
1 Introduction 
 

Recently, shales have been extensively researched as 
reservoir rocks for oil and gas worldwide, due to the 
successful production of shale oil and shale gas in North 
America and China (Jarvie et al., 2007; Guo and Zhang, 
2014; Zhao et al., 2016). The pore properties of shales 
have an important influence on the capacity for storing oil 
and gas (Ross and Bustin, 2009; Ma et al., 2015; Xiong et 
al., 2015; Wang et al., 2015a, b; Han et al., 2016a). Pores 
in  shales  can  be  classified  into  interparticle  pores, 
intraparticle pores and organic matter (OM) pores (Loucks 
et al., 2012). The abundance of these three types of pores 

in  shales  is  mainly  controlled  by  the  mineralogical 
composition and organic matter content (Ross and Bustin, 
2009; Ma et al., 2015; Xiong et al., 2015; Wang et al., 
2015a, b; Han et al., 2016a). In addition, the pore volume, 
surface area, and size distribution vary with maturity. 

Previous studies have considered the pore evolution of 
shales. Mastalerz et al. (2013) found the pore volume of 
New Albany shale samples increased initially and then 
increased  with  increasing  maturity  (0.35% –1.41% Ro), 
which was attributed to the generation and expulsion of 
liquid hydrocarbons. Chen and Xiao (2014) presented the 
micropore and mesopore characteristics of a series of 
artificial  shale  samples  with  equivalent  vitrinite 
reflectance values ranging from 0.69% to 4.19%. The 
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formation  and evolution  of  nanopores  in  shales  were 
divided into formation stage (0.60%–2.0%Ro), development 
stage  (2.00%–3.5%Ro),  and  conversion  or  destruction 
stage (>3.5%Ro) by them. Hu et al. (2015) observed that 
the porosity of shales increased with maturity from a 
series of artificial shale samples, ranging from immature 
to the oil-cracking stage. Curtis et al. (2012) concluded 
that  the  secondary  organic  porosity  was  not  a  linear 
function of thermal maturity by observing eight samples 
of Woodford shale with mean random vitrinite reflectance 
values ranging from 0.51% to 6.36%. Romero-Sarmiento 
et al. (2014) showed that the nanoporosity increased with 
increasing  maturity.  Pommer  and  Milliken  (2015) 
concluded  that  primary  porosity  decreased  and  the 
secondary  organic  matter  porosity  increased  during 
diagenesis based on the shale samples with maturities 
ranging  from 0.5% to  1.3% Ro  from the  Eagle  Ford 
Formation  in  the  Maverick  Basin.  Ko  et  al.  (2016) 
demonstrated that original interparticle and intraparticle 
pores are functions of depositional and early diagenetic 
processes before petroleum generation and migration; pore 
evolution was closely related to organic matter conversion 
when organic matter became mature. Guo et al. (2017) 
compared the pore evolution of two series of artificial 
shale samples from a closed system and a semi-closed 
system, using Chang 7 shale samples as starting materials, 
showing  that  there  is  no  straightforward  relationship 
between  organic  matter  decomposition  and  pore 
development.  The  works  above  indicated  that  pore 
evolution  is  obviously  different  between  shales  from 
various basins. Moreover, most of these works considered 
marine  shales,  meaning  that  the  pore  evolution  of 
lacustrine shales remains poorly understood. 

The pore volumes of New Albany shales increase at 
first and then decrease with increasing maturity (Mastalerz 
et al., 2013). This evolution of pore volume was explained 
by the generation of oil-filling pores, followed by the 
release of pore space by oil cracking. The pore volumes of 
shales show a marked increase after extraction (Valenza II 
et al., 2013; Guo et al., 2014; Mohnhoff et al., 2016), 
which indicates that the retained oil  occupies a large 
volume of pore space in shales, especially shales with a 
maturity within the oil window. Li et al. (2016) found that 
both soluble and insoluble organic matter occupied plenty 
of pore space in the shale from the Yanchang Formation in 
the Ordos Basin. The influence of soluble organic matter 
on pore evolution in shales has been evaluated by Wei et 
al. (2014). Their results demonstrated that the trends of 
pore volume and surface area of the extracted samples 
were similar to the original ones. Although it has been 
shown that oil generation and cracking have an important 
influence on the pore evolution of shales, the lacustrine 

shale samples at various maturity levels extracted using 
organic solvents has not been well documented. 

The shales of the Chang 7 member of the Triassic 
Yanchang Formation of the Ordos Basin in China have 
good potential for oil and gas (Lei et al., 2015). The pore 
characteristics of the Chang 7 shales have been studied 
previously.  These  studies  mainly  focused  on  fractal 
analysis (Liu et al., 2015; Jiang et al., 2016; Han et al., 
2018), pore evolution (Sun et al., 2015; Chen et al., 2016), 
and the effects of retained oil on pores (Guo et al., 2014; 
Li et al., 2016; Xiong et al., 2016). The pore network in 
the shales from the Yanchang Formation is dominated by 
intraparticle  pores  and  a  lesser  abundance  of  organic 
matter  pores,  as  well  as  organic matter  pores mainly 
developed  in  solid  bitumen  (Loucks  et  al.,  2017). 
Compared with the marine Eagle Ford shales, the Chang 7 
shales lack early cementation during compaction (Ko et 
al.,  2017).  The pore  development  of  shales  from the 
Yanchang  Formation  was  jointly  controlled  by 
compaction,  the  petroleum expulsion process,  and the 
organic matter type (Guo et al., 2018). However, previous 
studies of pore characteristics in the Chang 7 shales at 
various maturity levels were performed using artificial 
samples (e. g., Sun et al., 2015; Chen et al., 2016; Guo et 
al., 2017). Pores in natural samples with various maturities 
may show different results to those obtained previously. 

In  the  present  contribution,  a  maturity  series  of 
lacustrine shale samples was chosen from the Chang 7 
member of the Triassic Yanchang Formation in the Ordos 
Basin.  The  selected  samples  were  extracted  using 
dichloromethane.  Low-pressure  gas  (CO2  and  N2) 
adsorption experiments were performed on the samples 
before and after extraction to obtain their pore structure 
parameters.  The pore characteristics of the initial  and 
extracted  shale  samples  were  analyzed.  The  results 
improve our understanding of pore structure in lacustrine 
shales and provide insights into oil storage in shale. 

 
2 Geological Setting and Sampling 
 

The Ordos Basin in central China (Fig. 1) covers an 
area of 32 × 104 km2 and consists of six structural units: 
the Yimeng uplift in the north, the Weibei uplift in the 
south, the Tianhuan depression in the west, a thrust belt on 
its western edge, the Jinxi fold belt in the east, and the 
Yishan slope in the center (Duan et al., 2008) (Fig. 1). The 
Yishan slope is the largest structural unit in the basin, and 
strata  in  the  unit  dip  at  <1°  towards  the  west.  The 
basement of the basin is crystalline rock of the Archean 
Eonothem and Palaeoproterozoic, which has experienced 
five tectonic stages: Meso-neoproterozoic aulacogen, early 
Paleozoic  shallow  marine  platform,  late  Paleozoic 
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offshore plain, Mesozoic inland depression, and Cenozoic 
fault depression (Yang et al., 2005). The main tectonic 
framework of the Ordos Basin largely developed during 
the Mesozoic. Widespread lacustrine shales formed during 
the  Late  Triassic.  Lacustrine  shales  of  the  Triassic 
Yanchang  Formation  are  the  main  source  rocks  for 
conventional oil resources in the basin (Duan et al., 2008). 
This basin has undergone five reworking episodes since 
the Late  Cretaceous (Zhao et  al.,  2011).  The current 
tectonic setting developed after Cenozoic subsidence. 

The Yanchang Formation consists of Upper Triassic 
strata and is divided into 10 members, Chang 1–10 from 
top to  bottom (Fig.  2),  which consists  of mudstones, 
shales,  and  sandstones.  Chang  7  is  composed 
predominantly of shales (Zhang et al., 2009) and is an 
important exploration target for shale gas (Lei et  al., 
2015). In this study, 8 samples from the Chang 7 member 
were collected from the cores of wells Zheng 3, Zhuang 
233, Jinghe 13, Yan 56 and Huan 317 (Fig. 1). 
 
3 Experiments 
 
3.1 Geochemical measurements 

After surface cleaning, core samples were crushed to 
100 mesh (<150 µm), and the geochemical parameters of 

the powdered samples were measured using a Rock-Eval 
II instrument in accordance with the method of Espitalie et 
al. (1977). The parameters of S1, S2, hydrogen index (HI), 
and Tmax can be obtained from Rock-Eval pyrolysis. The 
studied samples were subjected to programmed heating at 
an inert atmosphere to determine the amount of volatile 
gas (S1) and the amount of nonvolatile hydrocarbons (S2) 
released during thermal cracking of the kerogen in the 
rock. Tmax value is determined from the temperature at the 
peak of S2. A CS-230 elemental analyzer was used to 
determine total organic carbon (TOC) content following 
the standard procedure (SY/T 5116-1997). HI is calculated 
using S2 and TOC (HI=100×S2/TOC). A D/MAX 2500 X-
ray diffractometer  was used to  measure their  mineral 
compositions.  The  vitrinite  reflectance  of  the  studied 
samples  was  measured  using  an  MPV-III 
microphotometer (Taylor et al., 1998). 
 
3.2 Soxhlet extraction 

To obtain comparable results with the previous works 
(e. g., Valenza II et al., 2013; Guo et al., 2014), Soxhlet 
extraction was performed on the powdered samples (60 
mesh) using a 25:2 vol/vol mixture of dichloromethane 
and methanol for 72 hours. Rock-Eval pyrolysis and TOC 
content measurements were performed on the extracted 

 

Fig. 1. Locations of sampling wells and regional tectonic profile across the Ordos Basin（China basemap after China 
National Bureau of Surveying and Mapping Geographical Information).  
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shale  samples.  The  extracts  from  each  sample  were 
separated  into  saturated  hydrocarbons,  aromatic 
hydrocarbons, polar compounds and asphalt, using open 
silica gel column chromatography (Yang et al., 2015).  
 
3.3 Low-pressure gas adsorption experiments 

Although Han et al. (2016b) suggested a particle size of 
130 mesh for low-pressure gas adsorption experiments of 
shales,  60  mesh  is  most  widely  used.  Therefore,  the 
samples were crushed to 60 mesh to ensure the results 
could be compared with those of previous studies. Before 

and after extraction the crushed samples were dried in an 
oven overnight at 110 °C and degassed under a high 
vacuum (<10 mmHg) for 12 hours at 110 °C (Tian et al., 
2013). 

A Micromeritics® ASAP 2020 instrument was used for 
the  low-pressure  gas  (CO2  and  N2)  adsorption 
experiments. In the process of the experiments, 1–2 g of 
each of  the samples was exposed to CO2 and N2 at 
temperatures of 0°C and −196.15°C, respectively. CO2 
and  N2  adsorption  volumes  were  measured  over  the 
relative pressure (P/Po) ranges of 0.0005–0.0300 and 0.050

 

Fig. 2. Upper Triassic and Lower Jurassic stratigraphy and depositional environment of the 
Yanchang Formation (modified from Guo et al., 2014).  
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–0.995, respectively, where Po represents the condensation 
pressure of CO2 or N2 under laboratory conditions, and P 
is the actual gas pressure.  

The  density  functional  theory  (DFT)  method  can 
provide an accurate description of the thermodynamic 
properties of the gas in the pores (Neimark et al., 2009). 
Although  the  results  of  the  DFT  method  have  been 
considered unreliable (Bertier et al., 2016), the parameters 
for  the  pore  structure  of  the  studied  samples  were 
calculated using this method (Do and Do, 2003; Zhang 
and Yang, 2013). In the calculation of N2 adsorption, the 
data from the adsorption branches of the isotherms were 
used. 
 
4 Results 
 
4.1 Geochemical and mineral characteristics 

The geochemical parameters of the initial samples are 
listed in Table 1. The TOC content varied from 1.46 to 
25.1 wt% and averaged 9.27 wt%. The vitrinite reflectance 
(Ro) values of the studied samples are between 0.64% and 
1.34%. The organic matter types in the initial samples 
were determined using the HI vs. Tmax diagram in Figure 3 
(Espitalie et al., 1985), which suggests Type II organic 
matter predominates. The geochemical parameters of the 
extracted samples are listed in Table 2. Compared with the 
initial  samples,  the TOC content,  S1 and S2 have all 
decreased  due  to  extraction.  The  amount  of  free 
hydrocarbons  normalized  to  TOC  content  (S1/TOC) 
showed a maximum value at ~0.7%Ro, which may indicate 
the peak of the oil window.  

The mineral compositions of the initial samples are 
listed in Table 3. The dominant fractions are clays (28.67–
60.65 wt%), quartz (22.13–43.20 wt%) and feldspar (6.91

–15.30 wt%). Mixed-layer illite and smectite account for 
53–77 wt% of the clays, with an average of 63.38 wt%. 
 
4.2 Composition of the extracts  

The yields  and compositions  of  extractable  organic 
matter of the studied samples are listed in Table 4. The 
amounts  of  extractable  organic  matter  (EOM)  of  the 
studied samples range from 0.07 to 0.94 wt% with an 
average of 0.51 wt %. The varying ranges of saturated 
hydrocarbons, aromatic hydrocarbons, polar compounds, 
and asphalt are 20.56–58.56 wt%, 13.17–29.91 wt%, 8.99

 

 

Fig. 3. HI vs. Tmax diagram for the studied samples 
(based on Espitalié et al., 1985).  

Table 1 Geochemical data of the initial samples  

Sample Well Depth 
(m)

TOC 
(wt %) 

Tmax 
(°C)

S1 
(mg/g.rock)

S2 
(mg/g.rock)

S1+S2 
(mg/g.rock) 

HI 
(mg/g.TOC) 

Ro 
(%)

1 Yan 56 2963.1 6.09 446 2.98 14.91 17.89 245 0.64
2 Yan 56 2978.5 6.29 450 3.02 15.88 18.90 252 0.69 
3 Yan 56 2996.5 6.25 452 3.11 14.32 17.43 229 0.71
4 Jinghe 13 1357.23 1.46 440 0.29 5.68 5.97 302 0.72 
5 Zheng 3 866.74 3.82 437 0.62 15.16 15.78 397 0.83
6 Zhuang 233 1798.7 25.10 439 10.43 135.13 145.56 538 0.84 
7 Huan 317 2468.3 18.10 456 4.81 36.07 40.88 199 1.28
8 Huan 317 2474.3 7.95 466 2.78 9.89 12.67 124 1.34  

Table 2 Geochemical data of the extracted samples 

Sample Well Depth 
(m) 

TOC 
(wt %)

Tmax 
(°C)

S1 
(mg/g.rock)

S2 
(mg/g.rock)

S1+S2 
(mg/g.rock) 

HI 
(mg/g.TOC)

1 Yan 56 2963.1 4.22 444 0.55 10.92 11.47 259
2 Yan 56 2978.5 4.50 440 0.60 9.68 10.28 215 
3 Yan 56 2996.5 4.62 452 1.25 11.29 12.54 245
4 Jinghe 13 1357.23 1.03 436 0.14 3.09 3.23 300 
5 Zheng 3 866.74 2.67 432 0.36 10.61 10.97 397
6 Zhuang 233 1798.7 16.78 438 1.14 71.93 73.07 298 
7 Huan 317 2468.3 14.52 452 1.32 25.29 26.61 174
8 Huan 317 2474.3 7.08 456 0.84 10.54 11.38 149  
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–28.04 wt% and 7.42–21.03 wt%, respectively. With the 
increase of maturity,  the heavy components  (aromatic 
hydrocarbons,  polar  compounds  and  asphalt)  increase 
(0.64% Ro–0.84% Ro)  firstly  and  then  decrease,  while 
saturated hydrocarbons show an opposite trend (Fig. 5). 
 
4.3 Isotherms 
4.3.1 Low-pressure CO2 adsorption 

Figure  6  shows  the  low-pressure  CO2  adsorption 
(LPGA-CO2) isotherms of the studied samples. All the 
isotherms are Type I, which indicates the shale samples 
are microporous solids. For all the samples, the volume of 
sorbed CO2 for the extracted sample is greater than that for 
the initial sample. 
 
4.3.2 Low-pressure N2 adsorption 

The low-pressure N2 adsorption (LPGA-N2) isotherms 

of the studied samples (Fig. 7) are classified as Type II 
(Brunauer et al., 1940). In most cases, the sorbed N2 
volumes for the extracted samples are higher than those 
for the corresponding initial samples (Fig. 7a–d, g–h). For 
samples 5 and 6 there is no significant change in sorbed 
N2 volumes between the extracted and initial samples (Fig. 
7e–f). For samples 3, 7, and 8, the hysteresis loops of the 
extracted samples are not closed (Fig. 7c, g–h), which may 
be related to swelling or the adsorption of nitrogen in 
micropores (Gregg and Sing, 1982). 
 
4.4 Pore volume and surface area 

The pore volumes and surface areas obtained from the 
LPGA-CO2 and LPGA-N2 experiments are listed in Tables 
5 and 6, respectively. The pore classification of Rouquerol 
et al. (1994) is used. The diameter ranges of micropore, 
mesopore, and macropore are 0–2 nm, 2–50 nm and >50 

Table 3 Mineralogical composition of the studied samples 

Sample 
Relative percent (wt%) Clay relative percent (wt%) 

quartz feldspar calcite dolomite pyrite siderite aragonite clays I/Sa illite kaolinite chlorite
1 24.00 15.30   2.10 1.30 13.80 43.50 53 18 13 16
2 29.30 10.80    4.00  55.90 57 17 12 14 
3 31.50 12.50   6.60 49.40 64 17 11 8
4 43.20 11.40 0.8 4.7    39.9 64 22 2 12 
5 26.0 8.90   9.5 55.6 59 20 8 13
6 23.44 6.91    40.98  28.67 70 22 3 5 
7 22.13 8.20 2.27  19.04 48.36 69 25 3 3
8 24.82 9.29    5.24  60.65 71 21 4 4 

a I/S: mixed-layer minerals of illite and smectite. 

 

 

Fig. 5. Composition of extractable organic 
matter vs. Ro for the studied samples.  

Fig. 4. S1/TOC vs. Ro diagram for the stud-
ied samples.  

Table 4 Yield and composition of extractable organic matter in the studied samples 
Sample Ro(%) EOMa (wt%) Saturatedb (wt%) Aromatic (wt%) Polar compounds (wt%) Asphalt (wt%) 

1 0.64 0.64 49.35 19.11 11.13 18.00 
2 0.69 0.69 45.85 20.96 24.89 7.42
3 0.71 0.59 48.47 15.64 24.54 7.67 
4 0.72 0.07 38.54 21.50 21.30 15.21
5 0.83 0.23 30.59 25.24 18.52 16.32 
6 0.84 0.94 20.56 29.91 28.04 21.03
7 1.28 0.37 28.97 21.43 24.60 17.06 
8 1.34 0.58 58.56 13.17 8.99 13.17

a EOM: extractable organic matter. b The relative contents of saturated, aromatic, polar compounds and asphalt are reported relative to EOM. 
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Fig. 6. Low-pressure CO2 adsorption isotherms for the studied samples.  

Table 5 Pore volume data of the studied samples 
Sample 

Initial samples (cm3/g)  Extracted samples (cm3/g) 
micropore mesopore macropore total  micropore mesopore macropore total 

1 0.0004 0.0111 0.0031 0.0146 0.0004 0.0115 0.0029 0.0149
2 0.0010 0.0109 0.0034 0.0152  0.0010 0.0103 0.0026 0.0139 
3 0.0021 0.0077 0.0019 0.0117 0.0033 0.0106 0.0024 0.0163
4 0.0016 0.0162 0.0034 0.0213  0.0022 0.0170 0.0037 0.0228 
5 0.0023 0.0128 0.0040 0.0191 0.0023 0.0121 0.0046 0.0190
6 0.0079 0.0059 0.0024 0.0162  0.0090 0.0053 0.0024 0.0167 
7 0.0051 0.0061 0.0021 0.0133 0.0051 0.0054 0.0022 0.0126
8 0.0018 0.0103 0.0027 0.0148  0.0047 0.0181 0.0022 0.0250  
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nm, respectively.  For the initial samples, the micropore, 
mesopore, and macropore volumes are in the ranges of 
0.0004–0.0079, 0.0059–0.0162, and 0.0019–0.0040 cm3/g 
respectively, and their surface areas are in the ranges of 
1.71–21.63, 1.19–5.38 and 0.12–0.25 m2/g, respectively. 

For the extracted samples, the corresponding ranges of 
pore  volumes  are  0.0004–0.0090,  0.0053–0.0181  and 
0.0022–0.0046 cm3/g, and the corresponding ranges of 
surface areas are 1.71–24.79, 1.16–12.75 and 0.13–0.28 
m2/g, respectively.  

 

Fig. 7. Low-pressure N2 adsorption isotherms for the studied samples.  

Table 6 Surface area data of the extracted samples 

Sample 
Initial samples (m2/g)  Extracted samples (m2/g) 

Micropore Mesopore Macropore Total  Micropore Mesopore Macropore Total 
1 1.71 2.47 0.19 4.38 1.71 2.97 0.19 4.87
2 3.03 2.32 0.22 5.56  3.03 2.63 0.16 5.82 
3 5.78 1.91 0.12 7.81 9.92 3.09 0.16 13.17
4 5.89 5.38 0.22 11.49  8.04 6.74 0.23 15.02 
5 6.82 3.24 0.25 10.31 6.82 3.36 0.28 10.46
6 21.63 1.19 0.15 22.97  24.79 1.16 0.15 26.10 
7 14.65 1.40 0.13 16.19 14.65 1.65 0.13 16.44
8 4.85 3.23 0.17 8.24  14.49 12.75 0.14 27.38  
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Figures 8 and Figure 9 show complex changes in pore 
volume and surface area between the initial and extracted 
samples. For some of the samples, the micropore volume 
is similar between the extracted and initial samples (Fig. 
8a). The micropore volumes of samples 3, 4, 6 and 8 
clearly increase after extraction (Fig. 8a). The surface area 
of  the  micropores  shows  similar  variations  to  the 
micropore volume after extraction (Fig. 9a). The mesopore 
volumes of samples 1, 3, 4 and 8 increase after extraction 
(Fig. 8b), while other samples show the opposite trend. 
For the surface area of the mesopores, only sample 6 has 
lower values after extraction (Fig.  9b). For samples 1, 2 
and 8, the macropore volume of the extracted samples is 
less than that of the initial samples (Fig. 8c); the other 
samples show a normal trend. For samples 2 and 8, the 
surface area of the macropores in the extracted samples is 
smaller than that in the initial samples (Fig. 9c). The other 
samples show the opposite trend (Fig. 9c). For samples 2 
and 7, the total pore volume of the extracted samples is 
smaller than that of the initial sample (Fig. 8d), whilst the 
opposite trend is found for the other samples. All samples 
show a higher total surface area after extraction (Fig. 9d). 
The  abnormal  changes  described  above  may  be 
attributable to some of the pores in initial samples having 
become larger ones, making the pore volumes and surface 
areas of the pores within mesopore or macropore diameter 
range decrease. 

 
4.5 Pore size distribution 

The pore size distribution (PSD) was calculated for each 
sample using the LPGA–CO2 and LPGA–N2 data (Fig. 
10). For most of the samples there are two major peaks at 
pore size diameters of 0.6 and 0.8 nm (Fig. 10), whereas 
samples 4 and 8 show three major peaks at 0.6, 0.8 and 6 
nm (Fig. 10d, j). For samples 1, 2, 3, 7 and 8, the PSD 
lines of the extracted samples are higher than those of the 
initial samples (Fig. 10a–c, h–i). For other samples, the 
PSD lines before and after extraction are similar. 

 
5 Discussion 
 

As shown in Fig. 8, all the studied samples showed a 
larger or similar micropore volume than the initial ones. 
However,  the  variations  in  mesopore  and  macropore 
volumes are complex after extraction. For some samples, 
their mesopore or macropore volumes are smaller than the 
initial ones. It is possible that extraction makes some of 
the mesopores and macropores become larger, resulting in 
the reduction of mesopore or macropore volumes. 

A  strong  positive  relationship  between  micropore 
volume and TOC content can be seen in Figure 11a–b, 
which suggests that the micropores develop mainly in 

organic matter. Similar correlations have been reported for 
many other shales, such as the Lujiaping shales (Han et 
al., 2016a), the Muskwa shales (Ross and Bustin, 2009), 
and the Marcellus shales (Milliken et al., 2013). However, 
there is no obvious relationship between TOC content and 
pore volume in the New Albany shale (Mastalerz et al., 
2013), which may be related to differences in organic 
matter type and mineral composition between the New 
Albany shale and our samples. In contrast, mesopore and 
macropore volume show negative correlations with TOC 
content  (Fig.  11c–f).  No  obvious  correlations  exist 
between  mesopore  and  macropore  volumes  and  the 
amounts of clay minerals, quartz and feldspar. According 
to the correlations above, we speculate that the mesopores 
and  macropores  in  the  studied  samples  develop  in 
fractions other than organic matter. The poor correlations 
between pore volume and mineral compositions suggest 
that the effects of mineral compositions are masked by the 
stronger influence of TOC content. 

Figure 12 shows the variations of TOC content, S1, 
micropore  volume,  mesopore  volume,  and  macropore 
volume with increasing maturity. With the increase of 
vitrinite reflectance, TOC content increased (0.64%Ro–
0.84%Ro) firstly and then decreased, which is opposite to 
the normal trend, indicating the original TOC content of 
the  studied samples  varies  across  a  wide  range.  The 
obvious difference in TOC content of the studied samples 
can be attributed to the wide distribution of sampling 
locations  shown  in  Fig.  1.  The  variation  trend  of 
micropore volume is consistent with TOC content, while 
mesopore and macropore volume has an inverse trend. 
The variations of pore volumes and TOC content agree 
well with the correlations between them shown in Fig. 11.  
Therefore, TOC content is a stronger controlling factor of 
pore development in our studied samples. The influences 
of maturity, mineral composition and compaction are all 
masked by it. 

The samples extracted using dichloromethane show a 
similar trend with TOC content and vitrinite reflectance to 
the initial samples (Fig. 12). Accordingly, we speculate 
that the EOM in the studied shale samples was mainly 
stored in the pores beyond the detection range (0.3–80 nm) 
of low-pressure gas adsorption experiments. The oil in the 
detectable  pores  cannot  be  easily  extracted  using 
dichloromethane. In addition, the utilized particle size (60 
mesh) is coarser than in the standard (80 mesh, SY/T 5118
-2005),  which  may  also  be  responsible  for  the  low 
extraction efficiency. Therefore, EOM shows a weaker 
effect on pore development than TOC content. The pore 
volume of some of the samples did not increase after 
extraction (e.g., samples 2 and 7). It is noteworthy that 
Wei  et  al.  (2014)  found  that  extraction  with  toluene 
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Fig. 8. Histograms of pore volume for the studied samples.  

Fig. 9. Histograms of surface area for the studied samples.  
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increases the pore volume of shales much more than 
extraction with dichloromethane. This phenomenon can be 
explained by the higher boiling point of toluene (111°C) 
relative to dichloromethane (39.6°C), which enhances its 
dissolution  of  bitumen.  Accordingly,  to  identify  the 
influence of retained oil on pore development, extraction 
should be conducted using an organic solvent with a 
higher boiling point in future studies. 
 
6 Conclusions 
 

To explore the influence of EOM on pore development 

in lacustrine shales, a suite of mature shale samples was 
chosen  from  the  Chang  7  member  of  the  Triassic 
Yanchang Formation in the Ordos Basin, China. Soxhlet 
extraction  was  performed  on  the  samples  using 
dichloromethane.  Low-pressure  gas  (CO2  and  N2) 
experiments were conducted on the samples before and 
after extraction. The results show that pore development is 
mainly controlled by TOC content for both the initial and 
extracted samples. The correlations between pore volume 
and  TOC  content  indicate  that  micropores  mainly 
developed  in  organic  matter,  while  mesopores  and 
macropores dominantly developed in fractions other than 

 

Fig. 10. Pore size distributions of the studied samples.  
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organic  matter.  The  influence  of  maturity  on  pore 
development needs to be investigated by choosing samples 
with  various  maturity  levels  but  similar  organic  and 
inorganic compositions.   

In addition, we speculate that the extractable organic 

matter  in  the  studied  samples  cannot  be  effectively 
extracted  by  dichloromethane.  Extraction  should  be 
conducted using an organic solvent with a higher boiling 
point in the future. Finally, owing to the small numbers of 
samples and the wide distribution of sampling locations, 

 

Fig. 11. Relationship between TOC and pore volume for the studied samples.  
(a, c, and e show the initial samples; b, d, and f show the extracted samples.)  

Fig. 12. Geochemical data and pore volume vs. Ro for the studied samples.  
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our conclusions need to be viewed with some degree of 
caution. 
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