
1 Introduction 
 

The  Bayan  Obo  deposit  is  an  important  mineral 
resources located within the metallogenic belt of Inner 
Mongolia,  China,  and  it  contains  multiple  mineral 
elements that are especially rich in iron (Fe), rare earth 
elements (REEs) and niobium (Nb) (Drew et al., 1990; 
Bayan Obo mining and metallurgical technology editing 
committee, 1994; Bai Ge et al., 1996; Smith et al., 2000; 
Zhang  Zongqing  and  Yuan  Zhongxin,  2003;  Yang 
Xiaoyong et al., 2015; Fan et al., 2016). The Bayan Obo 
West Mine contains complicated geological features rich 
in Fe-REE-Nb that formed as a result of the multistage 
interactions of sedimentary sequences and hydrothermal-
metallogenic processes, among others. These Nb and REE 
ore bodies were potentially concentrated under different 

physicochemical  conditions  in  a  metallogenic 
environment. A wide range of primary and secondary 
geological  events  has  affected  the  Bayan  Obo  area, 
resulting in variable behaviors of Nb and REEs belonging 
to a type of complex nonlinear process. 

However, traditional metallogenic statistical methods are 
limited  when  addressing  the  mineralization  among 
elements exhibiting a complex nonlinear relationship. To 
improve the  accuracy of  prediction analysis  of  target 
elements during metallogenic exploration in a region of 
enriched  mineralization,  previous  studies  have  made 
contributions  to  the  extraction  of  mineralized  control 
variables and the metallogenic analysis of geochemical 
data analysis, especially in complex geological settings 
(Porwal et al., 2003; Lacassie et al., 2004; Shao Yongjun et 
al., 2007; Sun et al., 2009; Barnett and Williams, 2009; 
Dobretsov et al, 2010; Liu et al., 2015; Zhao et al., 2016; 
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Chen Jianping et al, 2016; Guan Yao et al , 2017, Qiao 
Donghai et al., 2017). The analyses of large data sets and 
the  study  of  the  mineral  prospecting  and  potential 
mineralization  of  geochemical  data  using  statistical 
methods and neural networks have presented encouraging 
results. These methods (e.g., factor analysis, multiple linear 
regression, and decision trees), which have successfully 
solved numerous geological problems, have been applied to 
analyze  variables  aiming  at  extracting  the  geological 
factors associated with mineralization and to obtain a 
clearer comprehension of the data (Grunsky and Agterberg, 
1988; Ord et al., 2009; Tolosanadelgado and Eynatten, 
2010; Cheng Jianxun et al., 2005; Agterberg, 2012; Zhang 
Shiming et al., 2012; Liu et al., 2015; Zuo, 2017). Among 
these, factor analysis is often used to find and describe 
hidden representative variables, and it can extract these 
variables as factors and highly generalize the internal 
relations  between  variables  without  losing  geological 
information (Reimann et  al.,  2002; Lin et  al.,  2014). 
Therefore, factor analysis could be used to evaluate and 
select the geological variables to obtain the metallogenic 
correlations for the complex metallogenic relationships 
within the Bayan Obo West Mine. Thus, the selected 
geological variables as reasonable parameters could be 
used to predict the mineralization of Nb in the BP neural 
network. Moreover, the research and application of neural 
networks in the field of geology have made great progress. 
There have been great improvements toward simplifying 
the  calculation  procedure,  reducing  the  errors  and 
improving the prediction accuracy of mineral enrichment. 
However, compared with the qualitative judgment of target 
minerals, the present challenge is primarily conducting an 
accurate  quantitative  calculation.  Accordingly,  neural 
network methods can  provide a  scientific  quantitative 
calculation approach. Unfortunately, the design of neural 
networks and the definition of neural network structures are 
mainly  based  on  experience  and  experiments  on 
applications in different regions (Lacassie et al., 2004; Shao 
Yongjun et al., 2007; Zhao et al., 2016; Zaremotlagh and 
Hezarkhani, 2016). At present, few studies have conducted 
a metallogenic analysis in the Bayan Obo area. 

In this paper, an applicative integrated methodology 
containing factor analysis and BP artificial neural network 
models was applied to perform a geochemical statistical 
analysis and a mineralization grade evaluation of Nb in the 
Bayan  Obo  West  Mine.  During  an  analysis  of  the 
geological controlling variables for the West Mine of 
Bayan  Obo,  the  correlations  among the multi-mineral 
mineralization of Nb-REE-Fe are evaluated through factor 
analysis.  We  focused  on  an  investigation  of  the  Nb 
orebody  from the  Bayan  Obo  west  mine  area.  With 
appropriate input parameters and structure algorithms a set 

of  weighted  interconnections  among  neurons  can  be 
adjusted according to the training of known samples that 
can  simulate  the  multi-factor  coupling  process.  The 
mineralization prediction model is used to characterize Nb
-related  element  associations  and  calculate  the 
concentrations of those elements. The element enrichment 
variations in the mineral resource exploration of the Bayan 
Obo West Mine area were obtained, providing evidence 
for the exploration and utilization of mineral resources and 
guidance for the prospecting of rare metals. 

 
2 Geological Setting 
 

The Bayan Obo deposit belongs to the transition zone 
between the North China Craton and the Central Asian 
Orogenic Belt in Inner Mongolia. The basement rocks 
are composed of the Lower-Proterozoic Wutai Group 
and  the  Mesoproterozoic  Bayan  Obo  Group  of 
metamorphic  rocks  in  addition  to  a  Carboniferous 
andesite  and  other  units.  The  Cenozoic  Erathem  is 
mainly composed of red beds and sandy gravel deposits, 
which  may  have  developed  from  deposition  within 
inland basins or depressions (Wang Kaiyi et al., 2002; 
Lai Xiaodong et al., 2012; Xiao Rongge et al., 2012; Lai 
et al., 2013; Su, 2015; Yang et al., 2017). Among them, 
the Mesoproterozoic Bayan Obo Group is the main Fe-
Nb-REE mineralization stratum; it has a large thickness 
with large changes in its lithofacies, which are mainly 
composed of quartzite, slate and carbonatite, and the 
distribution direction is roughly same as  the extension 
direction of the fault (Yuan Zhongxin et al., 1995; Yang 
et al., 2000; Hao Ziguo et al., 2002).  

In the Bayan Obo area, the folds and faults are well 
developed, and the geological structures are extremely 
complicated due to tectonic activities and the repeated 
intrusion of magma (Fig. 1). The West Mine is located on 
the west side of the wide ditch anticline and the Bayan 
Obo syncline, where the direction of the syncline axis is 
nearly east-west (EW). The West Mine is formed as a long 
and narrow area by compressional stresses with an EW 
synclinal fold axis. The wide ditch faults to the north of 
the ore deposit scarcely damaged the ore bodies, while 
inner secondary faults caused great damage to the ore 
bodies that was mostly caused by the infilling of acidic 
and basic magmas, which formed a certain number of 
acidic and basic dykes. Furthermore, a biotitized slate 
composes the syncline core, dolomite forms the limbs, and 
the transitional zone between them presents an interactive 
stratification (Institute of Geochemistry Chinese Academy 
of Sciences, 1988). 
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3 Samples and Data Preparation 
 

In this study, the exploration and sampling are both 
restricted to the H8 and H9 layers, which are the main 
distribution areas of Nb mineralization in the Bayan Obo 
West Mine. The samples were taken from ore bodies and 
weathering belts and the surrounding rocks, all of which 
were frequently affected by hydrothermal processes. To 
study the pattern of the geochemical concentrations of Nb 
and REEs, the sample rock types of the analysis included 
dolomite  (DT),  slate  (ST),  biotitized  dolomite  (BD), 
amphibolic  dolomite  (AC),  aegirine  dolomite  (AT), 
fluorinated dolomite (FT), and slate (ST). The geological 
data including 31 samples, were analyzed at the CNNC 
Beijing Research Institute of Uranium Geology. Using an 
inductively  coupled  plasma  spectrum  analyzer 
(ELEMENT XR ICP-MS analyzer), the test method was 

based on GB/T 14506.30-2010. The basic data consisting 
of the trace element concentrations are shown in Table 1. 

It is generally accepted that the probability distributions 
of trace elements in rocks and minerals follow a lognormal 
or normal distribution (Carranza, 2011; Zaremotlagh and 
Hezarkhani,  2016;  Zhao  et  al.,  2016).  The  raw 
geochemical  data  are  skewed  and  asymmetrical,  as 
demonstrated in the histogram of REE contents in the 
Bayan Obo West Mine shown in Figure 2. The method of 
analyzing the skewness and kurtosis is a commonly used 
analysis  method  in  statistical  analysis.  The  statistical 
results of the geochemical trace element data from the 
Bayan Obo West Mine are shown in Table 2, in which the 
skewness  and  the  kurtosis  reflect  the  distribution 
characteristics of the data. In this paper, to avoid the 
potential effects of variations in the compositional data 
and the skewness of the geochemical data distribution on 

 

Fig. 1. Geological map with the location of the study area and the orebodies in the mineral field (after Fan et al, 2016).  
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the multivariate statistical analysis, a log transformation is 
applied to the data prior to their use in the multivariate 
analysis (Reimann and Filzmoser, 2000; Liu et al., 2015). 

The  transformation  alleviates  the  influences  of  the 
skewness of the raw data and the distributions of the 
element concentrations, and thus, all of the data conform 

 Table 1 Chemical compositions analysis of rock samples in the Bayun Obo Fe-Nb-REE deposit  

Samples Rock 
classification Si Al Fe MgO CaO Na K MnO Ti P Y La Ce Pr Nd Sm

1 AC 11.69 4.03 17.41 9.95 22 0.111 2.45 2.2 0.214 1.72 34.7 1914 2776 295 861 73.7
2 DT 38.96 10.84 9.91 9.65 9.57 1.1 6.64 0.378 0.701 1.82 21.3 607 955 95 305 32.4
3 BR 36.22 9.61 16.95 15.26 4.29 0.1 8.76 0.172 1.56 0.209 44.8 1793 2908 348 1143 127
4 AC 33.8 2.48 8.94 12.18 18.36 2.28 2.64 0.766 0.087 1.19 55.9 431 877 103 392 56
5 AC 40.36 12.09 7.82 8.82 9.24 2.44 6.23 0.371 0.646 1.56 3.47 64.7 143 16.4 55.1 5.61
6 AC 13.29 0.16 8.38 14.4 25.9 1.16 0.18 0.8 0.031 0.744 33.4 1679 2650 291 844 81.1
7 DT 2.27 0.611 7.14 15.9 28.19 0.056 0.297 0.812 0.063 2.07 20.5 894 1554 149 477 45.2
8 AC 37.41 10.13 15.27 11.28 5.77 2.3 5.66 0.453 0.448 1.26 97.9 3401 7280 1020 3430 290
9 BR 26.73 9.6 14.66 12.45 12.39 0.278 6.07 0.664 1.09 0.551 21.7 1601 2120 222 639 53 
10 AC 29.76 2.18 11.69 10.6 20.25 2.16 2.13 0.739 0.121 3.43 13.3 360 674 78.4 279 34.2
11 DT 29.01 6.63 12.09 12.53 14.4 0.83 5.38 0.639 0.318 1.54 29.5 1193 1774 162 487 42.9
12 BR 28.72 7.87 12.45 12.23 13.65 0.814 5.8 0.415 0.348 4.65 45 1560 2007 209 605 57.6
13 DT 27.63 7.46 13.78 12.12 12.57 0.991 5 0.661 0.497 1.95 46.1 262 532 66.3 256 50.2
14 AC 22.25 0.175 7.33 14.38 24.34 1.72 0.322 0.813 0.038 0.824 111 2625 4193 460 1366 153
15 ST 55.06 16.18 6.17 3.92 2.32 7.85 1.79 0.277 0.17 0.594 30.4 995 1624 155 507 63.9
16 AC 32.3 2.36 10.86 11.05 19.66 2.44 2.2 0.809 0.139 2.4 31.9 2763 4217 452 1314 110
17 ST 56.35 14.36 7.48 4.21 0.598 1.19 11.19 0.075 0.379 0.139 18.3 471 834 85.6 269 34.2
18 BR 45.63 13.91 9.61 6.82 6.63 4.91 4.1 0.193 0.621 0.6 77.6 2382 3688 409 1253 136
19 BR 36.76 27.14 12.64 4.6 3.12 3.11 4.56 0.658 0.533 0.165 15.1 4257 5811 549 1373 80.7
20 DT 7.73 0.273 8.39 14.62 28 0.721 0.254 0.852 0.031 0.941 113 3448 5543 649 2154 242
21 AT 34.38 7.52 6.81 2.53 21.04 4.12 0.672 0.617 0.081 1.14 17.9 506 1041 126 451 44.6
22 DT 5.94 0.292 8.07 14.16 29.34 0.434 0.282 0.774 0.032 3.93 35.2 2334 3609 384 1147 101
23 DT 3.85 0.267 8.59 14.9 28.17 0.331 0.179 0.785 0.065 2.25 79 12890 17955 1708 4349 284
24 FT 9.94 2.99 20.76 7.31 26.3 0.12 2.22 1.18 0.537 1.88 19.2 2958 4044 396 1020 65.8
25 ST 50.17 16.41 11.93 4.79 1.14 5.76 3.76 0.51 0.855 0.301 63.7 710 1182 117 383 49.7
26 BR 44.36 17.57 7.15 6.15 5.68 4.51 3.93 0.121 0.977 0.704 14.3 627 1105 121 428 43.7
27 AT 53.53 7.59 19.41 5.18 0.674 0.16 3.56 0.142 0.651 0.46 14.2 237 450 51.5 181 20.6
28 FT 7.12 0.235 8.67 11.55 28.76 0.659 0.257 0.792 0.037 0.962 13.8 1771 2325 232 618 40.1
29 BR 22.37 5.25 14.31 10.65 18.55 0.191 3.34 0.746 0.406 0.322 62.7 5116 7559 759 1998 155
30 DT 6.46 2.53 9.66 8.44 37.26 0.097 1.51 0.616 0.216 0.474 40.3 260 525 63.7 237 33.9
31 BR 45.35 9.65 9.73 7.92 9.21 2.85 3.18 0.366 0.674 1.63 44.1 1993 2981 317 956 108

Samples Rock 
classification Eu Gd Tb Dy Ho Er Tm Yb Lu Th U Ta Nb LREE HREE REE+Y

1 AC 15.4 43.4 3.74 10.7 1.45 3.37 0.307 1.4 0.143 61.4 7.09 2.72 282 5935.1 64.51 6034.31
2 DT 9.05 19.9 2.05 7.13 0.966 1.96 0.207 0.831 0.095 26.4 17.1 16 1100 2003.45 33.139 2057.889
3 BR 32.3 72.1 6.89 17.8 2.29 4.55 0.355 1.66 0.177 86.4 11.8 0.287 1121 6351.3 105.822 6501.922
4 AC 16.4 36.9 4.68 17.5 2.61 5.32 0.67 3.44 0.439 5.43 1.59 0.892 3990 1875.4 71.559 2002.859
5 AC 0.661 2.93 0.319 0.931 0.124 0.258 0.033 0.162 0.016 5.72 0.859 0.675 1399 285.471 4.773 293.714
6 AC 14.9 53 4.45 11.7 1.48 3.39 0.289 1.56 0.192 65.4 3.37 2.76 746 5560 76.061 5669.461
7 DT 9.63 39.8 3 8.52 0.958 3.01 0.202 1.26 0.164 62.4 7.27 5.92 17 3128.83 56.914 3206.244
8 AC 57 130 10.4 24.1 3.21 8.98 0.675 3.91 0.38 418 1.43 0.91 3443 15478 181.655 15757.56
9 BR 5.83 30.1 2.34 6.46 0.896 2.15 0.202 0.957 0.111 19.4 1.89 3.17 1172 4640.83 43.216 4705.746

10 AC 7.12 16.6 1.34 4.19 0.548 1.22 0.11 0.683 0.068 36.5 2.3 0.298 1458 1432.72 24.759 1470.779
11 DT 8.53 29.6 2.96 10.1 1.4 2.84 0.23 1.07 0.103 31.2 11.6 2.86 1471 3667.43 48.303 3745.233
12 BR 15.8 43.8 4.38 15.1 2.13 4.15 0.364 1.75 0.156 23.6 0.942 0.066 2663 4454.4 71.83 4571.23
13 DT 15.8 30 4.22 15.5 2.05 3.51 0.323 1.48 0.18 9.54 11.6 4.32 1469 1182.3 57.263 1285.663
14 AC 42.4 98.6 8.37 24.7 3.84 8.03 0.72 3.95 0.418 189 5.7 2.49 457 8839.4 148.628 9099.028
15 ST 14.3 52.5 4.43 12.5 1.34 3.53 0.218 1.24 0.148 31.5 1.98 2.14 148 3359.2 75.906 3465.506
16 AC 24.2 66.4 5.17 12.2 1.57 3.6 0.236 1.09 0.119 71.3 5.25 2.2 1188 8880.2 90.385 9002.485
17 ST 7.36 18.1 1.66 5.76 0.743 1.51 0.102 0.583 0.063 68.8 0.72 1.06 220 1701.16 28.521 1747.981
18 BR 37.2 93.7 8.94 27.7 3.89 8.24 0.789 3.61 0.321 25.1 0.757 0.056 836 7905.2 147.19 8129.99
19 BR 17.2 68 3.98 6.56 0.802 2.67 0.111 0.637 0.065 23.5 3.88 0.194 549 12087.9 82.825 12185.83
20 DT 65.4 149 14.9 46 6.03 11.1 0.854 3.21 0.287 39.9 0.699 0.24 491 12101.4 231.381 12445.78
21 AT 10.3 22.4 1.91 5.24 0.725 1.7 0.17 1.11 0.137 66.7 1.93 2.34 402 2178.9 33.392 2230.192
22 DT 25.6 68.4 5.45 12.8 1.6 3.67 0.252 1.2 0.133 75.4 6.54 2.35 107 7600.6 93.505 7729.305
23 DT 64.3 224 16.2 33 3.55 9.52 0.447 2 0.189 108 2.5 0.285 791 37250.3 288.906 37618.21
24 FT 14.3 51.6 3.32 7.35 0.935 2.73 0.162 0.87 0.068 17.4 2.37 0.526 1327 8498.1 67.035 8584.335
25 ST 11.7 31.3 3.3 10.9 1.59 3.52 0.356 1.9 0.237 69.5 6.28 3.12 219 2453.4 53.103 2570.203
26 BR 3.77 17.3 1.38 3.06 0.483 1.32 0.141 0.715 0.093 45.1 1.16 0.634 718 2328.47 24.492 2367.262
27 AT 3.91 12.8 1.44 4.72 0.638 1.2 0.098 0.477 0.055 4.83 4.65 2.97 212 944.01 21.428 979.638
28 FT 8.39 29.5 2.21 4.7 0.648 1.62 0.117 0.484 0.045 15.6 2.11 0.066 270 4994.49 39.324 5047.614
29 BR 39.1 122 9.37 21.7 2.7 6.14 0.466 2.24 0.223 155 9.77 0.078 173 15626.1 164.839 15853.64
30 DT 10.3 23.1 3.24 12.5 1.75 3.5 0.419 2.76 0.395 21.6 33.8 0.428 1007 1129.9 47.664 1217.864
31 BR 28.8 62 5.58 14.6 1.81 4.08 0.327 1.68 0.194 74.6 2.83 1.42 404 6383.8 90.271 6518.171

Note: DT: dolomite; ST: slate; AC: amphibolic dolomite; FT: fluorinated –dolomite; AT: Aegirine dolomite; BR: biotitization-dolomite. Principal element (%), 
Microelement (ppm). 
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to the statistical characteristics of a normal distribution. 
Therefore, the data comprising the element contents are 
tested using the quantile-quantile (Q-Q) plot method in 
this paper. For a more intuitive analysis, the rare metals 
(Nb and Th) and rare earth elements (La, Ce, Tb, and Gd) 
with higher concentrations in the mining area are shown in 
the Q-Q plot (Fig. 3) to perform a distribution test on the 
data. The LREEs (La and Ce) have good fits, while the fits 
for Nb, Th, Tb, and Gd, which display less smoothed 
values,  may  indicate  a  little  heterogeneity  of  the 
distributions of these elements.  
 
4 Results and Discussion 
 
4.1 Correlation analysis of metallogenic elements  

The metallogenic relations in the Bayan Obo deposit are 

complicated.  To  analyze  the  metallogenic  correlations 
among the elements related to the Nb concentration, the 
geological data were employed to describe the correlations 
among the mineralized elements through factor analysis, 
which could be used to describe the variabilities among 
the  observed  and  correlated  variables  in  terms  of  a 
potentially lower number of unobserved variables called 
factors. The basic data construction is represented by a 
few new, imperative variables that can most effectively 
reflect the main information represented by the original 
variables and explain the interdependencies among them. 
This  means  that  an  interpretation  of  the  principal 
component factors corresponds to the tracer of geological 
processes  and  the  re-division  of  geochemical  fields 
(Reimann et al., 2002; Pu Xiugang et al., 2013; Huang 
Xiaowen et al., 2014; Afzal et al., 2016). 

 

Fig. 2. Histograms of REE content of samples in Bayan Obo West Mine. 
LREE and HREE represent light and heavy rare earth elements, respectively.  

Table 2 The statistics of geochemical data of rare metals and REE contents in west orebody (ppm) 
Compositions Mean Maximum Minimum Std.Deviation Median Skewness Kurtosis 

Y 40.944 113.000 3.470 29.190 33.400 1.178 0.705 
La 2003.313 12890.000 64.700 2388.574 1601.000 3.373 14.510
Ce 3062.452 17955.000 143.000 3396.726 2120.000 3.051 12.085 
Pr 325.481 1708.000 16.400 344.528 222.000 2.551 8.178
Nd 960.552 4349.000 55.100 944.306 618.000 2.244 5.639 
Sm 87.584 290.000 5.610 72.368 57.600 1.710 2.479
Eu 20.547 65.400 0.661 17.479 14.900 1.407 1.237 
Gd 56.737 224.00 2.930 47.484 43.400 1.865 4.156
Tb 4.891 16.200 0.319 3.782 3.980 1.614 2.536 
Dy 13.410 46.000 0.931 9.757 11.700 1.572 3.065
Ho 1.766 6.030 0.124 1.279 1.480 1.525 2.846 
Er 3.948 11.100 0.258 2.681 3.500 1.217 0.879
Tm 0.321 0.854 0.033 0.218 0.252 1.090 0.387 
Yb 1.610 3.950 0.162 1.062 1.260 1.006 0.059
Lu 0.175 0.439 0.016 0.115 0.148 0.993 0.193 
Th 63.039 418.000 4.830 78.235 39.900 3.437 14.363
U 5.541 33.800 0.699 6.659 2.830 2.875 10.439 
Nb 962.903 3990.000 17.000 937.810 746.000 1.873 3.745
Ta 2.048 16.000 0.056 2.970 1.060 3.691 16.718 
Zr 29.351 152.000 2.880 29.431 21.900 2.625 9.412
Hf 2.511 10.300 0.331 1.979 1.920 2.196 7.085 

ΣLREE 6459.928 37250.300 285.470 7071.310 4640.830 2.988 11.687
ΣHREE 82.858 288.910 4.770 64.234 67.035 1.653 2.827 
ΣREE 6542.786 37539.210 290.240 7127.881 4684.046 2.977 11.614

ΣREE+Y 6583.730 37618.210 293.710 7143.291 4705.746 2.970 11.562 
Original data are listed in Table 1. 
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The present factor analysis is based on a correlation 
search  of  the  main  factors  as  well  as  a  potentially 
symbiotic combination of the elements. The new basic 
factors  obtained  from  the  original  variables  are 
independent of one another, and the relationships between 
the geological variables and characteristics are analyzed. 
The  associations  among  the  Nb-related  mineralization 
elements  are  evaluated  via  certain  overprinting 

information that can be extracted and integrated into the 
representative factors. Therefore, the subset of each factor 
can  be  used  to  identify  elements  and  predict  the 
enrichment  extent  of  Nb  and  certain  REEs,  thereby 
reflecting  the  intrinsic  relationship  with  the  original 
source. The geological variations of twenty-eight elements 
are carried out, and the log transformation is applied to the 
raw data processing. The Bartlett test is required for the 

 

Fig. 3. Q–Q plots of log-transformed data of (a) Nb; (b) Th; (c) La; (d) Ce; (e) Tb; (f) Gd.  
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data correlation test. Moreover, the results of the Kaiser-
Meyer-Olk (KMO) test factor analysis can be accepted 
(KMO value = 0.686; if the KMO value is between 0.6 
and 1, the factor is appropriate for the analysis) (Liu 
Jiangtao and Liu Lijia, 2017). To explore the element 
associations, six representative factors are extracted for the 
data set with a varimax rotation of the results. The load 
factor reflects the correlation by the combination of the 
different elements. By using the accumulative contribution 
> 90% as a constraint (shown in Table 3), the factor 
analysis selects six main factors that account for 90.79% 
of the total variance of the data source. The accumulative 
contribution rate does not change from before to after the 
rotation, indicating that the total amount of information is 
not lost. After rotation, factors 1 and 2, factors 3 and 4, 
and factors 5 and 6 account for approximately 26%, 12%, 
and 7.5% of the total amount of data, respectively. This 
probably indicates that factors 1 and 2 explain the largest 
part of the overall contribution to the mineralization. The 
influences of the factors decrease successively for factors 
3, 4, 5, and 6. 

The elements of factor 1 include Ce, La, Pr, and Nd, 
while those of factor 2 include Tm, Yb, Lu, and those of 
factor 3 include Eu, Tb, Sm, Gd, Dy, Ho, Er, and Y; these 
combinations  are  interpreted  to  suggest  that  the 
enrichment  of  REEs  plays  the  most  important  role 
associated with Nb mineralization. The elements of factor 
4 include K, Ti, Si, Al, and Na, while those of factor 5 
include Mg, Ca, P, Fe, Mn and Th; these groups may 
reveal that the correlation among the major elements is 
highly positive, implying a high Th concentration in the 

iron ore. Factor 6 is dominated by U and Nb, which likely 
represent Nb mineralization. In terms of the quantifiable 
impact factors, the enrichment of REEs is four times as 
much as those of Nb and U and three times that of Fe. 
Although the Bayan Obo deposit is enriched in Fe and Nb, 
their existence can be considered as the result of “passive 
mineralization” since factors 5 and 6 have the lowest 
contribution  to  mineralization.  The  two-dimensional 
principal component diagram is shown in Figure 4. 

Clustering analysis based on the above factor analysis 
provides  a  classification  of  the  elements  and  a 
quantification element index of the degree of similarity; 
according to these indicators and the similarity degree, the 
elements or samples can be divided into different classes 
(Templ et al, 2008). The distance metric matrix of the 
cluster analysis in a Euclidean space is shown in Table 4 
to  represent  the  symbiotic  relationship  between  the 
elements and classification evaluation. Because the light 
rare earth elements (LREE) and heavy rare earth elements 
(HREE)  have  a  high  internal  correlation,  the  cluster 

Table 3 Partitioning of total variance  

Factor After rotation 
Eigenvalue Contribution rate (%) Accumulative contribution (%)

1 7.31 26.12 26.12 
2 7.29 26.03 52.15 
3 3.38 12.07 64.22 
4 3.21 11.48 75.70 
5 2.16 7.73 83.43 
6 2.06 7.36 90.79  

 

 

Fig. 4. Two dimensional principal component analysis.  

 Table 4 Euclidean space distance metric matrix  
Observed 

 value 
Euclidean space distance metric 

Si Al Fe MgO CaO Na K MnO Ti P LREE HREE Th U Nb
Si 0.000 3.894 7.714 10.006 10.734 4.665 4.824 9.999 5.487 8.963 9.651 9.623 8.775 7.342 7.422
Al 3.894 0.000 7.617 10.041 10.496 4.921 4.990 9.473 5.042 9.178 9.311 9.333 8.227 7.787 7.966
Fe 7.714 7.617 0.000 7.816 8.453 9.165 6.551 6.666 5.787 7.859 7.491 7.192 5.329 6.690 7.091

MgO 10.006 10.041 7.816 0.000 5.279 9.848 8.594 6.460 8.490 6.139 6.435 6.636 7.851 7.067 6.906
CaO 10.734 10.496 8.453 5.279 0.000 9.495 10.176 4.866 9.957 6.263 5.589 5.358 7.014 8.240 7.951
Na 4.665 4.921 9.165 9.848 9.495 0.000 7.843 9.060 7.433 8.619 9.045 8.983 8.707 7.993 7.902
K 4.824 4.990 6.551 8.594 10.176 7.843 0.000 9.430 4.400 8.473 9.133 9.113 8.056 6.604 6.809

MnO 9.999 9.473 6.666 6.460 4.866 9.060 9.430 0.000 9.311 6.760 5.139 5.137 3.722 8.153 7.965
Ti 5.487 5.042 5.787 8.490 9.957 7.433 4.400 9.311 0.000 9.020 8.796 8.760 7.780 7.485 7.617
P 8.963 9.178 7.859 6.139 6.263 8.619 8.473 6.760 9.020 0.000 7.482 6.803 7.714 7.156 6.703

LREE 9.651 9.311 7.491 6.435 5.589 9.045 9.133 5.139 8.796 7.482 0.000 4.229 5.193 8.381 8.721
HREE 9.623 9.333 7.192 6.636 5.358 8.983 9.113 5.137 8.760 6.803 4.229 0.000 5.637 7.811 8.164

Th 8.775 8.227 5.329 7.851 7.014 8.707 8.056 3.722 7.780 7.714 5.193 5.637 0.000 8.082 8.394
U 7.342 7.787 6.690 7.067 8.240 7.993 6.604 8.153 7.485 7.156 8.381 7.811 8.082 0.000 3.241

Nb 7.422 7.966 7.091 6.906 7.951 7.902 6.809 7.965 7.617 6.703 8.721 8.164 8.394 3.241 0.000
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analysis of these two groups of elements is conducted 
using  two  combinations  based  on  past  experience  of 
geochemical analysis. 

The  essential  relationships  between  the  elements 
(combinations) and the tree diagram are shown in Figure 
5. The tree diagram shows the correlation between each 
element (combination) and the potential relationships of 
the Bayan Obo mineralization. Th is closely related to Fe 
and Mn, and thus, the difficult separation of Th and Fe 
encountered during the beneficiation process may be due 
to the genesis of the Bayan Obo deposit. There are certain 
mineralization differences among Fe, REEs and Nb. The 
mineralization correlation between Nb and the REEs is 
weak, indicating a separation during the mineralization of 
a Nb ore body and a rare earth ore body between different 
layers  of  western  ore,  which  is  the  same conclusion 
reached by a  field  geological  survey.  An analysis  of 
geological  data  in  the  mining  area  in  addition  to 
exploration and sampling investigations indicate that Nb is 
often  enriched  in  the  form  of  a  pyrochlore  belt 
(comprising aegirite and diopsidite Nb ore and part of 
biotitized ore), in which the REE content is relatively 

leaner. Meanwhile, the parts of ore-bearing dolomite that 
are more concentrated in REEs always contain less Nb 
(Gao Jiyuan et al., 1999; Liu Tiegeng et al., 2012; Yuan 
Zhongxin et al., 2012). This tendency of the separation 
between Nb and REEs in the deposition process shows 
that  Nb  and  REEs  have  different  mineral  deposition 
characteristics during hydrothermal transport in similar 
environments.  A  study  of  metallogenic  correlations 
demonstrates that Nb has the closest Euclidean distance to 
U, indicating that Nb has the best correlation with U; thus, 
it can be speculated that Nb and U experience the same 
mineralization process. It is possible that U and Nb both 
belong  to  lithophile  elements  in  high-temperature 
hydrothermal minerals, suggest that they mineralize in a 
hydrothermal  environment.  Previous  studies  on 
metallogenic  effects  also  suggesting  the  influence  of 
hydrothermal  activity  from  a  mantle  source  on 
mineralization (Ni Pei et al., 2003; Qin Chaojian et al., 
2007; Wang Kaiyi et al., 2010; Lai et al., 2015; Huang et 
al., 2015).  

During an analysis of the distribution of rare earth 
elements and trace elements in the West Mine of the 
Bayan  Obo  deposit,  Nb  and  LREEs  have  obvious 
enrichment characteristics (as shown by the rare earth 
element standardization diagram and trace element spider 
web diagram in Figure 6) compared with various types of 
rock samples. Generally, the Bayan Obo west mine is 
enriched in LREEs; most of the samples have no obvious 
negative Eu anomaly. It displays not only high Nb and Th 
contents but also lower contents of U and Ta. With the 
obvious enrichment in Ba, Nb, and LREEs as well as with 
the depletion of U, P, K, Ta, and Ti, the enrichment and 
depletion of most elements present different elements yet 
similar trends among the different types. These findings 
indicate that these elements may have similar material 
sources or metallogenic processes (Liu Tiegeng, 1986; 
Yang XueMing and Yang XiaoYong, 1998; Zhang Yuxu 
et al., 2008; Sun Jian et al., 2012).  

 

 

Fig. 5. Tree diagram of clustering process.  

 

Fig. 6. Rare-earth element standardization diagram (a); trace element spider diagram (b). 
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4.2 Prediction calculation of Nb mineralization  
The above analysis  of  the correlations between the 

different elements indicates that different correlations exist 
between each element with regard to their mineralization. 
Because the variations in the elements can reflect the 
mineralization processes of the ore body, it is possible to 
select the main geological information that affects the 
mineralization of target elements based upon all of the 
elements  by means of  factor  analysis.  These selected 
elements are then used as the input variables to construct a 
BP neural network model to reduce the dimensionality for 
an effective prediction. 

Especially for the various mineralization conditions in 
the  Bayan  Obo  deposit,  the  BP  neural  network  is 
characteristically  capable  of  parallel  distributed 
processing,  self-organization,  self-adaptation,  self-
training, robustness and fault tolerance, all of which can 
be used to solve nonlinear geological analysis problems 
(Shao Yongjun et al., 2007; Lu Lu et al., 2012; Ziaii et al., 
2012; Zuo et al., 2017). 

The  metallogenic  prediction  neural  network  model 
includes both training and test processes (Haykin, 2011; 
Ziaii et al. 2011; Son et al. 2016). The process is shown as 
a flow diagram in Figure 7. The training process uses 
samples in the standard model to train the neural network. 
The nonlinear mapping relationship between the input and 
output factors is established by adjusting the weights of 
the neurons according to the input parameters. After the 
network  has  been  trained,  in  the  test  process,  the 
concentrations of the elements are used as input data to 
obtain  the  calculated  results  associated  with  the 
mineralization of Nb. The most important principle for 
designing a BP neural network model is to make the 
output value approach the actual value to the greatest 
extent possible. According to the data characteristics of 
the Bayan Obo area, the algorithm, structure design, and 
error discrimination of this network are all improved. With 
regard to the accuracy of the output, an error analysis is 
used to confine the structure error to a small scale while 
simultaneously  adjusting  the  error  to  minimize  the 
separation between the computed prediction output and 
the actual value. Thus, it is reasonable to predict the 

mineralization of Nb in the West Mine of Bayan Obo  by 
using the BP neural network based on the metallogenic 
correlations. 

Based on the actual situation, the number of network 
layers,  the  number  of  hidden  layer  neurons,  and  the 
activation function are all considered when the BP neural 
network model structure is established. The BP neural 
network used herein has a three-layer structure: an input 
layer with n neurons, a hidden layer with m neurons, and 
an output layer with one neuron. X through Xn are the 
input  elements,  which  represent  the  geochemical 
components of the geological variables associated with the 
Nb mineralization. The output value Y corresponds to the 
predicted value of Nb. The BP neural network structure 
diagram is shown in Figure 8. 

The metallogenic prediction model is actually a fitting 
evaluation  for  the  enrichment  grade  of  the  Nb 
metallogenic  concentration.  In  industrial  applications, 
qualitative  outputs  are  commonly  used.  This  output 
variable in a two-state assignment is applied to identify the 
mineralized grade of the sample and determine whether it 
reaches an industrial grade. To describe the variation in 
the Nb mineralization accurately, the numerical value of 
the prediction would be more appropriate as the output. In 
this  study,  the  Nb  mineralization  prediction  model 
consisting of a network with a three-layer structure is 
constructed  based  on  the element  concentrations.  The 
calculation results obtained by the model represent the 
predicted mineralization value associated with Nb. The 
modeling,  which is based on the MATLAB software, 
consists of the following steps: 

(1)  Determining the input geological variables.  The 
variables consisting of the element compositions of the 
rocks can effectively record the depositional conditions 
during  the  mineralization  process.  The  geochemical 
components  associated  with  the  Nb  mineralization  of 
twenty-eight elements are used as input variables. The 
output represents the predicted value of the Nb content in 
ore-bearing rocks. 

(2) Setting the training data. A training data set is 
constructed for the BP neural network model. All of the 
variables of the input values are transformed to values of 

 

Fig. 7. BP neural network model evaluation process schematic.  
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[0, 1] in the calculation process. 
(3) Selecting the optimal modeling parameters.  The 

numbers of hidden layers and neurons are selected by 
repeated trial and error by traversing the hidden layer 
nodes to optimize the process. According to the debugging 
results for the number of neurons and activation functions, 
the scheme with the smallest error is chosen. The training 
error curve is shown in Figure 9, which demonstrates the 
evolutionary process of the squared error curve of the 
training monitoring data. The curve basically starts from 
an initial square error of 10−2 and then converges to 10−5 
after 15,000 epochs. The results show that the output error 
is within a reasonable range compared with the actual 
value  (except  for  the  high  anomaly  values),  and  the 
accuracy shows that the algorithm is applicative. 

(4) Predicting and explaining the results. The output 
value of a group of ten samples is randomly selected from 
among the test results, and the correlation coefficient of 
the corresponding actual value is R = 0.8198. According to 
the results of the factor analysis, the input variables are 
replaced with seven elements (U, Ti, Fe, Mg, K, Si, and P) 
that have closest correlations with Nb in Table 4. The test 
results of two different sets of input variables are then 
obtained successively. By selecting the same group of 
output  values from the seven elements  used as input 
values,  the  correlation  coefficient  between  the  output 
value and the actual value is R = 0.8069. After reducing 
the  dimensionality  of  the  input  variables  using  the 
extraction results of the factor analysis, the correlation 
coefficients of the results computed by two different input 
variables are basically consistent. This indicates that the 
factors  of  the  dimensionality  reduction  can  basically 
recover the influences of the Nb enrichment information. 
Ten prediction results are randomly selected from each set 
of output values, and the predicted values of the two 

groups are compared with the corresponding actual values, 
as shown in Figure 10. The results show that the predicted 
value at 2000 ppm is relatively accurate and reliable. The 
high  initial  value  above  2500  ppm  is  a  high-value 
anomaly, and the predicted value is relatively offset. A 
high value indicates a high grade of mineralization within 
the metallogenic enrichment area, although the BP neural 
network model for the calculation of abnormally high 
values contains offset errors, and thus, it has a smaller 
practical  influence  on  the  actual  identification  of 
mineralization. 

According  to  the  Nb  content,  the  samples  can  be 
divided into three groups: those below 500 ppm, 500–2000 
ppm, and those above 2000 ppm. The samples with actual 
values below 500 ppm mostly originate from slate and 
partly from dolomite. The variation in the Nb content 
among  the  different  samples  of  aegirine  dolomite  is 

 

Fig. 8. Neural network structure.   

 

Fig. 9. Training monitoring data squared error curve evolu-
tion.  

 

Fig.10.  Comparison of  prediction  values  with actual 
values. 
7F represent imply seven elements resulted from factor analysis 
which are considered as the prediction modeling inputs, because 
they have closest correlation to the element Nb.  
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substantial.  Compared  with  the  other  rock  types,  the 
dolomite  samples  with  either  amphibolization  or 
biotitization  have  certain  guiding  effects  on  the 
enrichment of Nb. In conclusion, according to the actual 
demand of the mining area, the mineralization grade of Nb 
in different rock types can be predicted and sorted through 
the  calculation  of  chemical  analysis  data.  The 
metallogenic prediction model aimed at target exploration 
elements  within  the  mine  can  provide  metallogenic 
indications  for  the  Bayan  Obo  West  Mine,  thereby 
providing  new  ideas  and  methods  for  detecting  the 
mineralization of Nb and rare earth elements in the Bayan 
Obo area through data exploration. 
 
5 Conclusions 

 
The present method integrates factor analysis and BP 

neural network technologies into processing and modeling 
of geochemical data, and it is applied to analyze the 
correlations among metallogenic elements and predict the 
Nb mineralization. The results of this study draw the 
following conclusions: 

(1)  Based  on  geological  data,  the  metallogenic 
correlations  among  the  Fe-Nb-REE  geochemical 
patterns in a complex geological setting can be obtained 
by  an  analysis  of  the  relationships  among 
mineralization  elements.  There  is  a  certain 
differentiation between the enrichment of REEs, Fe and 
Nb. The mineralization correlation between Nb and 
REE is weak. Nb and U are closely related; meanwhile, 
Fe is closely related to both Th and Mn. LREEs are the 
most important factors on the mineralization throughout 
the Bayan Obo West Mine, while Fe and Nb can be 
considered the results of passive mineralization. This is 
consistent with the observations of field exploration 
surveys and the geological characteristics of the Bayan 
Obo West Mine. 

(2) The parameters selected as the model inputs during 
factor analysis were applied to predict the Nb enrichment. 
Based on the BP network, the mineralization prediction 
model  provides  reliable  results  regarding  the  Nb 
enrichment in different rock types. The integrated method 
consisting  of  factor  analysis  and  BP  neural  network 
technologies in this study can extract the mineralization 
controlling factors, which are beneficial for predicting the 
extent and location of mineralization, and further predict 
the mineralization enrichment of different elements that 
may exist throughout the Bayan Obo area. 

(3) The influences of a variety of factors that led to the 
enriched behavior of Nb mineralization display a type of 
nonlinear relationship. This relationship can be used to 
exploit the variations in the concentrations of Nb through 

data  mining  to  obtain  the  metallogenic  pattern  of 
enrichment of Nb. 
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