
1 Introduction 
 
The  Sibumasu  terrane,  including  the  Baoshan  and 

Tengchong terranes in southwest China, separated from 
the northwest  margin of Gondwana in the late  Early 
Permian and finally collided with the Simao-Indochina 
terrane after the closure of the Paleo-Tethys Ocean and the 
Sukhothai back-arc ocean (Metcalfe, 2013; Wang et al., 
2018).  However,  the  timing  of  the  collision  remains 
controversial,  with  suggestions  ranging from the  Late 
Permian (Feng et al., 2002), to the Early to Mid-Triassic 
(Hennig et al., 2009), and even the Late Triassic (Searle et 
al., 2012; Metcalfe, 2013; Cai et al., 2017; Wang et al., 
2018). Granitoids, as products of re-melted continental 
crust, are usually employed as an ideal geological tracer to 
explore crustal tectonic evolution (Pearce, 1996; Pitcher, 
1997). The Triassic to earliest Jurassic granitoids in the 
Tengchong terrane of northern Sibumasu terrane were 
suggested to be the magmatic products of either an arc, 
syn-collisional, or post collisional tectonic setting related 
to the East Paleo-Tethys Ocean, or even an arc tectonic 
setting related to the Meso-Tethys Ocean (Cong et al., 
2010; Zou et al., 2011; Huang et al., 2013; Wang et al., 
2018; Zhu et al., 2018; Cao et al., 2019). 

In this paper, we present detailed LA-ICP-MS zircon U-
Pb geochronology, in situ Hf isotope, whole-rock major 
and trace element geochemical, and Nd isotope data for 
two  Early  Jurassic  (ca.  199  Ma)  two-mica  granites 
(Longtang  and  Menglong)  of  southern  part  of  the 
Tengchong terrane (Figs. 1b, 2). We aim to assess their 
origin and explore their possible tectonic setting. Detailed 
elemental and isotopic compositions indicate that these 
two-mica granites are likely to  have been formed by 
muscovite-dehydration melting of a metapelitic source at 
lower temperatures in the range of 700°C to 750°C at a 
normal  crustal  depth.  Their  emplacement  might  be 
associated with the post-collisional process between the 
Sibumasu terrane and the Simao-Indochina terrane after 
the final closure of East Paleo-Tethys Ocean. 
 
2 Geological Setting 

 
Mainland southeast Asia is a heterogeneous tectonic 

collage of continental crustal blocks, volcanic arcs, and 
suture zones that represent the remnants of closed oceans 
and back-arc basins (Metcalfe, 2011a, b, 2013; Metcalfe et 
al., 2017; Fig. 1a). The core area of mainland southeast 
Asia consists of, from west to east, the Sibumasu terrane, 
the Changning–Menglian, Chiang Mai–Chiang Rai, and 
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Bentong–Raub suture zones, the Lincang–Sukhothai–East 
Malaya arc, the Jinghong–Nan–Sa Kaeo suture zones, and 
the Simao–Indochina terrane (Fig. 1a). The Changning–
Menglian, Chiang Mai–Chiang Rai, and Bentong–Raub 
suture zones represent the remnants of the Paleo-Tethys 
Ocean, whereas the Jinghong–Nan–Sa Kaeo suture zones 
represent  the  remnants of the narrow and short  lived 

Sukhothai back-arc ocean (Metcalfe, 2013). 
The Tengchong terrane is located in the north of the 

Sibumasu  terrane,  southwestern  Yunnan  province, 
southwest  China (Fig.  1a).  It  is  fault-bounded by the 
Baoshan terrane along the Gaoligong dextral strike-slip 
fault to the east and the Ruili fault to the southeast, and by 
the West Burma terrane along the Sagaing fault to the 

Fig. 1 (a) Simplified tectonic map of the eastern Tethyan tectonic domain and the location of the Tengchong terrane (after 

Metcalfe, 2013); (b) schematic regional geological map of the Tengchong terrane (after BGMRY, 1983; Cao et al., 2019). 
In (a), also shown are arc terranes and sutures of eastern Asia. LT = Lincang arc terrane; CT = Chanthaburi arc terrane; EM = East Malaya; BST = 

Baoshan terrane; 1–Longmu Co Shuanghu; 2–Changning-Menglian; 3–Chiang Mai-Chiang Rai; 4–Chanthaburi; 5–Bentong-Raub; 6–Jinghong; 7–

Nan-Uttaradit; 8–Sra Kaeo; 9–Ailaoshan; 10–Bangong; 11–Myitkyina; 12–Kalaymyo; In (b), also shown are Yingjiang metagabbros and Lianghe 

biotite granite (Zhu et al., 2018), Manzhanxiang granite (Cao et al., 2019). 
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west. The largest portion of the strata in the Tengchong 
terrane is occupied by the Gaoligongshan metamorphic 
complex (Fig. 1b), which is mainly comprised of high-
grade  pelitic  gneiss,  schist,  migmatite  and  gneissic 
intrusions (Zhong, 1998; Li et al., 2016). The complex 
was previously regarded as Precambrian basement due to 
the  high-grade  metamorphism  (generally  to  the 
amphibolite facies; Zhong, 1998). However, SHRIMP and 
LA-ICP-MS zircon U-Pb dating of the gneisses from the 
Gaoligongshan metamorphic complex in the Gongshan 
terrane indicate that they are metamorphosed Paleogene 
sediments that contain inherited Archean to Cretaceous 
detrital zircons (2690 Ma to 64 Ma) (Song et al., 2010). 
The overlying strata include lower Devonian to Lower 
Permian  depositional  sequences  and  Mesozoic  clastic 
sedimentary rocks and carbonates. The Lower Devonian 
sequences contain siliciclastic rocks and dolomites and the 
Carboniferous to  Lower  Permian sequences consist  of 
limestone, graywacke, pebble, pebble-bearing sandstones, 
and siltstones. Triassic sequences are exposed locally and 
they  consist  of  shale,  sandstone,  and  limestone.  The 

Jurassic  sequences  also  include  shale,  sandstone  and 
limestone,  whereas  the  Cretaceous  sequences  include 
siltstone, mudstone, and sandstone. Tertiary sandstone, 
siltstone,  basaltic  rocks,  Quaternary conglomerate  and 
sandstone are also exposed in the Tengchong terrane. 

Extensive Mesozoic granitoids occur in the Tengchong 
terrane  and  can  be  divided  into  three  major  phases: 
Triassic (245–206 Ma) (Cong et al., 2010; Zou et al., 
2011; Zhu et al., 2018), Early Cretaceous (140–110 Ma) 
(Cao et al., 2014, 2017, 2019; Zhu et al., 2015; Xie et al., 
2016), and Late Cretaceous (80–65 Ma) (Chen et al., 
2015; Cao et al., 2016, 2018, 2019). Recently, a few Early 
Jurassic  granitoids  were  reported  and  their  tectonic 
settings remain controversial (Zhu et al., 2018; Cao et al., 
2019). The Longtang and Menglong granites intruded into 
the Gaoligongshan metamorphic complex at ca. 199 Ma 
(see below). Neither restites nor microgranular enclaves 
are  observed.  The  granites  consist  of  alkali-feldspar 
granite, syenogranite, and monzogranite. They consist of 
K-feldspar (30%–45%), plagioclase (10%–30%), quartz 
(30%–40%), muscovite (3%–5%), and biotite (3%–7%), 

Fig. 2. Simplified geological map of the Longtang and Menglong granites in southern Tengchong terrane (after BGMRY, 1983). 
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with a  medium-grained  granitic  texture  (Fig.  3).  The 
accessory minerals are sphene, apatite, and zircon. Some 
granites show minor alteration. The biotite was locally 
altered to chlorite,  and the feldspars exhibit  localized 
sericitization and argillation. 

In this study, we collected twenty-five samples from 
surface exposures of the Longtang and Menglong granites. 
Sample locations are shown in Fig. 2. All samples were 
crushed to 200-mesh using an agate mill for whole-rock 
geochemical analysis. Two samples (LT-2, ML-4) were 
selected for LA-ICP-MS zircon U-Pb dating and in-situ 
zircon Hf isotope analysis. Zircons were separated using 
magnetic and heavy liquid separation methods, and then 
handpicked under a binocular microscope. Zircon grains 
were mounted in epoxy, and then polished for subsequent 
cathodoluminescence (CL) observation and LA-ICP-MS 
analysis. 

 
3 Samples and Methods 
 
3.1 LA-ICP-MS zircon U-Pb geochronology 

Zircon U-Pb geochronology was conducted by LA-ICP-
MS  at  Nanjing  FocuMS  Technology  Co.  Ltd.  Both 
Australian Scientific Instruments RESOlution LR laser-
ablation  system  (Canberra,  Australian)  and  Agilent 
Technologies  7700x  quadrupole  ICP-MS  (Hachioji, 
Tokyo, Japan) were combined for the experiments. The 
193 nm ArF excimer laser was focused on zircon surfaces 
with a fluence of 3.5 J/cm2. Each acquisition incorporated 
20 s background (gas blank), followed by a spot diameter 
of 33 μm at a 5 Hz repetition rate for 40 s. Dwell times 
were set to 20 ms for 207Pb, 15 ms for 206Pb and 208Pb, 

10ms for 232Th and 238U, and 8ms for other trace elements. 
The external standard 91500 (1062 Ma) was employed to 
correct instrumental mass discrimination and elemental 
fractionation  during  the  ablation  (Wiedenbeck  et  al., 
1995).  GJ-1  (600  Ma)  and Plešovice  (337  Ma)  were 
treated as quality control for geochronology (Jackson et 
al., 2004; Sláma et al., 2008). Raw data reduction was 
performed off-line with the ICPMSDataCal software (Liu 
et al., 2010). 

 
3.2 Whole-rock major and trace elements 

Whole  rock  chemistry  was  determined  at  Nanjing 
FocuMS  Technology  Co.  Ltd.  Major  oxides  were 
measured using an Axios PW4400 X-ray fluorescence 
spectrometer (XRF) on fused glass beads. The analyses 
were  monitored  by  international  standard  references 
AGV-1, BCR-2, and BHVO-1 with analytical errors of 
<2%. Trace element analysis were carried out with a 
Agilent  Technologies  7700x  quadrupole  ICP-MS 
(Hachioji,  Tokyo,  Japan).  Geochemical  reference 
materials of USGS: basalt (BIR-1, BCR-2, BHVO-2), 
andesite (AVG-2), rhyolite (RGM-2), and granodiorite 
(GSP-2), were treated as quality control. Deviations were 
better than ±10% for the elements with contents lower 
than 10 ppm and better than ±5% for the elements with 
contents exceeding 50 ppm. 

 
3.3 Whole-rock Nd isotopes 

Nd  isotope  analyses  were  carried  out  at  Nanjing 
FocuMS  Technology  Co.  Ltd.  Detailed  analytical 
procedures are described by Pu et al.  (2005). Diluted 
solution  (50  ppb  Nd)  was  introduced  into  a  Nu 

Fig. 3. Photomicrographs (under crossed polar) of the Early Jurassic Longtang (a) and Menglong (b–d) granites.  
Bt–biotite; Mus–muscovite; Pl–plagioclase; Kfs–K-feldspar; Qz–quartz. 
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Instruments Nu Plasma II MC-ICP-MS (Wrexham, Wales, 
UK) through a Teledyne Cetac Technologies Aridus II 
desolvating nebulizer system (Omaha, Nebraska, USA). 
Raw data of Nd isotopic ratios were internally corrected 
for mass fractionation by normalizing to 146Nd/144Nd = 
0.7219 with an exponential  law.  International  isotopic 
standard  JNdi-1  was  periodically  analyzed  to  correct 
instrumental  drift.  Geochemical  reference  materials  of 
USGS (BCR-2, BHVO-2, and AVG-2) were treated as 
quality  control.  Their  Nd  isotopic  results  (BCR-2, 
143Nd/144Nd = 0.512629 ± 3;  BHVO-2,  143Nd/144Nd = 
0.512987  ± 2;  AVG-2,  143Nd/144Nd = 0.512794  ± 3) 
agreed  with  previous  publications  within  analytical 
uncertainty (Weis et al., 2006, 2007). 

 
3.4 Hf isotopes of zircon 

Zircon hafnium isotopic ratios were conducted with a 
LA-MC-ICP-MS at  Nanjing  FocuMS Technology Co. 
Ltd., an Australian Scientific Instruments RESOlution LR 
laser-ablation system (Canberra, Australian), and a Nu 
Instruments Nu Plasma II MC-ICP-MS (Wrexham, Wales, 
UK) were combined for the experiments. The 193 nm ArF 
excimer  laser  was focused on zircon surfaces with a 
fluence of 3.5 J/cm2. Each acquisition incorporated 20 s 
background (gas blank), followed by a spot diameter of 50 
μm at a 9 Hz repetition rate for 40 s. Standard zircons 
(including  GJ-1,  91500,  Plešovice,  Mud  Tank,  and 
Penglai)  were  treated  as  quality  control  every  five 
unknown samples. 

 
4 Results 
 
4.1 LA-ICP-MS zircon U-Pb geochronology 

LA-ICP-MS zircon U-Pb geochronology results of two 
samples are summarized in Supp. Table 1 and illustrated 
in  Fig.  4.  All  the  zircons  show  regular  oscillatory 
magmatic zoning with sizes mostly between 100 and 150 
μm (Fig. 4) and Th/U ratios ranging from 0.17 to 1.13 
(Supp.  Table  1).  Fourteen  analyses  for  sample  LT-2 
(Longtang granite) plot in a group on the concordia curve 
and yield a weighted mean 206Pb/238U age of 198.73 ± 0.72 
Ma (MSWD = 0.017)  (Fig.  4a).  Twelve analyses for 

sample ML-4 (Menglong granite) plot in a group on the 
concordia curve and yield a weighted mean 206Pb/238U age 
of 199.53 ± 0.74 Ma (MSWD = 0.036) (Fig. 4b). These 
ages are interpreted as the  crystallization ages of  the 
granites. The LA-ICP-MS zircon U-Pb ages obtained in 
this  work  indicate  that  the  two  granites  were  both 
emplaced in the Early Jurassic (ca. 199 Ma). 

 
4.2 Whole-rock major and trace elements 

All the granitic samples have high SiO2 contents of 69.7
–75.1 wt% (Supp. Table 2). They are mainly strongly 
peraluminous, with alumina saturation index ASI [= molar 
Al2O3/(CaO + Na2O + K2O)] values from 1.06 to 1.46 
(Fig. 5c). These rocks have high K2O contents, with the 
data plotting in the fields of the shoshonitic series to the 
high-K calc-alkaline series (Fig. 5b). They have similar 
Mg# [atomic Mg/(Mg + FeT)] (0.29–0.42) to experimental 
partial melts of metasedimentary rocks under continental 
pressure-temperature (P-T)  conditions (Fig.  5d).  These 
granites are enriched in light rare earth elements (LREEs) 
relative  to  heavy  rare  earth  elements  (HREEs),  with 
moderately  negative  Eu  anomalies  and  flat  HREEs 
patterns (Fig.  6a,  c).  They are depleted in high field 
strength elements (HFSE), showing notable negative Ta-
Nb and Ti anomalies (Fig. 6b, d).  

 
4.3 Whole-rock Nd isotopes 

Whole-rock Nd isotopes for the studied granitic samples 
are given in Supp. Table 3 and illustrated in Fig. 7. The 
Longtang granite exhibits Nd isotopic compositions with 
εNd(t) ranging from −11.8 to −12.4. The Menglong granite 
has similar εNd(t) values of −9.0 to −12.3. Two-stage model 
ages (TDM2) are calculated by assuming a mean 147Sm/144Nd 
value of 0.118 for an average continental crust composition. 
As a result, both granites have Paleoproterozoic TDM2 ages 
(1.71–1.98 Ga; Supp. Table 3). 
 
4.4 Hf isotopes of zircon 

In-situ  Hf  isotope  analyses  were  carried  out  on 
zircons  at  the  same spots used  for  the LA-ICP-MS 
zircon U-Pb geochronology. The results are given in 
Supp. Table 1 and illustrated in Fig. 7. The Longtang 

Fig. 4. Typical CL images of zircons and Concordia curves for the LA-ICP-MS zircon U-Pb geochronology of the 

Longtang (a) and Menglong (b) granites. 
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Fig. 5. (a) Total alkali-silica diagram (Middlemost, 1994); (b) SiO2 vs. K2O (Peccerillo and Taylor, 1976); 

(c) A/NK vs. A/CNK (Shand, 1943); (d) SiO2 vs. Mg# diagram for the Longtang and Menglong granites.  
In (c) and (d), the fields of some experimental melts are also shown: vapor-absent partial melts (1) of a two-mica schist 

(plagioclase-poor natural metapelitic rock) at 7–13 kbar, 825°C–1075°C (Patiño Douce and Johnston, 1991); (2) of a biotite 

gneiss (plagioclase-rich synthetic metapsammitic rock) at 3–15 kbar, 875°C–1000°C (Patiño Douce and Beard, 1995). 

Fig. 6. Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace element patterns (b, d) of the 
Longtang and Menglong granites. 
The normalized values are from Sun and McDonough (1989). 
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granite (LT-2) has negative initial εHf (age corrected 
using  the  U-Pb  ages  for  individual  grains)  values, 
ranging from −6.8 to −11.8, with a weighted mean of 
−9.1. The Menglong granite (ML-4) has negative initial 
εHf  (age  corrected  using  U-Pb  ages  for  individual 
grains)  values  ranging  from  −7.2  to  −8.9,  with  a 
weighted  mean  of  −8.0.  All  the  zircons  give 
Paleoproterozoic two-stage model ages (TDM2) (1.66–
1.97 Ga). All the zircon εHf (t) values are coupled with 
their  whole-rock  εNd(t)  values,  and  plot  along  the 
mantle  array (εHf  = 1.33εNd  + 3.19;  Vervoort  et  al., 
1999; Fig. 7). 

5 Discussion 
 
5.1 Petrogenesis of the granites 

The Longtang and Menglong two-mica granites contain 
muscovite, which is highly aluminous (Fig. 3). They are 
dominated by strongly peraluminous compositions, with 
high ASI values ranging from 1.06 to 1.46 (mostly > 1.1; 
Fig. 5c). All samples have high K2O/Na2O ratios (1.20–
4.59). A negative correlation between P2O5 and SiO2 is 
absent (Fig. 8a). Their low HFSE contents (Zr + Nb + Ce 
+ Yb < 350 ppm) that are in contrast to A-type granites 
(Fig.  9a).  These  petrologic  and  geochemical  features 
reveal that the Longtang and Menglong granites belong to 
S-type granites (Chappell  and White,  1974; Chappell, 
1999; Clemens, 2018). 

Cawthorn  and  Brown  (1976)  suggested  that 
peraluminous granites could be generated by fractional 
crystallization (FC) of metaluminous magmas in closed 
systems, accompanied by fractionation of amphibole and 
clinopyroxene.  However,  the  coeval  granites  in  the 
Tengchong terrane consist of peraluminous granite instead 
of metaluminous rocks (e.g., the Mangzhangxiang granite, 
Cao et al., 2019). With increasing SiO2 contents, the lack 
of the increasing La/Yb ratios, decreasing Dy/Yb ratios 
(Fig. 10a, b), and concave REE patterns (Fig. 6a, c) also 
indicate  insignificant  fractionation of amphibole.  They 
thus seem unlikely to be derived from FC of amphibole 
and  clinopyroxene  from  metaluminous  magmas. 
Alternatively,  peraluminous  granitic  melts  may  be 
produced  by  fractionation  of  a  mafic  metaluminous 
magma (e.g., Zen, 1986). However, the Early Jurassic 

Fig. 7. Zircon εHf(t) vs. whole-rock εNd(t) (modified after Ver-

voort et al., 1999). 

 

Fig. 8. (a) SiO2 vs. P2O5, (b) Rb vs. P2O5, (c) SiO2 vs. Na2O, and (d) K2O vs. Na2O (Hine et al., 

1978) plots for the Longtang and Menglong granites. 
(a) and (b) modified after Chappell (1999). 
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Longtang and Menglong two-mica granites (ca. 199 Ma) 
have Nd isotopic compositions (εNd(t) values of −9.0 to 
−12.4) that are distinct from those of the Late Triassic (ca. 
205  Ma)  Yingjiang  metaluminous  metagabbros  (εNd(t) 
values of −3.4 to −4.0, Zhu et al., 2018) also in the 
Tengchong  terrane  (Fig.  11a).  Jiang  and  Zhu  (2017) 
further suggest that extreme differentiation of plagioclase 
during the evolution of granitic magmas can yield strongly 
peraluminous magmas. But the constant Na2O contents 
with increasing SiO2 contents argue against the removal of 
plagioclase (Fig. 8c). 

The  consensus  view is  that  strongly  peraluminous 

granites are easy to be produced by partial melting of 
metasedimentary rocks (e.g., Barbarin, 1996; Sylvester, 
1998; Jiang et al., 2011; Jiang and Zhu, 2017; Zhu et al., 
2017; Tian et al., 2019; Yang et al., 2020; Yin et al., 2020; 
Zhang et al., 2020; Liu et al., 2021). The genetic model is 
supported by the initial Nd-Hf isotopic component of the 
Longtang and Menglong two-mica granites, which plot in 
the field of continental sediments (Fig. 7). They show 
evolved Nd-Hf isotopic compositions (Fig. 7), suggesting 
an ancient crustal source for their origin. Experimental 
studies demonstrate that partial melts of metasedimentary 
rocks  (both  metagreywackes  and  metapelites)  are 

Fig. 9. (a) Zr + Nb + Ce + Y vs. FeO*/MgO (Eby, 1990), (b) Rb/Sr vs. Rb/Ba (Sylvester 1998), (c) SiO2 

vs. TFeO + MgO + TiO2, (d) Pb vs. Ba diagrams for the Longtang and Menglong granites.  
In (c), the fields of some experimental melts are also shown and the data sources are same as in Fig. 5. In (d), the fields of Lach-

lan, Variscan, and primary low temperature S-type granites are also shown (data are from Finger and Schiller, 2012). 

 

Fig. 10. (a) SiO2 vs. La/Yb and (b) SiO2 vs. Dy/Yb diagrams for the Longtang and Menglong granites. 
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dominated by strongly peraluminous compositions (ASI > 
1.1; Patiño Douce and Johnston, 1991; Patiño Douce and 
Beard, 1995). All the samples exhibit similar Mg# and 
TFeO + MgO + TiO2 values to experimental melts of 
metasedimentary rocks (Figs. 5d, 9c). Furthermore, the 
relatively low FeO*/MgO ratios (2.5 to 4.3) plot in the 
field of unfractionated granites (Fig. 9a), suggesting that 
these granitic samples can represent the components of the 
primary crustal partial melts. The relatively high Rb/Sr 
and Rb/Ba ratios (Fig. 9b) further indicate their derivation 
from a metapelitic source. At lower temperatures in the 
range of 700°C to 750°C, the fluid-absent melting is 
controlled by muscovite breakdown with the reaction of 
muscovite (Ms) + quartz (Qtz) + plagioclase (Pl) = melt + 
sillimanite (Sil) ± K-feldspar (Kfs) or the reaction of Ms + 
biotite (Bt) + Qtz + Pl = melt + Grt + Sil ± Kfs (Vielzeuf 
and Holloway, 1988). In contrast, at higher temperatures 
ranging from ~800°C to 900°C, fluid-absent melting is 
triggered by biotite breakdown, which is involved in the 
reactions of Bt + Sil + Qtz + Pl = melt + cordierite + Grt ± 
Kfs and Bt + Qtz + Pl = melt + Opx ± Grt ± Kfs (Le 
Breton and Thompson,  1988; Vielzeuf and Holloway, 
1988; Vielzeuf and Montel, 1994). Because Pb is more 
compatible in muscovite than in biotite, in contrast to high
-T  melting  for  biotite  breakdown,  low-T  melting  of 
muscovite-rich metasedimentary sources can release large 
amounts of Pb (Finger and Schiller, 2012). Thus, the high 
Pb contents of the two granites support a low-temperature 
melting  process  (Fig.  9d).  The  relatively  flat  HREE 
patterns (Fig. 6a, c) reveal that garnet was not a residual 
phase after partial melting (Lin et al., 2018). The markedly 
negative Eu and Sr anomalies support the presence of 
plagioclase as a residual mineral phase (Fig. 6a, c). These 
geochemical  signatures  imply  that  the  partial  melting 
occurred at <10 kbar (corresponding to a normal crustal 
depth of <33 km) (Vielzeuf and Holloway, 1988; Jiang et 
al., 2010). In summary, we consider that these two-mica 
granites likely formed by muscovite-dehydration melting 
of a metapelitic source at lower temperatures in the range 
of 700°C to 750°C at a normal crustal depth.  
 
5.2 Tectonic setting 

Two Early Jurassic granites in the Tengchong terrane 
were  previously  reported:  the  Lianghe  weakly 

peraluminous biotite granite (ca. 195.5 Ma; Zhu et al., 
2018) and the Manzhangxiang S-type granite (ca. 185.6 
Ma; Cao et al., 2019). They were suggested to be derived 
from  certain  crustal  sources.  The  Lianghe  granite 
presumably originated from melting of a metasedimentary 
source  mainly  dominated  by  metagreywacke  and/or 
psammite (Zhu et al., 2018). The Manzhangxiang granite 
was  suggested  to  be  generated  by partial  melting  of 
Paleoproterozoic–Mesoproterozoic  Gaoligong  crust 
crustal rocks (Cao et al., 2019). But their tectonic settings 
remains controversial. Zhu et al. (2018) considered that 
the  Tengchong  terrane  and  the  Lhasa  terrane  have 
experienced  similar  tectonomagmatic  history since  the 
Early  Paleozoic.  The  Early  Jurassic  crustal-derived 
granitoid magmatism was thought to be generated by the 
Late Triassic (after ca. 235 Ma) collision between the 
Lhasa–Tengchong terrane and the northern margin of the 
Australian  continent.  In  contrast,  Cao  et  al.  (2019) 
suggested that the Tengchong terrane should be taken as 
the  southeastern  extension  of  the  Qiangtang  terrane. 
Similar to the Early Jurassic magmatic rocks in southern 
Qiangtang  terrane,  the  Early  Jurassic  granite  in  the 
Tengchong terrane was derived by the partial melting of 
crust that was triggered by the initial deep subduction of 
the Meso-Tethys Ocean. Furthermore, Wang et al. (2018) 
proposed that final closure of the Paleo-Tethys Ocean 
began in the Triassic Ladinian Stage (~237 Ma). The 237–
230 Ma granitic rocks along the Paleo-Tethys suture are 
interpreted as the product of syn-collisional magmatism, 
whereas the 230–200 Ma granitic rocks are considered as 
products  of  post-collisional  magmatism.  The  East 
Paleotethyan orogen terminated at ca. 200 Ma in Southeast 
Asia. 

Recent study of the Myanmar ophiolites suggests that 
the Myitkyina ophiolite (ca. 171–166 Ma; Yang et al., 
2012; Liu et al., 2016) is the southern extension of the 
Bangong–Nujiang suture that corresponds to the suture of 
the Meso-Tethys Ocean (Liu et al., 2016). It thus most 
likely that the suture of the Meso-Tethys Ocean is located 
in between the West Burma terrane and the Tengchong 
terrane. In this scenario, the Tengchong terrane is the 
southern extension of the South Qiangtang terrane instead 
of the Lhasa terrane (Fang et al., 2018; Cao et al., 2019). 
Previous  studies  also  suggested  that  the  Tengchong 

Fig. 11. (a) Whole-rock εNd(t) vs. age and (b) zircon εHf(t) vs. age for the Longtang and Menglong granites.  
In (a) and (b), the data of intermediate-acidic rocks and granitoids are from Wang et al. (2018) and reference therein. Also shown 

are ca. 205 Ma Yingjiang metagabbros (Zhu et al., 2018) and Mesozoic granitoids of the Tengchong terrane (Cao et al., 2019). 
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terrane, in the northern part of the Sibumasu terrane, 
finally  collided  with  the  Simao-Indochina  terrane 
(Metcalfe, 2013; Wang et al., 2018). We therefore rule out 
the possibility that the Early Jurassic granitoids in the 
Tengchong  terrane  were  associated  with  the  collision 
between the Lhasa-Tengchong terrane and the northern 
margin of the Australian continent. A small quantity of 
Early Jurassic granites (ca. 199–186 Ma) occurred in the 
Tengchong  terrane  ahead  of  the  extensive  Early 
Cretaceous granites emplaced (ca. 140 Ma to 110 Ma, Cao 
et al., 2019). In contrast, the granitoids in the Qiangtang 
terrane mainly formed from ca. 185 Ma to 150 Ma (Liu et 
al., 2017). It is difficult to imagine a prolonged period of 
quiescent magmatism (ca. 186–140 Ma) in the Tengchong 
terrane  if  subduction  was  ongoing.  Furthermore,  the 
petrogenesis of the Longtang and Menglong two-mica 
granites suggest that they were derived from the normal 
crustal depth (<33 km) instead of thickened crust. It is 
more reasonable to interpret the Early Jurassic magmatism 
in the Tengchong terrane as the post-collisional response 
of  the  Paleo-Tethyan  regime.  The  East  Paleotethyan 
orogen thus  finally terminated  at  ca.  186 Ma in  the 
Tengchong terrane. 

 
6 Conclusions 

 
(1) The Early Jurassic Longtang and Menglong two-

mica granites in the Tengchong terrane are likely to have 
been  formed  by  muscovite-dehydration  melting  of  a 
metapelitic source at lower temperatures in the range of 
700°C to 750°C. 

(2) The Early Jurassic granites in the Tengchong terrane 
were most likely formed in the post-collisional tectonic 
setting following the closure of the Paleo-Tethys Ocean. 
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