
1 Introduction 
 

Mining  and  ore-processing  activities  are  the  main 
processes by which heavy metals are released into the 
environment, affecting the geochemical characterization of 
the surrounding soil and sediment (Kodirov and Shukuov, 
2009; Xiaochun et al., 2010; Darwish, 2011; Luo et al., 
2012;  Chaudhary  et  al.,  2013;  Lark  et  al.,  2017;). 
Contamination of soil and sediments with heavy metals in 
downstream areas  of  mining sites  is  an ever-growing 
worldwide concern. As such, an environmentally-friendly 
method is needed to rapidly detect the contaminated areas 
and control the rehabilitation process (Schwartz et al., 
2012). Sampling of stream sediments has been used as a 
useful technique for assessing the spatial distribution of 
heavy  metals  in  the  surface  environment.  Despite  its 
widespread use,  a complete procedure of geochemical 
mapping which involves sampling, sample preparation and 

laboratory analysis, is time-consuming and imposes huge 
costs  on  any  project.  Therefore,  scientists  have  been 
seeking  to  find  new  technologies  to  facilitate  and 
accelerate the procedure of geochemical projects.  

Reflectance spectroscopy covering the visible and near 
infrared ranges (400–2400 nm) is a rapid, straightforward 
and nondestructive analytical method which can be used to 
predict  and quantify heavy metal  content  in  soil  and 
sediment (Omran, 2016; Wetterlind et al., 2013). Heavy 
metals, as a rule do not show characteristic absorption 
features in the visible and near-infrared region of the 
spectrum (Pandit et al., 2010; Zhang et al., 2010; Liu et 
al., 2011; Schwartz et al., 2012). They might be detected 
indirectly through the spectral variation of minerals such 
as clay, iron-manganese oxides and organic matter (OM), 
as heavy metals are adsorbed onto their faces (Schwartz et 
al., 2012). The binding reaction of heavy metals on the 
surfaces of clay and oxide minerals may result in variations 
in the shapes of their absorption peaks (e.g., depth, area or 
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asymmetry of reflectance spectra) at around 2200 nm and 
500–1000 nm, respectively (Choe et al., 2008).  

The  effective  conjugation  between  VNIR-SWIR 
spectroscopy and geostatistical tools has facilitated the 
preparation  of  heavy  metal  distribution  maps  and 
determining the spatial extent of a polluted area (Chen et 
al.,  2015;  Chakraborty  et.  al.,  2017).  Meanwhile,  the 
possibility of extending the results obtained from ground 
derived spectral data to hyperspectral data, has developed 
the applicability of this technique for mapping the heavy 
metal polluted areas on HyMAP images during the last 
decades (Choe et al., 2008; Zhang et al., 2010; Mulder et 
al., 2011; Liu et al., 2011; Chen et al., 2012; Croft et al., 
2012; Omran, 2016). Considering these advantages, VNIR
-SWIR spectroscopy is commonly used as a preliminary 
step in deciding upon sampling and analysis strategies in 
most geochemical mapping projects (Shi et al., 2007).  

Several  quantitative  spectroscopic  researches  for 
assessing heavy metal contamination have been carried 
out during the past decade (Ji et al., 2010; Pandit et al., 
2010; Gannouni et al., 2012; Todorova et al., 2014; Ong  
and Cudahy, 2014; Gholizadeh et al., 2015b; Sakizadeh et 
al., 2015; Omran, 2016; Chakraborty et al., 2017). Choe et 
al. (2008) derived spectral absorption feature parameters 
(SAFPs) in  the range of  400–2400 nm from spectral 
variation associated with heavy metals in sediments in the 
Rodalquilar  mining  area  in  Spain.  According  to  the 
results, the ratio of 610 to 500 nm (R610,500 nm), absorption 
area at  2200 nm (Area2200  nm)  and asymmetry of  the 
absorption feature at 2200 nm (Asym2200  nm) indicated 
good correlations for concentrations of Pb, Zn, and As, 
respectively. Also, the result of their study showed similar 
spatial patterns between spectral gradient maps derived 
from  HyMAP  images  and  ground-derived  spectral 
parameters as well as geochemical gradient maps along 
major streamlines. Later, Choe et al. (2009) applied the  
spectral  absorption  feature  parameters  to  quantify  the 
heavy metal content of soil around an abandoned Au-Ag 
mine using stepwise (SMLR) and enter (EMLR) multiple 
linear regression methods. Omran (2016) demonstrated the 
possibility  of  using  the  VNIR-SWIR  spectroscopy 
chemometrics technique in the prediction of heavy metals 
in Bahr El Baqar soils, Egypt. Chakraborty et al. (2017) 
examined the feasibility of using the visible near infrared 
spectra  for  detecting  soil  As  pollution  in  the  eastern 
peripheries of Kolkata city, India. The results showed that 
there is a close association between As content, organic 
matter and Fe-/Al-oxides in the soil. 

The  Takab  area  in  the  North  West  of  Iran  is  a 
significant mineralized zone with large gold deposits and 
many mineral indices of heavy metals. The area has faced 
a serious environmental challenge during past decades. 

Mining and mineral processing activities have caused a 
vast  pollution,  especially  in  downstream  areas. 
Development of irrigated farmlands and gardens along 
with polluted streams has increased the risk of exposure to 
toxic  metals  among  the  residents  of  the  region. 
Considering the above, it can be concluded that after years 
of mining which has caused extensive distribution of toxic 
elements, stream sediments should be used in geochemical 
mapping  for  the  identification  of  spatial  distribution 
patterns of heavy metals.  

This study aims to investigate the applicability of using 
spectral absorption feature parameters (SAFPs) to predict 
and map the distribution of heavy metals in sediments 
along the main streams of the Takab mining area.    
 
2 Geological Background  
 

The Takab mining area, North West of Iran, is located 
between longitudes 47° 00′– 47° 17′E and latitudes 36° 30′
–36° 45′N, which covers an area approximately 753 km2 

(Fig. 1). The area is generally covered by mountains, 
especially in the northern parts. The topography varies 
from 3320m (Belghais Mountain) above mean sea level in 
the head reaches in the north-eastern part, to 1420m above 
mean sea level at the outlet in the south-western part of the 
area.  The  Sarough  River  is  the  main  surface  water 
resource  for  drinking  and  agricultural  usage.  The 
Zarshuran, Aq-Darreh and Ahmad Abad Streams are the 
main branches of the Sarough River  which cross the 
mining districts. 

Based on a 1:100,000 scale geology map of the study 
area (Fig. 1a), the oldest rock units are mainly composed 
of epidote schist, chlorite schist, serpentinite schist and 
quartzite of lower Precambrian age, which are overlain by 
metamorphosed ultramafic rocks, including serpentinite, 
serpentine schist and metamorphosed gabbro and basalt. 
These rocks underlie thick bedded crystalline limestone 
and dolomite of the upper Precambrian sequence. The 
black shale and carbonate intercalations that host the main 
part of the gold mineralization composes the upper unit, 
which is covered by rhyolitic tuff, sandstones and green 
shale.  The  Precambrian  unit  is  followed  upward  by 
dolomite,  limestone,  shale,  and  sandstone  deposits  of 
Cambrian age. An extensive part of the area is covered by 
Oligo-Miocene  sedimentary  deposits  composed  of 
gypsiferous  marl,  limestone  and  sandstone,  associated 
with  basaltic  and  andesitic  volcanic  rocks.  Travertine 
deposits and alluvium fans are the youngest lithologies in 
this area (Babakhani and Ghalamghash, 1995). There is an 
abundance  of  hot  springs  notably  nearby  travertine 
deposits which are generated from fluids of an active 
hydrothermal system related to the volcanic setting of the 



2384                Vol. 92 No. 6                                                                                                                                                Dec. 2018 ACTA GEOLOGICA SINICA (English Edition)  
http://www.geojournals.cn/dzxben/ch/index.aspx     http://mc.manuscriptcentral.com/ags 

Fi
g.

 1
. L

oc
at

io
n 

m
ap

 o
f s

tu
dy

 a
re

a 
an

d 
sa

m
pl

in
g 

si
te

s. 
(a

) g
eo

lo
gy

 m
ap

 a
nd

 (b
) l

an
ds

at
 im

ag
e.
  



Dec. 2018                                                                                                                                              Vol. 92 No. 6                 2385 ACTA GEOLOGICA SINICA (English Edition)  
http://www.geojournals.cn/dzxben/ch/index.aspx     http://mc.manuscriptcentral.com/ags 

study area (Alavi et al., 1982).  
Mineralization  in  the  Takab  area  resulted  from 

hydrothermal fluids released from deep and semi-deep 
intrusions of Cenozoic rock, which has caused a vast 
variety of mineralizations, such as gold, arsenic, antimony, 
copper,  mercury,  lead  and  zinc  (Ghorbani,  1999). 
Zarshuran and Aghdarreh are the main deposits of the area 
that are classified as gold deposits of the Carlin type 
(Maghsoudi  et  al.,  2005).  According  to  historical 
documents, gold exploitation in Takab goes back to 1400 
years ago (Zavosh, 1977). The signs of ancient mine 
workings  as  washing  gold-bearing  sands,  has  been 
discovered along Zarshuran stream. The location of mines, 
base metal occurrences and tailing sites in the study area is 
shown in Fig. 1a.   

The  Zarshuran  and  Aq-Darreh  mines  are  located 
upstream  of  the  Zarshuran  and  Aq-Darreh  streams, 
respectively.  According  to  previous  studies,  a  high 
concentration of heavy metals in water and bed sediments 
of these streams has placed them amongst the heaviest 
polluted rivers of the world (Modabberi & Moore 2004; 
Rahimsouri et al., 2013).  
 
3 Materials and Methods 
 
3.1 Sediment sampling and preparation 

Dry  sediment  samples  were  collected  from  60 
sampling sites along the main streams that drain from the 
mining districts and tailing sites from August to October 
2015.  Sediments  were prepared in  the  field  by dry-
sieving through a 2mm polyethylene mesh on wooden 
frames to remove stones and debris. All the samples 
were stored in plastic bags and sent back to the camp. 
Samples  were  air-dried  at  room temperature,  ground 
using an agate mortar and then passed through a 230 
mesh nylon sieve to achieve a sediment fraction smaller 
than 63 µm. A portion of the prepared sediment samples 
was sent to the laboratory of the Geological Survey of 
Iran (GSI) for chemical analysis and another portion was 
used for spectral measurement in the laboratory of the 
Tarbiat Modarres University (TMU). It should be noted 
that 15 sediment samples (accounting for 25% of total 
samples) were selected randomly as test  samples for 
evaluating the accuracy of the prediction models, and 
thus  only  45  samples  (training  samples)  entered  the 
procedure of geochemical and spectral data processing 
and modeling. 

 
3.2 Chemical Analysis  

For chemical analysis, sediment samples were prepared 
via a total extraction method by using aqua regia solution 
(1:3 ratio of HNO3 to HCl). The concentration of Co, V, 

Cu,  Cr,  Ni,  Hg,  Ti,  Pb  and  Zn  was  determined  by 
inductively coupled plasma mass spectrometry (ICP–MS), 
whereas  As  concentration  was  determined  by  atomic 
fluorescence spectrophotometry (AFS).  
 
3.3 Spectroscopy analysis 

Reflectance spectra of the sediments were measured 
using a Fieldspec®3 spectrometer (ASD, Fr, USA) in a 
dark  room  to  prevent  stray  light  interference.  The 
instrument covers the visible and near infrared (350–2500 
nm) range. The samples were placed in a 60×15×8 mm 
holder. The spectral measurement was performed using a 
contact probe, which involves contact measurements with 
a spot size of 42 mm. A 150W halogen lamp with a field-
of-view of 45° at nadir was set as the light source. The 
recalibration  of  the  spectrometer  was  conducted  after 
every 3 samples using a white BaSO4 panel. Sediment 
samples were scanned 20 times.  The average spectral 
curve of the samples was prepared using ViewSpec Pro 
ver.6  (ASD,  Inc)  software,  which  offers  a  spectral 
resolution of 1 nm.  
 
4 Results and Discussions 
 
4.1 Geochemical analysis 

The statistical processing was carried out using SPSS 
ver.21  (SPSS  Inc.,  USA)  and  Microsoft  Excel  2010 
software. The descriptive statistics for the heavy metal 
content in the sediments of the study area are presented in 
Table 1. The highest concentration of the ten heavy metals 
belonged to Ti ranging from 994 ppm to 8408 ppm, with 
the mean value of 3444 ppm. The mean concentration of 
heavy metals in the study area followed the descending 
order of Ti> As> Zn> Pb, Cr> V> Ni> Cu> Co> Hg.  

To  evaluate  the  possibility  of  observing  adverse 
biological effects in the sediments of the study area, the 
heavy metal content of the samples was compared with 
Canadian Sediment Quality Guidelines (CCME, 2002) 
using two assessment values. The lower value, referred to 
as  the  Threshold  Effect  Level  (TEL),  represents  the 
concentration below which adverse biological effects are 
expected to rarely occur. The upper value, referred to as 
the Probable Effect Level (PEL), defines the level above 
which adverse effects are expected to frequently occur. 
The results showed that the concentration of As in all 
sediment samples was higher  than the TEL threshold 
value. In terms of contamination level,  Ni (95%), Cr 
(88%) and Pb (73%) ranked in first to third, respectively. 
This means that adverse effects caused by the presence of 
these elements are expected to occur. To evaluate the risk 
of adverse effects caused by the elements that have a 
higher concentration of TEL values, calculating the PEL is 
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also necessary.  According to the results,  no sediment 
samples exceeded the PEL level for Cu, whereas 93.3% of 
As, 60% of Ni, 31% of Cr, 24% of Hg, 22% of Pb and 
15% of Zn contents were higher than thresholds.  

 
4.2 Spectral analysis 

The spectral analysis was performed with IDL DISPEC 
v.3.6 (ITC-UT). The continuum-removed signal (CRS) 
analysis  was  used  to  enhance  the  spectral  absorption 
features of measured reflectance spectra, decide the best 

data (Gholizadeh et al. 2015a), minimize any brightness 
differences and emphasize the spectra’s absorption bands 
(Ren et al., 2009). Spectral absorption feature parameters 
(SAFPs)  such  as  peak  depth,  area, band  ratio  and 
asymmetry were derived from spectral curves. Parameters 
related to the shape of the absorption peak (depth, area and 
asymmetry)  were calculated  from transformed spectra, 
whereas  the  band  ratio  was  measured  from the  raw 
reflectance spectra. Table 2 shows the descriptive statistics 
for spectral feature parameters derived from laboratory 

Table 1 Descriptive statistics of heavy metal concentration (ppm) in sediments of study area and CSQGs values 
Sample Hg Pb Co Cr Cu Ni Ti V Zn As Total 

S1 0.38 42.78 9.07 61.61 13.56 34.56 2503.70 52.25 72.03 188.00 2977.94 
S2 0.76 54.98 5.28 35.98 6.64 15.74 1666.19 32.28 66.06 238.00 2121.92 
S3 2.73 69.84 8.02 34.32 19.05 19.19 2193.82 49.61 84.20 139.00 2619.79 
S4 0.15 39.86 22.94 64.21 18.62 40.63 5726.94 92.05 99.05 280.00 6384.44 
S5 0.15 22.77 57.12 1347.38 19.43 1699.55 994.87 49.06 153.75 84.30 4428.37 
S6 0.49 374.14 20.06 106.18 33.45 114.19 3591.25 113.32 916.32 370.00 5639.40 
S7 0.15 219.46 28.79 352.10 29.25 325.39 3958.75 130.19 1295.87 435.00 6774.94 
S8 0.15 550.42 20.45 75.32 51.20 40.73 4470.35 141.31 396.06 379.00 6125.00 
S9 0.36 259.81 16.71 57.34 31.40 45.97 3445.61 111.16 703.11 418.00 5089.47 
S10 0.15 38.66 12.84 52.10 18.61 33.77 2659.62 75.05 75.25 65.30 3031.35 
S11 0.15 43.31 23.47 53.97 32.33 53.47 5415.35 156.66 145.74 56.50 5980.96 
S12 0.15 36.89 15.07 139.54 20.75 90.61 3106.81 81.35 315.74 186.00 3992.91 
S13 0.15 72.38 18.51 229.29 23.80 200.35 2999.70 75.63 546.44 372.00 4538.24 
S14 0.15 46.11 16.00 62.60 22.00 47.04 3948.31 101.14 91.57 28.00 4362.92 
S15 0.25 20.94 8.25 29.24 9.39 20.48 2106.69 35.44 32.65 71.50 2334.83 
S16 0.15 61.09 8.05 61.36 16.05 27.45 1752.57 52.68 85.52 411.00 2475.91 
S17 0.15 69.27 17.61 88.21 77.34 49.03 3576.28 132.31 140.22 120.00 4270.40 
S18 1.11 212.48 15.97 53.77 115.32 31.23 2929.71 91.84 227.19 114.00 3792.63 
S19 0.15 272.59 17.10 44.70 26.13 25.51 3609.76 130.85 253.49 21.70 4401.99 
S20 0.15 84.06 26.40 501.34 19.96 257.77 4196.58 166.74 117.29 88.70 5458.98 
S21 0.15 32.84 18.21 64.31 28.53 35.31 3842.63 170.77 76.90 8.50 4278.14 
S22 0.15 67.07 21.77 130.20 56.63 79.16 3834.47 128.02 90.17 41.20 4448.85 
S23 2.37 121.99 7.58 37.37 12.67 14.58 1924.55 48.81 77.67 118.00 2365.59 
S24 18.22 1139.67 19.55 93.00 32.38 67.74 3164.47 115.50 539.40 6509.00 11698.93 
S25 0.39 89.76 13.61 57.81 23.26 35.31 2715.32 75.24 147.77 280.00 3438.48 
S26 0.22 68.14 12.03 40.51 35.09 29.42 2556.61 74.15 85.42 62.00 2963.58 
S27 0.56 25.93 13.41 45.87 26.86 34.42 2461.46 64.11 78.95 32.20 2783.78 
S28 0.15 24.64 13.91 48.53 63.75 39.54 2699.72 76.12 71.46 50.50 3088.32 
S29 0.15 20.61 15.76 49.58 25.49 42.63 2811.43 76.48 104.62 52.60 3199.35 
S30 0.15 35.60 15.92 69.63 31.47 62.46 2778.36 78.04 148.31 165.00 3384.93 
S31 1.16 18.08 17.30 29.30 22.15 37.60 2290.23 50.52 56.00 12.30 2534.64 
S32 0.20 64.63 18.10 104.11 35.13 74.07 3422.63 120.20 78.07 62.20 3979.33 
S33 3.90 199.69 25.77 80.00 36.36 96.13 3964.88 114.17 244.53 374.00 5139.42 
S34 1.35 333.96 20.06 42.33 16.98 38.29 4082.17 140.57 100.95 81.50 4858.16 
S35 1.39 30.85 17.13 36.26 14.52 32.27 3293.35 126.11 81.54 48.00 3681.43 
S36 0.15 32.26 26.09 124.70 32.63 45.50 4902.98 181.96 80.70 34.80 5461.77 
S37 0.15 37.09 33.13 127.56 56.77 56.91 8408.21 178.33 83.61 18.00 8999.77 
S38 0.15 72.05 24.73 82.66 32.22 48.74 5177.64 166.51 84.33 33.20 5722.22 
S39 0.15 81.06 21.95 57.24 30.62 32.91 5704.14 139.03 81.00 31.60 6179.71 
S40 0.15 39.82 21.81 98.52 20.50 56.20 3893.50 133.86 117.66 56.20 4438.22 
S41 0.15 39.82 22.27 119.83 21.77 56.09 3475.23 136.08 96.42 141.00 4108.66 
S42 0.15 29.86 18.56 78.11 16.70 37.64 3045.88 104.98 94.81 60.00 3486.70 
S43 0.22 75.59 12.81 92.37 20.21 32.98 2956.23 96.10 83.59 75.60 3445.70 
S44 0.27 12.14 10.81 73.99 16.97 30.69 3249.13 75.64 53.34 11.50 3534.48 
S45 0.35 13.85 11.87 64.25 18.50 32.61 3514.83 85.46 64.75 42.30 3848.77 
Min 0.15 12.14 5.28 29.24 6.64 14.58 994.87 32.28 32.65 8.50 2121.92 
Max 18.22 1139.67 57.12 1347.38 115.32 1699.55 8408.21 181.96 1295.87 6509.00 11698.93 
Mean 0.90 117.75 18.26 117.75 29.61 96.04 3444.95 102.84 191.99 277.05 4397.14 

Median 0.15 54.98 17.30 64.25 23.80 40.63 3293.35 101.14 91.57 75.60 4108.66 
St.deviation 2.75 191.30 8.47 205.36 19.35 251.67 1285.32 40.63 247.55 959.02 1791.50 
Skewness 5.97 3.97 2.20 5.28 2.55 6.17 1.40 0.17 3.00 6.52 1.91 
Kurtosis 37.82 18.86 9.15 30.64 8.44 39.74 4.05 -0.89 9.73 43.24 5.63 

PEL Values 0.5 91.3 --- 90 197 36 --- --- 315 17 --- 
%Anomaly 24.4 22.2 --- 31.1 0 60 --- --- 15.5 93.3 --- 
TEL Values 0.2 35 --- 37.3 35.7 18 --- --- 123 5.9 --- 
%Anomaly 44.4 73.3 --- 88.8 15.5 95.5 --- --- 33.3 100 --- 

 

 



Dec. 2018                                                                                                                                              Vol. 92 No. 6                 2387 ACTA GEOLOGICA SINICA (English Edition)  
http://www.geojournals.cn/dzxben/ch/index.aspx     http://mc.manuscriptcentral.com/ags 

analysis. 
 

4.3 Correlation analysis between geochemical data and 
spectral parameters 

According to the Kolmogorov-Simonov normality test, 
the  data  of  heavy  metal  concentration  and  values  of 
Area500nm  and  Area2200nm  did  not  approach  a  normal 
distribution. Therefore, the data were transformed into a 
log  scale  for  further  statistical  analysis.  Pearson’s 
correlation coefficient was used to assess the relationship 
between  spectral  parameters  and  heavy  metals 
concentration in the sediment samples (Table 3).  

As  showed  the  highest  correlation  coefficient  with 
Asym2200nm (0.76) at a significant level of 0.01. Ni and Cr 
each had a strong negative correlation coefficient with 
Area2200nm which was -0.77 and -0.76, respectively. The 
Depth2200nm had a positive correlation with  Ni (0.62). 
There was a positive relationship between Depth500nm with 

Co (0.64), V (0.61) and Zn (0.54). Depth2200nm showed a 
positive correlation with Co (0.6). Total concentration of 
heavy metals had a positive correlation coefficient with 
Depth500nm (0.64) and Depth2200nm (0.53).  

 
4.4  Predictive  model  for  assessing  heavy  metal 
concentration 

Stepwise Multiple Linear Regression (SMLR) and Enter 
Multiple Linear Regression (EMLR) were used to assess 
the quantitative relationship between spectral absorption 
feature  parameters  and  heavy  metals  concentration  in 
sediments by establishing the regression equations (Table 
4). To validate data, the parameters in the range of R2 
(>0.5), RPD (>1.3) and SEE (<0.4) were applied (Chang 
et al., 2001).  

For  the  SMLR  model  Depth500nm,  Depth2200nm,  log 

Area2200nm,  log Area500nm and Asym2200nm were mainly 
used as predictors. Prediction of Ni ended in most reliable 
results  (R2=0.75,  SEE=0.17)  using  Depth2200nm,  log 
Area2200nm and Asym2200nm, as well as for Cr (R2=0.66, 
SEE=0.149) using Depth2200nm  and log Area2200nm.  The 
prediction of Co using three predictors (log Area500nm, 
Depth500nm  and  log  Area2200nm)  revealed  a  statistically 
significant  result  (R2=0.62,  SEE=0.09).  The  results 
showed a moderate prediction for As using Asym2200nm as 
a  predictor  (R2=0.58,  SEE=0.273).  In  contrast,  the 
prediction results of V and total value using Depth500nm 
showed  a  weak  relationship  (R2=0.36  and  0.41, 
respectively).  Also,  the  result  showed that  there  is  a 
relatively weak relationship between Zn concentration and 
spectral parameters such as Depth500nm and Asym2200nm 

(R2=0.48, SEE=0.187). In the EMLR model, heavy metals 
were  quantified  using  all  spectral  parameters  in  the 
regression as predictors. The results indicated a significant 
prediction performance for Ni, Cr, Co and As with R2 
values of 0.79, 0.68, 0.67 and 0.64, respectively. The 
calculated R2 values of 0.55 and 0.51 indicated that the 
prediction for Zn and V was relatively weak. In terms of 
total value, calculating the coefficient of determination 
(R2=  0.48)  showed  that  there  was  a  relatively  weak 
prediction result based on SAFPs.  

 
4.5 Evaluation of predictive models 

The  validation  of  the  prediction  equations  was 
implemented using 15 test samples which were excluded 
from the data processing and modeling procedure. The 
best predictive regression equations were selected based 
on the highest coefficient of determination (R2) and the 
lowest standard error of estimation (SEE) as the fitness 
indicators  of  the  models.  Accordingly,  enter  multiple 

 

Table 3 Pearson’s correlation coefficient between spectral parameters and heavy metals concentration in sediments 
   R1344/778nm  R610/500nm  Depth500nm Depth2200nm log(Area500nm) log(Area2200nm)  Asym2200nm

Log(Hg)  −0.05  −0.06  −0.33* −0.24 −0.04 0.24  0.21
log(Pb)  −0.05  −0.13  0.26 0.32* −0.09 0.11  .402**
log(Co)  0.08  0.10  0.64** 0.60** −0.01 −0.58**  −0.05
log(Cr)  −0.02  −0.21  0.44** 0.56** −0.33* −0.76**  0.13
log(Cu)  0.26  0.24  0.50** 0.22 0.14 −0.09  −0.04
log(Ni)  −0.02  −0.10  0.54** 0.62** −0.28 −0.77**  0.18
log(Ti)  0.09  0.28  0.46** 0.32* 0.34* 0.30*  −0.20
log(V)  0.15  0.14  0.61** 0.42** 0.15 −0.01  −0.23
log(Zn)  0.01  0.01  0.54** 0.52** −0.11 −0.16  .397**
log(As)  −0.05  −0.01  0.09 0.14 −0.05 0.06  .763**

log(Total)  0.13  0.18  0.64** 0.53** 0.11 −0.19  0.04
** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 2 Descriptive statistics of SAFPs of sediment samples of study area derived from laboratory analysis 
 R610/500nm R1344/778nm Depth500nm Depth2200nm Area500nm Area2200nm Asym2200nm 

Min 1.256 1.003 0.508 0.267 10.95 3.19 −0.490 
Max 2.057 1.259 0.743 0.555 279.17 77.51 0.210 
Mean 1.506 1.121 0.659 0.398 69.9 50.48 0.078

Median 1.479 1.116 0.661 0.393 60 49.33 0.110 
St.deviation 0.166 0.063 0.053 0.072 50.28 12.19 0.115 
Skewness 1.104 0.209 −0.757 0.427 0.21 −0.08 −3.176 
Kurtosis 1.639 −0.436 0.665 −0.489 0.63 0.42 13.579  
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linear  regression  analysis  showed  higher  predictive 
performances for all heavy metals and total value rather 
than the stepwise method. Heavy metal contents of test 
samples were calculated from the optimal models and then 
were transformed from a log-scale to original values to 
enable  comparison  with  the  analytical  results.  The 
relationship between measured and predicted heavy metal 
concentrations by the EMLR model was illustrated in 
scatter plots as representative of the validation process 
(Fig. 2). Graphs for Ni, Cr, Co and As contents displayed 
more scatter around the 1:1 line than for the Zn and V. It 
was assumed that the prediction was relatively poor at 
higher concentrations rather than lower contents of heavy 
metals.  

 
4.6 Mapping the spatial distribution of geochemical 
and spectral data  

The aim of preparing gradient maps is to compare the 
spatial distribution pattern of elements in the geochemical 
distribution maps with that in the maps associated with the 
spectral  parameter  values.  A  geographic  information 
system (GIS) facilitates the integration and processing of 
different data sets to create thematic maps which show the 
spatial distribution of a variable through an area. A variety 
of interpolation methods are employed to prepare surface 
color maps. Ordinary Kriging (OK) is a valid estimation 
method which has been used widely in environmental 

sciences  to  identify  spatial  distribution  patterns  of 
variables. It auto- correlates the primary variables among 
the sampled locations to predict values at un-sampled 
locations to produce visually appealing gradient maps and 
expresses the spatial trends in each dataset (Nas, 2009). 

In the present study, Ordinary Kriging was employed to 
estimate the concentrations of As, Sb, Pb, Zn, Cd, Ni, Cr, 
Hg, V, Co and Cu as well as spectral absorption feature 
parameters  in  stream sediments,  with  the  aid  of  the 
geostatistical analyst extension in ArcGIS 10.1 (ESRI, 
Redlands, USA). The interpolation process was performed 
between neighboring points within a 100-m-wide buffer 
zone of river network in the study area.  The created 
gradient  maps  visualized  the  variations  of  both 
geochemical and spectral parameters along the streamlines 
beyond the specific sampling sites and identified the hot 
spot areas where heavy metals were being released into 
the environment. Generally, heavy metals from the same 
source might have similar distribution patterns in soils and 
sediments (Chang et al., 2009).  

As shown in Fig. 3, the distribution patterns of Ni and 
Cr concentrations were similar. The color legend of the 
Area2200nm  map was  inverted  because  of  the  negative 
correlation with Ni and Cr concentrations. The Area2200 nm 

gradient map showed relatively comparable patterns with 
both geochemical maps. Extremely high concentrations of 
Ni and Cr were recorded in the upstream parts of the 

 Table 4 Linear regressions (SMLR, EMLR) between heavy metal concentration and SAFPs of sediment samples 
 Predictor F p-value R2 aSEE bRPD cSDV Equation 

Stepwise multiple linear regression (SMLR)   

Log(Co) 

Depth500nm 30.35 0.000 0.414 0.146 -- -- Log(Co)=−0.28+2.28 Depth500nm 
Depth500nm, log(Area2200nm) 28.7 0.000 0.578 0.125 -- -- Log(Co)=0.69+1.83 Depth500nm−0.41 log (Area2200nm) 
Depth500nm,log(Area2200nm),
Log(Area500nm)  22.38 0.036 0.621 0.090 1.56 0.14 Log(Co)=0.71+1.69 Depth500nm−0.52 log(Area2200nm)+0.15 

log(Area500nm) 

Log(Cr) Log(Area2200nm) 59.15 0.000 0.579 0.189 -- -- Log(Cr)=3.95−1.23 log(Area2200nm) 
Log(Area2200nm), Depth2200nm 40.92 0.003 0.661 0.149 1.67 0.25 Log(Cr)=3.09−1.04 log(Area2200nm)+1.36Depth2200nm 

Log(Ni) 

Log(Area2200nm) 63.53 0.000 0.596 0.232 -- -- Log(Ni)=4.08−1.42 log(Area2200nm) 
Log(Area2200nm), Depth2200nm 54.73 0.000 0.723 0.194 -- -- Log(Ni)=2.85−1.15 log(Area2200nm)+1.93Depth2200nm 
Log(Area2200nm), 
Depth2200nm, Asym2200nm 41.50 0.033 0.752 0.170 1.82 0.31 Log(Ni)=2.9−1.17 log(Area2200nm)+1.81Depth2200nm+0.54Asym2200nm 

Log(V) Depth500nm 24.89 0.000 0.367 0.1 1.1 0.11 Log(V)=0.53+2.18 Depth500nm 

Log(Zn) Depth500nm 17.43 0.000 0.288 0.206 -- -- Log(Zn)=−0.21+3.51 Depth500nm 
Depth500nm, Asym2200nm 19.35 0.000 0.480 0.187 1.28 0.24 Log(Zn)=−0.45+3.71 Depth500nm+1.32Asym2200nm 

Log(As) Asym2200nm 59.93 0.000 0.582 0.273 1.46 0.4 Log(As)=1.68+3.54 Asym2200nm 
Log(Total) Depth500nm 29.83 0.000 0.410 0.072 1.25 0.09 Log(Total)=2.37+1.88 Depth500nm

Enter multiple linear regression (EMLR)   

Log(Co) 

Depth500nm, Depth2200nm, 
R610/500nm, R1344/778nm,  
Log(Area500nm), 
log(rea2200nm), Asym 2200nm

10.72 0.000 0.670 0.088 1.58 0.14 *log(Co)=−0.3+1.54 R1344/778nm−0.33, R610/500nm−0.35 Depth500nm+1.6 
Depth2200nm+0.53 log(Area500nm)−0.61 log(Area2200nm)+0.2 Asym 2200nm

Log(Cr) 11.41 0.000 0.683 0.148 1.68 0.25 *log(Cr)=2.4+0.73 R1344/778nm−0.15R610/500nm−0.34Depth500nm+1.64 
Depth2200nm+0.15 log Area500nm−1.09 log Area2200nm+0.41 Asym 2200nm 

Log(Ni) 19.77 0.000 0.789 0.173 1.84 0.32 *log(Ni)=1.74+0.31 R1344/778nm+0.82R610/500nm+0.16Depth500nm+1.84 
Depth2200nm−0.38 log(Area500nm)−1.1 log(Area2200nm)+0.61Asym 2200nm 

Log(V) 5.45 0.000 0.508 0.098 1.32 0.13 *log(V)=0.45+0.31 R1344/778nm−0.92R610/500nm+2.97Depth500nm−0.32 
Depth2200nm+0.57 log(Area500nm)+0.03 log(Area2200nm)−0.3 Asym 2200nm

Log(Zn) 6.50 0.000 0.552 0.178 1.4 0.25 *log(Zn)=1.02−2.27 R1344/778nm+0.96R610/500nm+5.19Depth500nm−0.73 
Depth2200nm−1.01 log(Area500nm)+0.42log(Area2200nm)+1.15Asym 2200nm

Log(As) 9.30 0.000 0.638 0.274 1.53 0.42 *logAs=−0.42+0.29 R1344/778nm+1.15R610/500nm+0.64Depth500nm+0.66 
Depth2200nm−0.87 log(Area500nm)+0.52log(Area2200nm)+3.59 Asym 2200nm

Log(Total) 5.00 0.000 0.486 0.079 1.26 0.1 *log(Total)=1.35+1.45R1344/778nm−0.22R610/500nm−0.14Depth500nm+1.51 
Depth2200nm+0.37 log(Area500nm)−0.12 log(Area2200nm)+0.13 Asym 2200nm

a, Standard error of estimate. b, Ratio of prediction deviation. c, Standard deviation of validation set. * The optimal predicting equations.  
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Zarshuran  and  Ahmad  Abad  streams,  representing  a 
marked  decrease  in  downstream  sections.  Since  the 
concentration of Ni and Cr in Carlin-type gold deposits is 
relatively  low,  it  seemed  that  their  distribution  was 
controlled by a factor other than mining activities. Based 
on the 1:100,000 scale geological  map (Fig.  1b),  the 
location of Ni and Cr anomalies was compatible with 
outcrops of metamorphosed ultramafic-mafic rocks at the 
Zarshuran mine. This complex (Sr unit) which is mainly 
composed of serpentinite, serpentine schist, meta-gabbro 
and meta-basalt (Babakhani & Ghalamghash, 1995), is 
considered to be a metamorphosed ophiolite, which could 
be a possible source for gold and associated elements 
(Asadi et al., 2000).  

In  Fig.  4,  the  gradient  map  of  As  concentrations 
illustrates a similar spatial pattern to the Asym2200 map. As 
concentration  showed  a  marked  increase  in  sediment 
samples at the headwater, near the Zarshuran and Agh 

Darreh mining sites, which decreased gradually towards 
downstream  areas.   It  was  assumed  that  the  great 
abundances of As- bearing minerals such as orpiment 
(As2S3),  realgar  (AsS)  and  arsenical  pyrite  (FeAsS2), 
which accompany Au-As mineralization, was the potential 
source of arsenic. Also, the black shales and limestones 
which host gold mineralization in Zarshuran and Agh 
Darreh  deposits  have  a  high  concentration  of  arsenic 
(Asadi  et  al.,  2000;  Modabberi  and  Moore,  2004; 
Rahimsouri et al., 2012).   

In  Fig.  5,  the  gradient  maps  of  Co,  V  and  total 
concentrations was compared with the maps illustrating 
the Depth500nm and Depth2200nm values. The spectral 
gradient maps showed a similar trend with geochemical 
maps in most sections of stream channels, especially along 
the Agh Darreh and Zarshuran streams, but values on the 
Depth500nm and Depth220nm maps  were  lower  than 
those on the geochemical maps along the downstream 

Fig. 2. Scatter plots of predicted vs. measured values for (a) Ni, (b) Cr, (c) Co, (d) As, (e) Zn and (f) V concentrations (ppm).  
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parts of the Ahmad Abad stream. The high concentrations 
of Co and V in the sediments were measured in streams 
draining from Oligo-Miocene volcaniclastic outcrops to 
the north of the study area.  

The concentration of Hg, Zn, Pb and Cu in sediments 
was mainly high in the vicinity of mines and mineral 
occurrences in the study area. Hg content was significantly 
elevated in downstream areas from abandoned Hg mines 
along the Agh Darreh stream and the Zarshuran tailing 
site. Cinnabar (HgS) is a subordinate ore mineral in the 
waste piles which plays a major role in releasing Hg into 
the rivers. Extremely high values of Zn were found in the 
headwater of the Zarshuran stream, draining from the 
Zarshuran mine area. According to previous studies (Asadi 
et al., 2000), sphalerite is one of the most abundant sulfide 
minerals in the Zarshuran deposit. The results showed that 
the sediments of the Zarshuran, Agh Darreh and Ahmad 
Abad streams are extremely polluted by Pb. Weathering of 
galena (PbS) and Pb bearing sulfosalts in the ore tailings 
of Zarshuran and Agh Darreh releases Pb into the river 
system which causes a vast pollution of the bed sediments. 
Also,  occurrences  of  Pb  abandoned  mines  in  the 
headwater of the Ahmad Abad stream were described as a 
source of Pb in sediments. There are occurrences of vein 
type sulphide mineralization to the east of the study area, 
which  commonly  involves  pyrite,  chalcopyrite  and 

tetrahedrite (Asadi et al., 2000). Concentration of Cu in 
the  sediments  of  the  rivers  which  drain  this  area  is 
extremely high. Also, weathering of Cu minerals in the 
waste of the Zarshuran mine was considered to be the 
other source of this element in this area.   
 
5 Conclusion 
 

This study considered the possibility of using visible 
and near-infrared spectral parameters in estimating the 
concentration of heavy metals in sediment samples from 
the  Takab  mining  area,  and  mapping  their  spatial 
distribution pattern. The results showed that the spectral 
parameter  values  such  as  Depth500nm,  Depth2200nm, 

Area2200nm and Asym2200nm were comparable with heavy 
metal concentration data, but the R1344/778nm, R610/500nm and 

Area500nm parameters showed a weak relationship between 
the  two  datasets  (R<0.5).  The  result  of  Pearson’s 
correlation coefficient showed a strong positive correlation 
between  As  and  Asym2200nm,  a  negative  correlation 
coefficient  between Ni  and Cr  with Area2200nm and a 
positive correlation between Ni  and total  values  with 
Depth2200nm, as well as Co, V, Zn and total values with 
Depth500nm. The correlation coefficient between Ti, Hg, Pb 
and Cu and spectral parameters was lower than 0.5, which 
indicates a weak correlation. Multiple linear regression 

Fig. 4.  Gradient maps showing the spatial distribution patterns of (a) As and (b) Asym2200 nm in sediment samples.  
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Fig. 5. Gradient maps showing the spatial distri-
bution patterns of (a) Co, (b) V, (c) total concen-
tration, (d) Depth500nm  and (e) Depth2200nm in 
sediment samples.  
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employing the enter method showed superior performance 
when compared with the stepwise method. The results 
obtained  from validation  of  the  data  showed  a  good 
predictive capacity for Ni, Cr, Co and As, whereas Zn, V 
and  total  values  gave  a  weak  predictive  result.  It  is 
assumed that the weak predictive performance of some 
heavy  metals  may  be  caused  by  the  occurrences  of 
overlapping bands and the limited number of molecules 
that spectrally responded in the visible and near-infrared 
range (Ben-Dor et al., 1999).  

The geochemical gradient maps were prepared in the 
GIS  system  to  identify  the  distribution  patterns  and 
possible sources of heavy metals in the study area. Carlin-
type deposits showed enrichment in the heavy metals and 
metalloids  such  as  As,  Sb,  Hg,  Zn  and  Tl.  Also, 
polymetallic veins and disseminations of sulfide minerals 
are the other source of base metals (Cu, Pb, Zn) in the 
Takab  area.  In  addition,  the  high  background 
concentration of heavy metals in rock units are considered 
as geogenic sources of heavy metals in the study area, 
such as gold- bearing black shale and limestones (As), 
mafic metamorphosed rocks (Ni, Cr) and volcaniclastics 
(Co, V). It seems that mining activities, along with the 
natural weathering of mineral occurrences and rock units, 
has caused high concentrations of heavy metals in the 
sediments of the Sarough River tributaries.  

The  descriptive  statistics  of  the  geochemical  data 
indicated that in most of the sediment sampling sites, 
concentrations of heavy metals, especially As, exceeds the 
TEL and  PEL standard  limits  which  demonstrate  the 
possibility of adverse biological effects occurring. Finally, 
the results of this study showed that some of the ground-
derived spectral parameters of sediment samples can be 
used in the prediction of heavy metal concentrations in the 
Takab area. Therefore, use of the VNIR spectroscopic 
analysis in predictions of concentrations and geochemical 
mapping of heavy metals is proposed as a time and cost-
effective method, prior to designing sampling strategies in 
investigating geochemical anomalies. 
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