并且岩体中普遍含角 闪石和辉石,岩石类型属 I型花岗岩系列(Chappell et al., 1992; Chappell, 1999);在 Batchelor 等 (1985)的 R₁-R₂ 多阳离子图解中,投点都落入活动 板块边缘花岗岩区(图 4)。

石英闪长岩的稀土元素丰度较低, Σ REE 仅为

104.96×10⁻⁶~188.14×10⁻⁶,∑Ce/∑Y变化于 2.57~4.01之间(表 1),稀土元素球粒陨石标准化 曲线右倾,属轻稀土富集型,∂Eu 在 0.46~0.53 之 间,属 Eu 亏损型(图 5)。

在 Pearce 等(1984)的 Rb -(Yb+Ta)、Rb -(Y +Nb)、Ta-Yb 和 Nb-Yb 微量元素构造环境判别图 解上,样品均落入火山弧花岗岩区(图 6),反映了该 石英闪长岩的地球化学特征与岛弧型花岗岩类似 (Forstesetal.,1997;Kampunzuetal.,2003)。在

图 3 松潘-甘孜地体南部玛孜措石英闪长岩

A/NK-A/CNK 图解(据 Maniar et al., 1989)

diorites, southern Songpan-Ganzi Terrane(after Maniar

A/NK vs A/CNK Plot for Mazicuo quartz

Fig. 4 R1 vs R2 multicationic diagram for Mazicuo quartz diorites, southern Songpan-Ganzi Terrane (after Batchelor et al., 1985)

1一地幔分异花岗岩;2一活动板块边缘花岗岩;3一碰撞后隆起 花岗岩;4一造山晚期花岗岩;5一非造山花岗岩;6一同碰撞花岗 岩;7一造山后的 A 型花岗岩

1—mantle-derived granite; 2—destructive active plate margin granite; 3—postcollision uplift granite; 4—late orogenic granite; 5—anorogenic granite; 6—syncollision granite; 7 postorogenic A-type granite

微量元素球粒陨石标准化蛛网图上(图 7),随着元 素不相容程度的降低,其元素的配分曲线呈现向右 倾斜的特点,并不同程度地富集 K、Rb、Th、Ce 和 Sm,而 Ta、Nb、Zr、Hf 和 Ti 则相对贫化,显示了火 山弧花岗岩的配分曲线特征(Thompson,1982)。 尤其是 Ta 和 Nb 的贫化,是板块汇聚边缘岩浆岩固 有的特征。

图 5 松潘-甘孜地体南部玛孜措石英闪长岩稀土元素 球粒陨石标准化曲线(球粒陨石值据 Sun et al.,1989) Fig. 5 Chondrite-normalized REE patterns for Mazicuo quartz diorites, southern Songpan-Ganzi Terrane (chondrite data from Sun et al.,1989)

综上所述,玛孜措石英闪长岩属下地壳重熔的 I型高钾钙碱性花岗岩系列,其微量元素地球化学 特征与岛弧型花岗岩类似。

4 锆石 SHRIMP U-Pb 年龄

锆石大部分呈短柱状,颗粒变化于 50~200 μm 之间,部分可见较完整的晶棱或晶锥,有时可见浑圆 状边缘的老核。阴极发光图像显示锆石结构均一, 反映岩浆成因的生长纹清晰可见(图 8)。

玛孜措石英闪长岩(样品号:MZTW1)的锆石 SHRIMP U-Pb 同位素分析结果见表 2。由表可 知,U、Th 和 Pb 含量分别变化于 $191 \times 10^{-6} \sim 926$ $\times 10^{-6}$ 、 $139 \times 10^{-6} \sim 1175 \times 10^{-6}$ 和 5.74×10⁻⁶ ~ 28.3×10⁻⁶之间,其值越大,对应的锆石阴极发光图 像越暗,三者呈正相关关系;锆石 Th/U 比值介于 0.45~1.31,表现出岩浆锆石的同位素地球化学特 征(Hanchar et al.,1993;Sue et al.,1999;Claesson et al.,2000)。

锆石定年的 24 个数据点均落在²⁰⁷ Pb/²³⁵ U-²⁰⁶ Pb/²³⁸ U 谐和线上(图 9)。其中锆石的²⁰⁶ Pb/²³⁸ U 年龄都集中在 207.9±5.3~228.0±5.0 Ma 之间, 加权平均年龄值为 221±2.0 Ma(MSWD=1.4)(图 9,10),该年龄显示玛孜措石英闪长岩的侵位时代为 晚三叠世。

5 全岩 Rb-Sr 年龄

玛孜措石英闪长岩(样品号:MZTW2)的8件 全岩 Rb-Sr 同位素分析结果见表3。Rb、Sr 的含量 分别介于49.0554×10⁻⁶~69.8618×10⁻⁶和 104.6082×10⁻⁶~585.0892×10⁻⁶之间,⁸⁷ Rb/⁸⁶ Sr

Fig. 3

	Terrane
司位素分析结果	Songpan-Ganzi
IP U-Pb	southern
石 SHRIN	diorites,
大地结:	o quartz
石英闪	Mazicue
3玛孜措	lata for
也体南部	o U-Pb o
番-甘孜 4	SHRIMI
2 松泊	Zircon 2
表	Table 2

点号	$206 Pb_{c}(\%)$	$U(\times 10^6)$	Th($\times 10^6$)	$^{232}{ m Th}/^{238}{ m U}$	$^{206}{ m Pb}^{*}$ ($ imes 10^{6}$)	$^{207}{ m Pb}*/^{206}{ m Pb}*$	$\pm 1\sigma$	$^{207}{ m Pb}$ * $/^{235}{ m U}$	$\pm 1_{\sigma}$	$^{206}{ m Pb}^{*}/^{238}{ m U}$	$\pm 1\sigma$	$t^{206} Pb/^{238} U$ (Ma)	$\pm 1\sigma$
[W1-1.1	0.98	599	612	1.06	18.0	0.0472	5.4	0.226	5.7	0.03468	1.9	219.8	4.1
TW1-2.1	0.70	667	623	0.97	20.4	0.0501	4.2	0.245	4.6	0.03544	1.8	224.5	3.9
TW1-3.1	1.00	284	269	0.98	8.56	0.0559	9.3	0.267	9.5	0.03469	1.9	219.8	4.2
TW1-4.1	3.78	191	139	0.76	5.74	0.0440	27	0.203	27	0.03371	2.4	213.7	5.0
TW1-5.1	2.83	246	176	0.74	7.12	0.0550	13	0.249	13	0.03278	2.1	207.9	4.3
CTW1-6.1	1.81	328	315	0.99	9.83	0.0542	10	0.256	11	0.03423	2.2	216.9	4.7
TW1-7.1	1.43	269	260	1.00	8.09	0.0617	7.6	0.293	7.9	0.03443	2.0	218.2	4.2
CTW1-8.1	0.32	502	411	0.85	15.5	0.0566	3.5	0.280	3.9	0.03586	1.8	227.1	3.9
CTW1-9.1	0.27	751	791	1.09	22.5	0.0509	3.1	0.244	3.5	0.03481	1.7	220.6	3.7
TW1-10.1	0.89	561	498	0.92	16.6	0.0531	6.2	0.249	6.5	0.03405	1.8	215.8	3.7
TW1-11. 1	1.64	409	440	1.11	12.0	0.0488	13	0.226	13	0.03365	1.9	213.4	4.1
TW1-12.1	0.92	926	1175	1.31	28.3	0.0492	3.9	0.239	4.2	0.03525	1.7	223.3	3.7
TW1-13.1	0.86	327	303	0.96	10.1	0.0525	5.9	0.256	6.2	0.03544	1.9	224.5	4.1
TW1-14.1	1.70	366	358	1.01	11.1	0.0532	11	0.255	11	0.03481	1.9	220.6	4.1
TW1-15.1	0.50	630	595	0.98	18.8	0.0527	4.3	0.251	4.7	0.03450	1.8	218.7	3.8
ΓW1-16.1	3.19	247	195	0.82	7.46	0.0420	18	0.197	18	0.03404	2.1	215.8	4.4
ΓW1-17.1	0.92	368	362	1.02	11.4	0.0528	4.2	0.261	4.5	0.03582	1.8	226.9	4.1
ΓW1-18.1	1.12	687	728	1.09	21.4	0.0448	7.1	0.221	7.3	0.03576	1.8	226.5	4.0
FW1-19.1	0.78	512	526	1.06	15.5	0.0557	5.0	0.270	5.3	0.03507	1.7	222.2	3.8
FW1-20.1	2.44	319	231	0.75	9.85	0.0401	12	0.194	12	0.03505	2.0	222.1	4.3
ΓW1-21.1	1.28	477	209	0.45	14.5	0.0491	7.3	0.237	7.5	0.03504	1.8	222.0	3.9
ΓW1-22.1	1.85	385	375	1.01	11.8	0.0471	8.9	0.228	9.1	0.03520	1.9	223.0	4.1
FW1-23. 1	1.57	298	272	0.94	9.34	0.0478	9.1	0.237	9.3	0.03598	1.9	227.9	4.3
ΓW1-24.1	2.10	296	205	0.71	9.13	0.0487	12	0.236	12	0.03514	1.9	222.6	4.3

VAG—火山弧花岗岩;Syn-COLG—同碰撞花岗岩;ORG—洋脊花岗岩;A-ORG—洋中脊花岗岩;WPG—板内花岗岩 VAG—volcanic arc granite; syn-COLG—syn-collisional granite; ORG—oceanic ridge granite; A-ORG—Mid-ocean ridge granite; WPG—within plate granite

表 3	松潘-甘孜均	也体南部玛孜措石英闪]长岩全岩 Rb-Sr	·同位素分析结果
-----	--------	------------	-------------	----------

Table 3	Whole-rock Rb-Sr	isotope data for	Mazicuo quartz d	iorites, southern	Songpan-Ganzi Terrane
---------	------------------	------------------	------------------	-------------------	-----------------------

样品	Rb ($\times 10^{-6}$)	Sr ($\times 10^{-6}$)	$^{87} m Rb/^{86} m Sr$	$^{87} m Sr/^{86} m Sr < 2\delta >$	$({}^{87} m Sr/{}^{86} m Sr)$ j
MZTW2-1	49.0554	585.0892	0.2426	0.708403 <16>	0.707640
MZTW2-2	45.4581	211.8778	0.6208	0.709524 <16>	0.707573
MZTW2-3	69.4142	247.8423	0.8104	0.709954 <16>	0.707407
MZTW2-4	44.7294	261.5183	0.4949	0.709161 <20>	0.707605
MZTW2-5	55.7880	223.5476	0.7221	0.709801 <11>	0.707531
MZTW2-6	69.8618	301.0370	0.6715	0.709727 <08>	0.707616
MZTW2-7	67.5435	222.4935	0.8784	0.710308 <29>	0.707547
MZTW2-8	43.6651	104.6082	1.2078	0.711271 <18>	0.707475

和⁸⁷ Sr/⁸⁶ Sr 比值介于 0.2426~1.2078 和 0.708403 ~ 0.711271 之间,(⁸⁷ Sr/⁸⁶ Sr);比值变化于 0.707407~0.707640 之间(表 3,图 11)。 玛孜措石英闪长岩全岩 Rb-Sr 等时线年龄见图 11,8 个样品点构成的 Rb-Sr 等时线相关性较好,其 等时线年龄为 207.0±2.0 Ma(*R*=0.9979)。表明

图 7 松潘-甘孜地体南部玛孜措石英闪长岩微量元素 标准化蛛网图(原始地幔值据 Thompson,1982) Fig. 7 Primitive mantle-normalized trace element spidergrams for Mazicuo quartz diorites, southern

Songpan-Ganzi Terrane (primitive mantle data from Thompson, 1982)

石英闪长岩各矿物间的 Rb-Sr 同位素演化到晚三叠 世晚期(207.0 Ma)时达到均一化,并进入 Rb-Sr 同 位素封闭体系。

6 讨论

6.1 玛孜措石英闪长岩的形成时代和源区

玛孜措石英闪长岩锆石 SHRIMP ²⁰⁶ Pb/²³⁸ U 加权平均年龄值为 221±2.0 Ma(MSWD=1.4),该 年龄代表了闪长岩原始岩浆的初始结晶时代为晚三 叠世。而全岩 Rb-Sr 等时线年龄为 207 Ma,表明石 英闪长岩各矿物间的 Rb-Sr 同位素演化到晚三叠世 晚期(207 Ma)才达到均一化,Rb-Sr 同位素封闭体 系,显示该岩体初始隆升时代为晚三叠世晚期。

岩石 (⁸⁷ Sr/⁸⁶ Sr); 比值介于 0.707407 ~

0.707640之间,属中等锶花岗岩类,明显高于现代均 一储集库(⁸⁷Sr/⁸⁶Sr)_{CHUR}的现代值 0.70478,表明岩 浆起源于壳-幔混熔或下地壳物质的部分熔融 (Faure et al., 1975);岩体具明显偏低的 Y(<21.7 ×10⁻⁶)、Yb(<2.36×10⁻⁶)含量,相对高的(La/ $Yb)_{N}(5.98 \sim 10.67)$, $(Gd/Yb)_{N}(1.39 \sim 1.69)$ 比 值,表明源区可能来自石榴石稳定区地壳物质的部 分熔融。大量的研究表明,在严重缺水的深部地壳, 源区物质的部分熔融主要通过含水矿物(角闪石和 云母类矿物)的脱水反应进行(Patino Douce, 1999)。其中云母类矿物脱水熔融形成的熔体通常 富含 K、Rb、Cs 等碱金属元素,并具有较高 K₂O/ Na₂O比值;而角闪石脱水熔融形成的熔体则富含 Na、Ca 等碱金属元素,并具有较低的 K₂O/Na₂O 比 值(Altherr et al., 2000, 2002)。在成分上, 白云母 相对黑云母富 Al 而贫 Fe、Mg,在脱水反应中通常 形成过铝质的熔体,而黑云母脱水熔融则具有较宽 的组成范围(偏铝质至过铝质)(Gardien et al., 1995; Patino Douce et al., 1995, 1996)。因此, 玛孜 措石英闪长岩的偏铝质特征,以及较高的 Rb(60.1 $\times 10^{-6} \sim 85.9 \times 10^{-6}$), Cs(4.01 $\times 10^{-6} \sim 19.62 \times$ 10⁻⁶)含量和 K₂O/Na₂O 比值(1.31~1.82),显示 源区可能来自黑云母的脱水熔融,反映其源区中含 有相当比例的黑云母。

6.2 岩浆成因及其构造意义

野外观察表明,一些花岗岩体(如马奈岩体)具 有与围岩近同的构造线理,因此被认为与三叠系的 滑脱运移同步,称为同构造花岗岩(Roger et al., 2004);而更多的岩体(包括本文的玛孜措岩体,以及

图 8 松潘-甘孜地体南部玛孜措石英闪长岩锆石阴极发光(CL)图像 Fig. 8 Zircon CL images for Mazicuo quartz diorites, southern Songpan-Ganzi Terrane

Fig. 10 Zircon SHRIMP U-Pb age weighted average diagrams for Mazicuo quartz diorites, southern Songpan-Ganzi Terrane

四姑娘山岩体、松林口岩体、可尔因岩体、老君沟岩体)则明显侵入于褶皱的三叠纪地层中,指示这些花 岗岩体的侵位是在三叠系褶皱变形之后发生的(胡 健民等,2005;赵永久等,2007)。对这些花岗岩的成 因,Molnar等(1990)指出,大型逆冲推覆断层的活 动可产生大量的热能,从而导致断层附近温度的明 显增高和部分熔融的发生;Roger等(2004)提出造 山过程中的大型滑脱构造剪切生热是造成源区物质 部分熔融的主要原因;Zhang H F 等(2007b)则明确 指出,该地区花岗岩是由加厚的地壳熔融而成的。

不过,胡健民等(2005)通过岩石的 Sr-Nd-Pb 同

图 11 松潘-甘孜地体南部玛孜措石英闪长岩 Rb-Sr 等时线 Fig. 11 Rb-Sr isochron age for Mazicuo quartz diorites, southern Songpan-Ganzi Terrane

位素研究认为岩浆物质很可能是幔源与壳源组分的 混合,这与本文的结果相似。大量的模拟研究表明, 增厚的地壳也可以因伸展松弛而发生减压熔融,但 如果没有深部地幔岩浆提供物质和热能,只能形成 小规模的岩体(Thompson,1999),无法解释松潘-甘 孜地体广泛分布的中生代侵入体;在适宜的条件下, 剪切生热可以导致温度升高到 590 ℃左右(Leloup et al.,1999);而中一下地壳脱水熔融所需的温度与 源区成分和压力有关,变中性火成岩在压力为 7× 10⁸ Pa 和温度为 900~1000 ℃时可以形成 30%~ 60%的熔体(Johannes et al.,1996),即使考虑更大 的压力和更小的熔融比例,变中性火成岩形成花岗 质岩浆的熔融温度也应>800 ℃(周金城等,2005), 是剪切生热机制所不能达到的。

特别重要的是,本区花岗岩的侵入就位与复理 石堆积几乎是同步的(Zhang K J, 2001, 2002; Zhang K J et al.,2006,2008,2012a; Zhang Y X et al.,2006,2014a,2014b)。如果当时地壳加厚,根据 地壳均衡理论,这里的地表必然隆升为陆地(高原), 更不可能有巨厚的复理石沉积(Zhang H F et al., 2007a,2007b; Zhang C Z et al.,2007)。因此,我们 相信,如同 Zhang H F 等(2007a,2007b 和 Zhang C Z 等(2007)讨论中所述,地壳加厚不是本区花岗岩 形成的主要机制。

岩石地球化学研究表明,玛孜措石英闪长岩为 下地壳重熔的 I 型高钾钙碱性花岗岩系列,其微量 元素地球化学特征与岛弧型花岗岩类似,可能是由 于岩浆在上升途中同化部分陆壳物质,从而形成了 具有类似岛弧性质的花岗岩体(肖庆辉等,2002; Kampunzu et al.,2003)。在 R₁-R₂ 多阳离子图解 中,投点都落入活动板块边缘花岗岩区,说明玛孜错 石英闪长岩形成于弧后构造环境,是具有类似岛弧 性质的花岗岩。这也与该时期松潘-甘孜地体南部 的甘孜地区处于金沙江俯冲带的弧后构造环境配套 (Zhang C Z et al.,2007)。

岩石(⁸⁷ Sr/⁸⁶ Sr); 比值显示,岩浆起源于壳-幔 混熔或下地壳物质的部分熔融;而幔源岩浆的加入, 很可能是下地壳物质发生部分熔融的热源之一。因 此对于松潘-甘孜地体南部的印支期花岗岩类,最有 可能诱发部分熔融的主要原因是壳-幔岩浆的拆沉 作用和底侵作用(Butler et al.,1997; Patino Douce et al.,1998)。

7 结论

(1)松潘-甘孜地体南部的玛孜措石英闪长岩锆 石 SHRIMP U-Pb 年龄为 221±2.0 Ma(MSWD= 1.4),代表了岩浆初始形成时代为晚三叠世,其全岩 Rb-Sr 等时线年龄为 207.0±2.0 Ma(*R*=0.9979), 表明岩体就位于晚三叠世晚期。

(2) 玛孜措石英闪长岩具高钾(3.53%~ 3.86%)、富钙(4.91%~6.07%)、贫铝(14.60%~ 15.24%),铝饱和指数(A/CNK=0.80~0.89)偏低的特点,岩石稀土总量较低,轻稀土中度富集,δEu 介于 0.46~0.53之间,Eu 中度亏损,(⁸⁷ Sr/⁸⁶ Sr)_i 比值介于 0.707407~0.707640,表明岩浆起源于 壳-幔混熔或下地壳物质的部分熔融,属下地壳重熔 的 I 型高钾钙碱性花岗岩系列。具有与岛弧型花岗 岩相似的地球化学性质,表明岩浆起源于壳-幔混 熔。

(3)玛孜措花岗岩体是晚三叠世弧后构造环境 内幔源岩浆的底侵作用导致壳-幔混熔的产物。

参考文献

- 邓晋福,赵海岭,莫宣学,吴宗絮,罗照华.1996.中国大陆根-柱构造:大陆动力学的钥匙.北京:地质出版社,17~20.
- Faure G and Powell J L. 1975. 锶同位素地质学. 北京: 科学出版 社, 213~235.
- 侯增谦,侯立纬,叶庆同,刘福禄,唐国光. 1995. 三江地区义敦岛 弧构造-岩浆演化与火山成因块状硫化物矿床. 北京:地震出版 社,1~207.
- 胡健民, 孟庆任, 石玉若, 渠洪杰. 2005. 松潘-甘孜地体内花岗岩 锆石 SHRIMP U-Pb 定年及其构造意义. 岩石学报, 21(3): 867~880.
- 刘颖,刘海臣,李献华. 1996. 用 ICP-MS 准确测定岩石样品中的 40 余种微量元素. 地球化学,25(6):552~558.
- 王二七,孟庆任,陈智梁,陈良忠. 2001. 龙门山断裂带印支期左行 走滑运动及其大地构造成因. 地学前缘,8(2):375~284.

- 王宗秀, 许志琴, 杨天南. 1997. 松潘-甘孜滑脱型山链变形构造演 化模式. 地质科学, 32(3): 327~336.
- 肖庆辉,邓晋福,马大铨. 2002. 花岗岩研究思维与方法. 北京:地 质出版社,21~33.
- 许志琴,侯立纬,王宗秀.1992.中国松潘-甘孜造山带的造山过程. 北京:地质出版社,7~52.
- 许志琴,李化启,侯立炜,付小芳,陈文,曾令森,蔡志慧,陈方远. 2007. 青藏高原东缘龙门-锦屏造山带的崛起-大型拆离断层和 挤出机制. 地质通报,26(10):1262~1276.
- 袁海华,张志兰.1994.龙门山冲断带西侧印支-燕山期花岗岩类岩 石年代学研究.罗志立,主编,龙门山造山带的崛起和四川盆 地的形成与演化.成都:成都科技大学出版社,330~337.
- 袁静,肖龙,万传辉,高容.2011. 松潘-甘孜南部放马坪-三岩龙花 岗岩的成因及其构造意义.地质学报,85(2):195~206.
- 张玉修,张开均,黎兵,汪洋,魏庆国,唐显春. 2007. 西藏改则南 拉果错蛇绿岩中斜长花岗岩锆石 SHRIMP U-Pb 年代学及其成 因研究. 科学通报,52(1):100~106.
- 赵永久,袁超,周美夫,颜丹平,龙晓平,李继亮.2007. 川西老君 沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地 体基底性质的制约. 岩石学报,23(5):995~1006.
- 周金城,王孝磊. 2005. 试验及理论岩石学. 北京: 地质出版社, 1 ~256.
- Altherr R and Siebel W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397~415.
- Altherr R, Holl A, Heger E, Langer C and Kreuzer H. 2000. High potassium, calc — alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1): 51~73.
- Batchelor R A and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multi-cationic parameters. Chemical Geology, 48(1): 43~55.
- Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J and Foudoulis C. 2003. TEMORA1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1): 155~170.
- Burchfiel B C, Zhen Z L, Liu Y P and Royden L H. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8): 663~735.
- Butler R W H, Harris N B W and Whittington A G. 1997. Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: A field example from Nanga Parbat, Pakistan Himalayas. Mineralogical Magazine, 61(1): 37~52.
- Chappell B W and White A J R. 1992. I- and S-type granites in the Lachlan fold belt. Transactions of the Royal of Edinburgh: Earth Sciences, 83(1~2): 1~26.
- Chappell B W. 1999. Alluminium saturation in I- and S-type granites and the characterization of fractionated hapogranites. Lithos, 46(6): 535~551.
- Claesson S, Vetrin V, Bayanova T and Downes, H. 2000. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: a record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51(1): 95~108.
- Composton W, Williams I S, Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high massresolution ion microprobe. Journal of Geophysical Research:

Solid Earth (1978-2012), 89(S02): B525~B534.

- Dewey J F, Shackleton R M, Chang C X and Sun Y Y. 1988. The tectonics of the Tibetan plateau. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327: 379~413.
- Forstes H J, Tischendorf G and Trumbll R B. 1997. An evolution of Rb vs. (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos, 40(2): 261~293.
- Gardien V, Thompson A B, Grujic D and Ulmer P. 1995. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications of crustal melting. Journal of Geophysical Research: Solid Earth (1978-2012), 100 (B8): 15581~15591.
- Hanchar J M and Miller C F. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chemical geology, 110(1), 1~13.
- Hou Z Q. 1993. Tectono-magmatic evolution of the Yidun island-arc and geodynamic setting of Kuroko-type sulfide deposits in Sanjiang region, China. Resource Geology, 17: 336~350.
- Hsü K J, Pan G T and Seng? r A M C. 1995. Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis. International Geological Review, 37(6): 473~508.
- Huang M, Maas R, Buick I S and Williams I S. 2003. Crustal response to continental collisions between the Tibet, Indian, south China Blocks: Geochronological constraints from the Songpan-Ganze orogenic belt, western China. Journal of Metamorphic Geology, 21(3): 223~240.
- Johannes W and Holtz F. 1996. Petrogenesis and experimental petrology of granitic rock. Berlin: Springer-Verlag, 335.
- Kampunzu A B, Tombale A R, Zhai M, Bagai Z, Majaule T and Modisi M P. 2003. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a neoarchean continental active margin in the Zimbabwe craton. Lithos, 71(2): 431~460.
- Le Maitre R W, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas M J, Sabine P A, Schmid R, Sorensen H, Streckeisen A, Woolley A R and Zanettin B. 1989. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Oxford: Blackwell, 193.
- Leloup P H, Ricard Y, Battaglia J and Lacassin R. 1999. Shear heating in continental strike-slip shear zones: model and field examples. Geophysical Journal International, 136(1): 19~40.
- Ludwig K R. 2001. SQUID 1. 02, a User Manual, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 2: 19.
- Ludwig K R. 2003. ISOPLOT 3: a geochronological toolkit for Microsoft excel. California, Geochronology Centre Berkeley, Special Publication, 4: 74.
- Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635 ~643.
- Molnar P and England P. 1990. Temperature heat flux and frictional stress near major thrust faults. Journal of Geophysical Research, Solid Earth (1978-2012), 95(B4), 4833~4856.
- Nie S, Yin A, Rowley D B and Jin Y. 1994. Exhumation of the

Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China. Geology, 22 (11): 999~1002.

- Patino Douce A E, Beard J S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3): 707~738.
- Patino Douce A E and Beard J S. 1996. Effects of P, f(O2) and Mg/ Fe ratio on dehydration-melting of model melagreywackes. Journal of Petrology, 37: 999~1024.
- Patino Douce A E and McCarthy T C. 1998. Melting of crustal rocks during continental collision and subduction. When continents collide: geodynamics and geochemistry of ultrahighpressure rocks. Netherlands: Kluwer, Dordrecht, Academic Publishers, 27~55.
- Patino Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Carsro A, Fernandez C and Vigneresse J L (eds). Understanding granites: Integrating new and classic techniques. Geological Society, London, Special Publications, 168(1): 55~75.
- Pearce J A, Harris N B W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.
- Petford N, Cruden A R, McCaffrey K J W and Vigneresse J L. 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408(6813): 669~673.
- Pitcher W S. 1993. The nature and origin of granite. Blackwell, Glasgow, London, 1~316.
- Roger F, Malaville J, Leloup P H, Calassou S and Xu Z. 2004. Timing of granite emplacement and cooling in the Songpan-Ganzi fold belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences, 22(5): 465~ 488.
- Roger F. 1994. Datations et tracage des granitoides associes a Ia chaine de Songpan-Ganzi (Ouest Sichuan, Chine) par les methods U/Pb, Rb/Sr et Sm/Nd. These de doctorat, Montpellier II. 1~239.
- Sue K, David S and William C. 1999. Identifying granite sources by SHRIMP U-Pb zircon geochronology: In application to the Lachlan foldbelt. Contributions to Mineralogy and Petrology, 137(4): 323~341.
- Sun S S and McDough W F. 1989. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD (ed). Magmatism in ocean basins. Geological Society Publications, 42: 313~345.
- Thompson A B. 1999. Some time-space relationships for crustal melting and granitic intrusion at various depths. In: Castro A, Fernández1 C and Vigneresse J L. (eds). Understanding granites: integrating new and classical techniques. Geological Society Special Publications, 168: 7~25.
- Thompson R T. 1982. British Tertiary volcanic province. Scottish Journal of Geology, 18: 49~107.
- Wang C S, Gao R, Yin A, Wang H Y, Zhang Y X, Guo T L, Li Q S and Li Y L. 2011. A mid-crustal strain – transfer model for continental deformation: A new perspective from highresolution deep seismic-reflection profiling across NE Tibet. Earth and Planetary Science Letters, 306(3~4): 279~288.

Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G

E, and Yang H. 2006. Detrital-zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 34(2): $97 \sim 100$.

- Xiao L, Zhang H F, Clemens J D, Wang Q W, Kan Z Z, Wang K M, Ni P Z and Liu X M. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau. Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 96 (3~4): 436~452.
- Xu Z Q, Jiang M and Yang J S. 1999. Mantle diapir inward intracontinental subduction: A discuss on the mechanism of uplift of the Qinghai-Tibet plateau. Geological Society of America, Special Paper, 328:19~31.
- Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth Planetary Sciences, 28(1): 211~280.
- Yuan C, Zhou M F, Sun M, Zhao Y J, Wilde S, Long X P and Yan D P. 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290(3~ 4): 481~492.
- Zhang C Z, Li B, Cai J X, Tang X C, Wei Q G and Zhang Y X. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination: Comment. Lithos, 103(3): 562 ~564.
- Zhang H F, Parrish R R, Zhang L, Xu W C, Yuan H L, Gao S and Crowley Q. 2007a. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97 (3~4): 323~335.
- Zhang H F, Parrish R R, Zhang L, Xu W C, Yuan H L, Gao S and Crowley Q. 2007b. A-type and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination: Reply. Lithos, 103(3 ~4): 565~568.
- Zhang H F, Zhang L, Harris N, Jin L L and Yuan H L. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152: 75 ~88.
- Zhang K J, Cai J X, Zhang Y X and Zhao T P. 2006. Eclogites from

central Qiangtang, northern Tibet (China) and tectonic implications. Earth and Planetary Science Letters, 245(3), $722 \sim 729$.

- Zhang K J, Li B and Wei Q G. 2012a. Geochemistry and Nd isotopes of the Songpan-Ganzi Triassic turbidites, central China: Diversified provenances and tectonic implications. Journal of Geology, 120(1), 69~82.
- Zhang K J, Li B, Wei Q G, Cai J X and Zhang Y X. 2008. Proximal provenance of the western Songpan-Ganzi turbidite complex (Late Triassic, Eastern Tibetan Plateau): implications for the tectonic amalgamations of China. Sedimentary Geology, 208 (1), 36~44.
- Zhang K J, Zhang Y X, Tang X C and Xia B. 2012b. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114(3), 236 ~ 249.
- Zhang K J. 2001. Is the Songpan-Ganzi terrane (central China) really underlain by oceanic crust? Journal of the Geological Society of India, 57(3), 223~230.
- Zhang K J. 2002. Escape hypothesis for the North and South China collision and the tectonic evolution of the Qinling orogen, eastern Asia. Eclogae Geologicae Helvetiae, 95(2), 237~247.
- Zhang Y X, Li B, Wei Q G, Wang Y and Zhang K J. 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks: Comment. Geology, e107.
- Zhang Y X, Tang X C, Zhang K J, Zeng L and Gao C L. 2014a. U-Pb and Lu-Hf isotope systematics of detrital zircons from the Songpan-Ganzi Triassic flysch, NE Tibetan Plateau: Implications for provenance and crustal growth. International Geology Review, 56(1), 29~56.
- Zhang Y X, Zeng L, Zhang K J, Li Z W, Wang C S and Guo T L. 2014b. U-Pb and Lu-Hf isotope systematics of detrital zircons from Upper Paleozoic to Mesozoic sandstones, the western Qinling, central China: Implications for the provenance, paleogeography, and crustal growth. International Geology Review, 56, accepted.
- Zhou D and Graham S A. 1996. The Songpan-Ganzi complex of the western Qinling Shan as a Triassic remnant ocean basin. In: The Tectonic Evolution of Asia, Yin A and Harrison T M (eds). Gambridge, UK: Cambridge University Press, 281~ 299.

Geochemistry and Isotopic Dating of the Mazicuo Quartz Diorites in the Southern Songpan-Ganzi Terrane and Its Tectonic Implications

DUAN Zhiming $^{\scriptscriptstyle 1)}$, ZHANG Yuxiu $^{\scriptscriptstyle 2,3)}$, ZHU Xiangping $^{\scriptscriptstyle 1)}$, LIU Jianhui $^{\scriptscriptstyle 2)}$,

ZHONG Chengquan $^{\scriptscriptstyle 3)}$, ZENG Lu $^{\scriptscriptstyle 2,3)}$

1) Chengdu Institute of Geology and Mineral Resources, China Geological Survey, Chengdu, 610082; 2) Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing, 100049; 3) College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049; 4) Beijing SHRIMP Center, Beijing, 100037; 5) Sichuan Shuxi Engineering Geology Reconnaissance Academe, Chengdu, 611730

Abstract

The Mazicuo quartz diorites is located at southwest of the Xainshuihe fault, southern Songpan-Ganzi Terrane. The quartz diorites demonstrate high potassium $(3.53\% \sim 3.86\%)$, Ca-rich $(4.91\% \sim 6.07\%)$, low Al content $(14.60\% \sim 15.24\%$, A/CNK=0.80~0.89) and total rare earth elements (REE). Light rare earth elements (LREEs) are enriched but slightly Eu depleted, with whole rock $(^{87} \text{ Sr}/^{86} \text{ Sr})_i = 0.707407 \sim 0.707640$ implying that the Mazicuo magma origined from crust-mantle mixed melting or partial melting of lower crust. The Mazicuo quartz diorites belong to lower crust-remelting I-type high-potassium calc-alkaline granite series. The trace element diagrams for discriminating tectonic environments indicate that the Mazicuo quartz diorites resemble volcanic arc granites. The enrichment in Rb ($60.1 \times 10^{-6} \sim 85.9 \times 10^{-6}$) and Cs ($4.01 \times 10^{-6} \sim 19.62 \times 10^{-6}$), and high K₂O/Na₂O ($1.31 \sim 1.82$) ratio suggest that biotite-rich sources are responsible for the Mazicuo magma. The zircon SHRIMP U-Pb age of 221 ± 2.0 Ma (MSWD=1.4) shows the intrusive age is Late Triassic, while the whole-rock Rb-Sr age of 207 ± 2.0 Ma may indicate the quartz diorites uplifted at late Late Triassic. The Mazicuo quartz diorites might form in Late Triassic back-arc tectonic background and derive from crust-mantle mix melting resulting from diapiric uplifting of lithospheric mantle magma.

Key words: Songpan-Ganzi terrane, Mazicuo quartz diorite, zircon SHRIMP U-Pb date, Rb-Sr isotope