
Whether the deep crust beneath the central Tibetan 
Plateau is weak enough to flow on geologic timescales 
remains one of the first-order questions in the tectonic 
evolution  of  this  archetypal  orogeny  (Englang  and 
Houseman, 1986; Royden et al., 1997; Tapponnier et al., 
2001; Beaumont et al., 2001).  Geophysical observations 
of the present physical state of Tibetan crust are consistent 
with relatively hot, fluid-rich middle crust (e.g., Brown et 
al., 1996; Nelson et al., 1996; Wei et al., 2001; Unsworth 
et  al.,  2005;  and  see  reviews  in  Klemperer,  2006), 
conditions favorable for low viscosity (Beaumont et al., 
2004).   However,  the  distribution  of  regions  of  low 
seismic velocity (e.g., Yao et al., 2010; Hetényi et al., 
2011; Yang et al., 2012) and high electrical conductivity 
(e.g., Bai et al., 2010) appears to be quite heterogeneous, 
and bulk rheologic properties determined at post-seismic 
timescales do not require low viscosity (e.g., Hilley et al., 
2005; Ryder et al., 2010; 2011; Wen et al., 2012). Yet, the 
geologic history of the growth of portions of the eastern 
Tibetan Plateau appears to require some version of lower 
crustal flow on a regional scale (e.g., Clark and Royden, 
2000; Burchfiel and Royden, 2008). Discrimination of 
these models thus requires constraints on the rheology of 
Tibetan crust at longer timescales. Here we constrain the 
effective elastic thickness (Te) and viscosity of Tibetan 
crust  by exploiting  flexural  deformation  of  highstand 
Holocene shorelines around Siling Co, in central Tibet, in 
response to climatically induced lake recession. 

Extensive flights  of spectacular  paleo-shorelines are 
well-preserved around the lake, extending up to ~100 m 
above modern lake level. In this study we targeted the 
most  recent  highstand  shoreline  (~4594  m  a.s.l.)  to 
examine its deflection. This shoreline is characterized by 
prominent constructional features (beach ridges, benches, 
spits,  bars  and cuspates)  that  continuously connect  to 

wave-cut  scarps.  Collectively,  these  define  a  clear 
geomorphic  boundary  between  an  older  landscape 
characterized by dissected alluvial channels/gullies and a 
lower  one  characterized  by  younger,  recessional 
shorelines. The age of beach ridges along the highstand 
shoreline complex range from ~ 8 ka to ~ 4 ka dated by 
OSL (optically stimulated luminescence), which suggests 
a relatively stable lake level during this time.  

By  comparing  observed  shoreline  deflections  with 
results from forward elastic models of flexural response to 
removal of a 3D water load, the elastic thickness of central 
Tibetan crust is determined to be relatively thin (Te = 13±2 
km), suggesting that most of the mechanical strength of 
the  crust  resides  in  the  upper  crust.   Moreover,  the 
timescale of lake recession (< 10 ka) implies strain rates 
on the order of ~ 10-16 s-1. These results, when combined 
with  existing  constraints  on  the  thermal  and  seismic 
velocity structure of the crust in central Tibet, allow us to 
place bounds on the range of probable viscosity beneath 
central Tibet. Assuming a simple, two-layer model with a 
viscous  layer  beneath  the  elastic  upper  crust  implies 
viscosity  on  the  order  of  ~  1019  Pa  s.  A  more 
comprehensive consideration of possible strength profiles 
consistent  with  available  seismic  and  thermal  data  is 
consistent  with  a  significant  reduction  in  effective 
viscosity below depths of ~ 20 – 40 km. This analysis 
shows that viscosities above this level range from 1020 – 
1022 Pa s, while viscosities at depth range from 1018 – 1020 
Pa s. Collectively, our findings of thin elastic upper crust 
and a reduction in viscosity at depth suggests that the 
middle and lower crust beneath central Tibet is likely 
relatively weak at timescales of 104 – 105 yr. But, our 
results do not require extremely low viscosities (~1016 Pa 
s) required by some of the end-member models for flow in 
a mid-crustal channel (e.g.,  Clark and Royden, 2000). 
Current efforts to better understand the time-dependent 
lake loads will allow a refined determination of crustal 
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rheology. 
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