
 Geogenic arsenic (As) in drinking water, especially in 
groundwater, has impacted the health of over 100 million 
people worldwide, with an estimated 20 to 50 million 
people at risk in Bangladesh alone. It is understood that a 
combination  of  sluggish  flow  and  reducing  chemical 
environment  in  sedimentary  aquifers  releases  As  to 
groundwater. The role of the aquifer sediment’s origin on 
As occurrence in  groundwater  is  incompletely known 
because conventional wisdom suggests there is sufficient 
As  in  geological  material  and  that  biogeochemical 
reactions  for  mobilization  are  the  primary control  of 
groundwater  As.  This  view,  while  correct  for  some 
specific aquifers, does not consider the heterogeneity of 
As in the upper crust and its implications at the basin 
scale. 

The geochemical cycle of As leads to enrichment of As 
in the upper crust (Rudnick and Gao, 2003). Sedimentary 
processes also influence the distribution of As. Under low 
temperature  conditions,  anoxic  marine  sediments  have 
functioned as widespread sinks with typically small As 
enrichment, in many cases also associated with organic 
matter.  This  is  evident  from  the  As  enrichment  in 
carbonaceous shales (Tourtelot, 1964). Thermal alteration 
within the earth preferentially partitions arsenic, as an 
incompatible element, into the fluid phase resulting in As-
rich fluids that deposit As in favorable environments along 
the flow path (Goldhaber et al., 2003). Sedimentary and 
hydrothermal processes are especially notable where high 
As anomalies have been reported in association with metal 
(gold, antimony and copper) ore (van Hees et al., 1999, Hu 
et al.,  2004) and coal deposits (Yudovich and Ketris, 
2005). Mining and mineral processing activities accelerate 
the movement of As from these enriched solid sources to 
aqueous environments and ecosystems. A parallel process, 
albeit at a slower rate through the weathering and transport 

from enriched sources to the low gradient depositional 
environments,  is  likely  to  lead  to  As  enrichments 
downstream (Saunders et al., 2005, Stanger, 2005, Guillot 
and  Charlet,  2007).   Specifically,  these  studies 
recommended that the search for the original source of As 
should be conducted in ophiolitic,  As-rich,  arc-related 
rocks  in  the  Indus-Tsangpo  suture  zone  (Hattori  and 
Guillot, 2003), where As was thought to be originally 
accumulated in oceanic ferro-manganoan sediments of the 
eastern  Paleo-Tethys  (Stanger,  2005).  To  resolve  the 
importance of the impact of these processes, this study 
assesses the origin of the sediment in two aquifers of 
Bangladesh that contain distinctly different As levels: the 
Holocene aquifer with elevated groundwater and sediment 
extractable  As  and  the  Pleistocene  aquifer  with  low 
groundwater and sediment extractable As (Table 1).  

The contrast in As content between the Holocene and 
the Pleistocene aquifers was attributed to a longer history 
(Zheng et al., 2004) and more vigorous flushing (van Geen 
et al., 2008) of the Pleistocene aquifer during the low sea 
level  periods  during  glacial  intervals.  However,  this 
explanation assumes that the sediments from both aquifers 
are  derived  from  a  similar  source  and  thus  with 
comparable As contents in similar mineral assemblages 
before flushing.  In this study we will compare the origin 
of low-As Plio-Pleistocene aquifer and high-As Holocene 
aquifer sediments in the Ganges-Brahmaputra basin by 
determining the age of detrital components with samples 
(n=20) from two sediment cores collected in Bangladesh 
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(Fig. 1). New data from Ar-Ar dating of individual detrital 
muscovite combined with bulk sediment and carbonate 
87Sr/86Sr will provide constraints to sediment sources and 
thus the ultimate geological source of As for Asian deltas. 

Key words: arsenic, geological source,  Ar-Ar age of 
muscovite, Sr isotope, Bangladesh, sediment provenance 
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Fig. 1. Location of sediment cores used for provenance 
study (solid circle with red square, same study sites from 
(Zheng et al., 2005) overlain groundwater As distribu-
tion map in Bangladesh. Three types of Pleistocene red 
beds where low As groundwater is found are indicated 
(Hoque et al., 2011). 


