
1 Introduction 
 
Economic production of natural gas from coal seams 

(a.k.a. coalbed methane, or CBM) has been successfully 
achieved from the Upper Paleozoic in the Ordos Basin in 
north China, and significant amounts of CBM wells have 
been drilled (Yao et al., 2014; Zhang et al., 2014; Ma et 
al., 2016; Wang Tong et al., 2016; Li et al., 2017; Zou 
Caineng et al., 2018). Several noteworthy discoveries were 
made in the eastern-central Ordos Basin, including the 
Yulin, Sulige, and Daniudi gas fields, with the tight gas 
accumulated  in  Permian  and  Mesozoic  extensively 
developed (Wang Zhenliang and Chen Heli, 2007; Hu et 
al., 2010; Xu et al., 2011; Yang et al., 2016; Wang et al., 
2018; Wu et al., 2018). However, the Upper Carboniferous 
and  Lower  Permian  succession  was  not  the  primary 
exploration target for sand gas, even though most of the 
CBM wells were drilled through the thick sandstones in 

the  Carboniferous  Taiyuan  and  Permian  Shanxi 
formations (Li et al., 2015; Kang Yongshang et al., 2017). 
Nevertheless, the presence of hydrocarbons was noted in 
many localities in the east margin of the Ordo Basin, and 
the properties of these potential tight gas reservoirs have 
been partly reported (Li et al., 2016).  

The CBM resources in the whole Ordos Basin were 
estimated to be 3.5 trillion m3, and the in-situ tight gas 
resources are as much as 3.36 trillion m3. The tight gas 
accumulations  in  the  inner  part  of  the  basin  was 
considered as deep basin origin firstly, and now it is 
generally being accepted as stratigraphic lithologic type 
(Yang et al., 2005). During the extraction of CBM, gas 
traps in the sandstones near the coal reservoir have been 
discovered, for instance, 3 m thick sandstones above the 
coal being fractured showed production of 2400 m3/d in 
the  Hancheng  area  and  the  production  of  tight  gas 
interbedded  with  coal  seams  in  the  Piceance  Basin 
(Johnson and Flores, 1998; Fall et al., 2014). A case study 
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discussing the natural  gas  accumulation in  the Upper 
Paleozoic was firstly conducted in the Linxing area, with 
the  natural  gas  accumulations  showing  different  gas 
saturations from the lower coal bearing strata of Benxi and 
Taiyuan  formations  to  the  upon fluvial  sandstones  in 
Xiashihezi  Formation  (Li  et  al.,  2016).  However,  the 
understandings of exploration of the tight gas in the whole 
study area are unresolved and incomplete. A few main 
questions  require  answers:  (1)  the  capability  of  gas 
supplement from shale apart from the gas generated from 
coal, and furthermore if there is any development potential 
of the widely deposited marine to continental transitional 
shales;  (2)  the  temporal  and  spatial  evolution  of 
hydrocarbon  accumulations  in  the  vast  area  (500  km 
length); and (3) the accumulation mechanism of different 
types of natural gases, and if there is any favorable strata 
combinations and etc.    

Based on the recently acquired geological data from the 
whole study area, the source rock, reservoir units and their 
stratigraphic  relationship  to  source  rocks,  trapping 
configuration,  timing  of  hydrocarbon  migration  and 
preservation are considered in this study following the 
petroleum system analyses methods (Magoon and Dow, 
1994; Galloway et al., 2016). The combination features of 
different kinds of unconventional natural gases was laid on 
focus, and the key factors controlling the hydrocarbon systems 
were discussed, following the methods in the literature (Gunter 
et al., 1997; Pashin, 2010; Tonnsen and Miskimins, 2010; Pan 
and Connell, 2012). The results will promote the tight gas, as 
well as shale gas, development in the vast coverage area of the 
east margin of the Ordos Basin.  

 
2 Geological Setting 
 
2.1 Geologic setting 

The Ordos Basin is a tectono-sedimentary platform-type 
basin in the western part of the North China Carton (Fig. 
1; Shuai et al., 2013; Jiao Yangquan et al., 2016; Zhao 
Wentao  and  Hou  Guiting,  2017).  It  is  also  a  large 
polycylic cratonic basin that features monolithic vertical 
movement,  the  migration  of  depressions  and  simple 
constructions (Yang Minghui et al., 2010; Liao Jianbo et 
al., 2018; Han Hui et al., 2018). The CBM in the east 
margin of the Ordos Basin is primarily developed from the 
coal-bearing  strata  of  the  Carboniferous  Taiyuan  and 
Permian  Shanxi  Formations  (Fig.  2).  The  Taiyuan 
Formation  records  lagoonal,  tidal  flat,  and  sandbar 
depositional  environments  in  an  epicontinental  sea. 
Precursor  coal  vegetation  was  present  in  a  tidal  flat 
environment following a marine regression. The Shanxi 
Formation was deposited in a fluvial-deltaic environment 
with the precursor coal vegetation occurring in delta-plain 
deposits (Li et al., 2015). For better understanding the 
strata combinations and its CBM characteristics, the CBM 
target seams are classified into upper and lower coal 
seams,  which  represent  the  relatively  thick  CBM-
producing seams in the lower part of the Shanxi Formation 
and in the middle-lower part of the Taiyuan Formation. 
The east margin of the Ordos Basin is primarily affected 
by tectonic movement from three directions: north of the 
Daqingshan orogenic belts, which resulted in the Yimeng 

Uplift in the northern part of the basin, the southern part of 
the Qinling Orogenic Belt, which resulted in the Weibei 
Fold, and the eastern part of the Lvliang Mountain, which 
was named the Jinxi Fold in the study area (Yang et al., 
2005; Fang Huihuang et al., 2017). 

 
2.2 CBM development status  

The proven CBM resources is approximately 1.2 trillion 

m3  in  the  study  area,  and  the  proven  technically 
recoverable CBM reserve is about 0.6 trillion m3 (Li Yong 
et al., 2014). The CBM development blocks and areas can 
be classified into four parts based on their geological 
similarities:  Hequ-Baode,  Sanjiao-Liulin,  Shilou-Linfen 
and Hancheng. The typical reservoir characteristics of the 
four areas are shown in Table 1. All CBM blocks show a 
broad variation in depth, generally from 400 to 1400 m 
and increasing from east to west.  Deep CBM is also 
reported, for instance, CBM is produced from 2000 m 
deep coal seam in the Linxing area (Li et al., 2016). The 
main coal seams developed are classified as upper and 
lower coal groups as shown in Fig. 2. The burial depth of 
coal increases from the east to the west, with the elevation 
of the coal show a relatively stable variation trend (Figs. 
3a and b). Moreover, the lower coal seams are thicker than 
the upper one, with a distance generally of 100 m between 
them (Figs.  3c  and  d).  The  coal  roofs  are  generally 
composed of mudstones in the upper coal seam, whereas 
the  roofs  of  the  lower  coal  seams  are  mudstones, 
limestones and also sandstones. The permeability varies 
broadly due to the faults and small structures that are 
extensively developed in the whole east margin of the 
Ordos Basin (Table 1).  

 
3 Methods and Database 

 
The data of the basic coal characterization used in this 

paper,  such  as  the  coal  thickness,  maximum vitrinite 
reflectance (%Ro, max), coal burial depth and in situ gas 
content were collected from around 200 exploration wells 
(Fig. 1). These wells were drilled, and the data were 
collected and analysed by PetroChina and China United 
Coalbed Methane Co. Ltd. In addition, 15 sets of coal 
samples collected from the Xingwu Coal mines in Liulin 
area (centre of the eastern margin of Ordos Basin) were 
tested for their maceral compositions and pore-structure 
distributions.  The  well  cross  section  and  interpreted 
seismic section were also acquired for illustrating the 
stratigraphic  combinations  and  gas  occurrence 
characteristics. Based on these data, the characteristics of 
the unconventional natural gas geology conditions and 
their heterogeneity in the study area were analysed.  

 
3.1 Coal, shale and sandstone reservoirs 

Proximate  analysis  was  performed  following  China 
National  standards  GB/T  212–1991.  The  Ro,max 
measurements and maceral analyses (500 points) were 
performed using a Leitz MPV-3 photometer microscope 
following the conventional methods according to China 
National Standards GB/T 6948–1998 and GB/T 8899–
1998, respectively. Mercury porosimetry analyses were 
performed  following  Chinese  Oil  and  Gas  Industry 
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Standard SY/T 5346–1994 and using a Micrometrics 9310 
Porosimeter,  which automatically records the pressure, 
pore diameter, intrusion volume, and surface area. Before 
the porosimetric analysis, all samples were dried at 75 °C 
for 48 h. The specific surface area was determined by a 

Micromeritics ASAP 2020 using N2 adsorption/desorption 
at low temperature and pressures (77 K and <127 kPa) and 
the five-point BET method (Barrett, et al., 1951; Unsworth 
et al., 1989). 

 

 

Fig. 1. Elementary structures in the east margin of the Ordos Basin and coalbed methane blocks distribution (modified from Li et 
al., 2017; China basemap after China National Bureau of Surveying and Mapping Geographical Information).  
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3.2 Gas content  
The gas content of the coals was acquired following 

Chinese standard GB/T19559-2008, by testing desorbed 
gas for at least 8 hours, residual gas after crushing the coal 
to particles for at least 2 to 4 hours, and estimation of the 
lost gas (Bustin and Clarkson, 1998; Waechter et al., 
2004).  The  isothermal  adsorption  experiments  on  the 
shales were conducted on fresh shale samples from the 
drilling cores, following Chinese Standard GB/T 19560-
2004 at 30 °C. 

 
3.3 Fluid inclusions  

A Linkam THMS 600 heating and freezing table was 
used for fluid inclusions test at 20°C and 30% humidity. 
The fluid composition was measured by a LABHR-VIS 
LabRAM HR800 microscopic laser Raman spectroscopy. 
Both sandstone and limestone samples were collected 
from the occurrence layers deposited directly on coal 
seams. The fluid inclusions were mainly captured in the 
quartz  overgrowths  and  sparry  calcites,  and  the 
homogenous  temperature  and  salinity  was  tested 
following the China Nuclear Industry Standards (EJ/T 
1105–1999).   

 
4 Results  
 
4.1 Coal-bearing strata sequences  

Two series of coal seams are developed in the study 
area, and the lower one (coal seam 8+9 in the Taiyuan 
Formation) are much more stable and thicker than the 
upper  one (coal  seam 3+4 in the Shanxi Formation). 
Another remarkable feature of the coal bearing strata is the 
thick and stable sandstone bodies largely developed: the 
Jinci sandstone located in the base of Taiyuan Formation 
(Fig.  4c),  the  Beichagou  sandstone  developed  in  the 
bottom  of  the  Shanxi  Formation  (Fig.  4b),  and  the 
Luotuobozi Sandstone in the bottom of the Xiashihezi 
Formation  (Fig.  4a);  moreover,  there  is  the  Qiaotou 
sandstones  developed  in  the  middle  of  the  Taiyuan 
Formation  (Wang  Yue  and  Chen  Shiyue,  2016). 
Limestones  are  primarily  developed  in  the  Taiyuan 
Formation and directly deposited upon the lower coal 
seams in the central part of the study area, and they have a 
direct influence on CBM preservation and production, 
resulting in higher water production in parts of the areas 
(Su  et  al.,  2003;  Lü  et  al.,  2014;  Li  et  al.,  2015). 
Mudstones and shales are deposited mainly in a lagoon 
environment, where delta was developed, with sea water 
transgression of brachiopod fossils (Fig. 4d1) and higher 
plant  leaf  being  observed  (Fig.  4d2).  Four  typical 

 

Fig. 2. Stratigraphic column of east margin of the Ordos Basin.  

 Table 1 Coal reservoir characteristics of typical CBM blocks in east margin of the Ordos Basin
Block Hequ-Baode Liulin-Sanjiao Shilou-Linfen Hancheng 

Depth/m 300–1400 300–1100 800–1500 400–1300 
U-Ro, max (%) 0.57–0.78 1.43–1.49 1.39–1.94 1.6–2.20
L-Ro, max (%) 0.53–0.81 1.65–1.75 1.45–1.97 1.6–2.20 

U-Thickness(m) 5–10 5–9 5–8 3–10 
L-Thickness (m) 5–14 5–8 5–10 4–10

U-gas content(m3/t) 4–10 4–14 13–21 8–14 
L-gas content(m3/t) 4–12 4–13 9–20 6–14 

U-roof Mudstone Mudstone Mudstone Mudstone 
L-roof Mudstone Limestone Limestone Mudstone 

Well test permeability (×10-3 μm2) 2.5–8 0.01–10 0.01–40 0.22–3.5 
U, Upper coal; L, Lower coal. 
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combination of coal deposition series were observed from 
the well logs and drilling cores, including the tidal flat, 
deltaic, lake and fluvial depositional systems (Fig. 5). 

 
4.2 Tidal flat depositional system  

The main coal-accumulating environment of Taiyuan 
and Benxi formations is clastic coast deposit system with 
the influence of sea water transgression, and the coal 
seams generally show relatively high content of sulfur (Li 
et al., 2016). Accumulation of the main coal seams is 
intimately related to the slow rising of stratigraphic base 
level and corrective area of progradation. The coals were 
also deposited in shallow lagoon and peat swamp behind 

barrier island where thick coal seams could be formed. 
However,  in  where  calanque  and  tidal  inlet  channel 
developed, the coal seams were not stable horizontally. 
The depositional system is mainly observed in the Taiyuan 
Formation,  showing  variations  to  barrier  and  lagoon 
system during the sea level fluctuations (Li et al., 2015). 
In the early stage of Taiyuan Period, most plants grew in 
the water or moist ground, just like mangrove in recent 
period. Later along with regression, barrier island-lagoon 
and tidal flat deposition gradually developed. Due to the 
fluctuation  of  sea  level,  different  coal  series  were 
deposited,  and the advantageous environment of coal-
forming was marsh area beside lagoon and tidal flat (Fig. 

 

Fig. 4. Typical strata developed in the study area.  
(a) Adjacent layers of the Shanxi and Xiashihezi formations, with the Shanxi Formation show three depositional cycle; (b) Stratigraphic bound-
ary between Shanxi and Taiyuan formations, showing well developed mudstone/shale deposit and fluvial sandstones; (c) Taiyuan and Benxi 
formations boundary, showing thick Jinci sandstones; (d) Mudstone and shales deposited in the Taiyuan Formation, with brachiopod and higher 
plant fossils; (e) Thin coal seams occurred in Benxi Formation, showing high sulfur content.  
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5a).  
 

4.2.1 Deltaic depositional system 
The deltaic depositional system was mainly deposited in 

the Shanxi Period. The main coal accumulating place was 
swamp  behind  coast  in  peat  swamp  microfacies  of 
fluviatile flood-plain, and the secondary coal accumulating 
place was abandoned channel swamp. The coal forming 
sequences are mainly started from distributary channels or 
distributary estuarine sand dam in delta plain, upward 
transited to inter distributary bays or flood basin facies, 
and then deposited in swamp or peat marshes. The roof of 
the  upper  coals  is  mainly  deposited  with  marshes  of 
distributary channels (Fig. 5b).  

4.2.2 Lake depositional system  
The  shallow  lake  depositional  systems  mainly 

developed in the Jixian to Xiangning (located in south-
central  of  the  study  area)  in  the  lower  of  Shanxi 
Formation, occurred with large sets of gray mudstone 
deposits and grayish white sandstones. The coal forming 
strata are started from beach bar sandstones, upward to 
marsh  mudstone  and  coal,  and  the  coal  seams  are 
generally overlaid by mudstones, and partly by beach bar 
sandstones  (Fig.  5c).  The lake depositional  system is 
relative limited compared with other depositional systems. 
 
4.2.3 Fluvial depositional system  

The vertical sequences of coal series developed in the 

 

Fig. 5. Coal-bearing strata sequences in the study area. 
(a) Tidal flat; (b) deltaic; (c) lake; (d) fluvial.  
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fluvial system are mainly composed of channel demurrage 
deposits,  beaches,  natural  levee,  crevasse,  and  fining-
upward marshes (Fig. 5d). Due to the influence of channel 
movement or migration, the thickness of coal seams varies 
(Fig. 3d), as shown in the Shanxi Formation. The fluvial 
deposition mainly occurred in the Xiashihezi Formation, 
and the fluvial channels are widely distributed with no 
coals being deposited. 

 
4.3 Source rock potentials  

Many  indexes  have  been  adopted  to  evaluate  the 
thermal  maturity  of  source  rocks,  including  Ro,  max, 
pyrolysis yield index, maximum pyrolysis temperature and 
hydrocarbon conversion index, of which the Ro, max is the 
most commonly used and is adopted in this study (Sykes 
and Snowdon, 2002). 

 
4.3.1 Thermal maturity of coal and shale 

The Ro,  max of the upper coal seams varies between 
0.59% and 2.39%, and the lower coal seams vary between 
0.44% and 2.11%. The coals near Zijinshan Mountain 
show quite high values of Ro, max due to the thermal event 
during Yanshanian Orogeny, with the Ro, max values being 
higher than 4%. Generally, the Ro, max values increase from 
north to south, and are higher in the west areas than in the 
east. The study area reached its deepest burial depth in 
Late Triassic, and during that time the burial depth was 
deeper in the south and shallower in the north (Wang 
Shuangming, 2011). In the Zhunger area, the Ro, max varies 
in  the  range  of  0.5%−0.65% ,  0.59%−0.81%  for  the 
Fugu−Baode area,  1.23%−1.56% for  the Liulin,  1.2%
−1.7% for the Shilou and Daning areas, and 1.7%−2.6% 
for the Hancheng area. 

In Table 3, the Ro, max values of the shales were also 
measured,  with  the  values varies  between 0.82% and 
1.61% for the samples (lack of relatively high thermal 
maturity samples from the southern areas like Hancheng), 
averaged  at  1.30%  (Fig.  6a).  The  thermal  maturity 
variation of shales shows coincidence with coal, as the 
shales are generally interbedded within the coal seams of 
Shanxi and Taiyuan formations. The results show that 
most of the shales are in the mature stage, and the shales 
are of capacity in generating methane. 

 

 Table 2 Reservoir parameters from injection/falloff method of different blocks in east margin of the Ordos Basin, China 
(modified from Li Yong and Tang Dazhen, 2015)  

Parameters Linxing Liulin Shilou Yanchuanan Hancheng 

Depth (m) 681–1071 
879 

488–1056 
740 

521–967 
849 

898–1290 
1031 

532–1324 
967 

σHmin (MPa) 10.0–20.8 
14.7 

5.8–20.9 
14.1 

11.2–20.8 
17.1 

9.0–21.8 
15.1 

10.3–31.8 
20.2 

σHmax (MPa) 11.6–32.8 
21.1 

10.1–33.3 
21.6 

18.6–32.6 
26.7 

16.1–53.8 
31.4 

9.8–33.3 
21.7 

Reservoir pressure (MPa) 5.1–9.3 
7.5 

5.8–16.5 
13.1 

3.8–8.5 
7.1 

3.6–10.0 
5.8 

4.1–11.8 
7.8 

Reservoir pressure gradient (MPa/100m) 0.75–0.91 
0.85 

0.41–1.12 
0.84 

0.71–0.95 
0.83 

0.39–0.86 
0.54 

0.48–1.0 
0.79 

Reservoir temperature (oC) 19.6–20.1 
19.9 

19.6–35.1 
28.5 

24.3–42.3 
34.2 

31.5–45.4 
36.6 

21.5–43.0 
35.8 

Permeability (×10-3 μm2) 0.30–2.29 
1.07 

0.00–4.98 
0.46 

0.02–10.85 
1.56 

0.02–0.22 
0.10 

0.01–4.52 
0.65 

Note: The three values are the (minimum–maximum)/average values. σHmin=minimum principal stress; σHmax=maximum principal stress. 

Table 3 Maceral composition and the thermal maturity of 
Upper Paleozoic shale and mudstones 
Samples Strata Vitrinite

(%) 
Inertinite 

(%) 
Liptinite 

(%) 
Ro, max
(%)

TOC
(%)

Sx1 

Shanxi 
Formation

77.32 22.68  0 1.36 6.18 
Sx2 78.99 21.01  0 1.38 8.53 
Sx3 76.34 23.66  0 1.38 2.21 
Sx4 74.28 25.72  0 1.38 3.97 
Sx5 73.50 26.50  0 1.27 3.54 
Sx6 73.70 26.30  0 1.59 1.12 
Ty1

Taiyuan 
Formation

80.75 19.25  0 1.03 1.18 
Ty2 78.30 21.70  0 0.87 2.44 
Ty3 74.87 25.13  0 0.81 1.65 
Ty4 75.56 24.44  0 1.47 3.95 
Ty5 80.65 19.35  0 0.91 11.92 
Ty6 83.30 16.70  0 1.77 2.17 
Ty7 74.68 25.32  0 1.49 5.01 
Ty8 63.60 36.40  0 1.51 1.14 
Bx1 Benxi 

Formation

74.48 25.52  0 1.32 2.72 
Bx2 68.89 22.01  9.1 0.91 1.77 
Bx3 64.88 35.12  0 1.50 0.94 

 

Fig. 6. Vitrinite reflectance variation and the total organic 
carbon contents of the shales in the east margin of Ordos 
Basin.  
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4.3.2 Source rock quality evaluation  
Previous  studies  have  shown  that  the  coals  would 

generate significant amount of CH4 during its coalification 
process (e.g., Wang et al., 2015), and most of the gas 
would migrated to its adjacent strata with different gas 
saturations (e.g., Li et al., 2016). The coal would have 
provided enough gas for the Upper Paleozoic in most of 
the study areas, especially the middle and southern areas 
with Ro, max>1.2%, and thus put a solid hydrocarbon source 
foundation.  As  an  important  gas  generating rock,  the 
quality of shales is also discussed here.   

The maceral compositions of the studied samples show 
that the shales are mainly composed of vitrinite, with the 
volume percentage from 65% to  85% of  the  organic 
matter, averaged at 76%. The inertinite content varies from 
11% to 35% of the organic matter, with an average value 
of  23%.  The liptinite  is  hardly  seen from the  tested 
samples (only two samples of low Ro, max values), and the 
sapropelite is not observed. The calculated hydrocarbon 
indexes show that the shales are generally of type III 
kerogen. Combing the thermal maturity results of the 
shales (0.82% to 1.61%), the kerogen is in the main gas 
generation stage, showing that the shales are favorable for 
shale gas accumulations.  

The TOC value is an important parameter for source 
rock quality (Hazra et al.,  2016; Hakimi and Ahmed, 
2016), and the TOC of the tested shale samples varies 
between 0.9% and 11.9%, with an average value of 3.6% 
(Fig. 6b). The results show that the shales are organic rich 
(generally accepted as TOC > 2%), which is favorable for 
gas generation.  

 
4.4 Reservoirs  
4.4.1 CBM reservoir  

The Liulin area, which is famous for medium-volatile 
bituminous coal and is one of the first pioneer CBM areas 
in China, was chosen as a case study on the coal reservoir 
characteristics.  The  results  of  mercury  intrusion  and 
Brunauer−Emmett−Teller  (BET) surface area using N2 
adsorption/desorption are plotted in Fig. 7. The results 
show that the porosity is quite limited, and the pores with 
are generally smaller than 10 nm. As for pores of different 
scales, the micro (0-10 nm) and transitional pores (10–100 
nm) are dominant. No significant difference is shown in 
different sublayers by the two methods.  

For  a  better  explanation  of  the  coal-reservoir 
characterization,  the  maceral  group  analysis  and  the 
proximate analysis of the samples sourced from the same 
coal  cores are  plotted  in  Fig.  8.  Similar  to  the  pore 
structure distribution results, the microscopic and element 
compositions of coal sublayers from shallow to deep show 
no significant difference. Thus, the differences in CBM 
reservoir and production characteristics are not mainly 
caused by the maceral composition difference and may be 
primarily due to the coal seam underground environment, 
structure positions, in situ stresses, and etc. (Bell, 2006; Li 
Yong et al., 2014; Flores, 2014).  

 
4.4.2 Shale reservoir  

The whole rock analysis show that the shales are mainly 
composed of clay minerals, and the secondary content is 

terrigeneous mineral clasts mainly of quartz with seldom 
K-feldspar and plagioclase (Table 4). The terrigeneous 
content shows a volume content generally of 20% to 40%, 
with an average value of 31%. Carbonate minerals are 
hardly seen in the shale samples in the study area, with 
appearance in only 4 samples, mostly in the Taiyuan and 
Benxi formations, including calcite, dolomite and siderite. 
The  carbonate  was  deposited  during  the  transitional 
sedimentary environment, as transgressions were occurred 
commonly during the Taiyuan Formation. The pyrite is 
also generally observed in the tested samples, with an 
average content of 2.5% (values between 0.2% and 6.8%). 
The  pyrite  was  generally  deposited  in  a  reduction 
condition, which means that the shale deposition is in a 
negative environment (Baioumy and Ismael, 2010).    

Generally, the rock composition of the shale is clay 
minerals and quartz, with much higher content of clay 
minerals (generally > 50% in volume content), and the 
quartz is of an average value of 30%. The clay minerals 
contain significant content of micropores, which provide 
enough space for shale gas storage. It should be noted that 
the quartz content in the Shanxi Formation is higher than 
that in the Benxi and Taiyuan formations, while the pyrite 
content  of  the  Taiyuan  Formation  is  higher  than  the 
Shanxi Formation, which was caused by the terrestrial 
environment  of  the  Upper  Permian  compared  with 
epicontinental  environment  in  the  Taiyuan  and  Benxi 
periods (Li et al., 2015).  

 
4.4.3 Tight sandstone reservoirs  

Several thick sandstone layers are developed in the 
study area, especially in the north part, which has a good 
tight gas development potential with some areas been 
verified  in  the  Linxing  area.  In  Taiyuan  and  Shanxi 
formations, the Jinci, Qiaotou, and Beichagou sandstones 
are stably developed (Fig. 9; Figs. 4b and c), as well as the 
thick Luotuobozi sandstone bodies in the bottom of the 
Xiahihezi Formation (Fig. 4a). The sandstones acquired 
during well drilling were tested for helium porosity, with 
most of the porosity values varying between 0.35% and 
22.29%,  averaged  at  7.65% (Fig.  10;  Table  5).  The 

Table 4 Minerals composition of shales in east margin of 
the Ordos Basin 
Samples Qz Kp Pl Cal Dol Aug Sd Py Ana Clay minerals

Sx1 4.40 / / / / / / 0.2 / 95.4 
Sx2 44.5 / / / / / / 1.8 1.4 52.3 
Sx3 30.1 / 1.1 / / / 7.1 1.1 / 60.6 
Sx4 31.7 / / / / / / 4.6 / 63.7 
Sx5 33.4 / / / / / / 0.4 0.9 65.3 
Sx6 30.1 / / / / / / 3.5 1.3 65.1 
Ty1 32.8 / / / / / / 5.4 1.5 60.3 
Ty2 28.3 / / / / / / 2.2 / 69.5 
Ty3 23.2 / / / / / / 1 1.2 74.6 
Ty4 36.8 / 4.3 / / / 6.6 0.8 / 51.5 
Ty5 22.5 / / / / / / 2.6 1.5 73.2 
Ty6 38.9 2.9 / / 4.6 / / / / 53.6 
Ty7 30.8 / / 6.4 1.8 / / 1.1 / 59.9 
Ty8 41.1 / / / / / / / / 58.9 
Bx1 26.3 / / / / / / 3.1 / 70.6 
Bx2 30.8 / / / / 3.1 / / / 66.1 
Bx3 30.0 / / / / / / 6.8 1.5 61.7 

Qz, Quartz; Kp, K-feldspar; Pl, Plagioclase; Cal, Calcite; Dol, Dolomite; 
Aug, Augite; Sd, Siderite; Py, Pyrite; Ana, Anatase. 

 



Li et al. / Unconventional Natural Gases in Coal-Bearing Strata of Eastern Ordos Basin     120 

average permeability of the samples is 0.72×10-3 μm2, and 
quite a few samples being lower than 0.1×10-3 μm2. The 
results show that the samples studied are generally tight 
sandstones, and same results have been reported by Li et 
al. (2016b). 

 
4.5 Evidence of active continuous petroleum systems  

For a better reflection of the gas accumulations in the 
whole Upper Paleozoic, the gas occurrence from coal, 
tight sandstones, and shales are studied below.   

 
4.5.1 Gas content of coal   

Most gas content is lower than 15 m3/t, and the range of 
5–15 m3/t is dominant in all the samples (Sanjiao–Liulin 
and Hancheng).  The Shilou samples have the highest 

values, which are higher than 15 m3/t due to their large 
burial depth of 1200–1500 m. The samples from the Hequ
–Baode areas show the lowest range, mostly in the 0–5 
m3/t range, which is generally caused by its low thermal 
maturity (Ro, max ranges between 0.53% and 0.81%). With 
the  increase  of  coal  rank,  the  methane  generation 
continuously increases with the rank (Ro, max of 0.53% to 
2.5%) of the study areas (Zhang et al., 2008; Pependic, 
2011). The gas content of the tested samples generally 
shows an increase trend with coal rank, although the 
relationship is not linear (Li et al., 2016). The preservation 
condition is important for gas content, and the study areas 
is of different geology and hydrogeology condition which 
has a direct influence on the gas content (Li et al., 2015). 
Thus, the gas content is mainly controlled by the coal rank 

 

Fig. 7. Physical property of coal samples from sub-layers of the upper and lower coals in Liulin area, from top to bottom shows the 
sub-layers original sequence, mainly showing the mercury intrusion porosimetry and N2 adsorption/desorption results.  

Fig. 8. Proximate analysis and maceral group analysis of coal samples from sub-layers of the upper and lower coals in Liulin area, 
from top to bottom shows the sub-layers original sequence.  

Table 5 The distribution of porosity and permeability of different layers in the study area
Formation layers Tested samples no. Avg. porosity (%) Avg. permeability (×10-3μm2) Max. porosity (%) Max. permeability (×10-3μm2) 

He 8 437 6.25 0.23 21.81 4.06 
Shan 1 115 5.34 0.1 13.64 1.22 
Shan 2 214 5.63 0.26 11.0 8.29 
Tai 1 173 7.48 0.19 13.19 1.55 
Tai 2 875 7.28 0.46 14.1 11.09  
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and sealing conditions of the CBM reservoirs. 
  

4.5.2 Gas content of shale  
Isothermal adsorption experiments were conducted on 

sampled shales, and adsorbed gas content were calculated 
based on the initial  reservoir  pressure (Table 6).  The 
adsorbed gas content varies between 0.2 and 2.0 m3/t, and 
is 0.67 m3/t on average. Furthermore, the gas content 
shows a positive relationship with TOC value (Fig. 11), 
mainly  of  two  reasons:  (1)  the  higher  TOC  values 
generally mean higher gas generation potential; and (2) the 

kerogen is  generally of  largely developed micropores, 
which means higher adsorption ability to gas; meantime, 
gas hydrocarbons are easily dissolved in the amorphous 
and unstructured matrix asphalts. Thus, higher TOC value 
generally  means  higher  gas  generation  potential  and 

 

Fig. 9. Well cross-section showing the strata combinations of 
the study area.  

Fig. 10. Distribution of porosity and permeabilities of sand-
stones in the study area.  

 

Fig. 11. Relationship between TOC and adsorpted gas 
content of shales in the study area.  

Table 6 Adsorpted gas content at reservoir pressure (V) of 
shale (30oC) 

Samples VL (m3/t ) PL (MPa) V (m3/t ) 
1-1 2.18  1.64  1.96  
1-2 0.36  1.19  0.33  
2-1 0.64  1.21  0.60  
2-2 0.27  0.74  0.25  
2-3 0.23  0.94  0.21  

VL, Langmuir volume; PL, Langmuir pressure. 
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adsorption ability.  
 

4.5.3 Gas occurrence in tight sandstone  
Except for the successfully developed tight gas wells 

located  in  the  Linxing  area,  tight  gas  layers  were 
interpreted during the CBM wells drilling in most of the 
study area. The presented well is in the Linfen, south of 
the study area. It can be seen that different types of layers 
all show good hydrocarbon accumulation (Fig. 12). Two 
sandstone layers found in each of the Shanxi and Taiyuan 
Formations, with the mudstones/shale gas bearing layers 
also found. The most successfully developed gas layer in 
the He 8 member of the Xiahihezi Formation in the central 
and eastern Ordos Basin (Yang Hua et al., 2012). Recently 
the exploration results show that the gas layers in the 
Shanxi  and  Taiyuan formations  could  be  a  good gas 
supplement (Li et al., 2016), which is significant in clearly 
knowing the gas potential in the whole east margin of the 
Ordos Basin and its economic efficiency for co-production 

from one well (Meng et al., 2018).    
 

5 Discussions 
 
5.1 Favourable strata combinations  

Comparing the different coal depositional series, the 
fluvial  sandstones  (Fig.  13a),  distributary  sandstones 
deposited in the delta system (Fig. 13b), and the barrier 
sandstones (Fig. 13c) all show gas development potential. 
The interpreted and tested gas layers are sealed by the 
overlying and underlying mudstones. The tested porosity 
and  permeability  for  the  sandstone  cores  show  poor 
reservoir quality, and the gas layers in Shanxi and Taiyuan 
formations  are  much  deeper  than  that  of  Xiashihezi 
Formation. From low to the up strata, the gas saturation 
and reservoir pressure decrease gradually due to that the 
source rocks are mainly the coal and mudstones in the 
Taiyuan and Shanxi formations (Li et al., 2016). From the 
basin edge to center (Fig. 3b), the burial depth increases 
and this is more favorable for tight gas and shale gas 
accumulation than the basin edge (Fig. 14). As the CBM 
was generally developed from the shallow buried coal 
seams,  the  east  areas  are  more  suitable  for  CBM 
production with better permeability than the deep buried 
coal seams in the west (Li et al., 2017).  

From south to north, the sedimentary environments both 
of Taiyuan and Shanxi formations show great variations 
(Fig. 15). As for the Taiyuan Formation, the sedimentary 
facies vary from tidal flat in the south, to the neritic shelf 
and lagoon systems in the center areas, and then transit to 
the tidal flat and delta plain in the north. The Shanxi 
Formation shows a variation from delta front to shore-
shallow lake, delta plain and front, and then fluvial and 
flood  plain,  and  the  fans  and  braided  rivers.  For  an 
efficient  hydrocarbon  accumulation,  strong  gas 
supplement and good reservoirs are both necessary, thus, 
where  relative  thick  coal  and  sandstone  deposited, 
combing  mudstones  as  seal,  would  be  potential 
development target. As for Shanxi Formation, all the east 
margin of the Ordos Basin may be good choice, and for 
sandstone in the Taiyuan Formation, the Hancheng to 
Jixian area and the Sanjiao to Zhunger areas may have 
potential. Furthermore, as the Benxi Formation was also 
deposited  with  several  coal  seams,  thus  sandstones 
underlying the coal seams in the Taiyuan Formation are 
also attractive, especially in the south areas with relatively 
high coal maturity.  

 
5.2 Key stages controlling hydrocarbon migration and 
accumulation  

The thermal evolution history from north to south was 
studied, and the results show that hydrocarbon generation 
happened in two stages: (1) the continuous subsidence 
from  coal  forming  to  the  Hercynian  period  in  Late 
Triassic; and (2) the anomalous paleo-geothermal field 
happened in the middle Yanshanian period from Late 
Jurassic to Early Cretaceous (Fig. 16; Li et al., 2016; Xu et 
al., 2015; Ma et al., 2016). It should be noticed that the 
north areas (Fig. 16a) show a continuous subsidence from 
deposition to Late Cretaceous, however, three stages of 
fluid inclusion were detected, and the maximum burial 

 

Fig. 12. Gas layers observed in the Shanxi and Taiyuan for-
mations, with six interpreted layers.  
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Fig. 13. Tight gas accumulations in different formations of the reservoirs.  
(a) Xiashihezi Formation; (b) Shanxi Formation; (c) Taiyuan Formation.  
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temperature was also  influenced by abnormal  thermal 
event (Xu et al., 2015). The homogeneous temperature and 
salinity measurements of sample from the Liulin areas 
(located in the centre of the study area) verified that two 
stages of hydrocarbon generation and migration occured 
(Fig. 17). The fluid inclusions developed along quartz 
overgrowths  of  different  stages  and  microfractures  in 
Shanxi Formation (Figs. 18a and b), and also occurred in 
recrystallized  calcites  (Figs.  18c  and  d)  in  Taiyuan 
Formation. The yellow to green fluorescence shown in the 

hydrocarbon migration channels and where hydrocarbon 
was captured (Figs. 18e to h).  

Another  phenomenon  should  be  noted  is  that  the 
maximum burial depth of the source rocks in the south 
areas (with Ro, max around 2.0%) is shallower than that in 
the north (Ro, max around 1.0%) and centre areas (Ro, max 
>1.3%). The terrestrial heat flow in the south was higher 
than that in the centre and north areas, which substantially 
influence the thermal evolution and also gas content in 
coals. 

 

Fig. 14. Simplified reservoir combinations of coal, shale, mudstones in the east margin of the Ordos Basin.  

Fig. 15. Well cross-section from the south to the north of Taiyuan and lower part of the Shanxi formations (modified 
from Ouyang et al., 2018).  
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As shown above, the source rock reached its peak gas 
generation  stage  during  the  Late  Jurassic  to  Early 
Cretaceous, during which the gas may breakthrough the 
overlying strata upon coals and mudstones. The migrated 
gases were mainly preserved in lithological reservoirs in 
form of tight gas (Li et al., 2016). After the Cenozoic, the 
basin was continuously being uplifted, and gases in coal 
desorbed and gases in sandstones were de-pressurized 
with part of the gas being released. The strata uplifted in 
the late stage, not only resulted in gas migration of the 
upper strata, but also made former tightly preserved CH4 
migrated from coal and shales, and being re-trapped in the 
upper coal, shale and tight sandstones, as recognized from 
the isotope values of δ13CH4 (Li Yong et al., 2014; Fig. 
19). The Upper Palaeozoic developed two sets of source 
rocks, the coal and dark mudstones in Taiyuan and Shanxi 
Formations. The coal has been proved of much higher 
hydrocarbon  generation  ability  and  contribution  than 
mudstone and shales (Hunt 1991; Gong et al., 2018). The 
gas saturation decreases as with the increase of reservoir 
distance with the coal seams (Figs. 20a and b). 

The study area was influenced by two stages of tectonic 
movement  after  the  deposition  of  coal  measures,  the 
Yanshannian  orogeny  in  NW-SE  direction  and  the 
Himalayan Orogeny in NEE-SWW direction, resulted in 
orthogonal joints cutting the strata in vertical (Fig. 20c; 
Gao et al., 2018). The movement also resulted in the 
channel for gas migration from the lower to the upper 
strata, which was good for the gas accumulation in the 
Xiashihezi Formation and its upper strata (Fig. 19).  

 
6 Conclusions 

 
(1)  Stacked  hydrocarbon  accumulation  units  were 

identified within the Upper Paleozoic, with the Taiyuan, 
Shanxi and Xiashihezi formations are of great tight gas 
development potential, and the Benxi, Taiyuan and Shanxi 
formations contain transitional shale gas, apart from the 
already commercially developed CBM.  

(2) Four strata combinations were identified with coal 
deposition and favor for continuous gas accumulations, 
the tidal flat, deltaic and fluvial systems, which vary from 
Taiyuan to Shanxi and Xiashihezi formation, located in 
most  of  the  study  area,  and  the  lake  depositional 
environment mainly located in the southern part.   

(3) The methane was not only generated from the thick 
coal seams in Taiyuan and Shanxi formations, but also 
from shale and dark mudstones. The coal, shale and tight 
sandstones  are  proved of  remarkable  gas  content  and 
hydrocarbon indications, even though the reservoir quality 
varies between different formations and even within one 
single layer. 

(4)  Two  key  stages  controlled  the  hydrocarbon 
enrichment, the continuous subsidence from coal forming 
to  Late  Triassic  and  the  anomalous  paleo-geothermal 
event happened in Early Cretaceous. The Yanshannian and 
Himalayan tectonic movements resulted in vertical joints 
and faults to connect the Paleozoic strata, leading to gas 
migration and accumulation. The stacked deposits in the 
study area vary laterally and also vertically, and extensive 
areas  show  good  hydrocarbon  development  potential. 

 

Fig. 16. Thermal evolution history from north to south in the 
study area, with figure (a) referred to Xu et al., 2016; figure 
(c) referred to Ma et al., 2017.  

Fig. 17. Homogeneous temperature and salinity relationship 
of the tested fluid inclusions from the Shanxi and Taiyuan 
formations.  
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More works should be focused on the evaluation and 
selection of good reservoir combinations. 
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