
The adjoint method is a powerful tool to 
obtain  gradient  information  in  a 
computational model relative to unknown 
model parameters, allowing one to solve 
inverse  problems  where  analytical 
solutions are not available or the cost to 
determine prohibitive. In geodynamics its 
most prominent application relates to the 
restoration problem of mantle convection 
(i.e., to reconstruct past mantle flow states 
with dynamic earth models back in time by 
finding optimal flow histories relative to 
the current model state, see Fig. 1), so that 
poorly known mantle flow parameters can 
be  tested explicitly  against  observations 
gleaned  from  the  geologic  record.  By 
enabling construction of time-dependent, 
internal  Earth  structure  models,  this 
method has the potential to link present-
day  and  deep-time  observations  from 
seismology, mineral physics, geology, and 
palaeomagnetism  simultaneously  in  a 
dynamically  consistent  way,  greatly 
enhancing our understanding of the solid 
Earth system and its linkage to surface 
processes as mapped by geologists.  

The  formal  inverse  problem  of  the 
adjoint  approach  employs  so-called 
“adjoint  equations”.  These  provide 
sensitivity information relative to earlier 
system states. Adjoint equations have been 
derived for incompressible (Bunge et al., 
2003; Ismail-Zadeh et al., 2004; Horbach 
et al., 2014), compressible (Ghelichkhan 
and Bunge,  2016)  and thermo-chemical 
mantle  flow  (Ghelichkhan  and  Bunge, 
2018).  Moreover,  geodynamicists  have 
related the uniqueness properties of the 
inverse problem explicitly to the tangential 
component of a mantle convection model’s 
surface velocity field (Colli et al., 2015). 
Knowledge  of  the  latter  is  essential  to 
assure  convergence  (Vynnytska  and 
Bunge, 2014) and to obtain a small null 
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Fig. 1. Simple example calculation for an iterative mantle flow restoration (from 
Ghelichkhan and Bunge, 2016). 
(a) Initial (left) and final (right) state of incompressible reference mantle convection model, with colors 
(blue cold, red hot) showing temperature. Blue and orange iso-surfaces represent -250 and 250 K, respec-
tively. Two thermal anomalies with excess temperature of 500 K traverse the mantle depth after a transit 
time. (b) Same as (a) but for restored initial and final state at adjoint iteration zero, two and six, where the 
final state of the reference convection model serves as first-guess initial condition (top left). Reference 
model and restored model are visually identical after six adjoint iterations. (c) L 2 norm of misfit function 
(blue, final state error), and initial state error (red) as function of adjoint iteration. A majority of initial 
and final state error is reduced in the first two adjoint iterations. (d) Spatial distribution of absolute value 
of the final state error at adjoint iteration zero (top), two (middle) and six. Error is largest in regions of 
upwelling plumes. A significant error reduction is achieved after 6 adjoint iterations. 
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space for the restored flow evolution. This makes past plate 
motions  the  input  of  retrodictions  rather  than  their  output, 
potentially  implying that  it  is  not  viable  to  construct  self-
consistent models of plate tectonics that are testable against the 
geologic record.  

While  horizontal  motion  of  the  lithosphere  cannot  be 
predicted from mantle flow restoration, it is well known that 
mantle convection also induces vertical deflections of the Earth's 
surface (see Braun, 2010; Colli et al., 2016 for recent reviews). 
This convectively maintained topography was referred early on 
as “Dynamic Topography” by Hager et al. (1985). Recently, 
there has been much effort to quantify dynamic topography and 
its temporal evolution as a link to mantle flow processes (Bunge 
and Glasmacher, 2018), both in continental regions (e.g., from 
studies  of  continental  scale  stratigraphy,  planation  surfaces, 
elevated passive margins, thermochronology), as well as in the 
oceanic realm where our understanding of plate subsidence as a 
function of age permits residual depth anomalies to be identified 
and mapped (Hoggard et al., 2017). In this presentation we 
review current state-of-the-art of mantle flow retrodictions (Colli 
et al., 2018), and their link to vertical lithosphere motions. We 
present  the  first  global  mantle  flow  retrodictions  for 
geodynamically  plausible,  compressible,  extremely  high-
resolution  Earth  models  with  more  than  670  million  finite 
elements,  going back in  time to  the  Mid-Paleogene.  These 
models  are  computationally  intensive,  and  need  weeks  of 
integration  time on thousands of  processors  resident  in  the 
German High Performance Computing Center (LRZ) in Munich. 
Our mantle flow retrodictions involve the dynamic effects from a 
low viscosity zone (LVZ) in the upper mantle, assimilate a past 
plate motion model for the tangential surface velocity field, and 
probe  the  influence  from  uncertain  geodynamic  modeling 
parameters using two different state estimates for the present-day 
mantle heterogeneity structure as imaged by two recent global 
seismic tomographic studies, and two different values for deep-
mantle viscosity. Focusing on the African hemisphere, we found 
that our retrodictions produced a spatially and temporally highly 
variable asthenosphere flow with faster-than-plate velocities, and 
a history of dynamic topography variations characterized by 
local  doming  events.  These  results  agree  with  published 
considerations of plate driving forces, and regional scale uplifts. 
Our results suggest that improved constraints on non-isostatic 
vertical motion of Earth’s surface—provided, for instance, by 
basin analysis, seismic stratigraphy, landform studies, or the 
sedimentation  record—will  play  a  key  role  in  improving 
understanding of Recent mantle flow history and its link to 
geological surface processes. 
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