
1 Introduction 
 
The North China Craton (NCC) can be divided into four 

micro-continental  blocks  and  three  Paleoproterozoic 
mobile  belts,  based  on  lithological,  structural, 
metamorphic, and geochronological data (Fig. 1; Zhao et 
al., 1998, 2005, 2012). The Yinshan and Ordos blocks 
were amalgamated along the Khondalite Belt at ∼1.95 Ga, 
forming the Western Block (Zhao et al., 2005, 2012; Wan 
et al., 2006; Xia et al., 2006a, b). The Longgang and 
Liaonan–Rangnim blocks collided along the Jiao–Liao–Ji 
Belt (JLJB) at ∼1.90 Ga and formed the Eastern Block 
(Fig. 2). The Trans-North China Orogen resulted from the 
amalgamation of the Western and Eastern blocks at ∼1.85 
Ga (Zhao et al., 2001, 2005, 2012). 

The JLJB is the most controversial Paleoproterozoic 
mobile belt in the NCC. It is a NE–SW-trending belt that 
has experienced a complex tectonic evolution involving 
multi-stage magmatism, metamorphism, and deformation 
(Li et al., 1996, 1997, 2005; He and Ye, 1998; Zhao et al., 
2012; Liu et al., 2015, 2018; Wang et al., 2015; Xu et al., 

2019). Previous geochronological studies have reported 
that the JLJB was active from 2.2 to 1.8 Ga (e.g., Zhang 
and Yang, 1988; Lu, 2004; Lu et al., 2005, 2006; Li and 
Zhao, 2007; Zhao et al., 2012; Meng et al., 2013, 2017a–c; 
Li and Chen, 2014, 2016; Liu et al., 2015, 2018; Wang et 
al., 2015; Li C et al., 2017a; Wang X J et al., 2017; Xu et 
al., 2019). The evolution of the JLJB can be divided into 
three stages: (1) the early extensional stage (2.20–2.10 
Ga); (2) the basin closure and following collisional stages 
(2.10–1.90 Ga); and (3) the post-collisional stage (1.90–
1.80 Ga) (e.g., Zhang and Yang, 1988; Bai, 1993; Lu, 
2004; Zhao et al., 2012; Liu et al., 2015, 2018; Wang et 
al., 2015; Xu et al., 2019). Although the ~1.9 Ga orogenic 
event is identified by the high-pressure metamorphic belt 
on Shandong Peninsula (Liu et al., 2010, 2011a–b, 2012, 
2013, 2015), the initial tectonic setting of the JLJB is 
debated (e.g., Zhang and Yang, 1988; Bai, 1993; Lu et al., 
2006; Zhao et al., 2012; Liu et al., 2015, 2018; Wang et 
al., 2015; Xu et al., 2019). The debate centers on whether 
the JLJB was a rift (e.g., Zhang and Yang, 1988; Li et al., 
2006; Li and Zhao, 2012; Zhao et al., 2012; Wang X P et 
al., 2017; Liu et al., 2018) or an arc–continent collisional 
belt (e.g., Bai, 1993; Faure et al., 2004; Wang et al., 2015; 
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Fig. 1. Tectonic outline of the North China Craton (after Zhao et al., 2005, 2012).  
The black rectangle shows the location of Fig. 2.  

Fig. 2. Map of the Jiao–Liao–Ji Belt showing the distribution of Paleoproterozoic granitoids on Liaodong Peninsula (after Li and 
Zhao, 2007). 
The age data and related references in this figure are listed in Table 1.  
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Li et al., 2015a–b, 2016, 2019; Yuan et al., 2015; Li Z et 
al., 2017; Wang F et al., 2017; Xu et al., 2019). The 
presence  of  widespread  pre-tectonic  A-type  granitoids 
(e.g., Zhang and Yang, 1988; Hao et al., 2004; Lu et al., 
2004a; Li and Zhao, 2007; Yuan et al., 2015), bimodal 
volcanic rocks (Zhang and Yang, 1988), and the low-
pressure and anticlockwise metamorphic P–T–t paths of 
Liaohe Group rocks (He and Ye, 1998) indicate an intra-
continental rift setting. However, the pre-tectonic A-type 
granitoids and associated volcanic rocks are depleted in 
Nb, Ta, and Ti, and have a subduction zone affinity (Meng 
et al., 2014, 2017a, c; Chen et al., 2016; Li et al., 2016, 
2019). 

Paleoproterozoic granitoids are an important constituent 
of the JLJB, and the granitoid types in the JLJB changed 
as the belt evolved. The pre-tectonic granitoids were once 
considered  to  comprise  only  A-type  granitoids  and 
indicate an extensional environment (Zhang and Yang, 
1988; Lu et al., 2004a–b; Qin, 2013; Xu et al., 2019). 
Recently,  some  ~2.15  Ga  adakitic  rocks  have  been 
identified in the Simenzi area, which provide important 
evidence for the arc–continent collisional model (Zhu et 
al., 2019). The ~1.85 Ga granitoids comprise a variety of 
rock  types,  indicating  complex  evolutionary  and 
petrogenetic processes. These Paleoproterozoic granitoids 
provide important information on the geological evolution 
of the JLJB. Xu et al. (2019) identified five magmatic flare
-ups during the evolution of  the JLJB. However,  the 
geological significance of the pre-tectonic adakitic and 
various post-tectonic granitoids has not been considered. 
The  various  types  of  Paleoproterozoic  granitoids  on 
Liaodong Peninsula can provide new insights into the 
evolution of the JLJB. 

In  this  paper,  we  review  the  petrological, 
geochronological,  and  geochemical  features  of  the 
Paleoproterozoic granitoids on Liaodong Peninsula (Fig. 
2),  and  discuss  the  petrogenesis  and  geological 
significance  of  these  granitoids,  as  well  as  some 
outstanding questions regarding their formation. 

 
2 Geological Background 

 
The JLJB separates the Eastern Bock into the Longgang 

and Liaonan–Rangnim blocks (Fig.  2).  The Longgang 
Block comprises mainly Archean tonalite–trondhjemite–
granodiorite (TTG) rocks and K-rich granitoids, including 
some 3.8–3.0 Ga complex rocks, 3.3 Ga gneisses, 3.1 Ga 
trondhjemites, 3.0 Ga monzogranites, 2.5 Ga TTG rocks 
and monzogranites, and meta-supracrustal rocks (Liu et 
al., 1992; Song et al., 1996; Wan et al., 1998, 2002, 2005, 
2007, 2012a–b, 2013, 2015; Wu et al., 1998; Wu et al., 
2008). Although rocks older than 2.6 Ga have not yet been 
discovered in the Liaonan Block, its ~2.5 Ga plutonic 
rocks are comparable to those in the Longgang Block, 
suggesting a similar origin (Lu et al., 2004a; Luo et al., 
2008; Zhao et al., 2012; Wang W et al., 2017; Wang M J 
et al., 2017). The Rangnim Block was considered to be an 
Archean block similar to the Longgang Block (Li and 
Zhao, 2007; Luo et al., 2008; Zhao et al., 2012). However, 
recent  studies  have  revealed  that  Archean  rocks  are 
sporadically distributed in the Longgang Block, and this 

block consists mainly of 2.1–1.9 Ga rocks that are similar 
to those in the JLJB (Zhao et al., 2006; Wu et al., 2016). 
Therefore, some studies have proposed that the Rangnim 
Block is a Paleoproterozoic unit like the Liaoji belt rather 
than an Archean massif (Zhao et al., 2006, 2016; Wu et 
al., 2007, 2016; Wang et al., 2015).  

A series of meta-sedimentary and volcanic successions 
with associated granitic and mafic intrusions crop out in 
the JLJB of Liaodong Peninsula (e.g., Zhang and Yang, 
1988; Luo et al., 2004, 2008; Meng et al., 2013, 2017a–c; 
Liu et al., 2015; Wang et al., 2015; Bi et al., 2018; Xu et 
al., 2019). Based on lithological, structural, metamorphic, 
and  geochronological  investigations,  the  JLJB can  be 
divided into North and South sub-belts along a line that 
joins  the  towns  of  Gaixian–Ximucheng–Taziling–
Jiangcaodianzi–Aiyang (Fig. 2). The two sub-belts are in 
tectonic contact (Wang et al., 2015). The North Sub-belt 
contains the Laoling, North Liaohe, and Fenzishan groups, 
and the South Sub-belt comprises the Ji’an, South Liaohe, 
Jingshan,  and  Wuhe  groups  (Liu  et  al.,  2015). 
Paleoproterozoic granitoids are widespread in the JLJB 
and can be divided into  pre-tectonic (~2.15 Ga;  also 
known as the Liaoji granitoids) and post-tectonic (~1.85 
Ga) granitoids (Table 1). A few ~2.0 Ga granitoids are 
present in the JLJB (Wang P S et al., 2017), but their field 
occurrence is dike-like rather than large plutons. Most of 
the post-tectonic granitoids formed at ~1.9 Ga (Ren et al., 
2017). 

 
3 Field Geology and Petrography 
 
3.1 Pre-tectonic granitoids 

The pre-tectonic granitoids formed in the early stages of 
the JLJB, and have a gneissic structure (Fig. 3a–d). They 
comprise  mainly  magnetite  and  hornblende–biotite 
monzogranitic gneisses, and are K-rich (Zhang and Yang, 
1988; Hao et al., 2004; Lu et al., 2004a–b; Li and Zhao, 
2007; Ren et al., 2017; Wang et al., 2015). Recently, some 
granodiorites have been identified in the Simenzi and 
Muniuhe areas (Fig. 3e–f; Yang et al., 2015a; Song et al., 
2016;  Zhu  et  al.,  2019).  These  granodiorites  are 
characterized by a Na-rich geochemistry and complex 
zircon age compositions (Zhu et al., 2019). 

Monzogranitic gneisses are the most common granitic 
intrusions in the JLJB, whereas the coeval granodiorites 
are restricted to a few areas (e.g., Simenzi and Muniuhe) 
(Zhang and Yang, 1988; Li and Zhao, 2007; Yang et al., 
2015a; Song et al., 2016; Ren et al., 2017; Zhu et al., 
2019). Most of the Liaoji granitoids occupy the cores of 
WNW–ESE-trending  or  NW–SE-trending  anticlines, 
which are composed of meta-sedimentary rocks (Zhang 
and Yang, 1988). Most of the pre-tectonic granitic plutons 
contain a gneissosity that is parallel to the bedding of the 
Liaohe Group rocks (Li et al., 1996; Li and Zhao, 2007). 
These observations are consistent with an emplacement 
model of uplift bedding–delamination (Li et al., 1996, 
1997). Contacts between the Liaoji granitoids and Liaohe 
Group are mainly tectonic in nature (Liu et al., 2015; 
Wang  et  al.,  2015),  although  intrusive  contacts  are 
observed in some areas (Liu et al., 2007; Feng et al., 2008; 
Liu et al., 2015; Wang et al., 2015). Xenoliths of the 
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Table 1 Summary of age data for the Paleoproterozoic granitoids (from west to east) 
No. Pluton Sample Lithology Type Age (Ma) Analytical method Location References 

Pre-tectonic granitoids

1 Hupiyu 

FW01-327 Granitic gneiss A2 2161±12 Zircon (LA-ICP-MS)

Hupiyu Village 

Lu et al. (2004a) 

LJ044 Monzogranitic 
gneiss A2 2150±17 Zircon (SHRIMP) Li and Zhao (2007) 

NHP01 Monzogranitic 
gneiss A2 2173±20 Zircon (LA-ICP-MS) Qin (2013) 

LZ02-1 Granitic gneiss A2 2189±10 Zircon (LA-ICP-MS) Li and Chen (2014) 
LZ04-1 Granitic gneiss A2 2172±8 Zircon (LA-ICP-MS) Li and Chen (2014) 
LZ19-1 Granitic gneiss A2 2158±23 Zircon (LA-ICP-MS) Li and Chen (2014) 
HPX1 Gneissic granite A2 2209±12 Zircon (LA-ICP-MS) Chen et al. (2016) 
13LJ03 Gneissic granite A2 2119±16 Zircon (LA-ICP-MS) Ren et al. (2017) 
NHP-11 Gneissic granite A2 2180±14 Zircon (LA-ICP-MS) Zhu et al. (2019) 

2 Mafeng 

LD9822 Granite A2 2173± 4 Zircon (SHRIMP) 

Mafeng Town 

Wan et al. (2006) 

LJ056 Monzogranitic 
gneiss A2 2176±11 Zircon (SHRIMP) Li and Zhao (2007) 

LC1 Monzogranitic 
gneiss A2 2205± 6 Zircon (LA-ICP-MS) Li C et al. (2017a) 

LC26 Granitic gneiss A2 2213±6 Zircon (LA-ICP-MS) Li C et al. (2017a) 
601SDG1 Monzogranite A2 2181±6 Zircon (CAMECA) Wang X P et al. (2017) 

3 Hadabei HD-2 Granitic gneiss A2 2175±3 Zircon (LA-ICP-MS) Hadabei Town Yang et al. (2015a) 

4 Muniuhe D1001-B1 Monzogranite A2 218±29 Zircon (LA-ICP-MS) Muniuhe Town Wang P S et al. (2017) 
NMN-5 Monzogranite A2 2158±14 Zircon (LA-ICP-MS) This study 

5 Dafangshen 

LJ040 Monzogranitic 
gneiss A2 2143±17 Zircon (SHRIMP) 

Dafangshen Town 

Li and Zhao (2007) 

D3208-B1 Monzogranite A2 2183±13 Zircon (LA-ICP-MS) Wang P S et al. (2017)
D5132-B1 Monzogranite A2 2166±13 Zircon (LA-ICP-MS) Wang et al. (2017) 

NXK-1 Monzogranitic 
gneiss A2 2179±4 Zircon (LA-ICP-MS) This study 

6 Dadingzi 

TW13 Monzogranite Adakite 1869±16 Zircon (SHRIMP) West of the 
Simenzi Town 

Song et al. (2016) 
DTY-8 Granodiorite Adakite 2173±11 Zircon (LA-ICP-MS) Zhu et al. (2019) 

P32TW2-1 Plagiogranite Adakite 2176±14 Zircon (LA-ICP-MS) West of the 
Simenzi Town 

Geological Survey Institute 
of Liaoning Province (2019)

719FSG1 Plagiogranite Adakite 1891±10 Zircon (CAMECA) Wang X P et al. (2017) 
7 Fangjieweizi DTY-8 Granodiorite A2 2130±24 Zircon (LA-ICP-MS) West of the Simenzi Town Zhu et al. (2019) 

8 Simenzi SM-1 Monzogranitic 
gneiss A2 2205±2 Zircon (LA-ICP-MS) Simenzi Town Yang et al. (2015a) 

TW12 Monzogranite Adakite 2153±16 Zircon (SHRIMP) Song et al. (2016) 

9 Jiguanshan 
LJ035 Monzogranitic 

gneiss A2 2175±13 Zircon (SHRIMP) 
Jiguanshan Town 

Li and Zhao (2007) 

LN6 Porphyritic 
monzogranite A2 

1870±7/ 
1850±11 Zircon (LA-ICP-MS) Liu et al. (2017) 

10 Gujiapuzi T02-1 Syenogranite A2 2169±11 Zircon (SHRIMP) Gujiapuzi Song et al. (2016) 

11 Yongdian-Buda
yuan 

LJ010 Monzogranitic 
gneiss A2 2166±14 Zircon (SHRIMP) 

Between the Yongdian 
and Budayuan towns 

Li and Zhao (2007) 

LC110 Monzogranitic 
gneiss A2 2178±7 Zircon (LA-ICP-MS) Li C et al. (2017a) 

LC126 Monzogranitic 
gneiss A2 2180±6 Zircon (LA-ICP-MS) Li C et al. (2017a) 

NYD-3 Granitic gneiss A2 2180±5 Zircon (LA-ICP-MS) Teng et al. (2017) 

16LN13-1 Monzogranitic 
gneiss A2 2177 ± 15 Zircon (LA-ICP-MS) Wang X J et al. (2017) 

16LN23-1 Monzogranitic 
gneiss A2 2177±9 Zircon (LA-ICP-MS) Wang X J et al. (2017) 

12 Qianzhuogou 

Lu0007 Syenogranite A2 2164±8 Zircon (LA-ICP-MS)

East of the Huanren 
County 

Lu (2004) 
Lu1065 Syenogranite A2 2158±13 Zircon (LA-ICP-MS) Lu (2004) 

NMY03 Monzogranitic 
gneiss A2 2168±14 Zircon (LA-ICP-MS) Qin (2013) 

NQZ01 Monzogranitic 
gneiss A2 2170±11 Zircon (LA-ICP-MS) Qin (2013) 

Post-tectonic granitoids 

13 Kuangdonggou 

FW01-31 Syenite A2 1843±23 Zircon (LA-ICP-MS)
Kuangdonggou Town 

Lu et al. (2004a) 
03JH079 Syenite A2 1879±11 Zircon (LA-ICP-MS) Yang et al. (2007) 
03JH080 Syenite A2 1872±14 Zircon (LA-ICP-MS) Yang et al. (2007) 
03JH082 Diorite A2 1870±18 Zircon (LA-ICP-MS) Yang et al. (2007) 

14 Wolongquan 
FW02-62 Porphyritic 

monzogranite S 1848±10 Zircon (LA-ICP-MS) Wolongquan Town Lu et al. (2004a) 

RZ10 Porphyritic 
monzogranite S 1888.4±5.3 Zircon (LA-ICP-MS) Wolongquan Town Liu W B et al. (2018) 

15 Nantaizi 11LJ65 Quartz monzonite I 1850±11 Zircon (LA-ICP-MS) North of the Hupiyu 
pluton Ren et al. (2017) 

16 Housong- 
shugou 13LJ11 Granodiorite Adakite 1892±16 Zircon (LA-ICP-MS) West of the 

Hupiyu pluton Ren et al. (2017) 
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Liaohe Group are present in some pre-tectonic plutons 
(e.g., Lieryu Formation xenoliths in the Simenzi pluton), 
suggesting an intrusive contact between such plutons and 
the lower Liaohe Group (Zhu et al., 2019). Some mafic 
dikes (~2.15 Ga) were intruded into pre-tectonic granitic 
plutons (Yang et al., 2015a), and the dikes and granitic 
plutons  were  intruded  by  later  granites  and  granitic 
pegmatites (Fig. 3g–h). 

Compared with the monzogranitic gneisses, the pre-
tectonic granodiorites display weak or no gneissosity (Fig. 
3e–f). No contacts have been observed between the pre-
tectonic  granodiorites  and  lower  Liaohe  Group  (e.g., 
Lieryu  and  Gaojiayu  formations).  A  faulted  contact 
between the Gaixian Formation and granodiorites can be 
observed in the Simenzi area (Fig. 4). 

 
3.2 Post-tectonic granitoids 

It has become increasingly recognized that post-tectonic 
granitoids are also widespread in the JLJB (Zhang and 
Yang, 1988; Lu, 2004; Lu et al., 2005; Qin, 2013; Song et 
al., 2016; Liu et al., 2017). The post-tectonic granitoids in 
the JLJB comprise a series of ~1.85 Ga rocks, including 
the  Housongshugou  granodiorite,  Nantaizi  quartz 
monzonite, Kanzi monzogranite, Kuangdonggou syenite 
and diorite,  widespread  porphyritic  monzogranite,  and 
granitic pegmatites (Fig. 5; Ge et al., 1991; Lu, 2004; Lu 
et al., 2004a, 2005; Li and Zhao, 2007; Yang et al., 2007; 
Wang et al., 2011; Qin, 2013; Yang et al., 2015b; Song et 
al., 2016; Liu et al., 2017; Ren et al., 2017; Wang P S et 
al., 2017; Yang et al., 2017). Most of the post-tectonic 
plutons do not display a gneissosity (Fig. 5c–h), although 
some have a weak gneissosity (Fig.  5c–h).  The post-
tectonic granitoids intrude the Liaohe Group and pre-
tectonic plutons (Ren et al., 2017; Yang et al., 2017), and 

xenoliths of the upper Liaohe Group (e.g., Dashiqiao and 
Gaixian formations) can be observed in the plutons (Fig. 
5i). 

 
4 Geochemistry and Magma Sources  
   
In addition to our unpublished data, other data for the 

granitoids were collated from previous studies (Lu, 2004; 
Yang et al., 2007; Qin, 2013; Yang et al., 2015a; Song et 
al., 2016; Liu et al., 2017; Ren et al., 2017; Teng et al., 
2017; Wang P S et al., 2017; Liu W B et al., 2018; Zhu et 
al., 2019), which includes data for 79 pre-tectonic and 43 
post-tectonic  granitoids.  Some  plutons  have  not  been 
analyzed (e.g., Kanzi pluton) and are not discussed further. 
    

4.1 Major and trace elements 
4.1.1 Pre-tectonic granitoids 

SiO2 contents of the Liaoji granitoids range from 63 to 
78 wt%. K2O, Na2O, CaO, Fe2O3

T, and Al2O3 contents 
range from 0.6 to 7.1, 2.2 to 6.2, 0.08 to 3.16, 0.6 to 7.6, 
and 10.6 to 17.1 wt%, respectively. A/CNK ratios vary 
from 0.88 to 1.27 (Fig. 6a). In a Na2O+K2O vs. SiO2 plot, 
data for nearly all the Liaoji granitoids plot in the granite 
field (Fig. 7a). Based on K2O and Na2O contents, the 
Liaoji granitoids can be divided into K-rich [ω(K2O) > ω
(Na2O)] and Na-rich [ω(Na2O) > ω(K2O)] groups. Most K
-rich Liaoji granitoids belong to the shoshonite or high-K 
calc-alkaline series, whereas the Na-rich granitoids belong 
to  the  high-K  calc-alkaline,  calc-alkaline,  or  tholeiite 
series (Fig. 7b). 

Based on total rare earth element (TREE) contents, the 
Liaoji granitoids can be divided into high- and low-TREE 
groups (Fig. 8a). The low-TREE group comprises some of 
the  Na-rich  granitoids,  and  the  high-TREE  group 

 Continued Table 1 
No. Pluton Sample Lithology Type Age (Ma) Analytical method Location References 
17 Helan 10JLL13 Granitic pegmatite 1875±10 Zircon (LA-ICP-MS) Helan Town Wang et al. (2011)

18 Wuleishan TW11 Porphyritic granite Adakite 1835 ± 9 Zircon (SHRIMP) North of the Muniuhe 
Town Song et al. (2016) 

19 Sanjiazi 

16KD54-2 Granitic pegmatite 1876±11 Zircon (LA-ICP-MS)
Around the 

Sanjiazi Town 

Yang et al. (2017) 
16KD66-1 Granitic pegmatite 1802±15 Zircon (LA-ICP-MS) Yang et al. (2017) 
16KD80-2 Granitic pegmatite  1740±8 Zircon (LA-ICP-MS) Yang et al. (2017) 
16SJZ07-8 Granitic pegmatite  1871±7 Zircon (LA-ICP-MS) Yang et al. (2017) 

20 Huanghuadian D1032-B1 Granodiorite Adakite 1995±18 Zircon (LA-ICP-MS) Huanghuadian Town Wang P S et al. (2017)
D5002-B1 Granodiorite Adakite 1995±13 Zircon (LA-ICP-MS)  Wang P S et al. (2017)

21 Jiuliancheng LN3 Porphyritic monzogranite S 1872±8/1851±12 Zircon (LA-ICP-MS) Northern of 
Dandong City 

Liu et al. (2017) 
LN4 Porphyritic monzogranite S 1865±6/1849±8 Zircon (LA-ICP-MS) Liu et al. (2017) 

22 Kuandian 16KD05-4 Granitic pegmatite  1842±13 Zircon (LA-ICP-MS) Yongdian-Taipingshao 
towns 

Yang et al. (2017) 
16KD06-1 Granitic pegmatite 1864±8 Zircon (LA-ICP-MS) Yang et al. (2017)

23 Bahechuan 
Lu010 Porphyritic monzogranite S 1841±12 Zircon (SHRIMP) 

Bahechuan Town 
Lu et al. (2005) 

LJ006 Porphyritic monzogranite S 1875±10 Zircon (SHRIMP) Li and Zhao (2007)
LN5 Porphyritic monzogranite S 1864±8/1844± 9 Zircon (LA-ICP-MS) Liu et al. (2017) 

24 Zhenjiang- 
Yulin 

LN1 Porphyritic monzogranite S 1867±10/1842±12 Zircon (LA-ICP-MS) Zhenjiang-Yulin 
towns 

Liu et al. (2017)
LN2 Porphyritic monzogranite S 1866±6/1846±13 Zircon (LA-ICP-MS) Liu et al. (2017) 

25 Shuangcha 

92015 Porphyritic monzogranite S 1872±11 Zircon (SHRIMP) 

East of Huanren 
County 

Lu et al. (2005) 
12082 Porphyritic monzogranite S 1817±18 Zircon (SHRIMP) Lu et al. (2005) 
LJ005 Porphyritic monzogranite S 1856±31 Zircon (SHRIMP) Li and Zhao (2007)
NSC01 Porphyritic monzogranite S 1877±15 Zircon (LA-ICP-MS) Qin (2013) 
SC-1 Porphyritic monzogranite S 1895±2 Zircon (LA-ICP-MS) Yang et al. (2015b)
JN7 Porphyritic granite S 1871±7/1850±12 Zircon (LA-ICP-MS) East of Huanren 

County 
Liu et al. (2017) 

JN8 Porphyritic granite S 1872±7/1850±13 Zircon (LA-ICP-MS) Liu et al. (2017) 
26 Longquan JN6 Porphyritic granite S 1865±7/1849 ± 9 Zircon (LA-ICP-MS) Longquan Town Liu et al. (2017) 
27 Qinghe 12072 Quartz diorite I 1872±11 Zircon (SHRIMP) Qinghe Town Lu et al. (2005) 
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comprises all the K-rich and remaining Na-rich granitoids. 
The Na-rich granitoids have slightly more negative Eu 
anomalies than the K-rich granitoids. In a primitive-mantle
-normalized trace element diagram, data for high-TREE 
samples exhibit enrichments in Ba, K, Th, and Nd. In 
contrast, they are depleted in Sr, Nb, P, and Ti (Fig. 8b). 
The low-TREE samples are enriched in Cs, K, and Sr, and 
depleted in Th, Nb, and Ti (Fig. 8b). The difference in Sr 
contents  between  the  high-  and  low-TREE groups  is 
particularly evident. Thus, the samples can be divided into 
high-Sr  (277–992  ppm)  and  low-Sr  (9.3–150.5  ppm) 
groups on the basis of Sr contents. In general, the Sr 
content is related to the pressure of the original magma 
source (Zhang et al., 2006). Therefore, a classification 
based on Sr content is more reasonable than that based on 
K2O and Na2O contents. Sr and Yb contents indicate that 
the  low-TREE  group  comprises  high-Sr–low-Yb 
granitoids, whereas the high-TREE group comprises low-
Sr–high-Yb granitoids. 

 
4.1.2 Post-tectonic granitoids 

SiO2 contents of the post-tectonic granitoids vary from 
53 to 76 wt%. K2O and Na2O contents range from 3.0 to 

8.5 wt% and 1.8 to 6.6 wt%, respectively, and Fe2O3
T and 

Al2O3 contents vary from 0.5 to 9.1 wt% and 12.7 to 19.6 
wt%,  respectively.  A/CNK ratios  of  the  post-tectonic 
granitoids are 0.76 to 1.32 (Fig. 6b). In a TAS (total 
alkalis–silica)  classification  diagram,  data  for 
Kuangdonggou and Nantaizi samples plot in the syenite 
and syenodiorite fields, and they are alkaline rocks (Fig. 
7c). The other post-tectonic granitoids are subalkaline/
tholeiitic rocks that plot in the granite and granodiorite 
fields (Fig. 7c). Most of the pre-tectonic granitoids belong 
to the shoshonite or high-K calc-alkaline series, but a few 
are calc-alkaline (Fig. 7d). 

The post-tectonic granitoids can also be divided into 
high-  and  low-TREE  groups  (Fig.  8c),  which  are 
consistent  with  the  K-rich  (porphyritic  monzogranite, 
syenite,  and  diorite)  and  Na-rich  (Housongshugou 
granodiorite  and  Nantaizi  quartz  monzonite)  groups, 
respectively.  The  post-tectonic  K-rich  samples  are 
enriched in Th, U, K, and Nd, and depleted in Nb, P, and 
Ti  (Fig.  8d).  The  post-tectonic  Na-rich  samples  are 
enriched in K, Ba, and Zr, and depleted in Nb, P, and Ti 
(Fig. 8d). Compared with the pre-tectonic granitoids, the 
post-tectonic granitoids have more complex geochemical 

Fig. 3. Photographs of the Liaoji granitoids.  
(a–b) Hupiyu granitic gneiss; (c) Simenzi monzogranitic gneiss; (d) Mafeng monzogranitic gneiss; (e) Qianzhuuogou monzogranitic gneiss; (f) Dadingzi 
granodiorite (weak gneissosity); (g) Fangjiaweizi granodiorite (no gneissosity); (h) Hupiyu pluton intruded by mafic and granitic dikes, and (i) mafic dike 
intruded by granitic pegmatite in the Hupiyu pluton.  
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compositions. As such, a classification based on Sr and Yb 
contents was used for these post-tectonic granitoids (Table 
2). Post-tectonic granitoids include low-Sr–high-Yb (all 
porphyritic  monzogranites,  except  the  Wolongquan 
porphyritic  monzogranites),  low-Sr–low-Yb  (Nantaizi 
quartz  monzonite  and  four  Wolongquan  porphyritic 
monzogranites), high-Sr–high-Yb (Kuangdonggou diorite 
and  two  Wolongquan  porphyritic  monzogranites),  and 
high-Sr–low-Yb types (Housongshugou granodiorite and 
Kuangdonggou  syenite).  The  two  high-Sr–high-Yb 
Wolongquan  samples  have  a  different  geochemical 

composition from the other four  samples (Fig.  8c–d), 
indicating they may originate from an unknown pluton. 
The two anomalous samples are not considered further. 

 
4.2 Genetic type 
4.2.1 Pre-tectonic granitoids 

In geochemical discrimination diagrams, data for the 
low-Sr granitoids plot in the field of A-type granitoids 
(Fig. 9a–b), and the high-Sr samples plot in the I- and S-
type fields. In addition, the low-Sr granitoids have high 
FeOT (>1 wt%), Zr+Nb+Ce+Y (>350 ppm) and magma 

 

Fig. 4. Photograph and cross-section showing the contact between the Gaixian Formation and Dadingzi pluton (after Zhu et al., 
2019). 
(a) Faulted contact between the Gaixian Formation and Dadingzi pluton; (b) Contact zone detail; (c) Cross-section of the outcrop shown in (a).  

Table 2 Classification of the post-tectonic granitoids on the basis of Sr and Yb contents  

No Pluton lithology number of samples Sr (ppm) average Yb (ppm) average classification references 
1 Shuangcha 

Porphyritic 
monzogranite

11 

45–314 117 1.23–3.55 2.51 Low-Sr–high-Yb Lu et al. (2006);
Liu et al. (2017)

2 Zhenjiang-Yulin 2 
3 Jiuliancheng 2 
4 Bahechuan 1 
5 Jiguanshan 1 
6 Longquan 1 

7 Wolongquan 

Porphyritic 
monzogranite 4 78.9–361 175 1.52–2.25 1.82 Low-Sr–low-Yb Liu et al. (2018b)

Porphyritic 
monzogranite 2 752–811 782 3.85–4.06 4.00 High-Sr–high-Y

b Liu et al. (2018b)

8 Kuangdonggou 
syenite 3 665–766 704 1.61–2.20 1.83 High-Sr–low-Yb Yang et al. (2007)

diorite 3 1271–1339 1308 3.44–3.63 3.52 High-Sr–high-Y
b Yang et al. (2007)

9 Housongshugou Granodiorite 5 287–348 319 0.12–0.24 0.17 High-Sr–low-Yb Ren et al. (2017)

10 Nantaizi Quartz 
monzonite 3 22.1–58.6 34.7 0.38–0.67 0.52 Low-Sr–low-Yb Ren et al. (2017)
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Fig. 5. Photographs of the post-tectonic granitoids.  
(a–b) Housongshugou granodiorite; (c) Shuangcha porphyritic monzogranite; (d) garnet-bearing granite (Qinghe Town); (e) Kuangdonggou syenite; (f) 
Wolongquan porphyritic monzogranite; (g) Kanzi monzogranite; (h) tourmaline-bearing granitic pegmatites, and (i) Wolongquan pluton intruding the 
Gaixian Formation. Grt = garnet; Tur = tourmaline.  

Fig. 6. Aluminous index diagrams for the Paleoproterozoic granitoids.  
1 = Shuangcha porphyritic monzogranite; 2 = Nantaizi quartz monzonite; 3 = Housongshugou granodiorite; 4 = Wolongquan porphyritic monzogranite; 5 = 
porphyritic monzogranite from Liu et al. (2017); 6 = Kuangdonggou syenite; 7 = Kuangdonggou diorite. 
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temperatures (850–890°C), providing further evidence for 
their A-type affinities (Wang et al., 2000; Whalen et al., 
1987; Eby, 1990; Wu et al., 2007a). The high Sr/Y (70.7–
381.5) and low P2O5 (0.01–0.07 wt%), TREE (15.19–
33.14 ppm) contents and magma temperatures (727–738°
C) suggest that the high-Sr group are I-type granitoids 
(Fig. 10a), and have an affinity with adakitic rocks (Fig. 
10c). 
 
4.1.2 Post-tectonic granitoids 

Data  for  the  Nantaizi,  Wolongquan,  and 
Kuangdongggou  plutons  plot  in  the  A-type  field  in 
geochemical discrimination diagrams (Fig. 9c–d). A-type 
granites are characterized by high Zr+Nb+Ce+Y (>350 
ppm). However, Zr+Nb+Ce+Y contents of the Nantaizi 
and Wolongquan samples range from 57.2 to 267.5 ppm. 
Hence, these are high-alkali I- or S-type rather than A-type 
granitoids. There is negative correlation between SiO2 and 

P2O5 contents in I-type granitoids, whereas SiO2 content 
has  positive  correlation  with  P2O5  content  in  S-type 
granitoids (Li et al., 2007). In a SiO2 vs. P2O5 diagram, the 
Nantaizi and Wolongquan samples are identified as I- and 
S-type  granitoids,  respectively  (Fig.  10b).  The 
Kuangdonggou samples are enriched in alkalis and Zr–Y, 
have high Ga/Al ratios and marked negative Eu anomalies, 
and display A-type  affinities.  However,  their  high Sr 
(>400 ppm) and low SiO2 (<70 wt%) contents suggest 
they are also different  from typical  A-type granitoids 
(Zhang Q et al., 2012). The Housongshugou granodiorites 
have high Sr/Y and plot in the adakite field in a Sr/Y vs. Y 
diagram (Fig. 10d). Most of the widespread porphyritic 
monzogranites contain aluminous primary phases (e.g., 
muscovite, cordierite, and garnet), and have high A/CNK 
(>1.1) and K2O/Na2O ratios, reflecting an S-type affinity 
(Lu et al.,  2005; Liu et al.,  2017). Liu et al.  (2017) 
considered these porphyritic monzogranites to be I-type 

 

Fig. 7. (a, c) Total alkalis–silica and (b, d) SiO2 vs. K2O classification diagrams for the Paleoproterozoic granitoids.  
1 = Shuangcha porphyritic monzogranite; 2 = Nantaizi quartz monzonite; 3 = Housongshugou granodiorite; 4 = Wolongquan porphyritic monzogranite; 5 = 
porphyritic monzogranite from Liu et al. (2017); 6 = Kuangdonggou syenite; 7 = Kuangdonggou diorite.  
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granitoids based on their high Zr-saturation temperatures 
(790–908°C) and absence of inherited zircons. Sylvester 
(1998) suggested that hot (>875°C) strongly peraluminous 
granites can form in a post-collisional setting and are 
generated  by mantle-derived  heating  after  lithospheric 
delamination. Cordierite is diagnostic for identifying S-
type granitoids (Wu et al., 2007), and is present in the 
Shuangcha pluton (Lu et al., 2005). Although most of the 
porphyritic  monzogranite  plutons  lack  cordierite,  they 
have similar geochemical compositions as the Shuangcha 
granitoids (Fig. 8c–d), suggesting a similar petrogenesis. 

In  addition,  most  of  the  data  for  the  porphyritic 
monzogranites are consistent with the evolutionary trend 
of S-type granitoids in a SiO2 vs. P2O5 diagram (Fig. 9b). 
CaO/Na2O  and  Al2O3/TiO2  ratios  indicate  the 
Wolongquan porphyritic monzogranites (CaO/Na2O=0.04
–0.40; Al2O3/TiO2=41.4–347.5) are pelite-derived, low-
temperature S-type granitoids, whereas the other samples 
(CaO/Na2O=0.12–1.15;  Al2O3/TiO2=16.3–46.8)  are 
psammite-derived,  high-temperature  S-type  granitoids 
(Sylvester,  1998).  Therefore,  all  the  porphyritic 
monzogranites are S-type. In summary, the post-tectonic 

 

Fig. 8. (a, c) Chondrite-normalized REE patterns (normalization values from Boynton, 1984) and (b, d) primitive-mantle-
normalized trace element diagrams for the Paleoproterozoic granitoids (normalization values from Sun and McDonough, 1989).  
1 = Shuangcha porphyritic monzogranite; 2 = Nantaizi quartz monzonite; 3 = Housongshugou granodiorite; 4 = Wolongquan porphyritic monzogranite; 5 = 
porphyritic monzogranite from Liu et al. (2017); 6 = Kuangdonggou syenite; 7 = Kuangdonggou diorite.  

Fig. 9. Geochemical discrimination diagrams for the Paleoproterozoic granitoids (after Whalen et al., 1987).  
Due to a lack of Ga data, the Wolongquan samples are not shown in this figure.  
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granitoids include adakitic (Housongshugou granodiorite), 
A-type  (Kuangdonggou  syenite  and  diorite),  S-type 
(porphyritic monzogranite), and I-type (Nantaizi quartz 
monzonite) rocks. 

 
4.3 Magma sources 
4.3.1 Pre-tectonic granitoids 

The pre-tectonic  A-type granitoids in  the  JLJB are 
peraluminous, and most likely derived by partial melting 
of felsic crust, with plagioclase and orthopyroxene being 
the main residual source minerals (King et al.,  1997; 
Patino Douce, 1997; Zhang et al., 2006). Low Sr/Y ratios 
imply that the pre-tectonic A-type granitoids formed in a 
low-pressure environment (Zhang et al., 2006). The pre-
tectonic A-type granitoids show wide range in Hf (εHf(t)
=−1.77 to 7.9, TDM

C=3.1–2.3 Ga) and Nd (εNd(t)=−8.63–
3.03 and TDM2=3.3–2.4 Ga) isotope compositions (Song et 
al., 2016; Yang et al., 2016; Zhu et al., 2019; Hao et al., 
2004; Yang et al., 2015a; Li C et al., 2017b; Wang X P et 
al., 2017). Most of TDM

C and TDM2 ages range from 2.8 to 

2.5 Ga, and few of them are ~3.0 and ~2.3 Ga (Song et al., 
2016; Zhu et al., 2019), reflecting that they were mainly 
derived from partial melting of Archean crust. The pre-
tectonic  adakitic  granitoids  have  high  Al2O3  and  Sr 
contents,  significant  heavy  REE depletion,  and  small 
negative Eu anomalies. These features suggest they were 
derived  from  thickened  crust,  and  that  eclogite  or 
amphibolite was the residual lithology (Ge et al., 2002; Li 
and  Li,  2003;  Zhang  et  al.,  2006).  The  pre-tectonic 
adakitic granitoids have εHf(t) values of −13.04 to +6.72 
and TDM2 of these zircons vary from 3.5 to 2.3 Ga (Zhu et 
al., 2019). Most TDM2 ages range from 2.9 to 2.6 Ga, 
suggesting that the adakitic rocks were mainly derived 
from partial melting of Archean igneous rocks (Zhu et al., 
2019). Although both pre-tectonic A-type and adakitic 
granitoids were mainly derived from partial melting of 
Archean  crust,  the  ~2.3  Ga  TDM

C/TDM2  ages  and 
considerable variation in Hf and Nd isotope compositions 
indicate the existence of juvenile materials (or depleted 
mantle) in their magma sources. 

 

Fig. 10. (a–b) P2O5 vs. SiO2 (after Chappell, 1999) and (c–d) Sr/Y vs. Y (after Defant and Drummond, 1990) diagrams for the 
Paleoproterozoic granitoids.  
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4.3.2 Post-tectonic granitoids 
Compared with I-type granitoids, S-type granitoids are 

lower in Na, Ca, Sr, and Fe3+/Fe2+, and higher in Cr and 
Ni. Therefore, S-type granitoids have high A/CNK ratios 
and contain Al-rich minerals. Based on these differences, 
Chappell and White (1992, 2001) proposed that I- and S-
type  granitoids  are  derived  by  partial  melting  of 
intracrustal igneous and supracrustal sedimentary rocks, 
respectively. The porphyritic granitoids mostly have εHf(t) 
and TDM

C of −5.42 to 3.50 and 2.9–2.3 Ga (Yang et al., 
2015b; Liu et al., 2017), and εNd(t) and TDM

C of −5.02 to 
−0.74 and 2.8–2.4 Ga (Hao et al., 2004; Yang et al., 2007; 
Yang et al., 2015b; Wang X P et al., 2017). Their Hf and 
Nd isotope compositions  are  similar  to  those of  pre-
tectonic granitoids, which is consistent with the fact that 
pre-tectonic  igneous  rocks  are  main  provenance  of 
sedimentary rock in the JLJB. Hence,  the porphyritic 
monzogranites  were  derived  by  partial  melting  of 
sedimentary  rocks,  whereas  the  Housongshugou  and 
Nantaizi  plutons  were  derived  by  partial  melting  of 
igneous rocks. Low-silica (SiO2 < 50 wt%) syenites were 
derived from an enriched mantle source (Yang et al., 
2005), whereas the high-silica syenites (SiO2 > 50 wt%) 
may be the result of mixing of mantle- and crust-derived 
magmas (Yang et al., 2007). The Kuangdonggou syenites 
have high SiO2 contents (62.71–66.39 wt%), reflecting 
derivation by mixing of mantle- and crust-derived magmas 
(Yang et al., 2007). The similar trace element and Nd 
isotope (εNd(t) values of −2.3 to −1.5 for syenite and −2.3 
to −1.9 for diorite) of the Kuangdonggou syenite and 
diorite indicate a similar origin. Hf isotopic model ages of 
the Kuangdonggou granitoids range from 2.5 to 2.4 Ga, 
which are younger than the basement of the Eastern Block 
of  the  NCC  (Yang  et  al.,  2007).  In  addition,  the 
Kuangdonggou  syenites  and  associated  diorites  have 
similar crystallization ages, but have different Hf isotope 
ratios. These features indicate that the syenites and diorites 
resulted from mixing of different proportions of mantle- 
and crust-derived magmas (Yang et al., 2007). 

The  post-tectonic  syenites  have  high-Sr–low-Yb 
contents and low Sr/Yb ratios. It is a matter of debate as to 
whether Sr and Yb contents of syenites are related to the 
depth of the magma source (Sylvester, 1998; Zhang et al., 
2006).  Source composition may be a  more important 
control on the Sr and Yb contents of syenites (Zhang et al., 
2006). The Kuangdonggou diorites have higher Sr (1271–
1339 ppm; average=1308 ppm) and Yb (1.61–2.20 ppm; 
average=1.83 ppm) contents than the syenites (Sr=665–
766  ppm;  average=704  ppm;  Yb=3.44–3.63  ppm; 
average=3.52 ppm). This indicates that the addition of 
mantle-derived magma makes an important contribution to 
the Sr and Yb contents of the syenite, and that the crust-
derived magma has a low Yb content. The post-tectonic I-
type granitoids have low-Sr–low-Yb contents, reflecting a 
medium-pressure source. The S-type granitoids are low-Sr
–high-Yb rocks, suggesting a low-pressure source. The 
Housongshugou pluton has high Sr/Yb ratios and plots in 
the field for adakitic rocks in a Y versus Sr/Y diagram, 
indicating that it was derived from thickened lower crust. 
Although the I-type granitoids were also derived from 
lower  crust,  they  had  a  shallower  source  than  the 

Housongshugou pluton. The S-type granitoids were most 
likely  derived by partial  melting  of  meta-sedimentary 
rocks within the JLJB, and had the shallowest source. The 
post-tectonic  granitoids  have  considerable  variation  in 
magma  temperature  with  values  of  704–726° C  for 
Housongshugou granodiorites,  769–791°C for Nantaizi 
quartz monzonites, 790–908°C for porphyritic monzogranite 
(except  the  Wolongquan  pluton),  and  663–801°C for 
Wolongquan  porphyritic  monzogranite,  respectively 
(Watson and Harrison, 1983). 

 
5 Nature and Evolution of the Jiao–Liao–Ji Belt  
 
5.1 Tectonic setting 

In Y–Nb–Ce and Y–Nb–3Ga diagrams, almost all the 
pre-tectonic A-type granitoids plot in the A2 field (Fig. 
11). The A1-subtype is associated with mantle plumes and 
forms along rift zones, whereas the A2-subtype occurs in 
extensional environments associated with post-orogenic 
and post-collisional settings (Eby, 1990, 1992). The A2-
subtype represents partial melting of crustal material in 
post-collisional or back-arc basin settings (Eby, 1992). 
The pre-tectonic adakitic rocks display depletion in Nb, 
Ta, and Ti, which is consistent with the Liaoji granitoids 
being related to a volcanic arc.  The Liaoji  granitoids 
comprise  A2-type  granitoids  and  adakitic  rocks.  The 
assemblage of A2-type granitoids and adakitic rocks, as 
well  as  contemporaneous  calc-alkaline  mafic  rocks, 
indicates a back-arc basin or post-orogenic setting (Pearce 
et al., 1984; Deng et al., 2007; Dong et al., 2012; Meng et 
al., 2014; Yuan et al., 2015; Chen et al., 2016; Wang et al., 
2016;  Xu  et  al.,  2018a–b).  In  combination  with  the 
evolutionary history of the JLJB inferred from detrital and 
magmatic zircons, a back-arc basin is the most plausible 
setting. 

In  Y–Nb–Ce  and  Y–Nb–3Ga  diagrams,  the  post-
tectonic A-type granitoids also plot in the A2 field (Fig. 
11).  I-type  granitoids  can  form  in  various  tectonic 
environments,  whereas  S-type  granitoids  are  typically 
collisional granitoids (Chappell and White, 1992). Post-
collisional alkalic rocks contain mafic minerals, and have 
high Ba and Sr contents, whereas anorogenic alkalic rocks 
have high Fe and low Ba and Sr contents (Sylvester, 1989; 
Bonin, 1990). The Kuangdonggou syenites contain biotite, 
amphibole, and pyroxene, and have high Sr (665–766 
ppm) and Ba (1178–1980 ppm) contents, suggesting a post
-collisional setting (Yang et al., 2007). The assemblage of 
A2-, I-, and S-type, and adakitic rocks provides further 
evidence for a post-collisional setting. Based on the ~1.90 
Ga  granulite-facies  metamorphic  rocks  and  clockwise 
metamorphic P–T–t paths of the meta-sedimentary rocks 
in the JLJB, the peak metamorphic age of the orogeny was 
between 1.95 and 1.90 Ga (Liu et al., 2013, 2015). Thus, 
the 1.90–1.80 Ga granitoids in the JLJB formed during the 
post-collisional stage. 

 
5.2 Evolution of the Jiao–Liao–Ji Belt 

Based on the widespread pre-tectonic A-type granitoids 
and bimodal volcanic rocks, an intra-continental rift model 
was proposed to describe the evolution of the JLJB (Zhang 
and Yang, 1988; Li and Zhao, 2007). However, the A-type 
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granitoids  in  the  JLJB  are  the  A2-subtype,  which  is 
considered to be associated with magmatism along a plate 
margin or island arc (Zhu et al., 2019). Based on newly 
discovered ~2.15 Ga meta-andesites, some studies have 
proposed that the bimodal volcanic rocks are actually a 
continuous  magmatic  sequence  (Chen  et  al.,  2016). 
Furthermore,  all  the  igneous  rocks  in  the  JLJB  are 
depleted in Nb, Ta, and Ti, reflecting a subduction affinity 
(Liu et al., 2013; Li and Chen, 2014; Chen et al., 2016; 
Meng et al., 2017a, c; Xu et al., 2019). As a result, an arc– 
or  continent–continent  collisional  model  has  been 
proposed. This model considered the JLJB was a N–S-
trending active continental margin that developed along 
the margin of the Longgang Block, and that the northern 
Longgang and southern Liaonan–Nangrim blocks were 
different  Archean  continental  blocks  separated  by  an 
ocean (Bai,  1993).  However,  this  is  inconsistent  with 
zircon U–Pb ages and Hf isotopic data, which suggest that 
the Longgang and Liaonan–Nangrim blocks are similar 
Archean continental blocks (Luo et al., 2008; Zhao et al., 
2012). The earlier models were refined to explain these 
new results. A rift-and-collision model was advocated by 
Zhao  et  al.  (2012),  which  emphasized  the  tectonic 
transition from the early rifting event (2.2–1.9 Ga) to the 
subsequent  arc–continent  collision  (1.9–1.8  Ga).  The 
presence of 2.0 Ga adakitic rocks in the Huanghuadian 
area suggests that subduction had begun at 2.0 Ga (Wang 
P S et al., 2017; Liu J et al., 2018). This model can explain 
the similar Archean basement of the North and South 
Liaohe groups, the pre-tectonic A-type granitoids, and the 
~1.90 Ga high-pressure metamorphic rocks. However, it is 
difficult  to  explain  the  presence of  subduction-related 
mafic volcanic rocks. Thus, Wang et al. (2015) proposed 
that the JLJB was a back-arc basin between an eastern 
active continental arc (Rangnim Block) and a western 
Archean block (Longgang Block). The active continental 
arc separated from the Longgang Block, which formed the 
Rangnim  Block.  This  model  is  supported  by  the 

assemblage of pre-tectonic A2-type granitoids and adakitic 
rocks, as well as the different metamorphic P–T–t paths of 
the North and South Liaohe groups (Lu et al., 2006; Zhu et 
al., 2019). Thus, the initial tectonic setting of the JLJB was 
most likely a continental back-arc basin. 

Based on paleomagnetics and large igneous provinces 
studies, the eastern (-northern) margin of the Sino-Korean 
Craton was considered to be of a close connection with the 
West Australian Craton (WAC) and/or North Australian 
Craton  (NAC)  during  the  Paleoproterozoic  to 
Mesoproterozoic (1.78–1.40 Ga) (Zhang S H et al., 2012, 
2017; Xu et al., 2014). Northwestward subduction of a 
Paleoproterozoic oceanic plate between the Eastern Block 
and  West  Australian  Craton  (WAC)  and/or  North 
Australian Craton (NAC) resulted in the extension of the 
back-arc basin (i.e.,  the JLJB) along the southeastern 
margin of the Eastern Block (2.20 to 2.10 Ga; Fig. 12a; 
Xu et al., 2019). In the later stages, the JLJB began to 
close at 2.10–2.00 Ga (Fig. 12b), which was followed by 
arc–continent collision at 2.00–1.90 Ga (Fig. 12c) and post
-collisional extension from 1.90 to 1.80 Ga (Fig. 12d–e). 
The peak metamorphic age of metamorphism is ca. 1.95–
1.90 Ga. A variety of granitoids formed in the post-
collisional stage, including high- to low-pressure types. 
Crustal extension would have caused thinning of the crust 
and upwelling of mantle, resulting in an anomalously high 
heat flux. Partial melting of thickened crust is considered 
to be diagnostic of a transition in tectonic regime from 
compression to extension (Keay et al., 2001). Craven and 
Daczko  (2018;  pp.  1)  advocated  that  “mantle-derived 
magmas are predicted to more readily migrate to shallower 
crustal levels as the crust thins and becomes hotter”. 
Therefore,  the  2.20–2.15  Ga  A2-type  granitoids  and 
adakitic  rocks  record  the  initial  stage  of  back-arc 
extension, and represent the transition in tectonic regime 
from a passive to active continental margin setting (Zhu et 
al., 2019). The subsequent mafic intrusions (2.15–2.10 
Ga) were intruded during peak back-arc extension (Xu et 

 

Fig. 11. Representative ternary diagrams for distinguishing between A1 and A2 granitoids (after Eby, 1992).  
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Fig. 12. Tectonic evolution of the JLJB (see text for details; after Zhu et al., 2019).  
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al., 2019). The ~1.90 Ga adakitic rocks (1892 Ma; high-Sr
–low-Yb; high-pressure; 704–726°C) mark the beginning 
of the post-collisional stage, and were followed by the low
-temperature S-type (1888.4 Ma; 663–801°C) and I-type 
(1850  Ma;  769–791° C)  granitoids  (low-Sr–low-Yb; 
medium-pressure).  The  presence  of  high-temperature 
granitoids (S-type; 1872–1859 Ma; low-Sr–high-Yb; low-
pressure;  790–908° C)  indicates  the  climax  of  post-
collisional lithospheric delamination and asthenospheric 
upwelling.  The  crust-derived  magma  of  the 
Kuangdonggou pluton (A2-type; 1879–1843 Ma) has low-
Yb  features,  indicating  it  was  coeval  with  the  low-
temperature  group.  Emplacement  of  the  granitic 
pegmatites (1876–1740 Ma) was associated with the end 
of the orogeny. 

 
6 Present Issues 
 
6.1 Field contact relationships 

Although  numerous  field  geology,  petrographic, 
geochronological, and geochemical studies of rocks in the 
JLJB  have  been  undertaken,  numerous  issues  remain 
controversial. One of the most controversial issues is the 
relationship  between  the  Liaoji  granitoids  and  meta-
sedimentary rocks. Based on the ~2.15 Ga peak age of 
detrital zircons in the meta-sedimentary rocks, the Liaoji 
granitoids  were  considered  to  be  basement  and  the 
provenance of the meta-sedimentary rocks (e.g., Lu, 2004; 
Luo et al., 2004, 2008; Lu et al., 2006; Liu et al., 2015). 
However, field investigations have indicated that most 
observed contact relationships were faulted rather than 
intrusive in nature. The lower Liaohe Group (Lieryu and 
Gaojiayu formations) is intruded by the Liaoji granitoids 
in the Sanjiazi area (Wang et al., 2015). A recent study 
indicated that the Na-rich granitoids are in fault contact 
with the Gaixian Formation (Zhu et al., 2019). As a result, 
some studies have proposed that the Liaoji granitoids 
intrude the Liaohe Group. In addition, some xenoliths of 
the Liaohe Group can be found in pre-tectonic plutons, 
demonstrating the Liaoji granitoids are younger than the 
Liaohe Group.  These apparent  intrusive contacts have 
been  questioned  by  some  studies,  due  to  the  strong 
overprinting by later thermal and tectonic events (Liu et 
al., 2015). 

Uncertainties in locating the boundaries of different 
plutons  are  also  problematic.  Some  samples  having 
distinct mineralogical and geochemical compositions will 
be misidentified as coming from the same pluton due to 
the  uncertainties  in  these  boundaries  (e.g.,  the  two 
anomalous  samples  of  the  Wolongquan  pluton,  the 
sporadic adakitic samples in plutons that are composed 
mainly  of  A2-type  granitoids,  and  the  ~2.15  Ga 
monzogranitic  gneiss  and  ~1.85  Ga  porphyritic 
monzogranite  in  Jiguanshan pluton;  Table  1)  (Li  and 
Zhao, 2007; Yang et al., 2015a; Song et al., 2016; Liu et 
al., 2017, 2018b). 

 
6.2 Adakitic rocks 

The formation age of the adakitic rocks is  another 
outstanding issue. The Paleoproterozoic adakitic rocks can 
provide important constraints on the tectonic evolution of 

the JLJB. Most of the Paleoproterozoic granitoids in the 
JLJB have single zircon age peaks, whereas some have 
complex zircon age distributions. The Paleoproterozoic 
granitoids with complex zircon age distributions include 
the Mafeng pluton (Li and Zhao, 2007), Fangjiaweizi and 
Dadingzi plutons (Song et al., 2016; Zhu et al., 2019), part 
of  the  Simenzi  pluton  (Song  et  al.,  2016),  and 
Housongshugou pluton (Ren et al., 2017). Most of these 
plutons are composed of adakitic granitoids, except for the 
Mafeng pluton. Zircons in these adakitic rocks can be 
divided into three groups: Archean, ~2.15 Ga, and ~1.85 
Ga zircons (Li and Zhao, 2007; Song et al., 2016; Ren et 
al., 2017; Zhu et al., 2019). The Archean zircons are 
interpreted as being inherited, but the origin of the other 
two  age  groups  is  still  controversial.  Some  studies 
consider  that  the ~2.15 and ~1.85 Ga zircons are of 
magmatic and metamorphic origin, respectively (Li and 
Zhao, 2007; Zhu et al., 2019). However, other studies 
consider that the ~2.15 Ga zircons are inherited, and that 
the ~1.85 Ga zircons are magmatic (Ren et al., 2017). For 
example, Song et al. (2016) suggested that the Dadingzi 
pluton formed at ~1.85 Ga, whereas Zhu et al. (2019) 
defined the age of this pluton as ~2.15 Ga (Table 1). 
Another  possibility  is  that  both  ~2.15  and  ~1.85  Ga 
adakitic rocks are present in the JLJB, such as the ~2.15 
Ga Dadingzi and ~1.85 Ga Housongshugou plutons (Ren 
et al., 2017; Zhu et al., 2019). Although a large amount of 
age data has been obtained from the adakitic rocks, the 
primary contact relationships between the Liaohe Group 
and granodiorites has not been observed. Sporadic adakitic 
samples  in  some  large  pre-tectonic  A2-type  plutons 
suggest that the Paleoproterozoic adakitic rocks are more 
widespread than previously thought. 

 
6.3 Origin of 2.10–1.95 Ga zircons 

Some 2.10–1.95 Ga zircons are present in the granitoids 
that have complex zircon compositions, and also can be 
found in most meta-sedimentary and volcanic rocks (e.g., 
Lu et al., 2006; Li and Zhao, 2007; Xie et al., 2014; Liu et 
al., 2015; Meng et al., 2017a–c; Li et al., 2019). Based on 
the similar Hf isotopic compositions of the 2.10–1.95 and 
2.2–2.1 Ga zircons in amphibolite and biotite–plagioclase 
gneiss (Ji’an Group), Meng et al. (2017a) proposed that 
these zircons have a similar origin. The 2.10–1.95 Ga 
zircons  resulted  from re-crystallization  of  2.2–2.1  Ga 
magmatic zircons during metamorphic events, and the 1.9
–1.8  Ga  zircons  were  interpreted  as  new  grains  of 
metamorphic zircon due to their low Th/U ratios. Some 
studies  have suggested that  the  2.10–1.95 Ga detrital 
zircons were derived from igneous rocks (Luo et al., 2008; 
Meng et al., 2013). Although 2.10–1.95 Ga igneous rocks 
have been found in some areas, their scale is very small 
(Wang P S et al., 2017; Wang C C et al., 2017). Thus, it is 
difficult to explain the large number of 2.10–1.95 Ga 
detrital zircons in some of the meta-sedimentary rocks (Lu 
et al., 2006; Luo et al., 2008; Meng et al., 2013). 

Detailed field investigations and zircon studies are the 
key to resolving these issues and, in particular, in situ 
zircon Hf and O isotopic studies. Although numerous age 
data have been reported, little Hf isotopic data is presently 
available. Most of the available Hf isotope data are from 
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magmatic  zircons,  and  little  data  is  available  for 
metamorphic zircons. In addition, no O isotope studies 
have  been  undertaken  on  the  Paleoproterozoic 
granodiorites  of  the  JLJB.  Sections  that  contain 
Paleoproterozoic granitoids and metamorphosed volcanic–
sedimentary rocks should be identified and continuously 
sampled.  Systematic  U–Pb  dating,  geochemical,  and 
isotopic studies should then be undertaken to resolve these 
outstanding issues. 

 
7 Conclusions 

 
A  review  of  the  field  occurrence,  petrography, 

geochronology,  and  geochemistry  of  Paleoproterozoic 
granitoids on Liaodong Peninsula, northeast China, allows 
us to reconstruct the tectonic evolution of the JLJB and 
reach the following conclusions. 

(1) A variety of Paleoproterozoic granitoids occur in the 
Liaodong Peninsula, and can be divided into pre- and post
-tectonic granitoids. The pre-tectonic granitoids comprise 
~2.15 Ga monzogranite and granodiorite, and the post-
tectonic  granitoids  comprise  ~1.85  Ga  monzogranite, 
granodiorite,  porphyritic monzogranite,  syenite,  diorite, 
quartz monzonite, and granitic pegmatite. 

(2) The pre-tectonic syenogranite and monzogranite are 
A2-type, and the pre-tectonic granodiorite has an adakitic 
affinity. The post-tectonic granitoids comprise adakitic 
(granodiorite), A2-type (syenite and diorite), I-type (quartz 
monzonite), and S-type (porphyritic monzogranite) rocks. 

(3) The pre-tectonic adakitic and A2-type granitoids 
were derived from thickened and thinned lower crust, 
respectively.  The  post-tectonic  adakitic  and  I-type 
granitoids were derived from lower crust, whereas the S-
type granitoids were generated from upper crust. The post-
tectonic A2-type granitoids resulted from mixing of crust- 
and mantle-derived magmas. 

(4) The assemblage of pre-tectonic adakitic and A2-type 
granitoids indicate a continental back-arc basin setting, 
and the assemblage of post-tectonic adakitic and A2-, I-, 
and S-type granitoids indicate a post-collisional tectonic 
setting. 

(5) The presence of pre-tectonic adakitic rocks (~2.17 
Ga), in combination with A2-type granitoids, records a 
transition in tectonic regime from a passive to active 
continental margin setting. 

(6) The presence of post-tectonic adakitic rocks (1892 
Ma) signals the transition in tectonic regime from collision 
and compression to post-collisional extension, and was 
followed by emplacement of low-temperature S- and I-
type granitoids. The high-temperature S-type granitoids 
were produced at the peak of post-collisional extension. 
Emplacement of the granitic pegmatites occurred at the 
end of the orogeny. 
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