
1 Introduction 
 
The thermal structure of the lithosphere, especially the 

thermal structure and state of the upper mantle, is a basic 
problem in the field of geodynamics (Xu et al., 1995), 
which has important significance for understanding deep 
dynamic mechanisms. The lithosphere has been defined 
from different  perspectives,  including  the  petrological 
lithosphere, mechanical lithosphere, thermal lithosphere, 
seismological  lithosphere,  elastic  lithosphere,  chemical 
lithosphere, and seismic-thermal lithosphere. The thermal 
lithosphere refers to the Earth's outermost heat conduction 
layer  (White,  1988).  The  thickness  of  the  thermal 
lithosphere is a direct parameter reflecting the thermal state 
of the deep lithosphere, which has a good correlation with 
the effective elastic thickness of the continental lithosphere 
(Yuan and Zhang, 2005), and it is more reasonable than the 
lithospheric thickness obtained using other methods (An 
and Shi, 2006a). 

Since the Mesozoic-Cenozoic, the dynamic evolution of 
the Chinese continent has mainly been characterized by 

thickening of the lithosphere in the west and thinning of the 
lithosphere in the east (He et al., 2001). This feature is a 
response  to  many  geological  processes  such  as  the 
subduction of the Pacific Plate and the collision between 
the Indian Plate and the Eurasian Plate, and it controls the 
evolution of the different types of sedimentary basins in 
eastern and western China. Therefore, studying the thermal 
lithospheric thickness can not only provide parameters for 
in-depth studies of the dynamic evolution of the continental 
lithosphere, but it can also provide a basis for studying the 
formation and evolution of sedimentary basins, the analysis 
of the thermal history of petroliferous basins, and the 
distribution of geothermal resources. 

The Sichuan Basin is located in the convergence zone 
formed by the Qinghai-Tibet Plateau, Qinling, and other 
large tectonic blocks, and there are many orogenic belt-
foreland basin systems around it. Researchers have studied 
the deep structure of the basin and its periphery using 
geophysical methods (Gao et al., 2016; Wang et al., 2017; 
Li J H et al.,  2018), as well as the Curie and Moho 
interfaces (Gao et al., 2014) and the lithospheric thickness 
(Li M K et al., 2018). A lot of studies (Xu et al., 1995, 2006; 
He et al., 2001, 2014; Hu et al., 2007; Qiu, et al., 2014, 
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2015, 2016a, 2016b; Cui et al., 2020) in the North China 
Craton  have  given  the  detailed  evolution  of  thermal 
lithosphere thickness from Triassic to present, and the 
response to the Clatonic destruction process was revealed. 
However, as an important convergence zone among several 
huge tectonic blocks, no similar works on the thermal 
lithosphere of the Sichuan Basin have been done, only few 
studies had conducted on the thermal lithospheric thickness 
in the study area based on temperature profiles (Xu et al., 
2011a; Huang et al., 2014). The studies on the thermal 
lithospheric thickness have not been sufficiently systematic 
in the study area.  

Based  on  the  geothermal  field  and  thermophysical 
properties of the Sichuan Basin and a stratigraphic model of 
the sedimentary layers and crust, in this study, the thickness 
of the thermal lithosphere was calculated, the heterogeneity 
of the thermal lithospheric thickness of the sub-tectonic 
units  in  the  basin  was  analysed,  and  its  geothermal 
significance  was  explained.  The  results  of  this  study 
provide geothermal support for understanding the dynamic 
mechanism of the evolution of the surrounding basin-
mountain systems and the exploration of petroleum and 
geothermal resources in the basin. 
 
2 Geological Setting 

 
The Sichuan Basin is located in the western margin of 

the Upper Yangtze Plate. It has an obvious rhomboid 
border, extends slightly to the northeast and is shorter to 
the  northwest.  The  northwest  and  southeast  boundary 
faults  are  relatively  straight,  while  the  northeast  and 

southwest boundaries are serrated, indicating that the deep 
NE trending faults in the basin experienced significant 
compressional shearing in the late stage, while the deep 
NW trending faults in were faulted and reformed by the 
deep NE trending faults (Fig. 1a). Around the basin, the 
Longmen  Mountain  fault-fold  belt  is  located  to  the 
northwest, the Daba Mountain fault-fold belt is located to 
the northeast and is bounded by the Chengkou fault, and 
the Yunnan–Guizhou–Sichuan–Hubei inner platform fault
-fold belt is located to the southeast–southwest (Meng et 
al., 2005). The strata of these surrounding tectonic units 
are similar to the sedimentary facies in the basin, so they 
should  belong  to  the  same  sub-tectonic  units  formed 
through the  evolution  of  deep  faults  in  the  Yangtze 
paraplatform, and they structurally and topographically 
constitute the peripheral mountains of the Sichuan Basin 
(Guo et al., 1996). 

The Sichuan Basin has deposits of sedimentary rocks 
that are up to 10,000 m thick and can be dated to early as 
Sinian (Guo et al., 1996; Liu et al., 2006), with diverse rock 
types  and  depositional  systems.  The  Sinian–Middle 
Triassic strata are marine facies, which are dominated by 
carbonate rocks such as limestone and dolomite but also 
contain mudstone and sandstone. From the Middle–Late 
Triassic onward, a thick set of foreland basin deposits 
formed,  including  sandstone,  mudstone,  and  other 
terrestrial clastic deposits (Fig. 1b). 

 
3 Methods 

 
The  necessary  condition  for  mantle  melting  is  the 

Fig. 1. (a) Geologic setting and well locations in the Sichuan Basin; (b) stratigraphic column for the study area. 
The geologic map is based on Zhu et al. (2018a, b) and Meng et al. (2005), the distribution and zoning of the Emeishan Large Igneous Province (ELIP) is 
based on He et al. (2003, 2007), and the stratigraphic column was modified from Rao et al. (2011). 
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intersection of geothermal line and mantle solidus (Xu et al., 
2006). There are three methods of determining the position 
of the bottom of the thermal lithosphere (He et al., 2014). 

(1) A certain adiabatic isotherm can be taken as the 
bottom boundary temperature of the lithosphere, such as 
1200°C (Petitjean et al., 2006), 1250°C (Lewis et al., 2003), 
or 1350°C (Wang and Cheng, 2011). (2) The depth of the 
intersection of the heat conduction geothermal line and the 
dry basalt solidus (DBS) can be defined as the bottom 
interface of the lithosphere (Pollack and Chapman, 1977; 
Lachenbruch, 1978; Hu et al., 2007). (3) The depth of the 
intersection of the heat conduction geothermal line and the 
adiabatic mantle solidus can be defined as the bottom 
interface of the lithosphere (Liu et al., 2005). Although the 
methods are different, in general, the bottom boundary of 
the thermal lithosphere is closer to the upper boundary of 
the rheological boundary layer (He, 2014). 

The  second  method  was  adopted  to  calculate  the 
thickness of the thermal lithosphere in the Sichuan Basin, 
and two adiabats (Rudnick et al.,  1998) were used to 
constrain the upper and lower bounds of the thickness of 
the thermal lithosphere. 

Upper limit: T1 = 1200°C + 0.5Z               (1) 
Lower limit: T2 = 1300°C + 0.3Z              (2) 

In Equations (1) and (2), T is the temperature on the DBS 
at a certain depth (°C), and Z is the certain depth (km). 

The temperatures in the depth can be determined by 
temperature logging (T-logging), while the temperatures 
of undrilled strata can be constrained by the equation of 
heat conduction: 

where Ti0 is the temperature for the top surface of a 
sedimentary layer (°C or K), qi0 is the heat flow for the top 
surface of the layer (mW/m2), Ki is the thermal conductivity 
of the layer (W/(m·K)), Ai is the heat generation rate of the 

layer (µW/m3), and Z is the stratum thickness from the top 
of the layer to a certain depth in it (km). If the heat 
generation rate of the stratum decreases exponentially with 
the depth, this results in the following equation: 

where q0 is the heat flow of the top surface of the stratum 
(mW/m2), K is the rock thermal conductivity of the stratum 
(W/(m·K)), A′ is the heat generation rate in the top of the 
stratum (µW/m3), and D is the thickness of a certain part of 
crust that radioactive elements mainly enriched in (km), 
normally 8–14 km depends on the nature of the lithosphere 
(Hu et al., 2007). 

Equation  (3)  is  mostly  used  to  calculate  deep 
temperatures in sedimentary strata, and equation (4) is 
mostly used to calculate temperatures below the basement. 
Figure  2  presented  the  principles  to  determine  the 
temperature profiles (Fig. 2a) and to constrain the thermal 
lithosphere thickness using the temperature profile and the 
‘Dry Basalt Solidus’ (DBS) (Fig. 2b). 

In the calculation process, the factors affecting the results 
mainly include the thermal conductivity, heat generation rate 
(A), stratigraphy of the crust, and terrestrial heat flow (q). 
The thermal conductivity (K), heat generation rate of the 
sedimentary layers  and  some basement  rocks,  and  the 
terrestrial heat flow are mainly based on measurement results, 
which have been systematically summarized in previous 
studies (Xu et al., 2011b; Jiang et al., 2016; Zhu et al., 2018b; 
Tang et al., 2019; Qiu et al., 2022; Zhu et al., 2022). In 
addition to the measured heat flows (Table 1), interpolation 
values were also taken into the calculation (Fig. 3). The 
crustal heat generation rate is obtained from the model of the 
crustal structure and the seismic wave velocity (Wang et al., 
2019). The initial thermal conductivities of the lower crust 
and upper mantle were set to 2.6 W/(m·K) and 4 W/(m·K), 
respectively,  and the  temperature correction method of 
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Fig. 2. (a) The principles to determine the temperature profiles and (b) calculation of the thermal lithospheric thickness (modified 
after Rudnick et al., 1998 and Cui et al., 2020). 
The ‘D’ layer is the part of crust that radioactive elements mainly enriched in. The bottom boundary of the thermal lithosphere is defined as the intersection 
of the geothermal line and the DBS. 
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Seipold (1998) was adopted. 
 

4 Results 
 
In this study, typical well calculations and grid data 

iterative  calculations  were  used  to  calculate  the  deep 
geothermal distribution and to determine the thickness of 
the thermal lithosphere. A lithospheric temperature profile at 
typical well locations (Fig. 4 and Table 1) and a map of the 
planar distribution of the thermal lithospheric thickness 
(Fig. 5) were obtained. Eqs. (1) and (2) were used to 
calculate the thermal lithospheric thickness, and the mean 
values of the two were used as the reference for the 
thickness of the thermal lithosphere in the Sichuan Basin. 

The temperature distribution characteristics and thermal 
lithospheric thickness at typical well locations are shown 
in Fig. 4, and these factors vary to some extent. Well W28 
in  the  central  Sichuan  Basin  has  a  high  temperature 

gradient and a thin thermal lithospheric thickness of 135–
150 km (mid-value: 142.5 km). Well Cm39 in the western 
Sichuan depression and well G8 in the eastern Sichuan 
fault-fold belt have thick thermal lithospheric thicknesses 
of 170–185 km (mid-value: 177.5 km). 

The upper and lower limits of the bottom boundary of 
the thermal lithosphere were calculated in the grid data 
calculations (Fig. 5a, b; the calculations did not consider 
the northern and southwestern Sichuan regions,  which 
lack measured heat flow values), and the median values of 
the two were used as the reference thermal lithospheric 
thickness (Fig. 5c). As is shown in Fig. 5, the thickness of 
the thermal lithosphere in the Sichuan Basin ranges from 
140 to 190 km. The thermal lithosphere in central Sichuan 
and southwest Sichuan is relatively thin, with a thickness 
of  less  than  160  km.  The  thickness  of  the  thermal 
lithosphere in the western Sichuan depression and eastern 
Sichuan is relatively large. For instance, in the western 
Sichuan depression, it reaches 180 km. The distribution of 
the thermal lithospheric thickness in the basin has a good 
correlation with the thickness of the sedimentary layers 
and the burial depth of the basement (Fig. 5d) (Zhang et 
al., 2012). That is, the thermal lithosphere is thicker in the 
areas with thick sedimentary layers, while it is relatively 
thin in the area where the basement has been uplifted and 
the sedimentary layers are thin. 
 
5 Discussions 
 
5.1 Reliability evaluation 

Since the asthenosphere under the lithosphere has come 

Fig. 3. The heat flow distribution (edited after Xu et al., 2011a; Zhu et al., 2018b) and the burial depth of the folded 
basement (edited after Luo et al., 1998) of the Sichuan Basin. 

 

 

Table 1 The measured heat flow and the calculated thermal 
lithosphere thickness of boreholes in the Sichuan Basin 

Bore 
hole 

Logging 
depth 
(m) 

G 
(°C/ 
km) 

q 
(mW/ 
m2) 

Depth of the thermal lithosphere 
bottom (km) 

Upper limit Lower limit Mid-value 
TB1 0–1340 20.56 54.5 163 182 172  

SM101 0–2252 23.25 55.5 162 178 171 
DS1 0–3340 16.65 60.3 167 184 176 

CQ128 0–3280 22.37 58.3 174 192 183 
CS55 0–3020 22.01 57.0 173 192 183 
LS1 0–4810 22.44 63.9 174 192 184 
Ch5 0–1540 22.63 64.2 147 163 155 
L651 0–3301 24.01 55.3 165 184 175 

Note: The T-logging data sourced from Xu et al. (2011b). 
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close to or reached a certain level of (partial) melting, it 
has a higher deformation ability than the lithosphere, from 
this  perspective,  the  thermal  lithospheric  estimation 
method is compatible with the concept of lithospheric 
plate tectonics, so the estimate is more reasonable than 
that of the effective elastic thickness (An and Shi, 2006a). 
The results of this study can be compared with those 
obtained using other methods to some extent. Based on the 
S-wave velocity, the thickness of the lithosphere in the 
Sichuan Basin is 180–200 km (Li M K et al., 2018), which 
is generally consistent with the calculation results obtained 
in this study, but the thickness of the lithosphere at the 
basin-mountain junction is significantly lower, which is 
speculated to be caused by lithospheric delamination and 
asthenospheric  flow.  The  lithosphere  in  southwestern 
Sichuan is also relatively thin, which is consistent with the 
results of this study. Gao et al. (2014) studied the Curie 
interface  in  the  eastern  margin  of  the  Qinghai-Tibet 
Plateau  and  determined  that  the  depth  of  the  Curie 
interface in southwestern and central Sichuan is shallow 
(20–26 km), while it is deep (≥ 30 km) in the northern and 
western Sichuan depression. This is consistent with the 
distribution of the thickness of the sedimentary layers 
(Fig. 5d). 

Nevertheless,  there  are  some  shortcomings  and 
uncertainties in estimating the lithospheric thickness using Fig. 4. Geothermal profiles of the lithosphere in different wells 

and their relationship with the dry basalt solidus (DBS). 

Fig. 5. The (a) upper limit, (b) lower limit, and (c) mid-value of the bottom of the thermal lithosphere; (d) the thickness of the 
sedimentary layers.  
The areas with few measured heat flow data (northern Sichuan Basin-northeastern edge of the basin, southwestern Sichuan Basin) (Xu et al., 2011b; Jiang 
et al., 2016) were not calculated. 
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thermal  methods.  Primarily,  only  the  lithospheric 
temperature  field  derived  from  steady-state  heat 
conduction is reliable (An and Shi, 2006a). The Emeishan 
mantle plume activity in the Middle–Late Permian was the 
most significant thermal event in the Sichuan Basin. After 
that,  the magmatism was not  extensive,  and  thus the 
present geothermal field in the basin is controlled by a 
steady conductive geothermal regime, which has suitable 
conditions for this method. However, other uncertainties 
are inevitable, such as errors in the heat flow data and the 
thermal parameters of the rocks, which may lead to large 
uncertainty in the calculation of the deep temperature and 
thermal lithospheric thickness (An and Shi, 2006a; Hu et 
al., 2007). 

Additionally, the results may be affected by many other 
factors, such as the approximation of the upper mantle 
solidus as the dry basalt solidus (Hu et al., 2007), crustal 
partial  melting,  and  the  rheological  boundary  layer 
between the solid lithosphere and asthenosphere (He et al., 
2014). Researchers (Pasquale et al., 1990; Hu et al., 2007) 
have  concluded  that  an  uncertainty  of  15%  for  the 
estimated  lithospheric  thickness  can  be  expected. 
However,  the uncertainty may depend on the specific 
geological nature of the study area. 

 
5.2  Geological  implications  of  thermal  lithospheric 
thickness in the Sichuan Basin 

An and Shi (2006a, b; 2007) studied the lithospheric 
thickness of the Chinese continent using a combination of 
seismic  and  thermal  methods  and  concluded  that  the 
thickness of the lithosphere in the interior of the Yangtze 
Plate is up to 170 km, which is close to the results of this 
study. The thickness of the thermal lithosphere in the 
Sichuan Basin is larger than that in eastern China (e.g., 60
–120 km in the Bohai Bay Basin) (He, 2001; Liu et al., 
2005), but it is relatively thin compared with that of the 
Tibetan Plateau (160–220 km) (An and Shi, 2006a, b) and 
most global cratons (Artemieva, 2006). 

The thinning of the lithosphere and the corresponding 
changes in the lithosphere’s thermal structure should have 

affected the near surface temperature field in the parts of 
the basins away from the magmatic zones (Hu et al., 
2007). The geothermal line of the upper mantle is higher 
in eastern China than in the old shield and ocean areas, but 
it is similar to the temperature profiles in the southern part 
of eastern Australia.  This  is  consistent  with the high 
surface heat flow, asthenospheric uplifting, and magmatic 
activity  in  the  area,  and  it  also  corresponds  to  the 
extensional environment of the entirety of eastern China 
during the Cenozoic (Xu et al., 1995). Similarly, the good 
consistency  between  the  thickness  of  the  thermal 
lithosphere,  the  sedimentary  thickness  (Zhang  et  al., 
2012), the surface heat flow (Xu et al., 2011b; Jiang et al., 
2016; Zhu et al., 2018b), and the mantle heat flow (Fig. 6) 
(Qiu et al., 2022; Zhu et al., 2022) reflects the conductive 
lithospheric thermal structure in the Sichuan Basin, and 
indicates  that  flexural  thickening  of  the  lithosphere 
occurred in the eastern Sichuan fault-fold belt and the 
Longmenshan–Western Sichuan depression foreland basin 
system, while asthenospheric uplift occurred in the central 
Sichuan. 

Many pervious works on the tectonic-structural nature 
of  the  Sichuan  Basin  and  its  surrounding  mountain 
systems pointed out that the lithosphere deformation of 
the basin boundaries were the results of collisions (Liu et 
al., 2005, 2015; Zhang et al, 2013; Zhu et al., 2019). Li 
and Li (2007) gave the eastern margin of the basin as the 
western limit of the far-field effect of the Paleo-Pacific 
subduction,  and  many  researchers  considered  the 
progressive  deformation  in  Western  Hunan–Hubei–
Eastern Sichuan was result from the Jiangnan–Xuefeng 
Mesozoic intracontinental orogenesis (Mei et al., 2010; 
Wang et al., 2012), associated with clockwise rotation of 
the Yangtze plate relative to the North China plate (Liu et 
al., 2005). 

 
6 Conclusions 
 

(1)  The thickness of the thermal lithosphere in the 
Sichuan  Basin  ranges  140–190  km  and  is  unevenly 

Fig. 6. Consistency of (a) the thermal lithosphere with (b) the tectonic units and (c) the mantle heat flow.  
Note that the burial depth, not the elevation depth was used to characterize the thermal lithosphere. 
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distributed. The thickness of the thermal lithosphere in 
central Sichuan and southwestern Sichuan is less than 160 
km, while the thickness of the thermal lithosphere in the 
western Sichuan depression and eastern Sichuan is larger 
(~180 km). The distribution of the thermal lithospheric 
thickness in the basin has a good correlation with the 
geological  units  and the  thickness of the sedimentary 
layers. The thickness of the thermal lithosphere in the 
depression area, which has thick sedimentary layers and a 
fault  fold  zone  with shallow crustal  deformation and 
thickening, is larger than that in the basement uplifted 
area, which has thin sedimentary layers. 

(2) The present thermal regime and thermal lithospheric 
thickness  of  the  Sichuan  Basin  indicate  that  flexural 
thickening  of  the  lithosphere  occurred  in  the  eastern 
Sichuan  fault-fold  belt  and  the  Longmen  Mountain–
Western Sichuan depression foreland basin system, while 
asthenospheric uplift occurred in the central Sichuan area. 

(3) Limited by the accuracy of the heat flow data and 
the thermal physical parameters, as well as the complexity 
of the internal structure and physical properties of the 
Earth,  there  are  some  uncertainties  or  errors  in  the 
calculation  of  the  thermal  lithospheric  thickness.  The 
results in this study are in good agreement with other 
observations  and  calculations  and  reflect  the  stable 
conduction temperature field in the Sichuan Basin and the 
reliability  of  the  results  of  the  thermal  lithospheric 
thickness. 
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