Geochemistry, Monazite U–Pb Dating, and Li–Nd Isotopes of the Madi Rare Metal Granite in the Northeastern Part of the North China Craton

HOU Jianglong*, JIANG Biao, DAI Hongzhang

MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Abstract: The Madi rare metal granite is a complex massif, which contains a variety of rare metals, such as Nb, Ta, Li, and Be. In this paper, the geochemical characteristics of the granite were obtained by multi-collector inductively coupled mass spectrometry (MC-ICP-MS). The precise crystalline age of the granite was obtained from monazite U-Pb dating, and the source of the granite was determined using Li-Nd isotopes. The Madi rare metal granite is a high-K (calc-alkaline), peraluminous, S-type granite. The U-Pb monazite age indicates that the crystalline age of the granite is 175.6 Ma, which is Early Jurassic. The granite is characterized by a relatively wide range of δ^7Li values ($+2.99\%$ to $+5.83\%$) and high lithium concentrations (181 ppm to 1022 ppm). The lithium isotopic composition of the granite does not significantly correlate with the degree of magmatic differentiation. An insignificant amount of lithium isotope fractionation occurred during the granitic differentiation. The lithium isotopic composition of the granite significantly differs from that of the wall rock, but it is very similar to that of a primitive mantle peridotite xenolith (mean δ^7Li value $+3.5\%$). The plot of Li concentration versus δ^7Li indicates that the Li isotopic composition of the granite is similar to that of island arc lavas. Based on the above-described evidence, the granite was mainly derived from the crust, but it was contaminated by a deep granitic magma.

Key words: geochemistry, U-Pb monazite age, Li-Nd isotopes, crystallization age, magmatic source, Madi rare metal granite

E-mail: houjianglong1988@126.com

1 Introduction

Rare metal granites are an important source of rare metal resources and are widely distributed in the South China. However, they are rare in the North China Craton. The Madi granite is a complex massif that contains a variety of rare metal elements, such as Nb, Ta, Li, and Be.

Several previous studies determined crystallization age of this granite. Ye et al. (1987, 1991) reported a whole-rock Rb-Sr isochron age of 171 Ma, while Wang et al. (1994) reported an age of 166.3 Ma using the same analytical method. Because the Rb-Sr system is easily modified by ore-forming fluids, it is hard to determine the crystallization age of a granite using only Rb-Sr isochron age. Furthermore, the Madi granite is a highly differentiated granite, and the zircons in the granite have altered to cyrtolite. Thus, it is impossible to obtain an accurate U-Pb zircon age. Fortunately, the Madi granite contains monazite, which is suitable for constraining the crystalline age.

As to the source of the granite, Ye et al. (1987, 1991) suggested that the granite is the product of a deep magma which was subjected to full differentiation (Ye Delong et al., 1987, 1991). It is well known that trace element modeling can reflect source characteristics, but it can not explain the source
of fluids. Similar geochemical characteristics can be explained using source characteristics and can be interpreted as fractional crystallization during metasomatism (Magna et al., 2008). Therefore, we need a more precise method to identify the source of the granite. The lithium isotopic system is an unconventional stable isotope system, which does not experience significant fractionation during high-temperature magmatic processes (Halama et al., 2007, 2008). Lithium isotopic fractionation mainly occurs during weathering (Rudnick et al., 2004; Kisakürek et al., 2004). Therefore, lithium isotopes can serve as an effective constraint for determining the source of magmas.

In this paper, we investigated the geochemistry, crystalline age, and source of the Madi granite by geochemical analyses, monazite U-Pb dating, and Li-Nd isotopic analyses. Investigating the crystalline age and source of the Madi granite can improve research on rare metal deposits in the North China Craton and is also important for the evaluation of rare metal resources in the North China Craton.

2 Geologic Setting

The Madi granite is located in the southeastern part of Xinglong County at N40°17′1.18″, E117°31′41.7″ (Fig. 1). It is tectonically located in the western part of the Xinglong-Shanhaiguan uplift on the north margin of the North China Craton (NCC) (Ye Delong et al., 2015; Li Yujing et al., 2017). It is part of the Malanyu-Suizhong Fe-Au-Pb-Zn secondary metallogenic belt (Xu Zhigang et al., 2008). The wall rock of the granite is Paomachang Formation, which is mainly composed of plagioclase gneiss and magnetite quartzite. The Madi granite is located along the western axis of the Malanyu anticline, which is the main structure of the study area. The granite is gourd-shaped (Fig. 1; Regional Geology of Hebei Province, Beijing Municipality, and Tianjin Municipality Province, 1989) with the long axis striking NW310°. The granite is approximately 4200 m long and 800 m to 2010 m wide. The outcrop area of the granite is approximately 6 km². [Insert Fig. 1 here]
The granite is a complex massif consisting of two stages: The first stage is a zinnwaldite-albite granite that mainly outcrops for about 1.2 km2 in the southeast. The second stage is a lepidolite-zinnwaldite-albite granite that mainly outcrops for about 4.5 km2 in the northwest. The zinnwaldite-albite granite is light red and has a fine-equigranular texture and a massive structure. It usually contains lath-shaped albite crystals a few millimeters in diameter. The lepidolite-zinnwaldite-albite granite is offwhite has a unequigranular texture, and a massive structure. The granite in this stage exhibits a checkerboard texture and a snowball texture. Based on the structure of the granite, we conclude that the granite was emplaced from the southeast to the northwest.

3 Sample Collection and Analytical Methods

3.1 Sample collection
The samples were collected from Madi village to Huashi village. We collected 21 whole-rock samples in this study.

3.2 Analytical methods
3.2.1 Major, trace, and rare earth element analyses

The major, trace, and rare earth element analyses were conducted at the National Research Center for Geoanalysis. The major element analyses were conducted using a PE8300 X-ray fluorescence spectrometer (XRF), and the trace element analyses were conducted using a PE300D inductively coupled mass spectrometer (ICP-MS). The samples analyzed for rare earth elements were dissolved with acid (HF+HNO₃) before ICP-MS analysis. In was used as the internal standard with a precision of 10⁻⁹. The quality of the analyses was determined using standards AMH-1 and OU-3 (international standard samples).

3.2.2 U-Pb monazite ages

The transmitted light, reflected light, and back scattered electron imaging (BSE) of the monazite crystals were all taken at the Nanjing Hongchuang Geological Prospecting Technology Limited Company. We used these monazite micrographs to choose appropriate areas for analysis, i.e., those areas without fractures, inclusions, or other impurities. The U-Pb monazite ages were obtained at the Tianjin Center, China Geological Survey using a laser ablation multi-collector inductively coupled plasma mass spectrometer (LA-MC-ICP-MS). The laser ablation system is a NEW WAVE 193 nm FX ArF excimer laser made by ESI. The wavelength of the laser was 193 nm, the pulse width was less than 4 ns, the diameter of the beam spot was 20 μm, the frequency of the pulse was 5 Hz, and the output power of laser was about 10-11 J/cm². The LA-MC-ICP_MS used is a NEPUNE made by Thermo Fisher. Its ion optical path has double the energy and quality focus. First, it uses dynamic zoom to expand the quality dispersion to 17%. The laser denudation material was sent to the MC-ICP-MS using He as the carrier gas (0.86 L/min) and Ar as the auxiliary gas (0.75 L/min). The U-Pb isotopes were simultaneously received by the zoom adjustment in order to enlarge the dispersion. Every sample required 20 s of gas background acquisition and 60 s of signal acquisition. Two monazite 44069 standards were analyzed between every 10 samples to correct for any U-Pb isotopic fractionation and instrument quality discrimination. We used the 207Pb correction method and isochron method for ordinary lead correction described by Andersen (2002). The data were processed using Isoplot, which was created by Ludwig (Ludwig, 2001). For detailed operating conditions and data processing methods, see Cui et al. (2012).

3.2.3 Lithium isotopes

The chemical pretreatment and MC-ICP-MS analysis of the lithium isotopes were conducted at the MLR Key Laboratory of Metallogeny and Mineral Assessment. The chemical pretreatment process is as follows. First, 10 mg of the two-mica granite powder sample were weighed and placed in a PFA sample bottle with acid (HNO₃:HF = 1:5). Then, the bottle was placed in an ultrasonicator for 10 min. The bottle was transferred to a hotplate and heated at 100-120°C for 24 h until it steamed and the grain size decreased. After this, concentrated HNO₃ was added to the bottle. Then, the bottle was transferred to a hotplate and heated at 100-120°C for 24 h, during which concentrated HNO₃ was added two to four times. Then, 3 ml of concentrated HCl was added, and the sample was heated for 24 h until it was dry. Finally, 4 mol/L HCl was added to the sample. Three cationic exchange resins (AG 50W-X8) were used to separate and purify the resulting solution. The δ⁷Li analyses were conducted using a MC-ICP-MS. The δ⁷Li values of international standards BHVO-2, AGV-2, and IRMM-016 were +4.33‰ ±0.76‰ (2σ, n=18), +5.68‰ ± 1.04‰ (2σ, n=18), and -0.01‰ ± 0.72‰ (2σ, n=15), respectively (Tian Shihong et al., 2012). The analytical precision was similar to that of an international laboratory (Chan et al., 2002; Zack et al., 2003; Jeffcoate et al., 2004; Magna et al., 2004; Marschall et al., 2007; Qiu Lin et al., 2009). The experimental procedure and mass spectrometry methods used are described by Su et al. (2011), Tian et al. (2012), and Zhao et al. (2015).

3.2.4 Nd Isotopes

The chemical pretreatment and MC-ICP-MS analyses of the Nd isotopes were both conducted at the National Research Center for Geoanalysis. The detailed chemical pretreatment process is as follows. First, 0.25 g of sample powder were weighed and placed in a TEFION sample bottle with 0.5 ml of HNO₃ and 1.5 ml of HF in. The bottle was transferred to a hotplate, and heated at 190°C for...
48 h. Then, ml of HNO₃ was added to the bottle, and the bottle was transferred to a hotplate and heated at 150°C for 6 h to achieve a constant solution volume of 25 g. Some of the sample solution was centrifuged, and the supernatant was collected. The supernatant was separated and purified using LN effect resin to obtain a solution with concentrated Nd. The $^{143}\text{Nd}/^{144}\text{Nd}$ analysis was conducted using a MC-ICP-MS. The quality fractionation correction for Nd was performed based on a $^{146}\text{Nd}/^{144}\text{Nd}$ value of 0.7218.

4 Results

4.1 Major, trace, and rare earth element analyses

The major, trace, and rare earth element compositions of the Madi granite are presented in Table 1. [Insert Table 1 here]

4.2 U-Pb monazite ages

The U-Pb monazite ages of two samples (1-6 and 2-2) are presented in Table 2. Representative BSE images and U-Pb monazite ages of the Madi granite are shown in Fig. 2. The two monazite samples are light grey, with equiaxed or short cylindrical euhedral crystals. The granularity of the monazite crystals varies from 50 μm to 200 μm. In the BSE images (Fig. 2), the monazite crystals have homogeneous structures and lack oscillatory zoning and corrosion rims. The U-Pb system of the monazite crystals is relatively simple. The weighted average age of the two intrusion stages are both 175.6 ± 1.1 Ma (Fig. 3), after removing outliers. The MSWD is approximately 0.70. This indicates that the U-Pb monazite age from the Madi granite is reliable and represents the crystallization age of the granite. [Insert Table 2, Fig.2 and Fig.3 here]

Fig. 2: Representative BSE images and U-Pb monazite ages of the Madi granite, Hebei province
4.3 Li Isotopes

The lithium isotopic composition of the Madi granite is presented in Table 3. According to Table 3, the lithium concentrations of the wall rock vary from 10 ppm to 12 ppm with a mean value of 10.97 ppm. The δ⁷Li values of the wall rock vary from -3.36‰ to -2.84‰ with a mean value of -3.04‰. The lithium concentration of the contact zone between the granite and wall rock is 575 ppm, and its δ⁷Li value is -1.32‰. The lithium concentrations of the zinnwaldite-albite granite vary from 325 ppm to 993 ppm with a mean value of 540.40 ppm. The δ⁷Li values of the zinnwaldite-albite granite vary from 2.99‰ to 5.78‰ with a mean value of 4.56‰. The lithium concentrations of the lepidolite-zinnwaldite-albite granite vary from 181 ppm to 1022 ppm with a mean value of 357.20 ppm. The δ⁷Li values of the lepidolite-zinnwaldite-albite granite vary from 4.00‰ to 5.83‰ with a mean value of 5.21‰. [Insert Table 3 here]

4.4 Nd Isotopes

The Nd isotopic composition of the Madi granite is presented in Table 4. [Insert Table 4 here]

5 Discussion

5.1 Geochemical characteristics of the madi rare metal granite

The SiO₂ content of the Madi granite varies from 73.85% to 75.90% with a mean value of 75.21%. This indicates that the granite is silicic. The Na₂O contents of the two intrusions are both higher than their K₂O contents. The Na₂O content of the second intrusion is higher than that of the first intrusion; however, the K₂O content of the first intrusion is higher than that of the second. This indicates that the Madi granite gradually evolved from high potassium and low sodium to low potassium and high sodium as emplacement continued. The mean Rittmann Indexes (ζ) of the two intrusions are both less than one, which indicates that the Madi granite is a calc-alkaline granite. The SiO₂ vs K₂O plot also indicates that the Madi granite is a high-K (calc-alkaline) granite (Fig. 4a). The A/CNK values of the two intrusions vary from 1.52 to 1.65 with a mean value of 1.54, which indicates that the granite is a peraluminous S-type granite (Fig. 4b). The differentiation index (DI) of the Madi granite varies from 95.48 to 97.29. The solidification index (SI) varies from 0.75 to 1.28. This indicates that the degree of magmatic differentiation of the Madi granite is high. The felsic index (FL) of the Madi granite varies from 94.60 to 98.40. The ferromagnesian index (MF) of the Madi granite varies from 71.43 to 82.93, and the oxidation rate (OX) of the Madi granite varies from 0.51 to 0.52. This indicates that the degree of fractional crystallization was high. [Insert Fig.4 here]
Fig. 4: Plots of SiO$_2$ vs K$_2$O (Rickwood, 1989) and A/CNK vs A/NK (Maniar et al., 1989) (a. SiO$_2$ vs K$_2$O diagram; b. A/CNK vs A/NK)

The primitive mantle normalized spider diagram (Fig. 5) of the Madi granite shows that the trace elements of the Madi granite have multiple enrichments and depletions. It is enriched with Rb, U, Ta, Nd, Hf, and Tb, and it is depleted in Ba, Sr, P, Eu, and Ti. It is significantly enriched with large ion lithophile elements (LILE) such as Rb, significantly depleted in Ba and Sr and high field strength elements (HFSE), such as Ti. [Insert Fig.5 here]

Fig. 5: Primitive mantle-normalized trace element patterns for the Madi granite

The REE pattern of the Madi granite (Fig. 6) shows that the granite has low rare earth element content (33.11×10^{-6} to 53.20×10^{-6}). There is significant fractionation between the light and heavy rare earth elements (LREE/HREE varies from 5.97 to 19.3). The LREE are significantly enriched, while the HREE are relatively depleted. The δEu value varies from 0.01 to 0.05 with a mean value of 0.02, which indicates that the Madi granite is extremely depleted in Eu. The δCe value varies from 0.65 to 1.12 with a mean value of 0.90, which indicates that the Madi granite is also depleted in Ce. The REE pattern of the Madi granite shows that the trends of all of the elements are basically the same, indicating that the Madi granite is the product of homologous magma evolution or that it is from the same source region. [Insert Fig.6 here]
5.2 Crystallization age of the madi granite and its geological significance

The weighted average age of the two intrusions is 175.6 Ma (Figs. 2 and 3). This age is relatively close to the 171 Ma whole-rock Rb-Sr isochron age obtained by Ye et al. (1987). The age of the monazite provides another accurate constraint on the crystallization age of the granite, which indicates that the granite was emplaced in the Early Jurassic. The ages of two intrusions are nearly identical, which suggests that the two intrusions are the product of a cognate magma.

In this study, we determined the U-Pb monazite age of the Madi granite. The chronological study of the Mesozoic acid intrusive granites by Yang et al. (2015) concluded that the formation ages ranged from the Late Permian to the Late Jurassic. There are two peak ages in the Late Triassic (224-186 Ma) and in the Early Jurassic (180-153 Ma). The main formation occurred in the Early Jurassic. The Madi granite is a rare metal granite formed in the Early Jurassic. The Madi granite formed later in the Malanyu anticlinorium. This suggests that other intrusions with the same or similar formation ages, located in the Malanyu compound anticline, may also have rare metal mineralization. However, further research is required to verify this hypothesis. Based on the above discussion, U-Pb monazite age of the Madi complex massif provides new data to constrain the crystallization age of the Madi granite, the formation of the Malanyu compound anticline, and the tectonic evolution of Yanshan in the Mesozoic. This has important practical significance.

5.3 Lithium Isotopic Composition and Fractionation of the Madi Granite

According to Table 3, the Madi granite has a relatively high Li concentration (mean 418.27 ppm) and high δ^7Li values (mean +5.00‰) compared to the world granite (mean Li concentration 66.8 ppm, mean δ^7Li value +1.4‰; Bryant et al., 2004; Teng Fangzhen et al., 2004, 2006, 2009; Magna et al., 2010; Romer et al., 2014; Wang Hongqiong et al., 2017). As per statistics, the δ^7Li values of the granites vary from -10‰ to +20‰ (Tomascak, 2004). The δ^7Li values of I-stype granites vary from -2.5‰ to +8.0‰, the δ^7Li values of A-stype granites vary from -1.8‰ to +6.9‰, and the δ^7Li values of S-stype granites vary from -1.56‰ to +9‰. The Madi granite is an S-stype granite. It has significantly different δ^7Li values than those of the New England S-type granite in eastern Australia, but it has similar δ^7Li values to the Jingshan leucogranite in Anhui Province (Fig. 4) (Bryant et al., 2004; Teng Fangzhen et al., 2004, 2006, 2008, 2009; Tomascak, 2004; Su Aina et al., 2010; Sun He et al., 2016). In terms of its lithium isotopic composition, the Madi granite is significantly enriched in 7Li. [Insert Fig.7 here]
Lithium isotopic fractionation is related to many factors, such as temperature and diffusion; however, there is no consensus of the mechanism of lithium isotopic fractionation (Tang Yanjie et al., 2009; Richter et al., 2009, 2014). There is negligible (≤1.0‰) lithium isotopic fractionation during the high temperature process of magmatic ascent (Halama et al., 2007, 2008) and the anatexis of the crust (Bryant et al., 2004; Teng Fangzhen et al., 2004). However, lithium isotopic fractionation occurs during weathering (Rudnick et al., 2004), interaction between the magma and wall rock, and the fractional crystallization of granites and pegmatite formation at 340°C-600°C (Teng Fangzhen et al., 2006).

Fractional crystallization of granite is one of the most important factors that affect lithium isotopic fractionation. During crystallization, quartz preferentially takes 7Li into its two- and four-fold-coordinate interstitial sites. Thus, positive correlations between δ^{7}Li and Li and between δ^{7}Li and SiO$_{2}$ should be observed (Halama et al., 2007). However, there is no correlation between δ^{7}Li and Li or between δ^{7}Li and SiO$_{2}$ in the Madi granite (Fig. 8). In addition, the δ^{7}Li and δ^{87}Sr(t) values of the Madi granite are not correlated (Fig. 8). This indicates that equilibrium lithium isotopic fractionation occurred during the fractional crystallization of the Madi granite. [Insert Fig.8 here]
5.4 Tectonic Setting and Material Source of the Madi granite

It is believed that most peraluminous S-type granites were formed during the contraction and stacking stage of the Earth's crust during syn-collisional periods. S-type granites are mainly formed by remelting of the middle or upper crust (Pitcher, 1983; Pearce et al., 1984; Harris et al., 1986). On the plot of Yb+Ta vs Rb (Pearce et al., 1984) (Fig. 9a) and the Rb/30-Hf-Ta×3 diagram (Harris et al., 1986) (Fig. 9b), the majority of the samples fall within the syn-collision field and only one sample fall within the within plate granites (WPG) field. This indicates that the Madi granite was formed during the late stage of a syn-collisional period, i.e., the stage when collision transitions to extension. This further indicates that the Malanyu uplift formed in a collisional environment during thickening of the Earth's crust in the Mesozoic. [Insert Fig.9 here]

The sources of peraluminous granites are mainly clastic sedimentary rocks and metamorphic...
sedimentary rocks in the crust (Sylvester, 1998). Based on experimental petrology, Douce (1998) concluded that peraluminous granites are only formed by partial melting of muddy and sandy sedimentary rocks. On the Al$_2$O$_3$/TiO$_2$ versus CaO/Na$_2$O plot, the samples are all located near the Shisga Pangma of Himalayan orogenic belt (Fig. 10a) (Sylvester, 1989). On the Rb/Sr vs Rb/Ba plot, all of the samples plot within the rich clay field (Fig. 10b; Sylvester, 1989). This indicates that the source of the Madi granite is mainly mudstone. The t-eNd(t) diagram provides more proof that the material source of the granite maybe was the continental crust (Fig. 11).

According to Table 3, the mean δ7Li values of the granite and wall rock are -3.04‰ to -1.32‰ and 4.56‰ to 5.21‰, respectively. The mean δ7Li value gradually increases. The δ7Li values of the wall rock are negative and remain stable, varying by only 0.52‰. However, the δ7Li values of the granite are positive and vary significantly, varying by 2.84‰. The δ7Li values of the granite and the wall rock differ by more than 5.83‰. This indicates that there is a significant difference between the lithium isotopic composition of the granite and the wall rock. The mean δ7Li value of the Madi granite (+5‰) is higher than that of the Earth’s crust (0±2‰) (Teng Fangzhen et al., 2004), but it is very close to that
of primitive mantle peridotite xenoliths (mean δ7Li value +3.5‰) (Tomascak et al., 2008). This suggests that the source of the Madi granite was contaminated with deep granitic magma. Plots of Li concentration versus δ7Li (Fig. 6; Tang Yanjie et al., 2007, 2011) shows that the Li isotopic composition of the Madi granite is similar to that island arc lavas (-6‰ to +12‰; primarily from +2‰ to +6‰). The above facts suggest that the main material source of the Madi granite is crustal material contaminated by deep granitic magma (Fig. 12). [Insert Fig. 12 here]

6 Conclusions

(1) The Madi rare metal granite is a high-K (calc-alkaline), peraluminous, S-type granite. The two intrusions of the Madi granite are likely the product of the homologous magmatic evolution or of the same source region.

(2) The U-Pb monazite age indicates that the crystalline age of the Madi rare metal granite is 175.6 Ma (the Early Jurassic).

(3) The lithium concentrations of the Madi granite vary from 181 ppm to 1022 ppm, and the δ7Li values of the granite vary from +2.99‰ to +5.83‰. The granite has high lithium concentration and high δ7Li values. Equilibrium lithium isotopic fractionation occurring during the fractional crystallization of the Madi granite seems unlikely. The lithium isotopic composition of the Madi granite was likely inherited from the source rocks, which is not affected by differentiation and alteration of the magma.

(4) The Madi granite was formed during the late stage of a syn-collision period. Analysis of the lithium isotopes and Nd isotopes indicate that the main source of the Madi granite is crust contaminated by deep granitic magma.

Acknowledgments

This work is granted by the project of “Comprehensive integration and service of mineral geology and its metallogenic regularity in China” from China Geological Survey(Grant NO.DD20160346).

References
Bryant, C.J., Chappell, B.W., Bennett, V.C., and McCulloch, M.T., 2004. Lithium isotopic compositions of the...

with English abstract).

About the first author
Hou Jianglong, male; born in 1988 in Xingtai City, Hebei Province; postdoctor; graduated from Chinese Academy of Geological Sciences. He is now interested in the study on mineralization of rare metal deposits. Email:houjianglong1988@126.com; phone:15110130157.

This article is protected by copyright. All rights reserved.