NI Huaiwei and Hans KEPPLER, 2013. Sulfur Speciation in Hydrothermal Fluids. *Acta Geologica Sinica* (English Edition), 87(supp.): 264.

Sulfur Speciation in Hydrothermal Fluids

NI Huaiwei ^{1,2,*} and Hans KEPPLER²

1 University of Science and Technology of China, Hefei 230026, China 2 Universität Bayreuth, 95440 Bayreuth, Germany

The sulfur compounds released by volcanic eruptions, generally believed to be in the form of SO₂ and H₂S, may cause global cooling of the atmosphere. However, several recent field and experimental studies suggested that under moderately oxidized conditions hexavalent sulfur species may coexist with SO₂ in magmatic fluids and may later be directly emitted at volcanic vents, which contradicts some thermodynamic predictions. We have investigated sulfur speciation in magmatic-hydrothermal fluids by loading different amounts of dilute sulfuric acid into a hydrothermal diamond-anvil cell and performing in situ Raman spectroscopy at temperatures up to 700°C. Upon heating SO₄^{2–} disappeared beyond 100°C, and SO₂ formed at >250 °C probably due to reduction by the rhenium or

iridium gasket. With high-fluid densities (such as >0.9 g/ mL), the initial acid and air bubble homogenized into the liquid phase and most sulfur was present in the form of either HSO_4^- or H_2SO_4 (the rest being SO_2) within investigated *T*–*P* conditions (with pressures up to 10 kb). With low-fluid densities (such as <0.2 g/mL), the system homogenized into the vapor phase and molecular H_2SO_4 appeared to dominate (with pressures less than 1 kb). These observations strongly suggest that hexavalent sulfur is stabilized by hydration in magmatic fluids.

Key words: sulfur speciation, magmatic fluid, hydrothermal fluid, volcanic gas

^{*} Corresponding author. E-mail: hwni@ustc.edu.cn