LIU Liang, ZHANG Junfeng, CAO Yuting, CHEN Danling, YANG Wenqiang and LIAO Xiaoying, 2013. Evidence for the Ultra-Deep Subduction (≥10GPa) of the Continental Rock from the North Qinling Terrane: Constrained from the High Temperature and High Pressure Experiment. *Acta Geologica Sinica* (English Edition), 87(supp.): 494-495.

Evidence for the Ultra-Deep Subduction (≥10GPa) of the Continental Rock from the North Qinling Terrane: Constrained from the High Temperature and High Pressure Experiment

LIU Liang^{1,*}, ZHANG Junfeng², CAO Yuting¹, CHEN Danling¹, YANG Wenqiang¹ and LIAO Xiaoying¹

1 The Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China 2 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

A suit of felsic gneiss is discovered in the Songshugou area in the North Qinling terrane. The rock is mainly composed of porphyroblastic garnet (10-20%), kyanite $(5\%\pm)$, perthite (25-35%) and quartz (30%±), and was previously considered to be experienced high pressure (HP) granulite facies metamorphism (Liu et al., 1996). Recently, abundant fine-grained euhedral exsolutions of rutile + apatite + quartz needles have been observed in the core part of the garnet. Long rutile needles is about 0.5-1.0µm wide and 10-100µm long distributing parallel distinctly to each other in three directions, which oriented at 60°/ 120° and along four cubic <111> directions of garnet; Apatite (0.5 to 1.0µm in width and 5 to 10µm in length), quartz (0.5 to 1.0µm in width and 10 to 40µm in length) or quartz+rutile needles parallel to each other or to the exsolved rutile in three directions. This phenomenon is similar to that of garnet with exsolutions of Ru+Ap+Qz in UHP metapelite from Rhodope region of Greek (Mposkos and Kostopoulos, 2001), indicating that the precursor garnet before exsolution contain excess Si, Ti, and P, that is, of a "majoritic" garnet.

For better constraining the peak metamorphic condition of the rock, the high temperature and high pressure (HT-HP) experiment simulating the system of continental felsic rock at P=6-12GPa, T=1200-1400°C was carried out in this study. According to the mineral composition of the experimental production and the published HT-HP experimental data (Irifune et al., 1994; Ono., 1998; Dobrazhinetskya and Green., 2007; Wu et al., 2009), the minimum stable pressure of the obvious supersilicic garnet in the system containing independent SiO₂ phase (coesite or stishovite) is \geq 10GPa . This is different from that the stable pressure of the supersilicic

garnet is \geq 5GPa in the ultra-mafic system without independent SiO₂ phase (Akaogi and Akimoto., 1977; Irifune, 1989).

According to the new experimental data and the garnet with SiO₂ exsolution in the felsic gneiss from Songshugou area in the North Qinling, the peak pressure of the rock is inferred to be \geq 10GPa, indicating the depth of the continental subduction / exhumation is \geq 300km. Therefore, combined the stishovite exsolved microstructure in the pelitic gneiss from the South Altyn Tagh (Liu et al., 2007), the continental subducted and exhumated depth of \geq 300km might have a certain universality.

Key words: North Qinling, felsic gneiss, exsolved quartz needle in garnet, HT-HP experiment, "Majoritic" garnet, continental subduction / exhumation

References

- Akaogi, M., Akimoto, S. 1977. Pyroxene-garnet solid-solution equilibria in the system $Mg_4Si_4O_{12}$ $Mg_3Al_2Si_3O_{12}$ and $Fe_4Si_4O_{12}$ $Fe_3Al_2Si_3O_{12}$ at high pressure and temperatures[J]. Phys. Earth Planet. Inter., 15: 90-106.
- Dobrzhinetskaya, L. F. and Green, H. W. 2007. Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth's mantle transition zone conditions. Journal of Metamorphic Geology, 25 (2): 83-96.
- Irifune, T., Ringwood, A.E. 1987. Phase transformations in a harzburgite composition to 26GPa: implications for dynamical behaviour of the subducting slab. Earth and Planetary Science Letters, 86: 365-376.
- Irifune, T., Ringwood, A. E. and Hibberson, W. O. 1994. Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 126 (4): 351-368.
- Liu Liang, Zhang Junfeng, Green II H W, Jin Z M, Bozhilov K N. 2007. Evidence of former stishovite in metamorphosed

^{*} Corresponding author. E-mail: liuliang@nwu.edu.cn

sediments, implying subduction to >350 km. Earth and Planetary Science Letters, 263 (3-4): 180-191.

- Liu Liang, Zhou Dingwu, Wang Yan, Chen Danling, Liu Yan. 1996. Study and implication of the high-pressure felsic granulite in the Qinling complex of East Qinling. Science in China (D), 26 (suppl): 60-68.
- Mposkos, E.D., Kostopoulos, D.K. 2001. Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Phodope: a new ultrahigh-pressure metamorphic

province established[J]. Earth Planet. Sci. Lett., 192: 497-506.

- Ono, S. 1998. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. Journal of Geophysical Research: Solid Earth, 103 (B8): 18253-18267.
- Wu, Y., Fei, Y., Jin, Z. and Liu, X. 2009. The fate of subducted Upper Continental Crust: An experimental study. Earth and Planetary Science Letters, 282 (1–4): 275-284.