
The exhumation mechanism of high-pressure (HP) and 
ultrahigh-pressure (UHP) metamorphic rocks formed by 
the subduction of oceanic crust is one of the primary 
uncertainties  associated  with  the  subduction  factory. 
Based on a worldwide compilation of key information for 
oceanic eclogites including petrologic characteristics, peak 
P–T conditions, exhumation P–T paths and exhumation 
velocities,  this  study  reappraises  the  exhumation  of 
oceanic eclogites, which have received much less attention 
than continental ones during the last two decades.  

  Oceanic crust is transformed into blueschist and high-
pressure (HP) or ultrahigh-pressure (UHP) eclogite when 
it is subducted into mantle depths. Abundant experimental 
studies on MORB at HP and UHP conditions have shown 
that oceanic eclogites are denser than the surrounding 
mantle (e.g. Aoki & Takahashi, 2004; Litasov & Ohtani, 
2005);  therefore,  oceanic  eclogites  are  generally 
considered difficult to exhume to the earth’s surface when 
driven  by  buoyancy  forces.  However,  some  oceanic 
eclogites have been observed to be exhumed to the earth’s 
surface in several oceanic subduction zones (e.g. Agard et 
al.,  2009; Wei et al.,  2009a; Brovarone et al.,  2011; 
Plunder et al., 2012); some of them are even coesite-
bearing UHP eclogites that were exhumed from mantle 
depths greater than 90 km (Lü et al., 2009; Groppo et al., 
2009; Angiboust et al., 2012). The occurrence of natural 
HP and UHP oceanic eclogites indicates that at least parts 
of the subducted oceanic crust detached from the down-
going slab and were exhumed back to the Earth’s surface. 

  The  oceanic  eclogites  reported  in  typical  oceanic 
subduction zones worldwide can be subdivided into three 
groups  based  on  peak  mineral  assemblages,  P–T 
conditions,  and  geothermal  gradients  as  follows:  (1) 
Coesite-bearing UHP lawsonite eclogites (2.7–3.2 GPa, 
470–610 ºC, 5–7 ºC/km); (2) HP lawsonite eclogites (1.7–
2.6 GPa, 360–620 ºC, 5–8 ºC/km); and (3) HP epidote 
eclogites (1.5–2.3 GPa, 540–630 ºC, 7–12 ºC/km) (Fig. 1). 

Compared with HP and UHP eclogites  in  continental 
subduction–collision zones, oceanic eclogites have lower 
peak P–T conditions and contain abundant light hydrous 
minerals,  such  as  glaucophane  (density:  3.14  g/cm3), 
phengite (2.80 g/cm3), lawsonite (3.13 g/cm3),  chlorite 
(2.58 g/cm3) and talc (2.73 g/cm3) (Hacker et al., 2003). 
Kyanite, a common dense mineral in continental eclogites, 
is extremely rare in natural oceanic eclogites.  All the 
hypotheses for the exhumation of oceanic eclogites are 
based  on  the  assumption  that  oceanic  eclogites  were 
denser  than  the  surrounding  mantle;  therefore,  their 
exhumation must be aided by low-density serpentinites or 
metasedimentary rocks. 

  Thermodynamic modeling for MORB suggests that the 
mineral assemblages, mineral proportions and density of 
oceanic crust subducted along a cold P–T path are quite 
different from those of crust subducted along a warm P–T 
path and that the density of oceanic eclogites is largely 
controlled  by  the  stability  of  low-density  hydrous 
minerals, such as lawsonite, chlorite, glaucophane and talc 
(Chen et al., 2013). Along a cold subduction P–T path 
with a geotherm of ~6 ºC/km, the density of subducted 
oceanic crust is always lower than that of the surrounding 
mantle at depths shallower than 110–120 km (P <3.3–3.6 
GPa). However, along a warm subduction P–T path with a 
geotherm of  ~10  ºC/km,  the  subducted oceanic  crust 
becomes denser than the surrounding mantle at depths 
greater than 60 km (P >1.8 GPa).  

Thermodynamic modeling for depleted mantle suggests 
that serpentine and chlorite in the subduction channel can 
be  only  stable  at  depth  shallower  than  80-120  km, 
therefore,  serpentinized subduction channel  only plays 
important roles on the exhumation of oceanic eclogites at 
depth < 80-120 km. Most natural metasediments in the 
accretionary wedge record blueschist to HP eclogite facies 
metamorphism.  However,  several  metasediments  also 
preserved mineralogical evidence of UHP metamorphism 
(e.g.  Wei  et  al.,  2009b)  and  experienced  similar 
subduction-exhumation  process  to  the  UHP  oceanic 
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eclogites,  suggesting  that  metasediments  also  provide 
additionally driven force for the exhumation of oceanic 
eclogites. A number of seismicity profiles suggest that 
there is an increase in dip angle of subducted oceanic slab 
at 60-120 km, consistent with the modeled results in the 
MORB system. The increase of dip angle of subducted 
oceanic slabs may act a geometric hindrance that the rocks 
at greater depth must overcome during exhumation. 

On  the  basis  of  natural  observations  and  our 
calculations, we suggest that beyond depths around ~120 
km (1) oceanic eclogites are not light enough, (2) there are 
no serpentinites to compensate the negative buoyancy of 
the oceanic crust, and (3) increasing the dip angle of 
subducted oceanic plate inhibits the exhumation of HP–
UHP metasedimentary rocks and eclogites from greater 
depth. They may be the reasons for explaining the lack of 
oceanic eclogites returned from ultradeep mantle (> 120 
km) to the Earth’s surface.  At shallow depths in the 
forearc region (<110–120 km), the cold-hydrous eclogites 
with high Mg, Al, Fe3+ and H2O and low Ca are lighter 
than the mantle, and serpentinites can be stable in the 
subduction channel. We suggest that the cold–hydrous 

eclogites and blueschists are scraped off from the top of 
the subducting slab at shallow depths in the forearc region 
(<110–120 km) and are exhumed inside serpentinized 
subduction channel (Gerya et al., 2002; Gorczyk et al., 
2007; Guillot et al., 2009; Malatesta et al., 2012). The 
formation  of  kyanite  through  lawsonite  breakdown 
reactions would hamper the exhumation of oceanic crust, 
that may be the reason for the fact that lawsonite-free 
kyanite-bearing eclogite is extremely scarce in the oceanic 
subduction zones worldwide. 
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