
1 Introduction 
 
Vegetation indices (VIs) derived from satellite observations 

are an essential source of information for operational monitoring 
of the Earth’s vegetation (Qu et al., 2018; Yan et al., 2008). 
However, soil background dramatically affects the performances 
of VIs (Baret and Guyot, 1991; Gilabert et al., 2002; Huete, 
1988; Qi et al., 1994). So soil-adjusted VIs (Baret and Guyot, 
1991; Gilabert et al., 2002; Huete, 1988; Qi et al., 1994) are 
designed in order to minimize the soil noise. However, these 
commonly used vegetation indices requires prior knowledge: the 
so-called soil-adjustment factor. 

Soil-adjustment  factor  is  related  to  canopy  structure 
parameters and the choice of the value of soil-adjustment factor 
appears to be quite critical in minimizing soil background noise 
(Huete, 1988; Qi et al., 1994). In order to replace the constant 
soil adjustment factor that require prior knowledge, MSAVI is 
proposed by developing an iterative function of soil adjustment 
factor (Qi et al., 1994). However, the inductive function is only 
based on one the assumption that soil adjustment factor can only 
vary between 0 and 1. Recently studies have shown that negative 
soil adjustment factor performs better in arid grasslands areas 
(Ren et al., 2018). Thus, it is important to build an appropriate 
iterative function.  

Iterative function describes the relationship between the value 
of VIs and soil adjustment factor. Therefore, the key to establish 
the iterative function is to estimate the optimal soil adjustment 
factor under different vegetation conditions. SAVI-family VIs 
assume that all the vegetation isolines converge to one common 
point, and the location of that point is soil adjustment factor 
(Baret and Guyot, 1991; Gilabert et al., 2002; Huete, 1988; Qi et 
al., 1994). However, in real vegetation isolines do not coverage 
to one point, they all intersected with soil line at different points 
(Ren et al., 2018). Among all the SAVI-family VIs, only TSAVI 
take into consideration of soil line. By investigating the cross 
point between vegetation isolines and soil line, it is capable to 
find the optimal soil adjustment factor. Thus it is feasible to 
estimate the optimal soil adjustment factor of TSAVI. However, 
little  attention has  been payed to  build  a  self-adjustable  X 
function for TSAVI. 

In this study, a self-adjusted function of soil adjusted factor is 
designed to replace the constant soil adjusted factor (X = 0.08) in 
TSAVI by using mathematic induction method. It will improve 
the TSAVI vegetation sensitivity by increasing the dynamic 
range and further reducing the soil background influence. The 

result would be an improved, Modified TSAVI (MTSAVI) with 
better performance in agricultural crops or homogeneous plant 
canopies with high vegetation cover. 

 
2 Materials and methods 
 
2.1 An inductive X function 

Most VIs relies on a major simplifying hypothesis on the 
vegetation islolines: these lines are parallel or convergent at one 
common point (Baret et al., 1989; Huete, 1988; Qi et al., 1994). 
However, in real they intersected with soil line at different 
locations (Ren et al., 2018). By assigning negative abscissa of 
interested  point  to  corresponding  X of  TSAVI,  the  TSAVI 
isolines  are  almost  the  same  as  true  vegetation  isolines. 
However, it is extremely difficult to find every crossing point 
between each isolines and soil line without prior knowledge.  

One potential solution to this problem is to use inductive 
method to build a self-adjusted X (Qi et al., 1994). To distinguish 
this new vegetation index from TSAVI (X=0.08), we call this 
new  index  Modified  TSAVI  (MTSAVI).  By  defining  an 

inductive X function as 
where c and d are parameters of inductive X function. Then 

the MTSAVI based on TSAVI can be written as: 
where red and nir are the reflectance in the red and near-

infrared band, a and b are the parameters of the soil line. Thus it 
is crucial to find the parameters c and d in the relationship 
between X and MTSAVI. 

 
2.2 Data 

Simulated  data  is  used  to  fit  the  inductive  X  function. 
Simulation modelling of canopy bidirectional reflectances factor 
is  applied  to  obtain  different  scenes  with  varying  canopy 
structure factors Leaf Area Index (LAI) and Average leaf angle 
(ALA) as well as soil optical property (Baret and Guyot, 1991) 
by using Discrete Anisotropic Radiative Transfer (DART) model 
(Gastellu-Etchegorry  and  Bruniquel-Pinel,  2001;  Gastellu-
Etchegorry et al., 2017; Gastelluetchegorry et al., 1996; Yin et 
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al., 2017; Yin et al., 2016) (http://www.cesbio.ups-tlse.fr/dart).  
To  verify  the  robustness  of  MTSAVI,  high-resolution 

reflectance data sets from one laboratory experiments is used 
(Garcã. A-Haro et al., 1996). A set of 21 plots was designed, 
consisting of seven varying amounts of vegetation (Quercus ilex 
rotundifolia) over three different soil backgrounds. LAI was 
measured  using  a  LICOR-2000  LAI  canopy  analyzer,  and 
reflectance data were obtained for each plot using a GER SIRIS 
spectroradiometer.  

 
3 Results and discussions 
 
3.1 Relationship between foliage cover and soil adjustment 
factor 

The  foliage  cover  is  calculated  using  LAI  and  ALA 
(Campbell,  1986; Rondeaux et al.,  1996). The scatter graph 
between foliage coverage and optimal X was plotted (Fig. 1). 
Vegetation isolines tend to be parallel to each other and the 
abscissa of the intersection point with soil line is low (the 
optimum value of X is high) when the foliage coverage is low. 
However, when the foliage coverage is high, the vegetation 
contour tends to intersect at one point on the soil line, and the 
abscissa of the intersecting point is high (the optimum value of X 
is low) (Fig. 1). This is ignored by previous researchers and may 
explain why PVI which assuming that vegetation isolines are 
parallel  to each other performs better in low coverage area 
whereas SAVI which assuming that vegetation isolines converge 
to one common point performs better in high coverage area.  

Our result agrees on the conclusion that the soil-adjustment 
factor  became lower  in  value  as  vegetation  became denser 
(Gilabert et al., 2002; Huete, 1988; Qi et al., 1994). Besides, the 
value of soil-adjustment factor is the negative value of abscissa 
crossing point, so our result also conforms with the conclusion 
that high vegetation isolines tended to intersect with soil line 
further away from the origin,  while  low vegetation isolines 
tended to converge close to the origin (Ren et al., 2018), even 
though Ren et al. (2018) claim that his conclusion counter to 
Gilabert et al. (2002), Huete (1988) and Qi et al. (1994). The 
reason why Ren et al. (2018)’ s conclusion is contrary is that he 
uses the absolute distance from origin to the cross-point to 

describe  the  optimal  soil-adjustment  factor  rather  than 
coordinates. So when the value of optimal soil-adjustment factor 
changes from positive to negative, absolute distance of cross-
point from origin is increasing, but the abscissa value of crossing 
point is still decreasing. 

 
3.2 Relationship between optimal X, LAI and ALA 

To evaluate the influence of LAI and ALA on optimal X, the 
scatter graph between optimal X and TSAVI calculated using the 
optimal X values was plotted (Fig. 2). Scatter distribution is 
almost the same as foliage coverage. LAI always influence the 
optimal X dramatically, while ALA only dramatically influence 
X when LAI is low. Besides, when LAI is less than 1, optimal X 
is negatively correlated with ALA. However, when LAI is over 
1, X value is positively correlated with ALA. Besides, the value 
of soil adjusted factor decrease and converge to one point as 
TSAVI rise. All these are ignored by previous researchers. 

 
3.3 Discussion 

Considering foliage coverage is less than 0.5 or LAI is less 
than 1.6, vegetation contour lines are approximately parallel to 
each other and intersect with soil  contour lines at different 
points, which is more consistent with the assumption of PVI, and 
it  is  difficult  to  determine  the  value  of  the  optimal  soil-
adjustment factor. Thus MTSAVI may not be a good choice in 
sparsely vegetated area.  However,  when foliage coverage is 
greater than 0.5 or LAI is greater than 1.6, vegetation isolines 
tend to intersect with soil lines at one common point on the soil 
line,  which  is  more  consistent  with  the  assumption of  soil 
regulated vegetation index and easier to determine the value of 
the optimal soil-adjustment factor. 

In this paper, simulated data with foliage coverage greater 
than 0.5 is used to fit the two coefficients c and d in the equation 
(1) as 0.2 and 0.1 respectively, and the laboratory data is used for 
verification. Considering SAVI family VIs may not be a good 
choice in sparsely vegetated area, MTSAVI is designed only for 
agricultural crops or homogeneous plant canopies with high 
vegetation cover. Thus only LAI being over 1.3 in laboratory 

 

Fig. 1. The relationship between optimal X and foliage 
coverage using simulated data.  

 

Fig. 2. The relationship between soil-adjustment factor 
X, LAI and ALA.  
Different color represents different LAI while different symbols 
represents different ALA. TSAVI is calculated using the optimal 
soil adjusted factor X rather than constant X=0.08.  
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data are used in this study to verify the performance of MTSAVI. 
Two evaluation criterion are used including signal-to-noise ratio 
(S/N) (Leroy and Roujean, 1994) and LAI dependent parameter 
(T) (Gilabert et al., 1998). 

Signal-to-noise ratio (S/N) is defined as:   

LAI dependent parameter (T) is defined as: 
where σLAI is the standard deviation of the VI value according 

to the value of LAI assigned, σ
_

 is the standard deviation of the 
entire VI value considering the range of LAI variation. MTSAVI 
yield better performance both for S/N and T (Fig. 3). MTSAVI is 
used  to  monitoring  Cropland  in  Jiutai  and  Dehui  City, 
Changchun province, China (Fig. 4). 

 
4 Conclusion 
 

The purpose of this paper is to developed a self-adjustable X 
that do not require prior knowledge to replace the constant X = 
0.08 in the TSAVI equation. It  can further reduce the soil 
background effect by increasing the dynamic range, so as to 
improve the sensitivity of TSAVI to vegetation. Two data sets 
including simulated and laboratory data are used in this study. 
Simulated data show that vegetation isolines tend to be parallel 
to each other and the abscissa of the intersection point with soil 
line is low when the foliage coverage is low. However, when the 
foliage coverage is high, the vegetation contour tends to intersect 
at one point on the soil line, and the abscissa of the intersecting 
point is high. Besides, LAI always influence the optimal X 
dramatically, while ALA only dramatically influence X when 
LAI is low. When LAI is less than 1, optimal X is negatively 
correlated with ALA. However, when LAI is over 1, X value is 
positively correlated with ALA. Laboratory data are used to 

validly the robustness of MTSAVI in high foliage coverage area. 
Current research has shown this potential, but more thorough 
verifications  are  also  needed.  A  further  study  concerning 
investigation  on  temporal  dynamic  response  to  cropland  in 
Changchun, China. 
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Fig. 3. Performances of vegetation for (a) Signal-to-noise ratio (SN) and (b) LAI dependent parameter (T).  
The higher SN and the lower T means the better performance of VIs.  

 

Fig. 4. Cropland monitoring based on MTSAVI in Jiutai 
and Dehui City, Changchun Province, China.  
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