
1 Introduction 
 
Purely objective separation of geochemical anomalies 

from background noise has been a major subject of 
animated controversy in geochemical exploration. Various 
statistical methods have been widely applied to delineate 
geochemical anomalies under some initial assumptions 
related to specific characteristics of the geochemical data 
(Li et al., 2003; Carranza, 2009, 2010a; Arias et al., 2012). 
Geochemical anomalies are separated from the 
background noise by setting a threshold value, which is 
fixed by the upper and lower limits of standard deviation 
in a particular population, based on classical statistical 
methods. Generally, the sign of classical robust statistical 
methods applied to interpret multi-element geochemical 
data is that the element concentrations in the crust usually 
follow a normal distribution. However, since the element 
concentration in the lithosphere does not usually follow a 
normal distribution, using classical robust statistical 
methods for finding a threshold value can lead to false 
indications of geochemical anomalies (Carranza, 2009). 
Therefore, a variety of methods have been developed for 
delineating geochemical anomalies, such as exploratory 
data analysis (EDA), fractal model etc. (Campbell, 1982; 
Kürzl, 1988; Chork and Mazzucchelli, 1989; Cheng et al., 

1994; Goncalves et al., 2001; Bounessah and Atkin, 2003; 
Li et al., 2003, 2004; Reimann and Garrett, 2005; Cheng, 
2006; Ali et al., 2007; Carranza, 2009, 2010a, b; Bai et al., 
2010;  Afzal et al., 2010, 2011, 2012a, b; Arias et al., 
2012; Geranian et al., 2013; Heidari et al., 2013). The 
EDA method (Tukey, 1977) is robust against the non-
normality of populations (Kürzl, 1988) and generates 
results that are less affected by the presence of an outlier 
(Carranza, 2009). The ‘boxplot’ and ‘median + 
2MAD’ (median absolute deviation), two effective 
approaches in separating geochemical anomalies in EDA 
method, emphasize the empirical density distribution of 
the element concentration in geochemical data analysis 
(Tukey, 1977; Kürzl, 1988; Carranza, 2009). Fractal 
modelling established by Mandelbrot (1982) was 
developed geochemical data analysis to separate 
geochemical anomalies from background by Cheng et al. 
(1994) and Cheng (1999). EDA and fractal methods have 
been successfully applied by many researchers to aid in 
distinguishing anomalies from background noise and 
interpretation of geochemical data (Inaki et al., 1998; Li et 
al., 2003, 2004; Cheng, 2006; Ali et al., 2007; Bai et al., 
2010; Carranza, 2010a; Carranza and Sadeghi, 2010; Afzal 
et al., 2010, 2011; Arias et al., 2012). 

Unpha is so far the largest layered non-magmatic 
hydrothermal Pb-Zn deposit in the Democratic People’s 
Republic of Korea (DPRK) with simple forms of minerals 
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such as galena, sphalerite and pyrite, including calcite and 
dolomite of non-metallic minerals indicated (Choi et al., 
2011). 

The main objective of this study is to evaluate the 
effectiveness of the median + 2MAD and fractal 
modelling in setting thresholds for mapping multivariate 
soil geochemical anomalies associated with buried Pb-Zn 
mineralization, that could be utilized for drilling.  
 
2 Geological Setting  
 
2.1 Stratigraphy and dykes 

The study area is located in the vicinity of the Unpha 
deposit in northern Hwanghae Province, the central region 
of the DPRK, including quasi-knobby and karst fall 
generated from long-term weathering and denudation of 
carbonate rocks, with about 95% of the total area being 
covered by transported and residual soil. 

The ore deposit is tectonically located in the southern 
part of the Sariwon-Sohung Basin in the Haeju subsidence 
zone. The Jikhyon, Sandangu and Mukchon groups are 

distributed throughout the study area with various dykes 
(Fig. 1). The Jikhyon Group unconformably overlies the 
Proterozoic stratum and can be subdivided into four 
members, namely the Jangbong, Obong, Jangsusan and 
Ansimryong formations. The Jangbong Formation (Pt2zn) 
consists of conglomerate, conglomeratic quartzite and 
quartzite, the Obong Formation (Pt2ob) of sericitic 
siliceous schist, sericitic phyllite and marble, the 
Jangsusan Formation (Pt2zg) of calcareous schist, sericitic 
siliceous schist and quartzite, with the Ansimryong 
Formation (Pt2an) consisting of quartzite, siliceous 
phyllite and chlorite schist. The Sandangu Group, which 
unconformably overlies the Jikhyon Group, is subdivided 
into the Unjoksan, Tokjaesan and Chongsokdu formations. 
The Unjoksan Formation (Pt2un) is mainly composed of 
argillaceous limestone, stratiform limestone and dolomitic 
limestone. The Tokjaesan Formation (Pt2dk) is composed 
of dolomite, siliceous dolomite and dolomitic limestone, 
while the Chongsokdu Formation (Pt2cn) consists of 
limestone and dolomitic limestone. The Mukchon Group 
is subdivided into the Solhuasan, Okhyon and Rinsan 

 

Fig. 1. Geological map of the Unpha exploration area.  
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formations. The Solhuasan Formation (Pt3sl) consists of 
schist, quartzite, shale and limestone, while the Okhyon 
Formation (Pt3ok) is limestone and the Rinsan Formation 
(Pt3rn) consists of quartzite and phyllite. 

There are no big intrusive rocks in the vicinity of the 
study area, however rocks such as gabbro-dolerite and 
lamprophyre dykes are widely distributed. These dykes 
seem most likely related to the formation of the ore-
bearing structure that is the Pb-Zn ore body. NE-trending 
long gabbro-dolerite dykes, formed of sheeted veins and 
nervation veins, appear in the carbonate rocks, the gabbro-
dolerite dykes being chloritized and carbonated around the 
ore body. 

 
2.2 Orebodies and metallogenesis  

The Unjoksan Formation is the primary ore-bearing 
horizon in the ore deposit region. There are many 
orebodies present, such as Saete, Namsa, Wondong, 
Bengae, Sokam, Unjom, Amjong, Otan, Sangnae, 
Unjoksan, Changdae, Sahyang, Hakmun, Balun, 
Songtong, Gukhua, Ryongsok, Kwuakgol, Watong, 
Woltang etc. Some of them, such as Saete, Namsa and 
Bengae, constitute the major orebodies. Saete orebodies 
are distributed in the dolomitic limestone stratum and 
consist of galena, sphalerite and pyrite, the zinc content 
being higher than the lead. Namsa orebodies are located in 
the graphite-fill fracture zone associated with the 
dolomitic limestone stratum and also consist of galena, 
sphalerite and pyrite. Bengae orebodies are similarly 
situated in the dolomitic limestone stratum. 

Many researchers’ opinions on the genesis of the Unpha 
deposit have been summarised elsewhere (Choi et al., 
2011). Firstly, a high content of sulphides such as galena, 
sphalerite etc. were observed in the country rock, with 
most orebodies having consistency with a definite horizon 
or fracture zone. Secondly, specific features of 
sedimentary deposition, such as a typically impregnated 
structure, colloidal structure etc. were observed. Thirdly, 
the orebody is not related to an intrusion, but is linked 
with a certain stratum (Unjoksan Formation) and the 
contour of the orebody is vague. Lastly, the isotopic 
composition of the sulphur and carbon present in the 
sulfide and carbonate minerals have been determined, 
along with the physicochemical parameters (T 
(temperature), fo2 (fugacity of oxygen), pH etc.). As a 
result, it can be demonstrated that the lead and zinc in the 
ore deposit were primarily deposited in the stage when the 
Sadangu Group was deposited, when the Mesozoic era 

Hyesan magmatic complex was active, due to the 
recycling of the hydrothermal solution that occurred due to 
the thermal effects of the hidden intrusive, pre-
depositional lead and zinc being hydrothermally realigned 
in a state of relatively high fo2 with (150 ± 20)°C 
temperature, pH 6−8, and log fo2 > −49. Therefore, the 
work of many researchers has clarified that the Unpha 
deposit is a stratiformic non-magmatogenic hydrothermal 
Pb-Zn deposit. 
 
3 Characteristics of the Geochemical Dataset 
 
3.1 Sampling 

A total of 15679 soil samples were collected in a regular 
grid of 100 m × 20 m in an area of 120 km2. 

Soil samples were dried at 60°C and finely ground 
using an agate swing mill. The chemical analyses were 
carried out by an X-ray fluorescence (XRF) and atomic 
absorption (AAS) technique for 35 elements in a 
geological analytical laboratory. The chemical elements of 
the study area were as follows: Sr, Co, Zn, Y, Yb, Ag, Cu, 
Cd, Ce, La, Li, Sn, Mo, Sc, Be, Bi, V, Ba, Ni, Cr, Ga, Mn, 
Ge, Ti, Pb, Nb, Zr, In, W, Sb, B, P, Tl, Hf and As. Twenty 
two elements unrelated to Pb-Zn mineralization or 
showing discontinuous content data were removed from 
interpretation, therefore, thirteen elements, namely Co, Zn, 
Cu, V, Mo, Ni, Cr, Mn, Pb, Ba, Sr, Zr and Ti, were used to 
validate the soil geochemical anomalies.  

 
3.2 Statistical characteristics of the geochemical 
dataset 

The basic statistical parameters and correlation 
coefficients of the concentrations of the thirteen elements 
in the soil samples are listed in Table 1 and Table 2. 

 
3.3 Hurst exponent 

The Hurst exponent is directly related to the fractal 
dimension of a process, which gives a measure of the 
irregular process (Hurst et al., 1965). The Hurst exponent 
expressing a self-similarity measures the long-range 
dependence in a time series, which provides a measure of 
long-term nonlinearity. The expected values of the Hurst 
exponent, H, vary from 0 to 1. For H = 0.5, the cumulative 
behavior is a random process. H < 0.5 expresses anti-
persistent behavior and H > 0.5 represents fractional 
Brownian motion with increasing persistence intensity as 
H approaches 1. 

The rescaled range statistic (R/S) analysis can be used 

Table 1 Basic statistical parameters of thirteen elements (based on 15,679 samples)  

Element Mean (ppm) Median (ppm) Minimum (ppm) Maximum (ppm) Variance Std. Dev. Skewness Kurtosis 

Co 11.67 6 1 532 227 15.07 10.15 248.63 

Zn 85.77 52 1 10367 148832 385.79 20.98 493.72 

Cu 15.27 6 1 6120 3568 59.73 57.34 4923.61 

V 25.02 6 0.3 1213 1320 36.33 4.17 59.77 

Mo 2.93 3 0.2 108 7 2.61 15.63 435.48 

Ni 19.12 4 1 526 716 26.77 3.07 29.73 

Cr 30.77 6 1 2128 2681 51.78 12.66 378.45 

Mn 515.17 413 2 11358 128151 357.98 5.92 95.98 

Pb 33.12 15 1 10375 81731 285.89 29.01 921.73 

Ba 254.31 203 10 11216 71392 267.19 17.42 564.69 

Sr 334.48 312 20 6328 97394 312.08 5.21 52.27 

Ti 559.81 152 2 121232 1774027 1331.93 41.92 3509.21 

Zr 123.89 60 2 1173 22717 150.72 1.91 2.57  
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to evaluate the Hurst exponent (Mandelbrot and Wallis, 
1969). The results obtained by Hurst exponents using R/S 
analysis for the thirteen elements are shown in Fig. 3. 
 
4 Factor Analysis 
 

Factor analysis is a technique for describing 
relationships between variables in a low-dimensional 
space. Two main methods, principal factor analysis (PFA) 
and the maximum likelihood method (ML), exist for 
extracting the common factors in factor analysis. PFA 
works with a reduced correlation or covariance matrix, 
whereas ML uses a complicated statistical optimization 
procedure to extract the factors. In common with many 
other statistical methods, factor analysis is very sensitive 
to non-normality of populations. Therefore, it is important 
to test whether or not all variables follow a normal 
distribution prior to factor analysis.  

Geological and mineralization processes generate 
diverse geochemical features that are expressed in more 
than one element in anomalies. Regional geochemical data 
practically never show a normal distribution, often 
showing compositional and multivariate characteristics, 

therefore a data transformation is crucial to reveal their 
interelement relationships hidden in multivariate datasets 
prior to analysis (Aitchison, 1986; Reimann et al., 2002; 
Egozcue et al., 2003; Filzmoser et al., 2009; Carranza, 
2009, 2011; Zuo et al., 2012, 2013a, b; Buccianti and 
Grunsky, 2014; Zuo, 2014). In order that all entered 
variables come as close as possible to a normal 
distribution, the much more widespread log-
transformation, among many different transformations 
(square root, logit, etc.), is used to result in a nearly 
normal distribution. 

The factor loadings are carried out by an orthogonal-
rotation of the coordinate system. There are many different 

Table 2 Correlation coefficients of thirteen elements  

 Co Zn Cu V Mo Ni Cr Mn Pb Ba Sr Zr Ti 

Co 1 −0.34 −0.07 0.11 0.61 −0.33 −0.51 −0.67 −0.12 0.71 −0.41 0.11 −0.22 

Zn  1 0.78 0.86 −0.43 −0.18 0.09 −0.24 −0.43 −0.17 −0.33 0.67 −0.33 

Cu   1 0.77 −0.23 −0.24 0.15 −0.39 −0.05 −0.45 −0.34 0.86 −0.52 

V    1 −0.38 −0.36 0.04 −0.23 −0.48 0.02 −0.53 0.67 −0.19 

Mo     1 −0.18 −0.29 −0.52 −0.38 0.21 0.12 0.05 −0.14 

Ni      1 0.58 −0.07 0.09 −0.18 0.16 −0.17 −0.28 

Cr       1 0.21 0.17 −0.39 0.12 0.16 −0.09 

Mn        1 −0.31 −0.11 0.32 −0.51 0.73 

Pb         1 −0.38 −0.27 0.04 −0.27 

Ba          1 −0.27 −0.32 0.28 

Sr           1 −0.24 0.26 

Zr            1 −0.52 

Ti             1  

 

Fig. 2. Soil geochemical sampling map at the Unpha deposit.  

 

Fig. 3. Hurst exponent curve line of element distribution.  
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methods for factor rotation such as Varimax, Promax, 
Oblimin or Quartimin. Varimax and Promax are orthogonal 
rotations, but Oblimin and Quartimin are oblique rotation 
methods. The rotated factors are not correlated in the former 
case and the rotated factors can be correlated in the latter 
case. The results of the Varimax orthogonal rotation are more 
stable than the others (Reimann et al., 2002). The factor 
analysis achieved by using the PFA method and Varimax 
rotation are given in Table 3.  

Six factor loadings, representing various element 
associations and mineralization processes, were extracted. 
The total explained variance is 87.5% from six factors. In 
summary, we interpret factor F1 to be a Co-Mo factor, 
factor F2 as a V-Ni-Cr-Mn-Ba-Zr-Ti factor, factor F3 as a 
Sr factor, factor F4 as a Zn factor, factor F5 as a Cu factor 
and factor F6 as a Pb factor. The Mahalanobis distance, a 
measure of distance between two points in space defined 
by correlated variables such as Zn, Cu and Pb from factor 
analysis, was used to interpret the soil geochemical 
anomalies at the Unpha exploration area. 
 
5 Concentration-area (C-A) Fractal Modeling 
 

Concentration-area (C-A) fractal modeling proposed by 
Cheng et al. (1994), could be used to separate the 
geochemical anomalies from the background noise. The 
general form of the C-A model is as follow: 

A(ρ≤v)∞ρ–d 
where A(ρ) represents the area with concentration values 
greater than the contour value ρ; v indicates the threshold; 
and d is the characteristic exponent or fractal dimension. A
(ρ) with element concentrations greater than the value ρ 
usually forms a power-law relation. The breaks between 
straight-line segments on this plot and the corresponding 
values of ρ have been used as cut-offs to separate 
geochemical values into different causal factors, such as 
geological differences and geochemical processes (Cheng 
et al., 1994; Carranza, 2009; e.g. Afzal et al., 2010; Arias 
et al., 2012;  Zuo et al., 2012, 2013a, b). 

The C-A fractal model was applied to the Mahalanobis 
distances from the soil geochemical data and two line 
segments, fitted to the C-A log-log plot, were generated 
(Figs. 4a, b). The break between the straight-line segments 
and the corresponding values of the Mahalanobis distances 

have been used as threshold values to delineate the 
geochemical anomaly map. The threshold on this anomaly 
map is indicative of two populations, which is interpreted as 
the geochemical background and anomalies of lead and zinc, 
or associated mineralization elements.  
 
6 Exploratory Data Analysis (EDA) 
 

The boxplot and median + 2MAD techniques of the 

Table 3 Varimax rotated factor loadings applied to 13 variables 

Element Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 

Co 0.884241 0.366785 −0.058389 0.062708 0.076848 0.14508 

Zn 0.056642 0.10646 0.018536 0.980818 0.025501 0.074278 

Cu 0.119772 0.236421 −0.009941 0.025624 0.91853 0.093387 

V 0.46402 0.690806 −0.180194 0.136302 0.264334 0.175197 

Mo 0.958068 0.02109 0.00968 0.012163 0.056049 0.118218 

Ni 0.575682 0.705899 −0.142112 0.112829 0.213511 0.160051 

Cr 0.450625 0.794326 −0.111517 0.078508 0.152637 0.100715 

Mn −0.199951 0.599969 0.251045 −0.111335 −0.261817 0.330429 

Pb 0.255951 0.11614 0.068332 0.096658 0.102004 0.91387 

Ba 0.039987 0.715884 0.539522 0.076814 −0.079647 0.090564 

Sr −0.063155 −0.181036 0.926654 0.010088 −0.003184 0.057656 

Zr 0.116604 0.840479 −0.023268 0.021614 0.144958 0.004732 

Ti 0.119456 0.845755 −0.238104 0.127419 0.236978 0.045813 

Eigenvalue 5.786593 1.744157 1.373938 0.970478 0.814676 0.686043 

Total (%) 44.51225 13.41659 10.56875 7.46521 6.26674 5.27725 

Cumulative 44.51225 57.92884 68.4976 75.96281 82.22954 87.5068 

The values in bold show the important elements in the factor loadings. 

 

 

Fig. 4. C-A log-log plot of the MD1 (a) and MD2 (b), show-

ing the thresholds with red lines.  
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EDA approach have been widely applied to delineate 
geochemical anomalies (Zhang and Selinus, 1998; 
Reimann et al., 2002; Carranza, 2009; Chiprés et al., 
2009). A boxplot is built around the median (Tukey, 1977; 
Carranza, 2009) and the MAD is estimated as follows 
(Tukey, 1977). 

MAD = median[|Xi – median (Xi)|] 
where the |Xi – median (Xi)| are absolute differences 

between Xi and median of these values. 
Since the threshold defined by the median + 2MAD 

method is lower than that defined by the boxplot method 
(Reimann and Garrett, 2005), the median + 2MAD 
method was applied to the Unpha soil geochemical data to 
define the thresholds between the multi-element anomalies 
and the background noise (Table 4). 

In comparison with the C-A fractal method (Fig 4), the 
threshold by median + 2MAD method is lower (Table 4). 
 
7 Discussion  

 
Fig. 3 shows the Hurst exponents of various elements 

with high fit quality at the study area. The values of the 
Hurst exponents of Zn, Y and Ag range from 0.62 to 0.93, 
all greater than 0.5, indicating both persistent phenomena 
and better continuity of mineralization. In contrast, the 
Hurst exponents of other elements such as Sr, Co, Li, Mo, 
Be, V, Ba, Ni, Ga and Zr, range from 0.22 to 0.38, all less 
than 0.5, indicating the presence of anti-persistent 
phenomena. The Hurst exponents of Cu, Mn, Pb, Cr, Ti, 
La and Sn are mostly around 0.5, indicating random 
distribution. Zinc and lead are the main elements related to 
mineralization at the study area. Comparing the Hurst 
exponents of zinc and lead with each other, the Hurst 
exponent of zinc is 0.93, further beyond 0.5, representing 
both a persistent distribution and good continuous 
mineralization, but lead is 0.56, which is close to 0.5, 
indicating a mostly random distribution. The Hurst 
exponents of zinc and lead show that zinc has a most 
homogeneous distribution and lead distribution has the 
greatest randomness in the soil dispersion field in the 
study region, which is in accordance with the geochemical 
characteristics of zinc and lead. 

Essentially, sulfide oxidation is an electrochemical 
process. For example, electrochemical reactions generated 
from galena and sphalerite are as follows; 

ZnS + 4H2O→ZnSO4 + 8H
＋

+ 8e 
PbS + 4H2O→PbSO4 + 8H

＋
+ 8e 

where the solubilities of ZnSO4 and PbSO4 are 35.0 and 
0.0042 at 20°C, respectively (David, 2003). Because of 
the greater solubility of ZnSO4 relative to PbSO4, most 

zinc ions are beyond the oxidation zone. Moreover, the 
electrode potential of galena is 0.30 ± 0.10 V, and that of 
sphalerite is –0.05 ±0.01 V, that is, the former is greater 
than the latter, sphalerite therefore oxidizing earlier than 
galena under the association of these two sulfides (Ryss, 
1983). Zinc having the large-scale homogeneous 
anomalous field and lead having the small scale non-
homogeneous anomalous field, this geochemical process 
explains why the Hurst exponent of zinc is greater than 
lead.  

The second factor (Table 2), with 13.4% of the total 
data variance, indicated that elements such as V, Ni, Cr, 
Mn, Ba, Zr and Ti, did not reflect the Pb-Zn 
mineralization. The elements indicated by the second 
factor are components of gabbro-dolerite, which is in 
accordance with the Pb-Zn ore body distribution spatially, 
and we therefore interpreted the second factor as gabbro-
dolerite.  

The first factor, with 44.5% of the total data variance, 
indicated Co and Mo, then the third factor with 10.6% of 
the total data variance indicated Sr. We found that Co, Mo 
and Sr are negatively correlated with the main elements 
such as Pb and Zn from Table 2. Therefore, the first and 
third factor implies the elements that are negatively related 
to the main elements. 

Two classes―MD1 and MD2―of multivariate soil 
geochemical anomalies were mapped by the median + 
2MAD and C-A fractal method at the Unpha exploration 
area. There is a similarity between the multivariate 
anomalies of MD1 and MD2 mapped by the median + 
2MAD method (Figs. 5, 6), however, there were 
differences between the soil anomalies of MD1 and MD2 
mapped by the C-A fractal method (Figs. 7, 8). Due to the 
lower threshold values determined by the median + 
2MAD method (Table 3), the area of the mapped soil 
anomalies is larger than the anomalies mapped by the C-A 
fractal method.  

The four multivariate anomaly maps (Figs. 5–8) 
revealed almost uniformly NE–SW trending multivariate 
soil geochemical anomalies at the study area. Unlike the C
-A fractal method, the median + 2MAD method shows not 
only the strong multivariate anomalies, but also delineated 
relatively smaller anomalies in soil geochemical 
dispersion of the study area (Figs. 5, 6). The strong 
multivariate anomalies are mainly associated with 
outcropping Pb-Zn mineralized zones, whereas the 
moderate multivariate anomalies could be related to the 
buried Pb-Zn mineralization. The overlapped results 
between the soil anomalies and the economic Pb-Zn ore 
bodies are given in Table 5. 

The results showed that there is 78.9% overlap between 
the soil anomalies by the median + 2MAD method on the 
Mahalanobis distances defined by thirteen elements and 
the economic Pb-Zn ore bodies, the soil anomalies by the 
median + 2MAD method on the Mahalanobis distances 
defined by three elements showed 84.2% overlap with the 
economic Pb-Zn ore bodies (Table 5), the latter being 
better than the former. Additionally, there is a 68.4% 
overlap between the soil anomalies shown by the C-A 
fractal method on the Mahalanobis distances defined by 
thirteen elements and the economic Pb-Zn ore bodies, the 

 

Table 4 The thresholds to separate anomalies from 

background in soil samples 

Method 
MD1 MD2 

Background Anomalies Background Anomalies 

C-A fractal 1.51–56.1 56.1–168.4 0.03–187962.0 
187962–62368

0.3 

Median  

+ 2MAD 
1.51–10.4 10.4–168.4 0.03–29.4 

29.4– 

623680.3 

MD1: Mahalanobis distance in the space defined by thirteen variables (Co, 

Zn, Cu, V, Mo, Ni, Cr, Mn, Pb, Ba, Sr, Zr and Ti); MD2: Mahalanobis 

distance in the space defined by three variables (Zn, Cu and Pb). 
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soil anomalies by the C-A fractal method on the 
Mahalanobis distances defined by three elements showing 
a 52.6% overlap with the economic Pb-Zn ore bodies, the 

former being better than the latter.  
These imply that the multi-element soil anomaly shown 

by the median + 2MAD method is better than the C-A 

 

Fig. 5. Multi-element soil geochemical anomaly map of MD1, based on the median + 2MAD method.  

Fig. 6. Multi-element soil geochemical anomaly map of MD2, based on the median + 2MAD method.  

Fig. 7. Multi-element soil geochemical anomaly map of MD1, based on the C-A fractal method.  
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fractal method as a favorable reflection of ore body at the 
study area. The explanation for this is due to the low 
threshold values defined by the median + 2MAD method 
compared to the C-A fractal method (Table 4). Therefore, 
the weak anomalies related to ore bodies may not be 
detected by the C-A fractal method. 

The higher overlap between the soil anomalies shown 
by the median + 2MAD method on the Mahalanobis 
distances defined by three elements rather than thirteen 
elements and the economic ore bodies is due to the three 
indicator elements (Zn, Cu and Pb) related to the ore body 
being selected from robust factor analysis (Table 3). 
Therefore, classifying the elements by a proper statistical 
method in consideration of geological features is 
important to detect an anomaly related to an ore body. 

 
8 Conclusions 
 

(1) A robust factor analysis, applied to the soil 
geochemical data of the Unpha Pb-Zn deposit, showed 
that the 4th, 5th and 6th factors indicated Zn, Cu and Pb 
respectively, the main elements related to mineralization, 
and a second factor is associated with gabbro-dolerite. 

(2) By comparing the identified multivariate soil 
geochemical anomalies, it was concluded that the median 
+ 2MAD, rather than the C-A fractal method, is the 
effective method in distinguishing the soil geochemical 
anomalies from the background. Anomalies indicated by 
both methods, median + 2MAD and C-A fractal, 
delineated a coherent NE–SW trending multivariate soil 
geochemical anomaly at the study area. 

(3) The soil anomaly shown by the median + 2MAD 
method on the Mahalanobis distance defined by three 
principal elements rather than thirteen elements is the most 
accurate reflection of the ore body. Therefore, this method 
is useful for reconnaissance drilling or a semi-detailed 
drilling survey. 

(4) It is important to classify the elements appropriately 
to delineate a multivariate soil geochemical anomaly. 
Except for the factor analysis suggested in this paper, there 
are other robust statistical methods that could be used for 

classifying the elements. This method is useful for the soil 
geochemical dispersion field and possibly warrants further 
research in the lithological dispersion field. 
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