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Abstract: The typical characteristics of shale gas and the enrichment differences show that some shale
gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include
the Wufeng-Longmaxi shale gas in the Jiaoshiba and Youyang Blocks, the Lewis shale gas in the San
Juan Basin. Further analysis reveals three static subsystems (hydrocarbon source rock, gas reservoirs
and seal formations) and four dynamic subsystems (tectonic evolution, sedimentary sequence, diagenetic
evolution and hydrocarbon-generation history) in shale- gas enrichment systems. Tectonic evolution
drives the dynamic operation of the whole shale-gas enrichment system. The shale-gas enrichment modes
controlled by tectonic evolution are classifiable into three groups and six subgroups. Group | modes are
characterized by tectonically controlled hydrocarbon source rock, and include continuous in-situ
biogenic shale gas (lI;) and continuous in-situ thermogenic shale gas (l;). Group Il modes are
characterized by tectonically controlled gas reservoirs, and include anticline-controlled reservoir
enrichment (I1;) and fracture-controlled reservoir enrichment (I1,). Group 111 modes possess tectonically
controlled seal formations, and include faulted leakage enrichment (111;) and eroded residual enrichment
(111,). In terms of quantity and exploitation potential, 1;and I, are the best shale-gas enrichment modes,
followed by I1; and 11,. The least effective modes are I11;and I11,. The categorization provides a different
perspective for deep shale-gas exploration.
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1 Introduction

The Energy Information Agency (EIA, 2015, 2016)
recognizes 139 shale gas formations in 97 basins in 43
countries worldwide. The volume of recoverable shale gas
reserves may be as high as 220.69x10'?m’. Shale gas has
become the most important clean-energy source in the
modern era. Advances in shale-gas enrichment research
lead not only to theoretical breakthroughs in shale gas
exploration, but also to the discovery of more productive
areas for commercial shale-gas development.

As more shale gas reservoirs are discovered, the
existing mode has proved
increasingly inappropriate, and sometimes yields incorrect
information on shale-gas exploration. Therefore, a new
shale gas enrichment mode including both the existing
continuous enrichment mode and new enrichment modes
is required.

continuous enrichment
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To achieve this goal, this study analyzed the typical
shale gas characteristics and their enrichment differences
based on an extensive literature survey. A complete shale
gas enrichment mechanism was built, and its structures
and relationships were analyzed using the main factors of
fluid mineral formation. Tectonic evolution is identified as
the primary mechanism of the dynamic evolution of shale-
gas enrichment. Based on the characteristics and levels of
tectonic shale-gas enrichment
subsystems, the study built three groups with six
subgroups of new shale-gas enrichment modes controlled
by tectonics.

evolution in static

2 Geological Settings

As in conventional oil and gas resources, shale gas
enrichment primarily requires a powerful hydrocarbon
source, a perfect gas reservoir, a tight seal formation, and
a good spatio-temporal relationship (Magoon and Dow,
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1994; Pollastro et al., 2007; Ou 2015; Ou et al., 2016e;
Cui Jingwei et al., 2017), as shown in Fig. 1. A powerful
hydrocarbon source provides the shale gas reservoir with
sufficient hydrocarbons to drive the shale gas enrichment.
Shale reservoirs are the tightest fluid mineral reservoirs
discovered to date. A shale reservoir with well-developed
pores and fractures and an abundance of brittle minerals is
productive and commercially developable (Lan Chaoli et
al., 2016; Li Yufeng et al., 2018; Ou et al., 2016¢, 2018a;
Ou Chenghua and Li Chaochun, 2017a). Owing to the
high gas potential energy from large-scale hydrocarbon
generation and the strong gas diffusion capabilities, the
shale layer and the top and bottom seal formations must be
tightly sealed; otherwise, shale gas will escape from the
shale layer and become a gas source for other areas,
preventing enrichment of the shale layer. Finally, if the
spatiotemporal relationship is ignored in the shale-gas
enrichment (Ou et al., 2015; Ou Chenghua et al., 2016a;
Ou Chenghua et al., 2016b) and only the hydrocarbon
generation is considered, the shale gas accumulation and
enrichment are insignificant. The generated shale gas must
fill the high-quality shale reservoir over the same duration
and extent and must be continuously sealed by the top and
bottom seal formations (Ren Bo et al., 2016). When these
conditions are satisfied, the shale gas reservoir can be both
developable and long-lasting.

Being dominated by nanopores (Chen Fangwen et al.,
2018), shale-gas enrichment modes differ from
conventional oil and gas resources. Early in 1995, the
Unites States Geological Survey (USGS) introduced the
concept of “continuous” oil and gas reservoirs when
evaluating US shale gas (Gautier, 1996). Shale gas
reservoirs were defined as continuous by Curtis in 2002
(Curtis, 2002), and were assigned to continuous
enrichment reservoirs by the USGS in 2005 (Schmoker,
2005). The “continuous” concept was later introduced in
China and is widely applied in shale-gas exploration (Zou
Caineng et al., 2009, 2013; Ou et al., 2016e, 2018c¢).

As the continuous shale-gas enrichment mode, the shale
reservoir stores biogenic gas, thermogenic gas, or both
gases. This mode 1is characterized by a hidden
accumulation mechanism, short migration, and multiple
lithological trappings. Shale-gas enrichment involves vast
adjacent areas with boundaries limited only by the shale

Source

Reservoir

Spatio-temporal relationship

Fig. 1. Important factors of shale gas enrichment.

reservoir distribution (Gautier et al., 1996; Curtis, 2002;
Zou Caineng et al., 2009, 2013). In the continuous shale-
gas enrichment concept, the shale reservoir is both a
hydrocarbon source rock and a gas reservoir with sealant
capabilities. This source-reservoir—seal mode emphasizes
hydrocarbon sourcing and reservoir accumulation, and
relegates sealing to a less important role. It neglects the
gas separation between the source rock and the gas
reservoir, and the effects of tectonic evolution on the gas
reservoir and seal formation.

The Barnett shale, located in the Fort Worth Basin in
the US, is a well-known shale gas reservoir (Carlson,
1994; Bowker, 2007; Pollastro et al., 2007ab) that
exemplifies the continuous shale-gas enrichment mode
(Pollastro, 2007a, 2007b). In fact, the Barnett shale is
influenced by tectonic evolution. The Fort Worth Basin is
a back-arc foreland basin formed in the late Paleozoic
Marathon—QOuachita orogeny (Walper, 1982; Montgomery
et al., 2005). The Cambrian to Lower Ordovician
formation is carbonate sediment from the passive
continental margin, and the Mississippian formation
resulted from foreland sedimentation, in which the Barnett
shale and Chappel limestone are deposited. The Barnett
shale is up to 3000 m thick in the northeast of the basin.
As it gradually changes to limestone, its thickness
decreases from the west to the center of the basin (Loucks
and Ruppel, 2007; Jarvie et al., 2007). The Barnett shale
was eroded from the Late Devonian to the Early Permian.
The source rock was mature, and abundant hydrocarbons
were generated from the Permian to the Cretaceous after
the first and second oil crackings. Thereafter, the whole
formation began to uplift, gradually forming the Barnett
shale-gas enrichment area (Curtis, 2002; Hill et al., 2007,
Jarvie, 2007). Although the resultant Barnett shale gas
reservoir is vast and connected, tectonic evolution
facilitated the appropriate burial depth for substantial
hydrocarbon generation and the required hydrocarbon-
expulsion depth during the shale-gas enrichment and
accumulation processes (Ou, 2016; Ou et al., 2015; Ou
Chenghua et al., 2016cd). Therefore, the effect of tectonic
evolution on hydrocarbon generation, expulsion, and
enrichment cannot be neglected.

The Wufeng—Longmaxi shale in Jiaoshiba Block,
located in the Sichuan Basin, is strongly influenced by
tectonic evolution and renowned for its abundant reserves
and large production capacity (Guo Tonglou and Zhang
Hanrong, 2014; Guo Xusheng et al., 2014; Ou et al.,
2016€,2017b, 2018ac; Ou Chenghua and Li Chaochun,
2017a). The Wufeng—Longmaxi shale lies above the
Ordovician Linxiang tight limestone and below the
Silurian Xiaoheba tight mudstone. The Sichuan Basin,
located west of the Yangtze platform, is a complex
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compressional superimposed basin. Its lower part is the
Sinian-to-Silurian cratonic basin, its top part is the
Permian-to-Neogene foreland basin, and its middle part
(from Devonian to Carboniferous) is missing (Chen et al.,
1994; Yan et al., 2003). The Sichuan Basin structure is
complex with largely different tectonic styles. The
Jiaoshiba Block locates in the southeast fold area of the
Sichuan Basin. This block has formed a wide and gentle
anticlinal structure with a flat, intact main body and steep
wings. The structure was cut by faults following three
uplift and subsidence episodes since the Paleozoic (Guo
Tonglou and Zhang Hanrong, 2014; Guo Xusheng et al.,
2014; Fig. 2). Hydrocarbons were generated from the
Hercynian to the Early Indo Chinese Epoch, with
significant increases from the Middle Indo Chinese Epoch
to the Early Yansha Epoch. Hydrocarbon generation was
maximized during the Early Cretaceous (Dai et al., 2014;
Guo Tonglou and Zhang Hanrong, 2014; Guo Xusheng et
al., 2014) and the shale gas accumulated in the anticline
after multi-step migration (Dai et al., 2014; Guo Tonglou
and Zhang Hanrong, 2014; Guo Xusheng et al., 2014).
Clearly, tectonic evolution changed the structure of the
Jiaoshiba Block, separating the reservoir from its source
rock. The shale gas was not enriched in-situ but migrated
over a certain distance before enriching in a different part
of the same shale formation. Thus, tectonic evolution also
significantly influences the hydrocarbon generation,
expulsion, and enrichment processes.

3 Typical Shale Gas Enrichment Samples

3.1 Continuous in-situ biogenic Antrim shale gas in
Michigan Basin

One continuous in-situ biogenic shale gas is the Antrim
shale gas from the Michigan Basin (see Table 1), a typical
cratonic basin covering 31.6x10* km?. The Devonian
Antrim shale gas is widely distributed in this basin. The
reservoir parameters are as follows: burial depth=200-700
m, average thickness=32 m, average porosity=9%, total
organic carbon (TOC)=1%-20%, R,=0.4%-0.6%, and
5" C=-54.4%0—57.4%0. The amount of gas adsorption is
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70%, the average reservoir pressure and gas content are
2.76 MPa and 3.53 m’/t, respectively, and the shale-gas
geological and recoverable reserves are (9911-21520)x10°
m’® and (3115-5352)x10® m®, respectively. Fractures are
well developed in the Antrim shale outcrop and their
number decreases with increasing burial depth. The fresh
water from the basin margin injects into the fractures
through an unconformity plane, necessitating gas
production with water drainage (Curtis, 2002; Jarvie,
2007; Song, 2006). Development began in 1940, and the
gas production was maximized at 56x10° m® in 1998. The
gas production can decrease but was stable at 25x10% m’
in 2015 (EIA, 2016).

3.2 Continuous in-situ thermogenic Barnett shale gas
in Fort Worth Basin

The Barnett shale gas reservoir in the Fort Worth basin,
U.S.A., is a representative example of continuous in-situ
thermogenic shale gases (Table 1). The role and impact of
tectonic evolution of this reservoir on the hydrocarbon
source rocks, hydrocarbon generation, and hydrocarbon
expulsion have been analyzed in “Geological Settings”.
The gross output of the Barnett shale gas in the Fort Worth
Basin comprises over half of North America’s natural gas
output (Bowker, 2007; Martineau, 2007). Production
peaked at 502.6x10° m® in 2012 and gradually decreased
to 375.7x10° m® by 2015 (EIA, 2016).

As a typical foreland basin, the Fort Worth basin covers
10878 km?, and the Mississippian Barnett shale-gas
enrichment zones are widely distributed. The burial depth
is 1950-2550 m, and the geological and recoverable
reserves are (15291-57200)x10® m’ and (962-2832)x10*
m’, respectively. The shale-gas thickness exceeds 107 m
in the core enrichment zones, and exceeds 30 m in the
extended zones. The shale gas reservoirs are distributed
continuously with decreasing thickness trends from the
northeast to the southwest and northwest (Montgomery et
al., 2005; Gaudlip, 2006). Deposited in a deep-water slope
and basin environment, the Barnett shale is a black
siliceous shale with rich organic matter and fine siltstone
sediment. Its top and bottom are sealed by compact
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Fig. 2. Cross-section of the structure and stratigraphic distribution of the Sichuan Basin and its southeast margin.
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marlstone (Fig. 2; Bowker, 2007). The Barnett shale
contains clay minerals (<30%), quartz minerals (8%—58%;
average 34.5%), locally visible carbonate rocks (21.7%),
pyrite (9.7%), and phosphate (3.3%). Its reservoir
parameters are as follows: total porosity=4% —5%,
TOC=3%—-13% (average 4.5%) with I-II; kerogen,
R=1.0% —1.4% , and 6"°C=-47.6%0 —41.1%0. The
adsorption gas content, reservoir pressure and gas content
are ~20%, 20.7-27.6 MPa and 8.5-9.9 m’/t, respectively,
and there is no water (Curtis, 2002; Pollastro et al.,
2007ab; Montgomery et al., 2005; Hickey et al., 2007).

3.3 The anticline-controlled Wufeng-Longmaxi shale
gas in the Jiaoshiba Block

The Wufeng-Longmaxi shale gas reservoir, located in
the Jiaoshiba Block in the Sichuan Basin, China, is a
representative example of anticline-controlled reservoir
enrichment (Table 1). The role and impact of the tectonic
evolution of this reservoir on the hydrocarbon source
rocks, hydrocarbon generation, and hydrocarbon expulsion
have been analyzed in “Geological Settings”. The shale-
gas reservoir enrichment area of the Jiaoshiba Block
exceeds 300 km?. At the burial depth of 2250-3500 m, the
Wufeng—Longmaxi shale gas is 89 m thick on average,
and both the internal and external zones of the shale-gas
reservoir enrichment area are stable and widely
distributed, with geological reserves of more than
3500x10° m®. High-quality shale distributes in the lower
part, where the average thickness is 38 m and the
recoverable reserves exceed 2600 x 10° m’. The Jiaoshiba
Block is China’s largest shale gas reservoir, with an
expected production capability of 50 x 10°® m® per annum
by the end of 2017.

The shale gas enrichment area in the Jiaoshiba Block
locates in the main body of a wide and gentle anticlinal
structure, which is flat and intact with an increased dip
angle on the anticlinal limbs (Ou et al., 2016e, 2017b,
2018ac; Ou Chenghua and Li Chaochun, 2017a). The area
is cut by multiple faults (Fault 1, Fault 2, Fault 3, Fault 4,
and Fault 5; see Figs. 2-3). The core of the anticlinal
structure is characterized by high enrichment and a high
single-well production capacity of the shale gas, whereas
the narrow, steep wings nearby the faults are less enriched
with low or even non-existent single-well production
capacity.

Deposited in a deep-water neritic environment, the high
-quality shale distributed below the Wufeng—Longmaxi
shale is a black carbonaceous and siliceous shale with rich
organic matter, which gradually transforms to arenaceous
and argillaceous shale in a shallow-water neritic
environment (Liang Chao et al., 2012). The Wufeng—
Longmaxi high-quality shale has developed micro-

lamellation fractures in the enrichment zone and large
tectonic fractures near the limb faults. It contains clay
minerals (<10%—63%), quartz (26%—80%), feldspar (6%—
33%), calcite (2%—10%), and pyrite (1%—13%). The total
reservoir porosity is 4%—6%, and the TOC is 3.02%—
4.34% with I-II; kerogen. The average reservoir pressure
coefficient is 1.55 with significant super-compaction, the
gas content is 0.89-5.19 m’/t, and there is no water (Liang
et al., 2014; Guo Tonglou and Zhang Hanrong, 2014; Guo
Xusheng et al., 2014).

3.4 The fracture-controlled Lewis shale gas in San
Juan Basin

The Lewis shale gas reservoir in the San Juan Basin in
the U.S. is a representative example of fracture-controlled
reservoir enrichment (Table 1). The San Juan Basin is a
typical foreland basin formed during the Mesozoic that
underwent subsidence and sedimentation in the Middle
Jurassic Period. Regional black Lewis shales were
deposited by large-scale transgression during the
Cretaceous and Laramie tectonic movement in the Late
Cretaceous, which formed the current tectonic structures.
The San Juan Basin is 241 km long in the north-to-south
direction, 161 km wide, and covers an area of 2849 km’
(Peterson et al., 1968; Curtis, 2002; Lorenz et al., 2003).

Lewis shales are widely developed in the middle and
northern zones of the San Juan Basin, and are locally
wedged outward in the southern zones. With burial depths
of 914-1829 m and a thickness of 152.4-579 m (effective
net thickness of the gas-containing shale=61-91 m), Lewis
shale can be divided into four layers. The lowest layer has
a high permeability ratio, which may be related to two
widely developed groups of west—east and south—north
fractures. These two fracture groups are present not only
in the Lewis shale, but also in its surrounding sandstone
reservoirs. Consequently, they provide excellent channels
for the supply of hydrocarbon substances from the Lewis
shales to the adjacent sandstone oil and gas reservoirs
(Laubach, 992; Hill and Nelson, 2000; Lorenz et al.,
2003).

The Lewis shale has relatively high TOC and R, values
(0.45%—2.5% and 1.6%—1.88%, respectively), and strong
hydrocarbon-generation capacity. As the upper and lower
seal formations are unaffected by the fractures, the
geological reserves are 27411x10° m®, with a maximum of
9.6x10° m’/km* (Hill and Nelson, 2000; Curtis, 2002).
However, the reservoir pressure of Lewis shale is only
6.89-10.34 MPa. The pressure gradient and gas content
are 4.52-5.65 MPa/km and 0.425-1.274 m’/t, respectively,
and the gas absorption content is 60%-85% (Hill and
Nelson, 2000; Curtis, 2002). These features are related to
the release of reservoir pressure through the fractures.
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Lewis shale gas, discovered only in the 1990s, maintains
an average daily gas production of 2000-5000 m’ (Hill
and Nelson, 2000; Frantz et al., 2000).

3.5 Faulted leakage and eroded residual Wufeng—
Longmaxi shale gas in the Youyang Block

The Wufeng—Longmaxi shale gas in the Youyang Block
of the Sichuan Basin in China is a representative example
of a faulted leakage enrichment and eroded residual
enrichment (Table 1). Located on the south-eastern slope of
the Wuling depression outside the south-eastern edge of the
Sichuan Basin and uplifted adjacent to the Xuefeng (Fig. 2),
the Youyang region has experienced multiple stages of
tectonic movements, including the Caledon, Indo-Chinese,
Yanshan, and Himalayan. These movements are evidenced
by the large-scale regional uplift structures caused by
intense multi-stage compression, sustained tectonic
faulting, and eroding, as well as a series of NNE-NE fault
systems of unequal scale. These fault systems have divided
the shale gas into different fault blocks (Fig. 4). Mostly
deposited in the shelf-basin environment, the Wufeng—
Longmaxi shale consists of black carbonaceous and
siliceous shale sediments rich in graptolite (Zhang Qian et
al., 2018). The shale is strongly deformed (Ou et al.,

Elevation

2018ac) with marked variations in the dip angles and burial
depths (0-3520 m, Fig. 4).

The Wufeng—Longmaxi hydrocarbon source rocks were
at a low mature stage (R,<0.6%) prior to the Late Permian,
and reached maturity from the end of the Late Permian to
the end of the Middle Triassic. Their oil generation peaked
after the Middle Triassic. The wet-gas condensate stage
occurred at the end of the Early Jurassic, the over-mature
stage after the Middle Jurassic, and the dry-gas stage
during the Middle Cretaceous (about 80 Ma). The Wufeng
—Longmaxi Formation has always been deeply buried, so
has continuously generated sufficient hydrocarbons for
subsequent shale-gas However, after
several uplift events, the formation finally formed its
current shale-gas accumulation features (Zeng et al., 2013;
Liang et al., 2014; Tuo et al., 2016; Yan et al., 2016; Zhao
Jianhua et al., 2016; Fig. 4).

Despite the moderate burial depth of the shale gas in the
central part of the Youyang Block, tectonic movements
have generated a large number of dense, very high-angled
outcropped faults, which severely damaged the
preservation conditions of the Wufeng—Longmaxi shale
gas. Therefore, only areas far from the faults have
preserved their dispersed shale-gas enrichment zones (Fig.

accumulation.
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4), forming the typical faulted leakage enrichment. The
existence of faulted leakage enrichment zones is directly
evidenced by substrata No. 3 and No. 4 in W1 (see Fig. 4
and Table 2).

As the Wufeng—Longmaxi shales are uplifted above the
ground surface, the gas reservoirs and seal formations
around the Youyang Block have eroded. However, some
shale-gas accumulation zones are preserved in regions at a
certain depth below the eroded zones, forming the typical
eroded residual enrichment. The existence of eroded
residual enrichment zones is directly evidenced by
substrata No. 4 and No. 5 in W2 (see Fig. 4 and Table 3).

4 Results and Discussions

4.1 Configuration of shale gas enrichment

As demonstrated in Fig. 1, a shale gas reservoir is
enriched through the source—reservoir—seal system within
a specific domain, over which the spatiotemporal
relationship holds (Ou Chenghua et al., 2016a; Ou et al.,
2016b). Within this domain, static and dynamic factors

interact to establish an enrichment system of complex
internal structures and relationships (see Fig. 5). The shale
-gas enrichment system can be split into three static
subsystems (the hydrocarbon source rock, the gas
reservoir, and the seal formation), and four dynamic
subsystems (tectonic evolution, the sedimentary sequence,
diagenetic evolution, and hydrocarbon generation). The
shale-gas enrichment varies under the control of the
dynamic subsystems over the static subsystems.

Generally, the gas reservoir of a shale gas is not
separated from the hydrocarbon source rock. However,
during long-term geological evolution, shale gas generated
inside the shale may migrate over different distances (Guo
Tonglou and Zhang Hanrong, 2014; Ren Bo et al., 2016;
Feng Dongjun et al., 2016), meaning that some gas
reservoirs are located away from the shale-gas generation
site. Migration is confirmed by the typical shale-gas
enrichment differences discussed in Section 3.

The hydrocarbon source rock, gas reservoir, and seal
formation are the existing static geological components of
shale-gas enrichment. The hydrocarbon source dictates the

Table 2 Basic parameters of W1, representing a faulted leakage enrichment mode in the centre of the Youyang Block

Strata  Top depth Bottom depth  Thickness  Siliceous content ~ Clay content  Pyrite content Average Average TOC  Total gas content
number (m) (m) (m) (%) (%) (%) Porosity (%) (%) (ms/t)
1 3387.6 3398.0 10.4 423 55.1 0.2 1.4 0.8 0.75
2 3413.4 34234 10.0 54.9 32.8 0.7 1.4 1.1 1.08
3 3423.4 34349 11.5 56.5 28.5 1.5 2.4 2.4 2.49
4 3436.9 3446.9 12.0 68.3 223 2.5 2.6 2.3 2.51
5 3446.9 3449.2 2.3 35.6 31.4 1.3 1.0 0.5 0.83

Table 3 Basic parameters of W2, representing an eroded residual enrichment mode at the periphery of the Youyang Block

Strata number  Top depth (m)  Bottom depth (m) Layer thickness (m)  Porosity (%)  Gas saturation (%)  TOC (%)  Gas content (/)
1 550.0 552.0 2.0 1.9 57.4 1.4 0.61
2 555.0 557.0 2.0 1.9 60.1 1.3 0.60
3 563.0 582.0 19.0 1.6 63.1 1.4 0.64
4 582.0 585.8 3.8 3.2 65.0 3.0 1.29
5 587.5 594.6 7.1 3.8 63.3 4.0 1.90
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maximum resource that can be enriched. The gas reservoir
determines the potential resource (generally below 30% of
the maximum), and the seal formation limits the real shale-
gas reserves (generally below 50% of the potential). These
static subsystems function through various interactions and
couplings exerted by the four dynamic subsystems (Ou
Chenghua et al., 2016cd; 2018b). The hydrocarbon source
rock, gas reservoir, and seal formation are sedimentary
sequences controlled by various sedimentation processes in
specific  palaco-geographic throughout
various lithological periods. The characteristics of the
palaeo-geographic and accommodation
spaces differ under the effects of tectonic evolution. These
differences are the primary drivers of different sedimentary
sequences. The variation in burial depths due to tectonic
uplift and subsidence of static geologic bodies is
fundamental to diagenetic evolution and various diagenetic
processes (Yu Songyuan et al., 2017).

Shale gas consists of biologically and thermally
generated gas with individual generation limitations
(Curtis, 2002; Hill et al.,, 2007; Pollastro, 2007a, b).
Therefore, gas generated from a hydrocarbon source rock
has specific stages and histories, all related to the
formation temperature and pressure history of its burial.
The burial history of a formaiton is the formation,
sedimentation and diagenesis record that accompanies
tectonic uplift and subsidence (Ou et al., 2016¢, 2018bc).

As confirmed by the typical shale-gas enrichment
differences discussed in Section 3, tectonic evolution
controls the dynamics of the shale-gas enrichment
mechanism, and hence (to a large extent) the factors in the
dynamic and static subsystems. The shale enrichment
mechanisms are linked to their tectonic evolution drivers in
Fig. 5. Shale-gas enrichment modes controlled by tectonic
evolution are further classifiable into three enrichmnt
modes that depend on the degree of control over the
hydrocarbon source, gas reservoir, and seal formation:
namely, tectonically controlled hydrocarbon source rock,
tectonically controlled gas reservoirs, and tectonically
controlled seal formations. Each mode can be subdivided
into two sub-modes based on the strength of the tectonic
control. Thus, one can define three groups and six
subgroups of shale gas enrichment modes (see Table 1).
Generally, a stable, slightly active, and strongly active
tectonic zone is dominated by a tectonically controlled
hydrocarbon-source enrichment mode, a tectonically
controlled gas-reservoir enrichment mode, and a
tectonically controlled seal-formation enrichment mode,
respectively (Yu Songyuan et al., 2017).

environments

environments

4.2 Tectonically controlled hydrocarbon source (1)
As discussed above, tectonic control of the shale-gas

enrichment mode usually develops in a craton or foreland
basin. Owing to the stable secular tectonic subsidence, the
basin accommodation space is stable, and a marine (or
lacustrine) deep-water palaco-geographic environment
develops. A sedimentary sequence of shale and compact
limestone is then easily formed. The shale containing rich
organic matter and compact limestone eventually
transforms into the shale-gas source rock, reservoir, and
seal formation. Tectonic evolution largely affects the
hydrocarbon generation from the source rock and the
properties of the hydrocarbons. Therefore, the tectonically
controlled shale-gas enrichment mode is further
classifiable into two subgroups: continuous in-situ
biogenic shale gas (I;) and continuous in-situ thermogenic
shale gas (I,).

When the tectonic subsidence is insignificant, the shale
is shallow and expels no water. When fresh water is
injected from the basin margin, biogenic gas is formed in
the shale, which is rich in organic material under anoxic,
low temperature, and watery conditions. The continuous in-
situ biogenic gas (I;) forms after the shale gas accumulation
in the shale. This shale-gas enrichment mode is found in the
Antrim shale gas reservoir in the Michigan Basin (see
subsection 3.1 for details), the New Albany shale gas
reservoir in the Illinois Basin, the Niobrara shale gas
reservoir in the Nebraska Basin, and the shale gas reservoir
in the Sanhu lacustrine area in the Qaidam Basin, China.
This enrichment mode is characterized by low-maturity
source rocks, low reservoir pressure, many kinds of fracture
developments, high water saturation, high levels of gas
adsorption, a complete source-reservoir—seal system, and
wide-area distribution of the shale-gas enrichment region.
These properties are detailed in Table 1 and Fig. 6a.

Conversely, when the tectonic subsidence is significant,
a deep reservoir is formed in which the formation
temperature and pressure increase gradually, expelling
water from the pore space by compaction or vaporization.
Organic materials, such as kerogen and asphalt, begin to
thermally degrade or crack, generating significant amounts
of hydrocarbons. These processes generate a continuous in
-situ thermogenic shale gas (I;). This type of shale gas
reservoir is widely distributed across North America.
Examples are the Barnett shale gas in the Fort Worth
Basin (detailed in subsection 3.2), the Woodford shale
gases in the Ardomore and Anadarko Basins, the
Fayetteville shale gas in the Arkoma Basin, the Pearsall
shale gas in the Maverick Basin, and the Gothic shale gas
in the Paradox Basin. This mode is characterized by high
maturity, high reservoir pressure, minor fractures, medium
—high levels of gas adsorption, a complete source—
reservoir—seal system, and large-area distribution of the
shale-gas enrichment region. These properties are shown
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in Table 1 and Fig. 6b.

In these two shale-gas enrichment subgroups, the burial
depth determined by tectonic subsidence limits the
hydrocarbon-generation mechanism (a biogenic or
thermogenic process) of organic matter in the shale.
Furthermore, diagenetic processes underlie the formation
of the pore-fracture system in the shale reservoir and the
densification of its upper and lower seal formations. The
gas reservoir development controls the shale gas
distribution, leading to  widespread, continuous
development of the shale gas.

4.3 Tectonically controlled gas reservoir (I1)

Tectonically controlled gas reservoirs usually develop
in foreland basins. The hydrocarbon source rocks and seal-
formation sedimentary sequence are formed through
sedimentation in the foreland basin, similarly to the
tectonically controlled hydrocarbon-source enrichment
mode. A large quantity of hydrocarbons is generated and
accumulated at burial depths exceeding the thermal
decomposition gas threshold of kerogen. During the
formation of a foreland basin, frequent tectonic
movements alter the spatial form or inner structure of the
shale gas reservoir; consequently, the originally enriched
shale gas accumulates in a new part of the reservoir. The
tectonically controlled gas-reservoir enrichment mode can
be classified into two subgroups: anticline-controlled
reservoir enrichment (II;) and fracture-controlled reservoir
enrichment (I,), depending on the various gas-reservoir
properties caused by the tectonic evolution.

Areas containing gas reservoirs sustained intense
tectonic compression during the formation of the foreland
basin. After formation, the gas reservoirs were intensely
folded by substantial generation or expulsion of
hydrocarbons in the source rocks. These reservoirs were
originally located in the monoclinic structure of the slope
zone in the basin or in the syncline of the basin center,
which eventually evolved into an anticline structure (Ou et
al., 2015; Ou Chenghua et al., 2016cd). The wings of these
anticlines often induce various compressive reverse faults
and related structural fractures (Ou Chenghua et al.,
2016cd; Ou et al., 2015, 2018a). In addition, strata uplift
reduces both the burial depth and the formation pressure,
desorbing vast amounts of gas. The expanding free gas
abruptly increases the pore pressure inside the gas
reservoir, forcing the opening of lamellation fractures
inside the reservoir (Ou, 2015; Ou Chenghua et al., 2016a,
2017a; Ou et al., 2016b).

This although the gas potential energy in high-position
gas reservoirs increases via this process, it remains far
below the gas potential energy in low-position reservoirs,
because the high temperatures and pressures at low

positions facilitate hydrocarbon generation. In contrast, the
low temperatures and pressures at high positions weaken
the hydrocarbon-generating ability. Moreover, faults and
induced structural fractures on the anticlinal wing, and the
open lamellation fractures in the anticlinal core, allow
fluid flow channels to develop in the gas reservoir, thereby
forming the anticline-controlled reservoir enrichment (II;)
mode with vast amounts of shale gas converging from low
positions to high positions. A representative example of
this enrichment mode is the Jiaoshiba Block in the
Sichuan Basin, China (see subsection 3.3 for details).
Besides the previously mentioned properties, the type II;
mode features highly mature hydrocarbon source rock,
high pressure, fracture development in the anticlinal wing,
open lamellation fractures in the anticlinal core, no water,
and medium gas adsorption. As the source-reservoir—seal
system is complete, the shale-gas enrichment zone is
controlled by the distribution and scale of the anticline.
The properties are shown in Table 1 and Fig. 6c¢.

During the formation of the foreland basin, the source
rock begins or ends its hydrocarbon generation or
expulsion. Meanwhile, several tectonic movements occur
in the gas reservoir. The violent changes in burial depth
dramatically alter the formation temperature and pressure.
The processes of gas adsorption, desorption, and free-gas
compression and expansion are continuously repeated,
facilitating the activation of various non-structural
fractures in the gas reservoir (David et al., 2014; Ou et al.,
2015; Ou Chenghua et al., 2016cd). Repeated stress
changes due to tectonic uplift and subsidence also induce
many structural fractures (Ou, 2016; Ou Chenghua et al.,
2016¢cd), leading to discontinuous fracture zones in
different areas of the gas reservoir. Tectonic movements
change the shale-gas potential energy in the gas reservoir.
The potential energy is lowered in the fracture zones,
where the storage space is increased, inducing a
preferential direction of shale-gas migration and
enrichment. This process leads to fracture- controlled
reservoir enrichment (I1,). A representative example of this
mode is the Lewis shale gas reservoir in the San Juan
Basin (detailed in subsection 3.4) (Curtis, 2002; Hill and
Nelson, 2000), and possibly the Devonian shale from the
Appalachian Basin. Besides the previously discussed
properties, this mode features highly mature hydrocarbon
source rock, medium pressure, diagenetic and tectonic
fracture development, and high gas adsorption. The source
—reservoir—seal system is complete, and the shale-gas
enrichment zone is controlled by the distribution of the
fracture zone. The properties are shown in Table 1 and
Fig. 6d.

These two shale-gas enrichment subgroups are
subjected to compressive tectonic movements or multi-
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stage tectonic uplift and subsidence, causing anticline of
the shale gas reservoir or fracture zones. Consequently, the
original shale gas is either adjusted and enriched, or
accumulated in the high-position folding or fracture zones.
As the tectonic movement is not large, the seal formation
at the top and bottom of the gas reservoir is well
developed, and the shale gas re-accumulates in the interior
of the shale reservoir. The spatial distribution of the shale
gas is predominantly controlled by the scale of the
anticline or the fracture zone, so the continuous shale-gas
enrichment zone is localized rather than widespread.

4.4 Tectonically controlled seal formation (111)

The tectonically controlled seal-formation enrichment
mode develops in a strongly active tectonic zone at the
margin or periphery of a foreland basin. The development
progresses similarly to tectonically controlled hydrocarbon
sources and tectonically controlled gas reservoirs. A
favorable sedimentary sequence forms during the early
foreland basin development. After hydrocarbon generation
and enrichment, the margin or periphery of the foreland
basin is changed by tectonic movements. Tectonic
motions also damage the reservoir and its top or bottom
seal formations. Based on the damage degree of the seal
formations, the tectonically controlled seal-formation
enrichment mode is classifiable into two subgroups:
faulted leakage enrichment (III;) and eroded residual
enrichment (I11,).

After a series of compressional or tensional tectonic
motions, faults and fractures develop in the core of the
shale gas reservoir, cutting the reservoir and seal
formations into several faulted blocks, releasing the
reservoir gas (Ou et al., 2016e), and damaging the original
shale gas reservoir. However, some of the shale gas far
from the fault or fracture is trapped in the reservoir by the
seal formations. The faulted leakage enrichment (III)
mode is exemplified by the Wufeng—Longmaxi shale gas
in the Youyang Block (detailed in subsection 3.5). This
mode is characterized by well-developed faults in the
shale gas reservoir, highly mature source rock, low
reservoir pressure, low gas adsorption, damage to the
reservoir-preservation system, and a shale gas distribution
controlled by the scale of the faulted blocks. The specific
characteristics are shown in Table 1 and Fig. 6e.

After several tectonic uplifts, the shale gas reservoir is
shallowed and the dip angle usually increases. The gas
reservoir and seal formation outcrop leach atmospheric air
and water, freeing the adsorbed gas and releasing the shale
gas. Contrarily, the nitrogen and carbon dioxide in the air
and fresh water enter the shale gas reservoir. When the gas
release is equilibrated between gas release and with the
water injection, the gas re-accumulates in the reservoir,

forming the eroded residual enrichment (III;) mode. This
mode is typified by the Wufeng-Longmaxi shale gas in
the Youyang Block (detailed in subsection 3.5), and is
characterized by a damaged reservoir and seal formation,
highly mature source rock, low pressure, low gas
adsorption, and high water saturation. The shale gas
distribution is controlled by the distribution of the residual
reservoir and seal formation. The specific characteristics
are shown in Table 1 and Fig. 6f.

In these two shale-gas enrichment subgroups, multi-
stage tectonic uplift and subsidence causes intense
transformation, with fault or erosion of the original shale
gas reservoir. The gas reservoir and its top and bottom seal
formations are either cut by faults or eroded.
Consequently, the shale gas re-converges and secondary
faults develop in the seal formation (if fractured) or its
residual (if eroded). The spatial distribution of the shale
gas reservoirs is mainly controlled by the extent of
fracture development or erosion, resulting in a
sporadically distributed shale-gas accumulation zone.

4.5 Scientific significance of classifying the tectonic
shale-gas enrichment modes

In terms of quantity and exploitation potential, modes [,
and I, are the best shale-gas enrichment modes, followed
by II; and II,. The least effective modes are III; and IIL.
However, based on the exploration and development
histories of conventional oil and gas resources, the high-
quality shale gas reservoir resources will deteriorate under
gradual exploration and development. Eventually, shale
gas reservoirs will be dominated by medium-grade
resources of types II; and II,, and even low-grade
resources of types I1I; and III,. This deterioration seriously
challenges the exploration and development of shale gas.
The present classification into three groups and six
subgroups of shale-gas tectonic enrichment modes will
promote a differential perspective of shale gas exploration.

5 Conclusions

(1) The typical shale-gas characteristics and enrichment
differences were examined in four different shale
reservoirs distributed in four basins. The obtained
characteristics were insufficiently explained by the
existing continuous enrichment mode, necessitating the
proposition of a new shale-gas enrichment mode that
includes both the existing continuous enrichment mode
and newly introduced enrichment modes. The new shale-
gas enrichment mode promotes the continuous exploration
of shale gas.

(2) A shale-gas enrichment system consists of three
static subsystems (hydrocarbon source rock, gas reservoir,



Oct. 2018

ACTA GEOLOGICA SINICA (English Edition)

http://www.geojournals.cn/dzxben/ch/index.aspx

Vol. 92 No. 5 1945

http://mc.manuscriptcentral.com/ags

and seal formations) and four dynamic subsystems
(tectonic evolution, the sedimentary sequence, diagenetic
evolution, and the hydrocarbon-generation history).
Tectonic evolution originally drives the dynamic
enrichment of the shale gas reservoir, and primarily
controls the shale gas characteristics. Under tectonic
evolution effects, only the enriched shale gas currently
preserved in the seal formations is suitable for practical
prospecting and extraction.

(3) The shale gas enrichment modes controlled by
tectonic evolution are classified into three groups
representing the three static subsystems. Each group can
be subdivided into two sub groups governed by different
effects of the tectonic evolution. Ultimately, the
tectonically controlled shale-gas enrichment mode consists
of six subgroups in three groups. Tectonically controlled
hydrocarbon source rock (type I) includes the continuous
in-situ biogenic shale gas (I;) and continuous in-situ
thermogenic shale gas (I;) modes. Tectonically controlled
gas reservoirs (type II) include the anticline-controlled
reservoir enrichment (II;) and fracture-controlled reservoir
enrichment (II) modes. Finally, tectonically controlled
seal formations (type III) include the faulted leakage
enrichment (IIl;) and eroded residual enrichment (III;)
modes. Clearly, modes I; and I, are the best shale-gas
enrichment modes for prospecting and development,
followed by II; and II,, whereas III; and III, are the least
effective. These shale gas enrichment modes provide a
differential perspective on deep shale-gas exploration.
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