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Abstract: The Lower Eocene Celtek Formation is located in the Sorgun district of thecity of Yozgat in Turkey. In the study
area, Paleozoic, Campanian-Maastrichtian, Eocene, Miocene and Quaternary units are exposed. The Celtek Formation is
noteworthy with its coal and oil shale deposits. Samples were collected from one exposure (YC OSK) and two boreholes
(SJ and C boreholes) at the facility operated by the Yeni Celtek Coal Management. Concentrations of REE in oil shales
from these localities were determined using the ICP-MS technique. REE and total organic carbon (TOC) values of a total of
32 samples were compared with normalized REE contents of various environments. TOC contents of the samples ranged
from 1.37wt% to 11.8wt% (mean 4.96wt%). The averages of all samples for the all normalized values show similar patterns.
Normalized REE patterns are represented by the enrichment in the order of LREE>MREE>HREE and display negative Ce
and positive Eu anomalies. XREE vs. TOC were compared. ZREE vs. TOC showed a weak positive correlation, whereas
2LREE vs. (M+HREE) and XLREE vs. XREE were positively correlated. Regarding tectonic provenance characteristics,
the Celtek Formation oil shales were formed in microenvironments with physicochemical conditions changing in character
from oxic to euxinic, representing a transitional terrestrial-marine environment.
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1 Introduction

REEs are generally used for the assessment of
geochemical reactions taking place between wall rocks
and surface and groundwaters (Elderfield et al., 1990;
Smedley, 1991; Johannesson et al., 1999). REE patterns of
most organic material-rich deposits are normalized to
NASC.

During complex-forming reactions, REEs show
chemical fractionation and adsorption effects and display a
strongly mobile character in the global biochemical cycle.
REE patterns of organic materials are distinguished as N
(Normal-NREE), L (light-LREE), M (middle-MREE) and
H (heavy-HREE) (Yudovich and Ketris; 2006). Therefore,
since the paleoenvironment and the geological conditions
under which organic materials are formed are quite
different, in some organic materials heavy REEs are much
more enriched than light REEs (Kosterin et al., 1963;
Eskenazy, 1987; Eskenazy, 1999) whereas in some others
light REE contents are dominant (Goodarzi,1987; Dai et
al., 2008). Studies show that HREEs attract organic
material much more than LREEs and thus HREE
enrichment is high (Querol et al., 1995; Eskenazy, 1999).
The reason for the enrichment of MREE is the extraction
of humic material (Eskenazy, 1999; Seredin and Shpirt,
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1999). Different organic material types from
differentregions may show both depletion and enrichment
in MREE (Felitsyna and Morad, 2002). REE geochemistry
is controlled by organic material and these RE elements
(Thurman, 1985; Viers et al., 1997). Metal-organic
material complexes detectable in natural waters were
modeled in various studies (Lead et al., 1998; Hummel,
2002). Normalized values of Upper Crust (UC,)) and North
American Shale Component (NASC,) are taken from
Taylor and McLennan (1985).

Among REE, medium rare earth element (MREE)
enrichment represents enrichment in Sm, Gd, Tb and Dy,
whereas light rare earth element (LREE) enrichment
indicates enrichment in La, Ce, Pr and Nd and heavy rare
earth element (HREE) enrichment refers to enrichment in
Ho, Er, Tm, Yb and Lu. La/Lu ratios are indicative of
LREE or HREE enrichment, whereas Gd/La and Gd/Lu
ratios indicate depletion or enrichment in MREE
(Johannesson et al., 2004).

A variety offactors may result in the enrichment of
HREE, LREE and MREE (Eskenazy, 1999). As such, the
high affinity of HREE for organic materials may indicate
the effect of seawater, since the HREE/LREE ratio is
mostly 1 in shale-normalized REE contents (Elderfield
and Greaves, 1982; Hoyle et al., 1984; De Baar et al,,
1985). Nearly negative Ce anomalies are attributed to a
marine effect. A negative dEu anomaly is most probably
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due to plants (Wang et al., 1986). MREE enrichment in
acidic waters is very characteristic (Elderfield et al., 1990;
Sholkovitz, 1995; Sholkovitz et al., 1999).

In nature, all REEs are generally of RE*" state. Eu®" and
Ce*'have different states. These changes are related to the
variations in redox conditions of hydrothermal or
metamorphic fluids such as T, P, pH, fo, and chemical
composition (Sverjensky, 1984; Wood, 1990; Bau, 1991).

In this study, REE characteristics of oil shale samples
(YC OSK, SJ and C borehole) collected from the Celtek
Formation in the Sorgun district of the city of Yozgat. REE
contents of oil shales, which are regarded as an important
source of oil around the world, may be used to examine
the geochemical conditions of the depositional
environment (Carroll et al., 1992; Graham et al., 1993).
For this reason, samples from the Celtek Formation oil
shales (CFOS) with noteable REE contents are important
to investigate the physicochemical conditions of the basin,
its depositional character and provenance relationships.

2 Stratigraphy

The study area is in the Sorgun district of the city of
Yozgat and covers an area of about 1000 km®. Paleozoic,
Campanian-Maastrichtian, = Eocene, = Miocene  and
Quaternary units are exposed.

The Central Anatolian granitoids (Erler and Bayhan,
1993; D6énmez et al., 2005) are the oldest rock unit in the
area. They are unconformably overlain by the lower
Miocene Celtek Formation. The Celtek Formation is also
unconformably overlain by the lower-middle Eocene
Bogazkdy Formation. Ophiolitic rocks of the Izmir-
Ankara-Erzincan suture zone thrust over the Bogazkdy
Formation during the end of the Lutetian. All these units
are covered by Neogene deposits (Figs. 1-2).

The Central Anatolian granitoids are unconformably
overlain by the Celtek, Bogazkdy and Kizilirmak
Formations. The Celtek Formation is composed of
sandstone, coal, oil shale, alternating lenticular sandstone
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Fig. 1. Geological map of the study area (after Cicioglu, 1995).

and mudstone (Cicioglu, 1995). The borders of the
formation with the overlying Bogazkdy Formation and
Neogene deposits are discordant. The Bogazkoy
Formation starts with a basal conglomerate and continues
with volcanite interbedded sandstone, fossiliferous
limestone, claystone, clayey limestone, marl, and a variety
of volcanic rocks such as rhyolite, rhyolitic tuff,
agglomerate, dacite, andesite and basalt. The Kizilirmak
Formation is composed of, from bottom to top, terrestrial
conglomerate, sandstone, siltstone, claystone, mudstone
and limestone (Beyazpiring et al., 2015). It is covered by
Plio-Quaternary units.

3 Material and Methods

Oil shale samples used in this study were collected from
one exposure (YC OSK (n=9)) and two boreholes (SJ
(n=10) and C (n=10) boreholes) at the facility operated by
YeniCeltek Coal Management. Surface samples were
systematically collected from measured stratigraphic
sections. The samples were compared with Estonian,
Jordanian and Utah oil shale samples (»=3) from which oil
is economically produced. Also, the REE values of the
samples were normalized to world average values such as
Post Archean Average Shale (PAAS,), North American
Shale Composite (NASC,), Upper Crust (UC,), Average
Shale (AS,) and Chondrite (C,) values. In order to better
understand the element enrichment in the basin, CFOS
rocks were separately analyzed. Sample preparation and
microscopic studies were conducted at the laboratories of
the Geology Department of the Bozok University and
SEM-EDX determinations were made at the BILTEM
laboratories of the same university. ICP-MS analysis was
conducted at ACME laboratories (Canada), XRD analysis
was carried out at MTA laboratories (#=32) and total
organic carbon analysis was made by Turkish Petroleum
Corporation (TPAO) laboratories. XRD analysis was
conducted with Cu X-ray tube Philips Panalyticalbrand
XRD device.
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Fig. 2. Generalized stratigraphic section of the Sorgun Basin
(after Cicioglu, 1995; Beyazpiring et al., 2015).

4 Data and Results

4.1 Minerals

Using the whole rock analysis of 32 samples collected
from the study area, mineral compositions were
determined. Quartz, feldspar, dolomite, calcite, pyrite,
gypsum, analcime and clay minerals are the major mineral
phases in the samples (Table 1).

Results of XRD analysis show that quartz is the chief
mineral in drill holes numbered C and in SJ and YC
labeled surface samples. Feldspar and clay minerals
accompany the quartz. In addition to these, dolomite,
calcite, pyrite and gypsum are also recognized invarying
amounts. According to theresults of the XRD analysis,
world oil shale samples contain quartz, dolomite, calcite,
pyrite and analcime minerals.

In order to examine the crystal shape and size of
minerals in the samples and their relation to other
components, SEM and energy dispersi ve micro analysis
(EDS/IXRF) studies were conducted on ten samples.

SEM-EDS analysis conducted on organic material (oil
droplet) determined in the sample SJ.12 revealed C, O,
Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Ce, Eu, Fe and U
elements at varying concentrations (Fig. 3). In organic
material in particular,concentrations of Ti, Ce, Eu, Fe and
U elements are noticeable (Figs. 4a—c and Fig. 5).

4.2 TOC content (Wt%)

In order to determine the abundance and type of organic
material present in the samples, pyrolysis analysis was
carried out at the Turkish Petroleum Corporation (TPAO)
laboratories. Some of this analysis was made using a Rock
-Eval II type device. The analysis principle is based on
heating a 100 mg powdered sample in a helium
atmosphere for about 3 minutes. Both TOC and pyrolysis
data can be obtained from the Rock-Eval II device which
is integrated to a TOC module which automatically
calculates the TOC value.

The TOC values for Celtek Formation oil shale are in
the range of 1.37 to 11.8 (TOC yean: 4.96). Assessment of
organic carbon percentages with regard to bedrock
classification yields very good to perfect rock character.

Studied oil shale samples are found to have similar
source rock quality to standard ranges and oil shales from
Estonia, Jordan and Utah where oil is produced (Table 2).

4.3 Inorganic element geochemistry

All elements that are solublein water and can be
adsorbed on organic and inorganic materials may be used
to determine the depositional environment. These
indicator elements may be retained in primary minerals or
in organic material available in surrounding waters or they
can be held in autogenic minerals during and just after
sedimentation (Cody, 1971). In addition to trace element
abundances, whole rock compositions and geochemical
processes may also be wused for determining the
depositional environment.

All samples investigated in this study are collected from
shale, limestone and marl which have high carbon content.
For geochemical investigations in particular, shale
samples were selected. Major, minor and rare earth
element contents of oil shales of the Celtek Formation in
the Sorgun Basin were determined using the ICP-MS
method, and the results are shown in various tables and
diagrams (Tables 3-5; Fig. 6).

The average element concentrations of samples are
compared with those of oil shales from Estonia, Jordan
and Utah where oil is produced (Figs. 5-6).

4.4 Element enrichments

Element enrichments of oil shales from the Celtek
Formation in the SorgunBasin were computed with the
equation [EFgiement X = (X/ADsample / (X/Alstandara] 0f
Brumsack (2006). If the calculated value is >1, the sample
is enriched with respect to the standard, whereas if the
value is <1 then the sample is depleted. The average shale
values are taken from Turekian and Wedepohl (1961).

Like upwelling environments and anoxic basins, the
behavior of trace elements in organic carbon-rich
sediments has been discussed in several studies
(Brumsack, 1989; Calvert and Pedersen, 1993). Similar
work was also carried out on old oil shales (Brumsack,
1980,1986; Arthur et al., 1990). The enrichment of redox-
sensitive elements reflects the depositional environment of
TOC-rich sedimentary rocks and, therefore, they are used
to investigate the conditions necessary for deposition
(Brumsack, 1986; Hatch, and Leventhal, 1992; Piper,
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1994; Yavuz Pehlivanli et al., 2014). 2 °
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of  the Cenomanian-Turonian § &
boundary event (CTBE) are . 9
significantly enriched in sulfide 2 9 9 = s o 3 o 5 o e e
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Fig. 3. Field survey with SEM of the SJ.12 sample showing significant enrichment of uranium.

Table 2 TOC content (wt%) of the samples in this study

Peters and Cassa Tissot and Welte Jarvie
(1994) (1984) (1991)
Corg Petroleum __Corg  Source rock Corg  Source rock
(%) potential (%) quality (%) quality
0-0.5 Poor 0.1-0.5 Poor 0-0.5 Insufficient
0.5-1 Fair 0.5-1 Fair 0.5-1 Fair
1-2 Good 12 Good >1 Adequate
24 Very good  2-10 Rich
Sample No.  Corg (%) Source rock quality
C 1.97-16.17 Good-very good
YC 2.14-14.85 Very good
SJ 2.48-3.13 Very good
Estonia 31.52 Very good
Utah 3.56 Very good
Jordan 16.71 Very good

organic materials lies between 26.33 and 590.12 ppm. The
average REE contents are 101 ppm for coals in the USA,
62.1 ppm for bituminous coals in the world (Finkelman,

1993) and 68.5 ppm for anthracites (Yudovich and Ketris
2006) and 137.9 ppm for Chinese coals (Dai et al., 2008).
Furthermore, the average XREE of Estonian, Utah and
Jordanian shales are 32.98, 75.44 and 50.37 ppm. The
averages given in Table 8 are normalized with respect to
standard values (Fig. 7). Normalized REE data for all the
rocks are given in the relevant tables, and the normalized
patterns are shown in the diagrams. The average ZREE
values of the samples are very low. In a study by
Hannigan and Basu (1998), low REE values are attributed
to the maturity level of the samples, and those with high
REE content are identified as immature.

The averages of all samples for all normalized values
show similar trends. Normalized values of MREE (Sm,
Gd, Tb, Dy) show enrichment with regard to LREE (La,
Ce, Pr, Nd) and HREE (Ho, Er, Tm, Yb, Lu). La/Lu ratios
indicate if there is any LREE or HREE enrichment,
whereas Gd/La and Gd/Lu ratios are indicative of MREE
enrichment (Johannesson et al., 2004). MREE enrichment

Table 3 Average major oxide element concentration (wt%) of oil shale samples from the the Estonia-Utah-Jordan basins and

samples in this study

Samples SIOZ A1203 F6203 MgO CaO NaZO KzO TlOz PzOs MnO Crzo;
Estonia 10.11 223 0.99 0.65 13.44 0.05 1.21 0.14 0.09 0.01 0.004
Utah 26.83 5.57 3.48 6.23 24.52 1.21 2.46 0.18 0.05 0.03 0.004
Jordan 19.23 3.51 1.15 0.83 24.53 0.16 0.69 0.17 3.19 0.01 0.068

C avr. (n=10) 42.06 20.42 4.18 0.46 1.13 0.17 2.02 0.50 0.06 0.06 0.003
YC avr. (n=9) 46.38 22.22 6.25 0.93 0.65 0.19 2.42 0.48 0.10 0.11 0.005
SJ avr. (n=10) 59.94 13.71 4.63 1.28 4.73 1.13 391 0.52 0.10 0.06 0.005
Basin avr.(n=29) 49.46 18.79 5.02 0.89 2.17 0.50 2.78 0.50 0.08 0.08 0.004
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Fig. 4. Field analysis on 11 points of the SJ.12 sample showing significant enrichment of uranium with SEM-EDS.

Table 4 Average trace element concentration (ppm) of the oil shale samples from the Estonia-Utah-Jordan basins and the
samples in this study

Samples Ba Sc Co Cs Ga Hf Nb Rb Sn Sr Ta Th U V W Zr Mo Cu Pb Zn Ni As Cd Sb Bi
Estonia 77.0 20 32 08 1.5 09 2.6 22.0 09 239.6 0.2 2.5 1.7 200 187 338 1.6 3.5 154 50 99 41 0.1 0.1 0.1
Utah 588.0 4.0 17.3 3.3 52 1.1 43 71.8 091235003 52 50 54.0 529 43.7 12.0 14.6 148 33.0 12.8 62.5 04 0.8 0.2
Jordan 53.0 50 49 07 29 09 3.1 142 0.9 751.5 0.2 2.0 31.1 297.0 9.3 385 103.1 949 6.6 924.0230.3 6.8 150.3 1.7 0.1
Cavr. (n=10)  724.1 7.1 10.6 22.5 25.1 5.0 18.2 142.9 4.5 228.8 1.0 63.0 45.6 74.1 34.5187.0 3.3 18.7 104.1 100.5 7.9 28.6 0.3 0.8 2.7
YCavr. (n=9) 370.4 12.0 17.4 20.8 26.9 3.8 13.7 153.3 4.5 1859 0.8 49.4 13.4 112.6 27.8 1329 4.0 27.8 72.0 166.0 12.4 345 04 0.5 24
SJavr. (n=10)  732.8 9.3 15.7 37.1 14.8 5.3 13.9 186.1 3.2 409.7 0.9 29.3 81.5 82.5 7542142 4.5 17.6 41.6 72.1 12.6 395 0.2 0.7 0.8
Basin avr. (n=29) 609.1 9.5 14.5 26.8 22.2 4.7 15.3 160.8 4.1 274.8 0.9 47.2 46.9 89.7 459 178.0 3.9 214 72.6 1129 11.0 342 03 0.7 2.0
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Table 5 Average REE element concentration (ppm) of the oil shale samples from the Estonia-Utah-Jordan basins and the
samples in this study

Samples Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu XREE ZXREE+Y
Estonia 7.80 7.30 12.30 1.59 630 1.14 026 122 020 1.01 020 0.63 0.08 0.66 0.09 3298 40.78
Utah 10.60 17.40 30.80 3.51 1330 247 047 236 032 203 035 1.20 0.15 093 0.15 75.44 86.04
Jordan 24.00 12.20 1570 234 930 1.80 0.50 1.99 032 220 049 1.64 024 139 026 50.37 74.37
C avr. (n=10) 36.09 13398 227.60 21.26 68.83 10.31 2.05 8.58 1.16 6.55 1.19 3.53 0.52 346 0.51 489.52 525.61
YC avr. (n=9) 2394 8324 14260 14.14 47.13 7.66 155 6.17 081 4.53 0.84 241 0.36 2.30 0.35 314.10 338.05
ST avr. (n=10) 2592  58.76 98.58 10.86 3841 6.70 1.44 584 0.82 4.61 0.87 249 035 223 034 23229 258.21
Basin avr. (n=29) 28.81 9230 156.73 1546 51.61 824 1.69 6.89 093 525 097 2.82 041 2.68 0.40 346.38 375.19
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Fig. 5. Element content of the SJ.12 sample with SEM-EDS.
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Fig. 6. Major element (a), trace element (b) and REE (c) contents of the oil shale samples from the Celtek

Formation in the Sorgun Basin.

is very characteristic of acidic waters (Elderfield et al.,
1990; Sholkovitz, 1995; Sholkovitz et al.,, 1999).
Normalized REE patterns are generally in the order of
LREE>MREE>HREE and show negative Ce and posotive
Eu anomalies.

>REE vs. TOC, ZLREE vs. (M+HREE) and XLREE vs.
YREE diagrams are displayed in Fig. 8. XREE vs. TOC
shows a weak positive correlation, whereas the other two

diagrams are represented by strongly positive correlations.

4.6 Assessment of the depositional environment of oil
shales of the Celtek Formation with the use of trace
element contents

In order to have detailed information on provenance and
paleogeography, the depositional basin of the source area
and its tectonic relationships should be known and
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is granite,
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diagrams might indicate that the studied
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Major and trace element contents of
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samples from clastic sedimentary basins
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which is very close to the upper crustal
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Sc ratios represent felsic material input
from recycled sedimentary provenances
acidic magmatic rock. The Th/Sc ratio of

samples from the central part of the basin
ranges from 1.7 to 22.17, implying a

mafic source. In other words, a high Th/

From the plate tectonic perspective, the
origin of the source rock would be
provenance and general characteristics of
indicative of a felsic source rather than a
U value might show that a source rock
had a felsic character. Al,O3/TiO, ratios
are between 19 and 56, indicating that the
source rock

rhyolite, dacite or an aplite type felsic or

cratonic block, volcanic arc systems,
belts and transform fault margins (Miiller

and Groves, 2000).
could be resolved using the chemical

characteristics of various magmatic rocks
al., 2004; Strnad and Mihaljevic, 2005;
et al.,, 2018). For such discrimination,

trace elements that are

samples are the products of a magmatic
provenance consisting of rocks with high
silica content such as granite, gneiss,
dacite or any type of acidic (felsic)
magmatic rock. In order to determine the

yield information on the tectonic and
sedimentary conditions of the basin. The
geotectonic conditions of the sediments
(Crook, 1974; Bhatia and Crook, 1986;
Floyd and Leveridge, 1987; Roser and
Korsch, 1988; McLennan et al., 1990;
Burnett and Quirk, 2001; Zimmermann
and Bahlburg, 2003; Armstrong-Altrin et
varying conditions such as La, Y, Th, Zr,
Hf, Nb, Ti and Sc and their ratios are
used (Taylor and McLennan,

Bhatia and Crook, 1986) (Figs. 9-18;
Table 9).

collision belts and passive or rifted
continental margins, active or orogenic

understood. Tectonic conditions may be
geochemical data of the source rock.

evaluated
4.7 Provenance of the sediments

the depositional environment,
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Fig. 7. REE trends normalized to (a) Post Archean Average Shale (PAAS,), (b) average Shale (AS,), (c) chondrite (C,), (d) upper
Crust (UC,) and (e) North American Shale Composite (NASC,).

Table 7 XREE and max-min change intervals of samples
discussed in this study

Samples ZREE (ppm) Max (ppm)  Min (ppm)

Estonia 32,98 - -
Utah 75,44 - -
Jordan 50,37 - -

C avr. (n=10) 489,52 2057,48 206,94

YC avr. (n=9) 314,10 587,26 253,91

SJ avr. (n=10) 232,29 548,05 119,61

Basin avr. (n=29) 345,30 2057,48 119,61

Table 8 World average REE reference values (ppm)

REE [ AASAverage oo Chondrite  UPPST NASC
(mean) shale crust

La 4456 41.00 3820 031 30.00  33.04
Ce 8825 83.00  79.60  0.81 64.00  70.55
Pr 10.15 1010 8.83 0.12 710 870
Nd 3732 3800 3390  0.60 2600 3176
Sm 6.88 750 555 0.20 450 599
Eu 1.22 1.61 1.08  0.07 0.88 1.38
Tb 6.88 635 466 026 380  5.50
Gd 0.89 123 077 0.5 0.64 094
Dy 533 550 466 032 350  5.54
Ho 1.05 134 099  0.07 0.80 1.16
Er 3.08 375 2.85 021 230 352
Tm 045 063 041 0.03 0.33 0.53
Yb 3.01 353 286 021 220 3.15
Lu 0.44 061 043  0.03 032 0.49

felsic type magmatic provenance. Th/Co ratios fall in the
range of 0.98 to 20, which shows that the source rock was
a sedimentary rock thatwas formed through theweathering
of felsic or acidic type magmatic rocks such as granite
(Figs. 14-18). Regarding tectonic setting, the Th/Sc vs.
Zr/Sc diagram of McLennan et al. (1993) confirms input

from the zone of sediment recycling in the upper crust
(Fig. 19).

5 Discussion

Since oil shales are formed in sedimentary rocks, the
assessment of their rare earth element abundances is
primarily important for understanding the geochemical
character of depositional setting (Haskin and Gehl, 1962;
Vine and Tourtelot, 1970; Huyck, 1990; Yudovich and
Ketris, 1994; Hannigan and Basu, 1998). Some of the
issues discussed in these studies include the role of various
minerals in REE fractionation in oil shales, correlation
between sedimentation rate and REE content and redox
potential of the depositional environment.

Because of increasing energy demand and consumption
rate, alternative energy resources are needed. For example,
China, which is one of the energy-poor countries in the
world, imported 163 million tons of crude oil in 2007 and
179 million tons in 2008. Since China does not have
significant oil resources, coupled with the rapid increase in
oil price, the energy demand of China has increased. It is
noticeable that China has large reserves of oil shales,
which are one of the alternative energy sources. Cenozoic
oil shales in the Huadian (Liu et al., 2009) and Fushun
(Qian et al, 2003) fields and Cretaceous bituminous
shales in the Songliao Basin (Wang et al., 2008) were
formed in lacustrine environments. Recent studies
revealed the presence of new oil shale zones of marine
origin around the Changshe Mountain in northern Tibet
(Fu et al., 2011). In particular, rare earth element content
in coal and oil shales have been a focus of attention
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Fig. 9. Th-Th/U chart of Estonia-Utah-Jordan oil shale
samples and samples of the Celtek Formation in Sorgun
Basin. The weathering trend indicates uranium consumption,
while the arrow direction indicates uranium enrichment.

100

U/Pb

Uranium enrichment associated with Syn-post storage

o| Estonia

o
Utah O
Jordan @
C [ ]
Yo °
8] @

0,1

U (ppm)

100
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syn-post storage in the U/Pb graph versus U of Estonia-Utah
-Jordan samples and samples of the Celtek Formation in

Sorgun Basin (after Lev et al., 2000).

Nd, Sm); (c) diagram of XLREE vs. XREE of the Estonia
-Utah-Jordan oil shale samples and samples of the Celtek
Formation in Sorgun Basin.

(Rantitsch et al., 2003; Wang et al., 2008). Therefore, a

number of studies

were conducted on the REE

geochemistry of various shales (Condie, 1991; Dai et al.,
2008, Wang et al., 2008; Ketris and Yudovich, 2009).
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Eddy-Dilek, 1994).

It is known that particularly organic carbon-rich units
accumulate REE much more than any other rock (Condie,
1991; Reynard et al., 1999; Rantitsch et al., 2003;Qi et al.,
2007; Dai et al.,, 2008;Wang et al., 2008; Ketris and
Yudovich, 2009). Heavy rare earth elements (HREE),
which are highly mobile, are enriched in the organic
material (Grandjean-Lécuyer et al., 1993; Kidder and

Th(ppm)
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Fig. 11. (a) Relation of total S concentration and Fe content of oil shales samples from Estonia-Utah-Jordan and the Celtek
Formation in Sorgun Basin; (b) diagram showing a weak positive correlation between Th and TOC of oil shales samples from

Estonia-Utah-Jordan and the Celtek Formation in Sorgun Basin.
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Table 9 Ratios of REEs normalized to chondrite, upper crust and NASC of the oil shale samples from the
Estonia-Utah-Jordan basins and samples in this study

Chondrite La/Sm La/Yb Gd/Yb La/Pr Gd/Dy Ce/Yb Lu/La XREE (ppm) LREE (ppm) HREE (ppm) MREE (ppm) EwEu  Ce/Ce’
CS5 6.49 24.86 1.95 2.04 1.82 16.71 0.04 686.03 613.78 72.26 89.79 090  0.68
C.8 5.54 16.30 1.93 1.93 1.60 11.07  0.05 543.76 460.13 83.63 89.92 089  0.71
C.10 6.54 2221 2.04 2.14 1.68 13.76  0.05 708.95 618.91 90.04 103.47 084 0.71
C.12 6.82 24.25 2.24 2.15 1.64 15.64 0.04 740.73 650.09 90.63 104.79 0.88  0.68
C.19 7.15 30.15 243 2.19 1.86 19.05 0.04 762.69 681.76 80.93 100.29 0.87  0.69
C.22 7.80 24.85 1.95 2.29 1.61 1497 0.04 614.18 542.14 72.05 79.61 0.84  0.66
C.28 9.13 39.99 2.46 2.51 1.74 21.26 0.03 1242.52 1132.65 109.87 140.10 0.76  0.63
C.29 8.20 23.91 2.01 2.31 1.47 17.64 0.04 4432.32 3903.50 528.81 555.41 1.03  0.63
C.32 9.27 29.56 2.06 2.55 1.61 1493 0.03 478.32 423.97 54.35 58.52 0.73  0.65
C.33b 9.70 27.62 1.62 2.71 1.40 12.44  0.03 679.11 601.00 78.11 80.41 0.66  0.58
YC.2 8.67 72.36 3.99 2.34 2.27 47.59 0.01 1240.62 1169.34 71.27 123.16 092  0.59
YC.5 7.89 22.49 1.86 2.43 1.45 1272 0.04 631.51 548.55 82.95 86.86 0.80  0.67
YC.6 6.33 25.60 241 2.06 1.68 17.20 0.04 795.12 702.51 92.60 114.81 091  0.68
YC.7 6.67 26.95 222 2.18 1.80 16.94 0.04 652.26 581.71 70.55 87.55 0.86  0.64
YC.10 5.12 14.58 1.82 1.99 1.48 997 0.07 595.40 495.30 100.10 103.40 091  0.66
YC.12 5.86 22.13 2.31 2.10 1.54 1451  0.05 588.34 509.08 79.26 92.52 0.89  0.69
YC.13 6.26 20.41 2.12 2.07 1.56 12.88 0.05 682.28 586.12 96.16 106.63 085 0.73
YC.14 5.51 17.31 2.00 2.00 1.54 11.85 0.06 602.18 511.13 91.05 99.25 091  0.66
YC.15 5.48 14.84 1.99 1.94 1.61 997 0.07 603.93 499.17 104.76 106.07 089  0.76

SJ.2 4.92 16.86 1.94 1.93 1.66 10.83  0.06 443.57 377.72 65.85 75.53 085  0.68

SJ.4 7.76 22.25 1.76 2.59 1.36 12.53  0.04 618.39 536.22 82.17 86.80 0.81  0.69

SJ.6 5.53 15.84 1.98 2.00 1.47 995 0.07 464.28 386.16 78.12 81.77 0.84 0.74

SJ.8 4.88 17.34 2.30 1.82 1.56 11.50 0.06 519.44 440.00 79.45 92.66 086  0.72
SI.10 5.50 19.26 2.42 1.90 1.65 13.12  0.06 513.77 435.33 78.44 85.10 0.89  0.64
SI.12 3.37 6.37 1.66 1.75 1.16 436 0.17 477.20 327.99 149.21 124.12 087  0.69
SI.14 6.05 17.63 < 2.11 1.47 10.75  0.06 279.38 240.13 39.25 42.86 083 0.74
SJ.16 5.12 14.20 1.69 1.84 1.59 9.51 0.07 475.05 400.43 74.62 79.04 087  0.68
SI.19 491 29.38 3.83 1.88 1.81 18.50 0.03 1271.63 1112.32 159.31 22591 0.82  0.70
S1.22 6.09 18.73 1.87 2.00 1.57 11.97 0.05 423.34 364.33 59.00 63.53 085  0.65
Estonia OS 3.85 7.31 1.53 1.67 1.46 467 0.12 84.60 64.04 20.56 18.69 0.80  0.67
Utah OS 4.24 12.37 2.10 1.81 1.40 830 0.08 183.53 146.48 37.05 36.64 0.86  0.59
Jordan OS 4.08 5.80 1.18 1.90 1.09 2.83  0.21 145.44 97.87 47.57 34.76 0.64  0.81
Uppercrust  La/Sm _ La/Yb Gd/Yb La/Pr Gd/Dy Ce/Yb Luw/lLa XREE(ppm) LREE(ppm) HREE(ppm) MREE(ppm) EwEu Ce/Ce’
CS5 1.62 2.76 1.36 1.32 1.39 229 037 19.91 12.04 7.87 7.44 095  1.09
C.8 1.38 1.81 1.35 1.25 1.22 1.52 049 18.57 9.47 9.10 7.84 0.93 1.11
C.10 1.63 2.46 1.43 1.39 1.29 1.89 043 22.18 12.33 9.85 8.91 089 1.12
C.12 1.70 2.69 1.57 1.39 1.25 2.15 034 22.61 12.76 9.85 9.00 0.93 1.07
C.19 1.78 3.34 1.70 1.42 1.42 2.61 035 22.03 13.21 8.81 8.44 092  1.09
C.22 1.94 2.76 1.37 1.49 1.23 2.05 039 18.14 10.34 7.80 6.79 089 1.04
C.28 228 4.44 1.72 1.63 1.33 292 024 3291 20.90 12.02 11.75 0.81 1.00
C.29 2.04 2.65 1.40 1.50 1.12 242 037 130.19 72.98 57.21 48.29 1.09  0.98
C.32 2.31 3.28 1.44 1.65 1.23 2.05 032 13.77 7.89 5.88 5.03 0.78  1.02
C.33b 2.42 3.06 1.13 1.76 1.07 1.71  0.30 19.41 10.91 8.49 6.92 071  0.92
YC.2 2.16 8.03 2.80 1.52 1.74 6.53  0.10 29.04 21.37 7.67 9.70 098  0.95
YC.5 1.97 2.49 1.30 1.58 1.11 1.75  0.40 19.52 10.52 8.99 7.55 086  1.05
YC.6 1.58 2.84 1.69 1.34 1.28 236 035 23.98 13.93 10.05 9.72 095  1.08
YC.7 1.66 2.99 1.55 1.41 1.38 232 036 19.00 11.34 7.66 7.28 0.91 1.02
YC.10 1.28 1.62 1.28 1.29 1.13 1.37  0.65 21.15 10.27 10.87 9.00 095  1.04
YC.12 1.46 2.46 1.62 1.36 1.17 1.99 045 18.91 10.32 8.60 7.90 094  1.09
YC.13 1.56 2.26 1.48 1.34 1.19 1.77  0.50 22.27 11.84 10.43 9.22 089 1.15
YC.14 1.37 1.92 1.40 1.30 1.18 1.63  0.55 20.25 10.40 9.85 8.54 096 1.04
YC.15 1.37 1.65 1.39 1.26 1.23 1.37  0.68 21.87 10.47 11.40 9.40 0.93 1.17

SJ.2 1.23 1.87 1.36 1.25 1.27 149 053 15.04 7.90 7.14 6.39 0.88  1.08

SJ.4 1.94 2.47 1.23 1.68 1.04 1.72  0.38 19.27 10.31 8.95 7.58 0.87  1.09

SJ.6 1.38 1.76 1.39 1.30 1.12 1.37  0.66 16.58 8.07 8.51 7.21 088 1.15

SJ.8 1.22 1.92 1.61 1.18 1.19 1.58 0.53 18.01 9.36 8.65 8.00 089 1.14
SJ.10 1.37 2.14 1.70 1.24 1.26 1.80 0.57 17.48 8.90 8.58 7.47 093  1.00
SI.12 0.84 0.71 1.17 1.14 0.88 0.60 1.60 23.94 7.73 16.21 11.56 090  1.05
SJ1.14 1.51 1.96 1.15 1.37 1.12 1.48 0.56 9.12 4.87 4.25 3.64 087 1.17
Sl.16 1.28 1.58 1.19 1.19 1.22 1.30  0.65 16.47 8.33 8.14 6.83 090  1.07
SJ.19 1.23 3.26 2.68 1.22 1.38 2.54 031 41.05 23.60 17.45 19.29 086  1.09
S1.22 1.52 2.08 1.31 1.30 1.20 1.64 0.51 13.67 7.27 6.40 5.44 0.89  1.02

Estonia OS 0.96 0.81 1.07 1.09 1.11 0.64 1.16 3.72 1.45 2.27 1.72 082 1.03

Utah OS 1.06 1.37 1.47 1.17 1.07 1.14  0.81 7.16 3.15 4.01 322 090 091

Jordan OS 1.02 0.64 0.83 1.23 0.83 0.39  2.00 7.46 2.31 5.15 3.23 0.67 1.23

NASC La/Sm La/Yb Gd/Yb La/Pr Gd/Dy Ce/Yb Lu/lLa XREE(ppm) LREE(ppm) HREE(ppm) MREE(ppm) EwEu Ce/Ce’
CS5 2.07 3.76 1.33 1.64 1.52 310 0.27 15.60 10.25 5.35 522 1.02  1.06
C.8 1.77 2.47 1.32 1.55 1.34 2.05 035 14.15 7.98 6.18 5.47 1.01 1.08
C.10 2.09 3.36 1.39 1.72 1.41 2.55 031 17.17 10.46 6.71 6.23 096  1.09
C.12 2.18 3.67 1.53 1.72 1.37 290 025 17.55 10.86 6.70 6.29 1.00  1.05
C.19 2.28 4.56 1.66 1.76 1.55 353  0.26 17.27 11.27 6.00 591 099 1.06
C.22 2.49 3.76 1.33 1.84 1.34 2.77 0.28 14.15 8.85 5.31 4.74 096 1.01
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Continued Table 9
NASC La/Sm_ La/Yb Gd/Yb La/Pr _Gd/Dy Ce/Yb LwLa ¥REE(ppm) LREE(ppm) HREE(ppm) MREE(ppm) EwEu" Ce/Ce’
C.28 2.92 6.05 1.68 2.01 1.45 394  0.17 26.18 17.99 8.19 8.24 0.87 0.98
C.29 2.62 3.62 1.37 1.85 1.23 327 027 101.68 62.84 38.84 33.59 1.17 096
C32 2.96 4.47 1.41 2.04 1.34 276 0.23 10.77 6.78 4.00 3.51 0.83 0.99
C.33b 3.10 4.18 1.10 2.18 1.17 230  0.22 15.17 9.42 5.76 4.82 0.76 090
YC.2 2.77 10.95 2.73 1.88 1.90 8.81 0.07 23.70 18.47 5.23 6.85 1.05 0.92
YC.5 2.52 3.40 1.27 1.95 1.21 236 0.29 15.09 8.99 6.10 5.25 0.92 1.02
YC.6 2.02 3.87 1.65 1.66 1.40 3.19 025 18.66 11.83 6.84 6.80 1.03 1.05
YC.7 2.13 4.08 1.52 1.75 1.51 3.14  0.26 14.88 9.66 522 5.11 098  0.99
YC.10 1.64 2.21 1.25 1.60 1.24 1.85 047 16.03 8.64 7.38 6.26 1.03 1.02
YC.12 1.87 3.35 1.58 1.69 1.28 2.69 033 14.56 8.72 5.83 5.51 1.01 1.07
YC.13 2.00 3.09 1.45 1.66 1.30 238 0.36 17.09 10.01 7.08 6.43 0.96 1.12
YC.14 1.76 2.62 1.36 1.60 1.29 220 0.40 15.47 8.78 6.68 5.94 1.03 1.02
YC.15 1.75 2.24 1.36 1.56 1.35 1.85 049 16.53 8.79 7.75 6.54 1.00 1.14
SJ.2 1.57 2.55 1.33 1.55 1.39 2.00 0.39 11.49 6.63 4.86 4.47 0.95 1.05
Sl.4 2.48 3.37 1.20 2.08 1.13 232 028 14.89 8.81 6.08 5.27 0.93 1.06
SJ.6 1.77 2.40 1.35 1.61 1.23 1.84 048 12.55 6.77 5.78 5.01 0.95 1.13
SJ.8 1.56 2.62 1.57 1.46 1.30 213 0.38 13.71 7.83 5.88 5.59 0.96 1.11
SJ.10 1.76 2.91 1.66 1.53 1.38 243 042 13.34 7.51 5.83 5.20 1.01 0.98
SJ.12 1.08 0.96 1.14 1.41 0.97 0.81 1.16 17.31 6.34 10.97 7.96 0.98 1.03
SJ.14 1.93 2.67 1.13 1.70 1.23 1.99  0.40 7.00 4.12 2.88 2.54 0.94 1.14
SJ.16 1.64 2.15 1.16 1.48 1.33 1.76 047 12.54 7.00 5.54 4.77 0.98 1.05
SJ.19 1.57 4.45 2.62 1.51 1.51 343 022 31.65 19.75 11.90 13.51 0.93 1.07
SJ.22 1.95 2.83 1.28 1.61 1.31 222 037 10.51 6.16 4.35 3.79 0.97 1.00
Estonia OS 1.23 1.11 1.05 1.34 1.22 0.86 0.84 2.75 1.20 1.55 1.20 0.90 1.01
Utah OS 1.35 1.87 1.43 1.45 1.17 1.54  0.59 5.35 2.63 2.72 2.24 0.97  0.89
Jordan OS 1.30 0.88 0.81 1.53 0.91 0.52 145 5.37 1.89 3.48 2.22 0.72 1.21
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Fig. 12. (a) XREE and TOC linear correlation; (b) diagram showing very weak positive correlation between XREE and Th; (c)
diagram showing a weak positive correlation between La/Yb and Th normalized to Chondrite (C,), normalized to Upper Crust (UC,)
and normalized to North American Shale Composite (NASC,) of oil shale samples from Estonia-Utah-Jordan and the Celtek
Formation in Sorgun Basin.



Yavuz / The REE Characteristics of Celtek Formation Oil Shales (Yozgat, Turkey)

617

1.6 16 1.6
1.4 1.4 1.4
. v e o " TG 2 o o TS
’ Le e g"i"- Ce _® ke Ce
Sosh 8o M L & Jo °
L ] = » 0.8
Sosfo m“ e %, % 0.6 206
L C o
Co4 i \\ EUA <+ \\ Bo4| 4= \\
02 ! 0.2 o 302 =
o Ce 0 0
20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
@ Th (ppm) Th (ppm) Th (ppm}
Arkean Arkean
L2L Arkean 12 ® 1 o °
g S & * o] Cp. °
00,8 ® ® FuwEu*=0,85 =08 ® =t Euw/Eu*=0,85 ‘é 0,8 0 ® [ =) EwEu*=0,85
Ll 09 x o® = - o
a 3 1] Ak ] g L ® 5 5
5 = ; o ¢ 2 “stonic
doal £ O e Bod¥ 2 Arkean S 04| 2 2 Arkean et @
7 - = e o Z 2 Jordan @
L = =] ] o - Samples @
O 0 A 0
2 6 7 ] 1 2 5 6 7 0 1 2 7

0
0 1

3 4
Gd/Yb Cn

3 4 5
Gd/Yb UCn

3 4 5
Gd/Yb NASCn

Fig. 13. (a) Th anomalies vs. Ce/Ce” (after Dia et al., 2000); (b) Gd/Yb diagram vs. Eu/Eu” normalized to chondrite (C,), normalized
to upper crust (UC,) and normalized to North American Shale Composite (NASC,) of oil shale samples from Estonia-Utah-Jordan
and the Celtek Formation in Sorgun Basin (after Mclennan and Taylor, 1991).
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Fig. 14. Diagram of Ni vs. TiO, of oil shale samples from
Estonia-Utah-Jordan and the Celtek Formation in Sorgun Basin
(after Floyd et al., 1989) (samples are usually close to acidic
source).
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Fig. 15. Diagram of La/Th vs. Hf of oil shale samples
from Estonia-Utah-Jordan and the Celtek Formation in
Sorgun Basin (after Floyd and Leveridge 1987).
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Fig. 16. Diagram of La/Sc vs. Th/Co of oil shale samples
from Estonia-Utah-Jordan and the Celtek Formation in
Sorgun Basin (after Cullers, 2002).

2 . Estonia ©
1.8 Uah ©
1.6 Jordan :
1.4 anite soutos C
12 Granite source, Se ®
@ .ﬁ s) o
= 0.8 Lte s T
= gg "%. ranodmr:;: u'lmahtc source
. asic source
0.2 o
n L ]
0 02 04 06 08 1 1.2 14 16 1.8 2
EwEu*

Fig. 17. Ew/Eu" vs. Th/Sc diagrams of oil shale samples from
Estonia-Utah-Jordan and the Celtek Formation in Sorgun
Basin (after Cullers and Podkovyrov, 2002).
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Fig. 18. Ni vs. Cr diagram of oil shale samples from Estonia-
Utah-Jordan and the Celtek Formation in Sorgun Basin (after
Dia et al., 2000).

Since lanthanide group elements show very small
differences in their geochemical behavior, their
assessment is particularly important for understanding the
evolution of the hydrosphere and lithosphere.

Normalized REE patterns of studied samples generally
follow the order of LREE>MREE>HREE and are
represented by negative Ce and positive Eu anomalies.

REE patterns in organic materials are distinguished as
normal (N), light (L), middle (M) and heavy (H), which
may display variations in the formation of organic material
in different microenvironments.
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Fig. 19. Plot of Th/Sc vs. Zr/Sc of oil shale samples from
Estonia-Utah-Jordan and the Celtek Formation in Sorgun
Basin (after McLennan et al., 1993).

For example, MREE enrichment may be recognized in
high-salinity and acidic fresh water lakes (Johannesson et
al., 1996; Johannesson and Zhou, 1999) and also in a
variety of terrestrial waters including rivers (Hannigan and
Sholkovitz, 2001). MREE enrichments are not an indicator
for high-pH systems (modern seawater; Johannesson et al.,
1996) or alkaline lakes (Moller and Bau, 1993) and they
mostly represent low-pH waters.

MREE enrichments are affected by some processes
such as colloids (Elderfield et al., 1990) and grain/mineral-
fluid interaction (Sholkovitz, 1995) and MREE
enrichment is initiated via dissolution of mineral surfaces
in the aquifer material by acidic waters and surface
complexes (Johannesson and Zhou, 1999).

The nature of REE accumulation, which has an
economic importance in organic rocks, is closely related to
organic material type and the physicochemical conditions
of the depositional environment (Jones and Manning,
1994). Due to their organic affinity, HREEs are enriched
much more than LREEs and a MREE-rich environment
occurs in humic material-rich samples. Regarding
paleoenvironment and geological conditions, in most oil
shales and some coals HREE is much more enriched than
LREE and there may also be LREE and MREE
enrichments as well.

A positive Eu anomaly in sediments generally indicates
that the effects of CO, content and diagenesis are not
significant. REEs may be mobilized during organic matter
formation under low temperatures and strong reducing
conditions.

Eu-enrichment is attributable to alteration of
plagioclases in sediments (McLennan et al., 1993). Under
anoxic conditions,the diagenetic mobilization of Eu and its
reconcentration may also result in positive Eu anomaly
(MacRae et al., 1992). Hydrothermal fluids at a mid-ocean
ridge are the reason for a positive Eu anomaly in the
seawater (Danielson et al., 1992; Pirajno and Van
Kranendonk, 2005). Unlike offshore fluids, hydrothermal
fluids display significant Eu and LREE enrichment. In
general, LREE enrichment patterns and positive Eu
anomalies correspond to the physicochemical conditions
in hydrothermal systems (Leleyter et al., 1999). In these
areas, hot and acidic waters interact with basaltic rocks
and then mix with cold seawater of a basic character. In
some recent works, REE fraction patterns in river and soil

waters are found to vary due to surficial alteration of
apatites, which may result in MREE enrichment and a
negative Ce anomaly in river sediments. Organic material
content in sediments is suggested to exert a great control
over the formation of such patterns (Holland, 1984; Tricca
et al., 1999). In other words, if the positive Eu anomaly
which is related to MREEs (relatively enriched in modern
river waters) has an oxidation state of +2, Eu may be
liberated as a result of surficial alteration processes.
Feldspar-bearing source rocks liberate Eu®* by a chemical
change as a result of the decomposition of organic matter
and the increase in the CO, level ofthe Archean
atmosphere (Nesbitt, 1979). Therefore, in areas of surficial
alteration, the pH of fluids is decreased (Bordenave,
1993). Organic matter of various types may accumulate
different elements in varying amounts (Van Buchem et al.,
2005).

6 Conclusions

The presence of REE in organic materials can be
attributed to various sources. In some cases, REEs as part
of the primary composition are found in acid-resistant
pyrite, zircon and rutile minerals as metal-organic
complexes and in minerals that are protected from acids
by the organic material and REEs that are incorporated to
the organic material afterwards, and, transported from
granitic rocks to the fluids, may also be precipitated or
adsorbed in the medium.

Inorganic element ratios and tectonic provenance
properties indicate that the organic material components of
oil shales of the lower Eocene Celtek Formation were
deposited in micro-environments in a transition zone
(from land to the sea) under physico-chemical conditions
changing from oxic to euxinic in character. According to
environmental and source rock assessments, based on
element enrichments and element ratios, the source rock
was probably a sedimentary rock which was formed by the
weathering of a felsic or acidic type magmatic rock, such
as granite.
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