
1 Introduction 
 
The  micro-flows  with  large  Knudsen-numbers  are 

frequently encountered in emerging high-tech industries, 
environments, and traditional energy fields, e.g., micro-
electromechanical  systems  (MEMS),  nano-
electromechanical  systems  (NEMS),  microfluidic 
technology and microfluidic devices (Chen and Hu, 2015), 
and environments and the exploitation of unconventional 
reservoirs (Wang and Sheng, 2017; Liu, Huihai et al., 
2018). The Knudsen number Kn is defined as the ratio of 
the mean free path of gas molecule γ to the pores size D or 
local characteristic le1ngth H, namely, Kn=γ/H. For gas 
flows in irregular pores/channels, the Knudsen number is a 
local geometry-dependent parameter influenced by various 
factors,  such  as  temperature,  gas  pressure,  local 
characteristic length of pores/channels, etc. In the case 
when the pore sizes are of the same magnitude as the 
mean free path of gas molecules, a variety of abnormal 
phenomena  occur  as  fluid  flows  into  these  micro/
nanoscale pores. These phenomena include the velocity 
slip  at  walls,  temperature  jump  near  the  walls,  the 
Knudsen paradox, thermal transpiration, velocity inversion 
in micro cylindrical Couette flow, etc. (Su et al., 2017; Liu 

et al., 2018). Additionally, a recent study (Wang et al., 
2016) showed that micro-flows in micro/nano-pores are 
likewise influenced by fluid properties and solid surface. 
The authors’ comparative studies (Wang et al., 2016) on 
the methane transport in graphene, quartz, and calcite 
nanopores indicate that the flow behavior of methane is 
affected  by  the  strong  attractive  potential  due  to  the 
presence  of  solid  materials,  thereby  resulting  in  the 
attachment of methane gas to the solid surface and the 
formation of adsorbed layers. In this case, the methane 
flow  into  the  nano/micro-pores  is  controlled  by  the 
coupling of micro-flows and adsorption/desorption effects 
(Zuo  et  al.,  2019).  Thus,  accurate  understanding  and 
capturing of these phenomena induced by the microscale 
flow and the rarefaction effect are essential to guide the 
practice and operation of high-technology, as well as the 
productivity prediction of unconventional reservoirs. As 
the  local  characteristic  length  of  pores  decreases,  the 
Knudsen number might increase to reach a critical value 
where  the  continuum-based  models  break  down,  e.g. 
Kn=0.1. In this case, the continuum-based Navier-Stokes 
equations are not valid, and the micro-gaseous flow can be 
described by the Boltzmann equation (BE) (Chapman and 
Cowling, 1953), which can cover all flow regimes ranging 
from the continuum flow regime to the free molecule flow 
regime (Verhaeghe et al., 2009). The Boltzmann equation 
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is extremely complicated, and it was simplified to the well
-known  Bhatnagar-Gross-Krook  (BGK)  model  by 
introducing  a  simple  collision  model  with  a  single 
relaxation time.  

Extensive studies and numerical algorithms have been 
conducted  to  solve  gas  flow,  including  molecular 
dynamics simulations (MD) (Xue et al., 2015; Liu et al., 
2015;Zhao et al., 2016b; Lin et al., 2017; Yu et al., 2017), 
direct simulation of Monte Carlo (DSMC) (Bird, 1994; 
Christou and Dadzie, 2016; Geng et al., 2016), the lattice 
Boltzmann method (LBM) (Shan et al., 2006; Qian et al., 
2007; Qiao et al., 2013; Ning et al., 2014; Zhang et al., 
2016; Cudjoe and Barati, 2017), discrete velocity method 
(DVM) (Su et al., 2017; Liu et al., 2018), and traditional 
computational fluid dynamics (CFD). The CFD model is 
not  applicable  to  the  cases  where  the  continuum 
hypothesis breaks down, e.g. Kn＞0.1, while MD has 
difficulty in extending its applications to the macro-scale 
due  to  high  computational  costs.  The  other  three 
numerical methods (DSMC, LBM, and DVM) can be 
regarded  as  numerical  schemes  for  solving  the 
Boltzmann equation. Despite achieving great success in 
modeling high-speed non-equilibrium flows, the DSMC 
has significantly limited its wider application to the low-
speed rarefied flows due to statistical noise and high 
computational cost. Both LBM and DVM approximately 
solve the Boltzmann equation with a small number of 
discrete velocities (Su et al., 2017). In particular, the 
LBM can be regarded as a simplified version of DVM 
for the lesser but highly isotropic discrete velocities, 
which  are  employed  to  improve  the  computational 
efficiency. Applying the multi-scale analysis, the LBM 
can recover the Navier-Stokes equations at the low Mach 
number assumption (Guo and Shu, 2013). Thus, LBM 
can serve as an alternative to the numerical solvers of 
Navier-Stokes equations, thereby increasingly becoming 
a promising CFD solver in various fields. Additionally, a 
better understanding of the transport mechanism of micro-
gaseous flow in nano/micro-scale porous media is critical 
to effectively guide the extraction of shale gas, as the pore 
sizes in shale reservoirs are extremely small with a wide 
range from 2 nm to 100 nm (Landry et al., 2016). The 
micro-gaseous flow in the complex pores is controlled by 
the slip and transition flows, which fall beyond the scope 
of  some  existing  numerical  methods,  such  as  MD, 
DSMC,  and  traditional  CFD.  The  modeling  of  high 
Knudsen-number flows in complex porous media via 
DVM  is  also  a  challenging  task,  as  more  discrete 
velocities are required to capture large discontinuities of 
the velocity distribution function (Su et al., 2017). To 
overcome the aforementioned issues, the LBM, with less 
but highly isotropic velocities, is widely chosen as a 
CFD solver  for  micro-gaseous flow in porous media 
(Wang et al., 2016; Zhao et al., 2016a; Zheng et al., 
2017) due to its mesoscopic nature and advantages in 
addressing the complex boundary (including the non-slip 
boundary and slip boundary). 

Over the last 30 years, some progress has been achieved 
in modeling the micro-gaseous flow with LBM, especially 
MRT-LBM (Guo et al., 2008; Chai et al., 2010; Tao and 
Guo, 2015). However, the MRT-LBM, as a continuum-

based CFD solver in nature, has a limited applicability to 
the transition flow, and free-molecule flow regimes for the 
Navier-Stokes  equations  are  not  valid  in  these  flow 
regimes. Extensive studies by Guo et al. (Guo et al., 
2007b; Guo and Zheng, 2008; Guo et al., 2008), Tang et 
al. (Tang et al., 2008), and Zhang et al. (Zhang et al., 
2006) have extended the LBM model to simulate the 
micro-flows  involving  large  Knudsen-number  by 
introducing  the  kinetic  boundary  (e.g.  the  discrete 
Maxwellian boundary (DM) (Ansumali and Karlin, 2002), 
the combined diffusive reflection and bounce-back scheme 
(DBB) (Verhaeghe et al., 2009; Chai et al., 2010), and the 
combined bounce-back scheme and specular  reflection 
(BSR) (Succi, 2002)) to address the velocity-slip at a wall, 
as well as the effective viscosity (Zhang et al., 2006; Guo 
et al., 2007b; Guo and Zheng, 2008; Guo et al., 2008; 
Tang et al., 2008) to correct the nonlinear constitutive 
equation induced by rarefaction effect. Nevertheless, their 
strategies that correct the effective viscosity to model the 
rarefied  gas  flows  with  a  high  Knudsen-number  are 
mainly  established  according  to  a  straight  long-
microchannel.  Although  these  related  studies  can 
accurately predict the high Knudsen number gas flows in 
the long-channel (Guo et al., 2008), their LBM models 
are actually equivalent to the Navier-Stokes equations 
combined with the corrected constitutive equations and 
slip  boundary  schemes.  Thus,  whether  these  LBM 
models can provide good predictions for the complicated 
porous media needs further validation.  

Several important and encouraging studies (Su et al., 
2017; Wu et al., 2017; Liu et al., 2018) were designed to 
address this issue via DVM, or to accurately solve the 
linearized BGK equation. Su and Wu et al. (Su et al., 
2017) solved the large Knudsen number flows in three 
porous media with DVM and compared to existing results 
predicted by Zhao et al. (Zhao et al., 2016a) with the 
multiple-relaxation-time  LBM  (MRT-LBM).  Their 
comparisons  demonstrate  that  the  MRT-LBM  model 
cannot  accurately  simulate  rarefied  gas  flows  in 
complicated porous media. However, only a few predicted 
results  by  MRT-LBM  were  available  and  were  thus 
included in these comparisons. By directly solving the 
linearized BGK equation, Wu et al. (Wu et al., 2017) 
systematically studied rarefied gas flows in simplified 
porous  media,  pointing  out  some  limitations  of  the 
Klinkenberg model and Navier-Stokes equations with the 
first-order velocity-slip boundary scheme. Recently, Liu et 
al. (Liu et al., 2018) modeled micro-gaseous flow in the 
bend micro-channels by solving the BGK equation with 
DVM. Their results indicate that the predicted flux is not 
only controlled by the rarefaction effect but also by the 
shape and bend angle of micro-channels. Therefore, to 
some  extent,  the  direct  applicability  of  these  models 
derived from the simplest geometries (such as straight 
channel or tubes) to more complicated porous media may 
be  inaccurate  and  hence  problematic.  Fortunately,  in 
recent studies (Su et al., 2017; Wu et al., 2017) rarefied 
gas flows in some complex porous media were accurately 
modeled by directly solving the linearized BGK equation 
with DVM. These can be set as benchmark cases and 
enable us to model the rarefied gas flows in the same 
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porous media under the same conditions with MRT-LBM. 
In this study, we perform extensive studies on two popular 
kinetic  boundary  schemes  of  LBM  (DBB  and  DM 
boundary scheme). The calculated results are compared to 
the existing experimental results, the analytical solutions 
of  Navier-Stokes,  solutions  of  Boltzmann  equation, 
DSMC/IP_DSMC results, and the predicted results (Su et 
al., 2017; Wu et al., 2017) with DVM, revealing some 
limitations of the existing MRT-LBM while modeling 
high Knudsen number flow in complex porous media. We 
finally approximately obtain a critical Knudsen number 
below  which  the  MRT-LBM  combined  with  kinetic 
boundary scheme can provide reliable results. 

Although micro-gaseous flows are affected by the pore 
sizes, fluid properties, and solid surface, etc. (Wang et al., 
2016), in this study, we mainly put our emphasis on 
microscale and rarefaction effects induced by pore sizes, 
at the absence of adsorption/desorption effects. This paper 
is organized as follows. The second section introduces the 
MRT-LBM numerical  method,  several  popular  kinetic 
boundary schemes for microscale flow, the regularization 
procedure, the calculation of local characteristic length 
and local Knudsen number, and eventually the validation 
cases. The third section presents the LBM modeling of 
micro-gaseous flow in the porous media reported in the 
references (Su et al., 2017; Wu et al., 2017), and finally 
we conduct a systematic comparative study on the MRT-
LBM and DVM. The fourth section draws conclusion 
according to our comparative studies and further outlines 
future directions. 

 
2 Lattice Boltzmann Method and Boundary Condition 
 
2.1 D2Q9 multi-relaxation-time (MRT) LBM model 

The  lattice  Boltzmann  method  is  a  mesoscopic 
numerical  method  for  computational  fluid  dynamics. 
Applying the multi-scale analysis developed by Chapman 
and Enskog, the Navier-Stokes equations can be recovered 
from the lattice Boltzmann equation. The expression of the 
lattice Boltzmann equation with external force can be 
arranged as follows 

fi (x + ciδt,t + δt) – fi(x,t) = Ω(fi) + δtFi                (2.1) 
where fi(x,t) is the particle distribution function, δt is the 

time increment, the term Ω(fi) on the right hand is the 
collision operator, and Fi is the external force in the ith 
direction defined by 

where G is the external force in physical model, M is 
the orthogonal matrix, S is the relaxation time matrix, wi is 
the weight in the ith direction, and cs is the sound speed of 
the  lattice.  The  D2Q9  model  with  nine  velocities  is 
adopted in this study to model fluid flow through porous 
media. Its velocity directions are defined as:   

c0=(0,0), c1=(1,0), c2=(–1,0), c3=(0,1), c4=(0,–1), c5=(1, 
1), c6=(–1, – 1), c7=(1, – 1), and c8=(–1, 1).  

The orthogonal matrix M  related to above velocity 
directions is expressed as  
    

 Generally, the collision operator Ω(fi) is a nonlinear 
integral differential expression in terms of the particle 
distribution function  fi(x,t). The MRT model with the well
-known linearized collision operator Ω(fi)  is employed in 
this study, which can be expressed as (Tao and Guo, 2015) 

Ω(fi) = – (M –1SM) [ f (x,t) – f (eq)(x,t)]      (2.4)  
where  f (x,t) = [f0 (x,t), f1 (x,t), …, f8 (x,t)], and f (eq) (x,t) 

= [f0
 (eq)(x,t), f1

 (eq)(x,t), …, f8
 (eq)(x,t)] is the vector of the 

equilibrium distribution functions. 
The relaxation time matrix is given as follows 

Where τs is the non-dimensional relaxation time, and 
other parameters can be found in Guo et al. (Guo and Shu, 
2013). The relaxation time τs is related to the kinematic 
viscosity as 

Thein  fi
 (eq)(x,t) Equation is the equilibrium distribution 

function in the ith direction, which can be determined by 
the  macroscopic  Navier-Stokes  equations  and 
conservation forms of the moments (Guo and Shu, 2013). 
The above lattice Boltzmann Equation combined with 
Equation is referred to as the MRT-LBM model, in which 
fi

 (eq)(x,t) can be given as 

with u and ρ denoting the velocity and density of the 
fluid, respectively.  

The macroscopic quantities, e.g. density ρ, velocity  u 
and  pressure  p,  can  be  expressed  in  terms  of  the 
distribution function  fi(x,t)  as follows 
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where cs is the lattice sound speed, which is equal 
to in the D2Q9 model. 

For  microscale  flow,  the  widely  recognized 
dimensionless  parameter  is  the  Knudsen number.  The 
relaxation time is  further  determined by the Knudsen 
number, as 

where  Kn  is  the  Knudsen  number,  and  H  is  the 
characteristic length. 

For the gaseous flow in confined pores at a moderate 
Knudsen number, the Knudsen layer should be properly 
addressed. The popular strategy is to correct the mean free 
path of the gas molecule or viscosity to solve the large 
Knudsen number flow in the framework of the Navier-
Stokes equations derived under the continuum assumption. 
Guo et al. (Guo et al., 2006; Guo et al., 2007b) introduced 
the effective viscosity correction into the LBM to model 
micro-gaseous flow at a finite Knudsen number. Li et al. 
(Li et al., 2011) incorporated the well-known Bosanquet-
type effective viscosity into LBM to capture micro-flows 
in slip and early transition flow regimes. The Bosanquet-
type effective viscosity is the mean effective viscosity 
across the cross-section, and it is only dependent on the 
local Knudsen number. For the sake of simplicity, we 
adopt the following Bosanquet-type effective viscosity to 
capture the effects of the Knudsen layer 

where μ and μe are the dynamic viscosity and effective 
dynamic viscosity of the fluid, respectively. 

Taking  Equations  (2.6),  (2.9),  and  (2.10)  into 
consideration,  we obtain the effective viscosity-related 
relaxation time  τs as 

2.2 Kinetic boundary schemes for velocity-slip  
The pore sizes in shale range from 2 nm to 100 nm, and 

the Knudsen number in these micro/nanopores is generally 
larger than 0.001. Thus, the micro-gaseous flow in these 
microscale pores is affected by the microscale effect (e.g., 
the velocity slip at the solid surface) and the rarefaction 
effect. The slip velocity induced by the microscale effect 
can  be  determined  by  a  first–order  or  second–order 
velocity-slip boundary condition. In the existing LBM 
models,  two  popular  boundary  schemes  are  widely 
employed to capture the velocity slip along the curved 
walls: the discrete Maxwellian boundary (DM), and the 
combined diffusive reflection and bounce-back scheme 

(DBB).  
The DM boundary scheme developed by Ansumali and 

Karlin (Ansumali and Karlin, 2002) can be regarded as a 
discrete  form  of  the  full  diffuse  reflection  boundary 
scheme. The unknown particle distribution function at the 
boundary point, determined by this boundary scheme, is 
given as follows 

where n is the normal vector at the wall, ρw is the 
density at the wall, uw is the velocity of wall, and f′i′ is the 
post-collision  distribution  function  determined  by 
Equation (2.4) as f′i′ = fi (x,t) + Ω(fi). For the discrete 
lattice, determining the normal direction of the wall is 
challenging.  Therefore,  the  DM  boundary  scheme  is 
generally  implemented  based  on  its  physical  concept, 
which assumes that the outgoing particles will reflect into 
the fluid, following the discrete Maxwellian law. For the 
static wall, Equation (2.12) can be further simplified to  

where               indicates the sum of post-collision particle  
 

distribution functions incident to the wall, while  is   
 
the total weight of outgoing particle distribution functions. 
The relaxation time matrix for the DM boundary scheme 
is chosen according to Zhao et al. (Zhao et al., 2016a) 

where  τs  is  the  viscosity-related  relaxation  time 
determined by Equation .  

The combined DBB, developed by Chai et al. (Chai et 
al., 2008) and Luo et al. (Verhaeghe et al., 2009), is 
adopted in this study to investigate the velocity slip at a 
random curved wall for its independence from the normal 
vector of wall. This can be expressed as  

where i indicates the opposite direction of i, r is the 
accommodated coefficient, the definitions of  ρw and uw 
are the same with Equation (2.12). K is the normalization 
factor ensuring mass conservation, and can be expressed 
as  

where f′I is the post-collision distribution function, n is 
the inward normal vector, and the definitions of remaining 
parameters are the same with Equation (2.12). 

Considering Equation , for the static wall, the DBB 
boundary scheme (Equation ) can be given as 
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where Σjfj
'  indicates the sum of post-collision distribution 

functions streaming toward the solid node, and Σjwj is the 
sum of weights of corresponding distribution functions 
streaming toward the solid node. 

To incorporate the velocity-slip boundary condition into 
the DBB boundary scheme, the accommodated coefficient 
r should be chosen as for the multi-relaxation-time model 
(Tao and Guo, 2015): 

where Δ equals to 0.5 in this study,  C1 is the coefficient 
of velocity-slip boundary scheme, and τ1 is the viscosity-
related relaxation time determined by Equation (2.11).  

The  relaxation  time  matrix  for  the  DBB boundary 
scheme is chosen as according to Tao et al. (Tao and Guo, 
2015) 
S=diag(1.0,1.0/1.1,1.0/1.2,1.0,1/τq,1.0,1/τq,1/τs,1/τs)  (2.19) 

where the relaxation time related to τq is set as  

with  C1=1.1466, C2=0.9757 for the full diffuse wall 
(Guo and Shu, 2013). 

Another kinetic boundary scheme gains popularity in 
the modeling micro-flows. This is the combined bounce-
back scheme and specular reflection, which was firstly 
proposed by Succi (Succi, 2002) and later developed by 
Guo et al. (Guo et al., 2007a; Guo and Zheng, 2008) and 
Li et al. (Li et al., 2011). The BSR boundary scheme is 
restrained to some simple geometries (such as a straight 
channel), as it relies on the normal direction of wall. Thus, 
this boundary scheme is not included in this study due to 
its limited applicability to shale reservoirs.  

To ensure that this MRT-LBM scheme is more accurate 
and stable in the hydrodynamic regime and beyond, a 
regularization step developed by the previous studies (Latt 
and Chopard, 2006; Zhang Raoyang et al., 2006; Suga, 
2013) is adopted to model micro-gaseous flows with a 
high Knudsen number. In this regularization procedure, 
the  distribution  functions  are  decomposed  into  the 
equilibrium part and non-equilibrium part as (Suga, 2013) 

fi(x,t) = f i(eq)(x,t) + f i(enq)(x,t)         (2.21)  
The non-equilibrium part f i(enq)(x,t) can be converted to 

where He(2)
mn (ξ) = ξmξn – δmn,  fk

(neq)  is the non-equilibrium  
distribution function defined as fi

(neq)(x,t) = fi(x,t) –fi
(eq)(x,t), 

where subscripts m and n are the dummy indices that obey 
Einstein's summation convention. 

The evolution equation for the MRT-LBM model after 
the  regularized procedure can be expressed as (Suga, 

2013) 

2.3  Local  characteristic  length  and local  Knudsen 
number 

For  the  micro-gaseous  flow  in  complicated  porous 
media, the Knudsen number is a local geometry-dependent 
parameter associated with space location due to the spatial 
variation of its influencing factors, such as temperature, 
gas pressure, local characteristic length, etc.  

For the hard sphere molecule, the mean free path of gas 
molecules can be expressed as (Zhao et al., 2016a) 

where m and ρ are the molecule mass and gas density, 
and σ is the molecule diameter.    

With Equation (2.24), the Knudsen number for the ideal 
gas is given as  

where R and T are the gas constant and temperature, 
respectively, and NA is the Avogadro constant. Ploc and  
Hloc are the local pressure of gas and local characteristic 
length of porous media, respectively (Zuo et al., 2019). 
Equation (2.25) is used to determine the local Knudsen 
number of a pore node in this study. To accurately capture 
the velocity slip along the surface, inspired by the studies 
by Zhao et al. (Zhao et al., 2016a; Zhao et al., 2016b), we 
propose the following concise method to determine the 
local characteristic length:  

(1) The first step is to obtain the skeleton line of random 
porous media. A thinning algorithm for digital patterns 
proposed by Zhang (Zhang and Suen, 1984) is employed 
in this study. It consists of two subiterations with the aim 
of deleting boundary points to obtain the skeleton of 
unitary thickness for random patterns. 

(2) After obtaining the skeleton of the pore space, the 
local characteristic length of a skeleton point is determined 
by the maximal ball algorithm (Silin and Patzek, 2006). 

(3) The local characteristic length of a pore node equals 
to  that  of  its  nearest  skeleton  point  according  to  its 
definition. 

 
2.4 Validation: micro-gaseous flow in long channel 

In this section, we first validate the cases with micro-
gaseous flow in the periodic microchannel with a Knudsen 
number over a wide range. The validation model is set as 
follows: 1) the size of lattice is set as Nx = 50 and Ny = 50; 
2) a constant pressure  gradient     in the  
streamwise direction is applied to drive flow, and the inlet 
and outlet boundaries are the periodic boundary; 3) the 
slip  boundary schemes (DM and DBB) introduced in 
Section 2.2 are exerted on the top and bottom walls. To 
validate the effectiveness of the DM and DBB boundary in 
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predicting micro-gaseous flow in a straight channel, we 
first calculate the non-dimensional mass flow rate as a 
function of the Knudsen number. The non-dimensional 
mass flow rate is defined as follows (Li et al., 2011) 

pressure, and the  is determined by the sound speed of the 

The present results are compared with the Boltzmann 
equation solution (Cercignani et al., 2004), Navier-Stokes 
solution  with  the  second-order  velocity-slip  boundary 
scheme (Hadjiconstantinou, 2003), the MRT-LBM results 
with the Bosanquet-type effective viscosity model (Li et 
al.,  2011),  and  the  MRT-LBM results  with  effective 
viscosity correction (Guo et al., 2008). The Boltzmann 
equation is derived from the gas kinetic theory and fits all 
flow regimes ranging from the continuum flow regime to 
the free-molecule flow regime. The MRT-LBM model acts 
as a numerical solver to the Boltzmann equation with 
finite velocities.  In fact,  it  recovers the Navier-Stokes 
equations by applying the multi-scale analysis, whereas 
incorporating the effective viscosity correction into the 
MRT-LBM model for further capturing the Knudsen layer 
enables it to accurately model the micro-gaseous flow in 
the transition flow regime within a straight long-channel 
(Guo et al., 2008; Li et al., 2011). 

Fig.1 presents a comparison of the calculated results 
obtained by DM and DBB and the predominately reported 
results (Hadjiconstantinou, 2003; Cercignani et al., 2004; 
Guo et al., 2008; Li et al., 2011). As expected, the Navier-
Stokes  solution  with  the  velocity-slip  boundary 
(Hadjiconstantinou, 2003), despite matching well with the 
existing results in the continuum and near-continuum flow 
regimes, noticeably deviates from the solutions of the 
Boltzmann  equation  (Cercignani  et  al.,  2004)  in  the 

transition flow regime when Kn＞0.3, beyond which the 
continuum hypothesis and Navier-Stokes equations fail. 
Good agreement is found between the DBB results and 
those of Guo et al. (Guo et al., 2008), Li et al. (Li et al., 
2011), as well as the solution of the Boltzmann equation 
(Cercignani et al., 2004). The DM results are slightly 
larger  than  those  cited  in  the  references 
(Hadjiconstantinou, 2003; Cercignani et al., 2004; Li et 
al., 2011) in the slip and early transition flow regimes, 
which is acceptable. 

To further validate the DM and DBB boundaries, we 
compute the streamwise velocity at the wall surface and 
the  channel  centerline.  The  streamwise  velocity  is 
regularized as U = u/uave, with uave=1/H ∫0H udy. In this 
part, DSMC results and the solution of the linearized 
Boltzmann  equation  (BE)  are  included  for  detailed 
comparison. As stated in the introduction, the DSMC can 
be viewed as a numerical strategy to directly solve the 
Boltzmann  equation  by  utilizing  a  series  of  artificial 
particles to model real gas molecules without introducing 
many hypotheses, such as the law of gas-solid interaction, 
and  the  streaming  and  collisions  of  molecules. 
Considering that the Boltzmann equation derived from the 
gas kinetic theory can be employed to describe the rarefied 
gas flow at high Kn, where the Navier-Stokes equations 
break down, the DSMC can act as a more mature and 
accurate solver for the rarefied gas flow compared to the 
MRT-LBM  model  and  Navier-Stokes  equations 
(Verhaeghe et al.,  2009),  even though it suffers from 
expensive computational costs in modeling low velocity 
micro-flows. Fig. 2 presents the comparisons between the 
predicted velocity obtained by the present MRT-LBM and 
the existing results. The calculated velocity at the channel 
centerline with the DM and DBB boundary matches well 
with  DSMC results  and  linearized  BE results  (Suga, 
2013), while the predicted velocity at the wall’s surface is 
slightly larger than the DSMC and linearized BE results in 
slip and transition flow regimes. Overall, according to our 
comparisons  the  present  MRT-LBM  with  corrected 
effective  viscosity  can  sufficiently  capture  the  micro-
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Fig. 1. The relationship of non-dimensional mass flow rate 
and Knudsen number. 
The results are compared with existing results (Hadjiconstantinou, 2003; 
Cercignani et al., 2004; Guo et al., 2008; Li et al., 2011).  

 

Fig. 2. The predicted velocity at the wall surface and chan-
nel centerline by DM and DBB boundary, respectively.  
The results are compared with existing results (Suga, 2013).  
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gaseous flow in the slip and transition flow regimes in a 
straight long-channel. 

In the above validation cases, the micro-gaseous flow is 

not reveal the real conditions in shale reservoirs, where 
gas flows are generally driven by the pressure gradient, 
rather  than a constant  external  force.  As pointed out 
above,  the  Knudsen  number  is  a  pressure-dependent 
parameter in this condition. Therefore, we conduct the 
validation cases with micro-gaseous flow driven by the 
pressure gradient in a long micro-channel in this section. 
The micro-gaseous flow is driven by a pressure difference 
between the inlet boundary (higher pressure pin or density  
ρin) and outlet boundary (lower pressure pout or density 
ρout).  Considering the straight  channel  with  constant 
local  characteristic  length  for  every  node,  the  local 
Knudsen number can be calculated according to Section 2.3:  

where Knin and Knout are the Knudsen number at inlet 
boundary and outlet boundary, respectively, and p(x) is the 
pressure along the channel.  The basic  set-up for  this 
validation model is: 1) the lattice size is set as Nx=2000 
and Ny=20 to maintain consistence with the previous 
study (Li et al., 2011), namely, the ratio of length over 
width equals to 100; 2) the ratio of inlet pressure pin over 
outlet pressure pout is set as 1.4 for Knout = 0.0194, while 
pin/pout=2.0 for Knout = 0.194, 0.388; 3) the inlet and outlet 
boundaries are the pressure boundary proposed by Luo et 
al. (Verhaeghe et al., 2009); 4) the slip boundary schemes 
(DM and DBB) introduced in Section 2.2 are exerted on 
the top and bottom walls. 

The calculated results by DM and DBB schemes are 
presented in Figs. 3 to 5, where the streamwise velocity at 
the  outlet  is  defined  as  u/umax,  with  umax  being  the 
maximum streamwise  velocity  at  the  outlet,  and  the 

pressure deviation distribution along channel is given by 
δp = (p(x) – pl) /pout, pl = pin + (pout– pin)x/L. The DSMC 
and  information-preservation  direct  simulation  Monte 
Carlo (IP-DSMC) results (Shen et al., 2004), the results of 
Luo et al. (Verhaeghe et al., 2009), and the results of 
Arkilic et al. (Arkilic et al., 1997) are also included in 
these figures for better comparison. As mentioned above, 
direct  simulation of  the Monte Carlo method directly 
solves  the  Boltzmann equation to  model micro-flows, 
thereby presenting a more reliable and accurate results. 
Thus, in this section, the results from DSMC and IP-
DSMC serve as benchmarking cases. The results of Luo et 
al. (Verhaeghe et al., 2009) are predicted by the MRT-
LBM model combined with the first-order velocity-slip 
boundary. In fact, the model of Luo et al. is equivalent to 
the incompressible Navier-Stokes equations with the first-
order slip boundary scheme (Verhaeghe et al., 2009). The 
study of  Arkilic  et  al.  (Arkilic  et  al.,  1997) presents 
analytical  results  for  the  compressible  Navier-Stokes 
equations with first-order velocity-slip boundary scheme.  

Figs. 3 to 5 show the predicted streamwise velocity and 
non-dimensional  pressure  distribution by the DM and 
DBB scheme. The velocity predicted by DM matches well 
with the DSMC and IP-DSMC results (Shen et al., 2004), 
and the pressure deviation along the long-channel also 
agrees well with the DSMC and IP-DSMC results for 
Kn=0.0194, 0.194, 0.388, although slight differences are 
observed in the pressure deviation at Kn=0.388. Both the 
velocity profiles and pressure deviation calculated by the 
DBB boundary show good agreement with the DSMC and 
IP-DSMC  results  for  three  different  Kn.  A  detailed 
comparison between Figs. 3 to 5 indicates that the DBB 
scheme is superior to the DM scheme in predicting micro-
gaseous flow in slip and early transition flow regimes in a 
straight channel. The velocity predicted by Luo et al. and 
Arkilic et al. agrees well with the DSMC and IP-DSMC 
results  for  Kn=0.0194,  0.194,  as  the  Kn  increases,  it 
gradually deviates from the DSMC and IP-DSMC results. 
The pressure deviation from both Luo et al. and Arkilic et 
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Fig. 3. The predicted streamwise velocity at outlet and pressure deviation distribution along channel by DM and DBB scheme 
when micro-gaseous flow is driven by pressure gradient for Knout = 0.0194. 
The results are compared with existing results: DSMC and IP-DSMC results (Shen et al., 2004), Luo et al. (Verhaeghe et al., 2009), and Arkilic et al. 
(Arkilic et al., 1997): (a) streamwise velocity, (b) pressure deviation distribution along channel.  
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al.  matches with the DSMC and IP-DSMC results at 
Kn=0.0194,  however,  the  discrepancies  between  them 
happen at Kn = 0.194, 0.388 and gradually become more 
noticeable as the Kn increases. Additionally, the results 
between Luo et al. and Arkilic et al. show little difference 
when Kn=0.0194, 0.194, and 0.388. This is because the 
Luo et al. and Arkilic et al. models are equivalent to the 
incompressible and compressible Navier-Stokes equations, 
respectively, which are not sufficient for modeling the 
transition flow regime and free-molecule  flow regime 
(Kn>0.1)  where  the  continuum-based  Navier-Stokes 
equations are not valid. Although the present MRT-LBM 
models with the DBB and DM scheme are also actually 
equivalent to Navier-Stokes equations with the velocity-
slip  boundary,  the  introduction  of  Bosanquet-type 
effective viscosity in Section 2 extends the MRT-LBM 
model to the transition flow regime (0.1<Kn<10) in the 

straight long-channel. The fact that the predicted results by 
Luo et al. and Arkilic et al. via Navier-Stokes equations 
with first-order velocity-slip boundary overestimate the 
velocity at the walls for the case with Kn=0.388 can also 
be  attributed  to  the  absence  of  effective  viscosity 
correction for accurately capturing the Knudsen layer, in 
which the mean free path of gas molecules is reduced, and 
effective viscosity is not constant due to the wall effects. 
Considering the effects of the Knudsen layer, the effective 
viscosity of the gas is actually smaller than its dynamic 
viscosity  determined  by  the  mean  free  path  of  gas 
molecules in the unbounded space, which will lead to a 
larger streamwise velocity at the channel centerline, and 
thereby a smaller normalized streamwise velocity u/umax at 
the wall, as shown in Fig. 5(a). 

As the Knudsen number increases, the microscale effect 
and rarefaction effect become more obvious and require to 

 

Fig. 4. The predicted streamwise velocity at outlet and pressure deviation distribution along channel by DM and DBB scheme 
when micro-gaseous flow is driven by pressure gradient for Knout = 0.0194. 
The results are compared with existing results: DSMC and IP-DSMC results (Shen et al., 2004), Luo et al. (Verhaeghe et al., 2009), and Arkilic et al. 
(Arkilic et al., 1997): (a) streamwise velocity, (b) pressure deviation distribution along channel.  

Fig. 5. The predicted streamwise velocity at outlet and pressure deviation distribution along channel by DM and DBB scheme 
when micro-gaseous flow is driven by pressure gradient for Knout = 0.388. 
The results are compared with existing results: DSMC and IP-DSMC results (Shen et al., 2004), Luo et al. (Verhaeghe et al., 2009), and Arkilic et al. 
(Arkilic et al., 1997): (a) streamwise velocity, (b) pressure deviation distribution along channel.  
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be carefully addressed. In the following validation, the 
rarefaction and microscale effects on micro-gaseous flow 
in the long-channel are further studied. The calculated non
-dimensional flux is compared to the existing experimental 
results reported by Colin et al. (Colin et al., 2004; Colin, 
2005)  and  Maurer  et  al.  (Maurer  et  al.,  2003),  the 
analytical results obtained by the first-order velocity-slip 
model of Arkilic et al. (Arkilic et al., 1997), and the 
analytical solution of the second-order velocity-slip model 
of  Aubert  and  Colin  (Aubert  and  Colin,  2001).  The 
experiments (Maurer et al., 2003; Colin et al., 2004; Colin, 
2005) have been conducted with high accuracy to predict 
the rarefied gas flows at a moderate Knudsen number. In 
order to compare with the experimental results, the ratio of 
inlet pressure  pin over outlet pressure pout is set as 1.8. 
The non-dimensional flux is defined as S = m/mns, where 
the  flux  m  is  calculated  by  the  present  MRT-LBM 
considering the microscale and rarefaction effect (given by 
Equation (2.11)), and mns is the flux in the continuum 
assumption with non-slip boundary. The flux can be given 
as follows (Maurer et al., 2003) 

where pin is the inlet pressure, pout is the outlet pressure,  
μ is the dynamic viscosity of the fluid, b is the channel 
width, and L is the channel length along the streamwise 
direction. 

Fig.  6  presents  the  non-dimensional  flux  and  its 
reciprocals that vary with the Knudsen number. The non-
dimensional flux, predicted by DBB scheme, is slightly 
lower than that predicted by DM scheme, and it can be 
observed that the predicted results by both the DBB and 
the  DM scheme  match  with  the  experimental  results 
reported by Colin et al. (Colin et al., 2004; Colin, 2005) 
and Maurer et al. (Maurer et al., 2003), indicating that the 
present MRT-LBM with effective viscosity and velocity-
slip  boundary  scheme (DBB and  DM boundary)  can 
effectively capture the microscale and rarefaction effects 
of micro-gaseous flow in the long-channel for slip and 
early transition flow regimes. A comparison between the 

experimental results and the results of Arkilic et al. and 
Aubert et al. indicates that the first-order slip theory and 
second-order slip model underestimates and overestimates 
the flux at moderate Knudsen number, respectively, which 
is in accordance with the results of Hadjiconstantinou et 
al. (Hadjiconstantinou, 2003). 

The  above  validations  demonstrate  that  the  present 
MRT-LBM model can effectively capture the microscale 
flow  in  a  long-channel  for  slip  and  transition  flow 
regimes.  However,  whether  the  corrected  effective 
viscosity based on a straight long-channel can be directly 
extended into the cases involving complicated boundary 
remains a puzzle and has not been well addressed to date. 
In what follows, we apply this MRT-LBM to model the 
micro-gaseous flow in complex porous media and then 
compare to the results obtained by Su et al. (Su et al., 
2017), Wu et al. (Wu et al., 2017), and Liu et al. (Liu et 
al.,  2018), who numerically solve the linearized BGK 
equation via the discrete velocity method to capture the 
micro-gaseous flow in complicated porous media, pointing 
out some limitations and inaccuracies of the present MRT-
LBM method.  
 
3 Discussions 
 

Although LBM models originate from the kinetic theory 
of molecules (Succi, 2001; Guo and Shu, 2013) and can be 
considered as a simple discrete form of the Boltzmann 
equation that is derived at the mesoscopic scale, the MRT-
LBM, actually, is a continuum-based computational fluid 
dynamics  solver  because  the  Navier-Stokes  can  be 
recovered from MRT-LBM model under the low Mach 
number  assumption  (Guo  and  Shu,  2013).  Despite 
extensive valuable attempts by previous studies (Zhang et 
al., 2006; Guo et al., 2007b; Guo and Zheng, 2008; Guo et 
al.,  2008;  Tang  et  al.,  2008)  that  have  extended  its 
application  to  the  transition  flow  regime  and  free-
molecular  flow  regime,  in  most  circumstances,  these 
models are derived based on straight channels and only 
verified  by  micro-Poiseuille  flow  in  straight  long-
channels. Whether these models can be directly extended 
to simulate transition flow regime in complicated porous 
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Fig. 6. The non-dimensional flux of micro-gaseous flow in long-channel with Knudsen number over a wide range.  
The results predicted by DM and DBB boundary are compared with existing results: Colin et al. (Colin et al., 2004; Colin, 2005), Maurer et al. 
(Maurer et al., 2003), and Arkilic et al. (Arkilic et al., 1997): (a) 1/S=mns/m, (b) S=m/mns.  



Acta Geologica Sinica (English Edition), 2019, 93(6): 1808–1822 1817     

media remains less understood. In this section, we focus 
on the lattice Boltzmann modeling of the micro-gaseous 
flow in slip and transition flow regimes in the porous 
media reported in previous studies (Su et al., 2017; Wu et 
al., 2017), and conduct the detailed comparisons between 
the results predicted by the present MRT-LBM and the 
encouraging results of Wu et al. (Su et al., 2017; Wu et al., 
2017), who accurately solved the numerical results of the 
linearized BGK equation with DVM to predict the rarefied 
gas flows in complex porous media. Both DVM and LBM 
numerically solve the simplified Boltzmann equation with 
a series of discrete velocities (Su et al., 2017). The LBM 
models,  including  single  relaxation  time  LBM (SRT-
LBM), MRT-LBM, and other high-order LBM models, 
can be regarded as the special forms of the DVM model 
because of a set of fixed velocities with high isotropy in 
use. A large number of velocities are required to capture 
rarefied gas flows because of the large variations and 
discontinuities in the particle distribution function (Su et 
al., 2017), which is beyond the scope of the MRT-LBM 
models due to fixed velocities. Thus, the DVM is superior 
to the LBM models in predicting the rarefied gas flow 
with  large  Knudsen  number,  although  it  is  time-
consuming and expensive. Based on the existing results by 
accurately solving the simplified Boltzmann equation via 
DVM, we finally point out some limitations of the present 
MRT-LBM model  and  obtain  an  approximate  critical 
Knudsen number, below which the present MRT-LBM 
model behaves well.  

Fig. 7 presents three random porous media used in this 
study and a previous study (Su et al., 2017): a channel 
filled with random rocks (media 1), a channel filled with 
squares (media 2), and a channel filled with circles (media 
3). The micro-gaseous flows in three porous media are 
conducted at different Knudsen numbers ranging from 
0.01 to 10, which covers the majority of micro-gaseous 
flows  in  slip  and  transition  flow  regimes.  The 
computational model is set as follows: 1) the left boundary 
(high pressure) and right boundary (low pressure) are the 
ZouHe pressure boundary scheme (Zou and He, 1997); 2) 
the top boundary, bottom boundary, and the surface of 
solids are the DM boundary and DBB boundary given in 
the above sections; 3) for modeling of the micro-gaseous 
flow in  the  transition flow regime,  we introduce  the 
Bosanquet-type  effective  viscosity  to  capture  the 
rarefaction effects; 4) other parameters are consistent with 
Su et al. (Su et al., 2017) and Wu et al. (Wu et al., 2017). 

Fig. 8 shows the detailed velocity vectors of micro-
gaseous flow in media 2 at different Knudsen numbers. As 
expected,  as  the  Knudsen  number  increases,  the  slip 
velocity at walls increases, and the small pores contribute 
to a large amount of mass flux due to the larger Knudsen 
number. Subsequently, we calculate the non-dimensional 
permeability and compare to the DVM results (Su et al., 
2017; Wu et al., 2017), as shown in Fig. 9. The apparent 
permeability Ka calculated by this MRT-LBM considers 
the microscale and rarefaction effects, and the absolute 
permeability  Kabs  corresponds  to  the  results  in  the 
continuum limit without these effects. Figs. 9(a) and 9(b) 
present the non-dimensional permeability predicted by the 
DM boundary and DBB boundary, respectively, and the 

DVM results from Su et al. (Su et al., 2017) are also 
included in these subfigures for better comparison.  

The comparisons indicate that the MRT-LBM model 
combined with the DM and DBB boundary substantially 
underestimates  the  permeability  in  comparison  to  the 
DVM when  the  Knudsen  number  is  larger  than  1.0. 
Hence, the MRT-LBM model,  despite considering the 
rarefaction effect by correcting the effective viscosity, still 
cannot  accurately  capture  micro-gaseous  flow  in 
complicated porous media in the transition flow regime 
where Kn＞1.0. Therefore, the Bosanquet-type effective 
viscosity  derived  according  to  straight  long-channels 
(Beskok and Karniadakis, 1999) is not suitable for other 
complicated  porous  media.  Despite  numerous  models 
proposed for the effective viscosity in existing studies 
(Zhang et al., 2006; Guo et al., 2007b; Guo and Zheng, 
2008; Guo et al., 2008; Tang et al., 2008), nearly all of 
them are only applicable for simple geometries, and their 
effectiveness is only validated with the micro-Poiseuille 
flow. The direct extension of their applications to random 
porous media might become problematic. This is also 

 

Fig. 7. Three porous media used in this simulation are con-
sistent with those of Su et al. (Su et al., 2017): (a) media 1; 
(b) media 2; (c) media 3.  
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verified by the study of Liu et al. (Liu et al., 2018), who 
recently investigated the rarefaction throttling effect by the 
discrete velocity method, revealing that the case involving 

the bend channel is more complicated than the straight 
channel, and it is influenced not only by the rarefaction 
effect, but also by the bend angle as well as the shape and 
configuration  of  channels.  We  further  validate  the 
accuracy and effectiveness of  this  MRT-LBM by the 
comparison with the numerical solution of the linearized 
BGK equation given by Wu et al. (Wu et al., 2017), who 
accurately  calculated  the  apparent  permeability  of  the 
micro-gaseous flow in the channel filled with circles and 
squares, as shown in Fig. 10. Figs. 11 to 12 present the 
velocity vectors of the micro-gaseous flow in two porous 
media. Both the pore structures and the velocity vector of 
the micro-gaseous flow exhibit a great difference in the 
channel  filled  with  circles  and  squares.  However,  as 
depicted in Figs. 13 and 14, the predicted permeability 
with  the  DBB  and  DM  boundary  cannot  effectively 
identify this difference. For the channel filled with circles, 
the  calculated  permeability  with  the  DBB  and  DM 
boundary is in agreement with that predicted by accurately 
solving the linearized BGK equation,  while  the  large 
discrepancy  between  them  is  observed  for  the  large 
Knudsen number flows in the channel filled with squares. 
The  comparisons  indicate  that  the  Bosanquet-type 
effective  viscosity  derived  from  the  straight  channel, 
despite being capable of capturing the rarefied gas flow in 
the transition flow regime in the straight long-channel, 
cannot  to  be  directly  extended  to  other  complicated 
boundaries to simulate micro-flows with a large Knudsen 
number  in  irregular  micro/nano-pores.  Unfortunately, 
nearly all viscosity correction models for capturing micro-
flows in the transition flow regime are built based on the 
straight channel. Moreover, it is a challenging task to 
establish a reliable and united model for the effective 
viscosity correction to address the high Knudsen-number 
flows resulting from the complexity of porous media. 
Thus, it is critical to determine the flow regimes in which 
the  MRT-LBM  models  or  Navier-Stokes  equations 
combined  with  corrected  viscosity  and  velocity-slip 
boundary schemes provide reliable results.  

In order to approximately obtain a critical Knudsen 
number, at which the MRT-LBM provides more accurate 

 

Fig. 8. The velocity vectors of micro-gaseous flow in media 2 
under different Knudsen numbers: (a) Kn=0.01; (b) Kn=0.5; 
(c) Kn=5.0. The results are predicted by DBB boundary 
scheme  

 

Fig. 9. The non-dimensional permeability of micro-gaseous flow in three porous media with Knudsen number over a wide 
range from 0.01 to 7. A detailed comparison between the predicted results by the present DM and DBB schemes and discrete 
velocity method in Su et al.’s study (Su et al., 2017): (a) DM boundary scheme; (b) DBB boundary scheme.  
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results, we further model the micro-gaseous flow for Kn＜
0.5 in the same porous media. Figs. 13 to 15 depict the non
-dimensional  permeability  of  micro-gaseous  flow  in 
several porous media with the Knudsen number ranging 
from 0.0 to 0.5. From these figures, we can observe that 
the MRT-LBM results start to deviate from the DVM 
results or the numerical solutions of the linearized BGK 
equation when the Knudsen number is larger than 0.3. 

Thus,  as  a  continuum-based  solver,  the  MRT-LBM 
combined  with  the  corrected  effective  viscosity  can 
effectively simulate the gas flow in complicated porous 
media in the continuum flow regime, slip flow regime, and 
early transition flow regime when . Nevertheless, 
the MRT-LBM remains less accurate for modeling of the 
micro-gaseous  flow  in  complex  reservoirs  at  a  large 
Knudsen-number.  
  
4 Conclusions  
  

In this study, we validate the effectiveness of the MRT-
LBM combined with the DM and DBB boundary in the 
modeling of micro-gaseous flow in several porous media 
reported in previous studies (Su et al., 2017; Wu et al., 
2017) within slip and transition flow regimes. We conduct 
a detailed comparison between the predicted results with 
the DM and DBB boundary and those predicted by DVM 
(Su  et  al.,  2017;  Wu  et  al.,  2017),  revealing  some 
limitations of the present MRT-LBM with regard to the 
prediction of micro-gaseous flow in complicated porous 
media. To capture the large Knudsen-number flows, the 
Bosanquet-type  effective  viscosity  is  employed  to 
consider the rarefaction effect. Based on these results, the 
following conclusions are drawn: 

(1) The popular kinetic boundary conditions for the 
LBM modeling of micro-gaseous flow are the discrete 
Maxwellian  (DM)  boundary,  the  combined  diffusive 
reflection  and  bounce-back  scheme  (DBB),  and  the 
combined bounce-back scheme and specular  reflection 
(BSR). The BSR boundary can only be applicable for the 
straight or regular channel, as it relies on the normal 
direction of walls, while the DM and DBB boundary have 
good adaptability to curved walls.  

0.3Kn <

 

Fig. 10. Two porous media used in Wu et al.’s study (Wu et 
al., 2017), who simulated the micro-gaseous flow in compli-
cated porous media in slip and transition flow regimes by 
accurately solving the linearized BGK equation: (a) channel 
filled with circles; (b) channel filled with squares.  

Fig. 11. The velocity vectors of micro-gaseous flow in the 
channel filled with circles under different Knudsen numbers: 
(a) Kn=0.01; (b) Kn=4.0. 
The results are predicted by DM boundary.  

 

Fig. 12. The velocity vectors of micro-gaseous flow in the 
channel filled with squares under different Knudsen num-
bers: (a) Kn=0.01; (b) Kn=4.0. 
The results are predicted by DM boundary.  
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Fig. 13. The non-dimensional permeability of micro-gaseous flow in the channel filled with circles with Knudsen number over 
a wide range from 0.0 to 4.0. A detailed comparison between the predicted results by this DM and DBB and numerical results 
of the linearized BGK equation (Wu et al., 2017): (a) Kn=0.0–4.0; (b) Kn=0.0–0.5.  

Fig. 14. The non-dimensional permeability of micro-gaseous flow in the channel filled with squares with Knudsen number 
over a wide range from 0.0 to 4.0. A detailed comparison between the predicted results by this DM and DBB and numerical 
results of the linearized BGK equation (Wu et al., 2017): (a) Kn = 0.0–4.0; (b) Kn = 0.0–0.5.  

Fig. 15. The non-dimensional permeability of micro-gaseous flow in three porous media (Su et al., 2017) with Knudsen number over a 
wide range from 0.0 to 0.5. A detailed comparison of the predicted results by this DM and DBB and those by discrete velocity method in 
Su et al.’s works (Su et al., 2017): (a) DM boundary scheme, (b) DBB boundary scheme.  
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(2)  While  modeling  the  micro-gaseous  flow  in 
complicated porous media, the MRT-LBM provides good 
predictions for the straight channel, while underestimating 
the permeability compared to that obtained by the DVM 
for large Knudsen-number flows. This indicates that the 
Bosanquet-type effective viscosity derived from a straight 
long-channel has extremely limited applicability to other 
complicated porous media. Thus, the direct extension of 
effective viscosity derived from a straight long-channel to 
random  porous  media  might  become  problematic.  A 
detailed comparison of MRT-LBM and DVM results, as 
well as numerical solutions of linearized BGK equations 
indicates that the present MRT-LBM combined with the 
corrected  effective  viscosity  is  capable  of  providing 
reliable results when the Knudsen number is less than 0.3.  

In conclusion, the MRT-LBM, as a continuum-based 
CFD solver in nature, can effectively model the micro-
gaseous flow in complicated porous media in slip and 
early transition flow regimes when Kn＜0.3. It is also a 
challenging task to  establish a reliable model for  the 
effective viscosity correction that fits curved boundary to 
further  address  the  high  Knudsen-number  flows  in 
complicated porous media, which deserves our further 
research. 
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