
1 Introduction 
 

Oceanic plagiogranites are considered to be the product 
of fractional crystallization of basaltic melts, and are the 
most important silicic rocks in ophiolites. These rocks 
represent  the  final  stage  of  oceanic  crustal  evolution 
(Coleman and Peterman, 1975). Oceanic plagiogranites 
are also an important rock type for the accurate dating of 
zircons in ophiolites (Grimes et al., 2008, 2013; Furnes 
and Dilek, 2017). Detailed research on the formation and 
evolution of plagiogranites has shown that different types 
of plagiogranites may form during different stages of the 

evolution of ophiolites, from mid-ocean ridge spreading 
through to the migration, subduction, and obduction stages 
(Searle and Malpas, 1980; Gerlach et al., 1981; Pedersen 
and Malpas, 1984; Pearce, 1989; Flagler and Spray, 1991; 
Bebout and Barton, 1993; Wang Xiang, 1993; Peters and 
Kamber, 1994; Jafri et al., 1995; Amri et al., 1996; Bébien 
et al., 1997; Whitehead et al., 2000; Scarrow et al., 2001; 
Li Wuxian and Li Xianhua, 2003; Li and Li, 2003; Jian et 
al., 2003a, b; Zhang Qi et al., 2008; France et al., 2010; 
Dilek  and  Furnes,  2014;  Santosh  et  al.,  2016).  Four 
genetic  types  of  plagiogranites  have been recognized: 
fractionation-, shearing-, subduction-, and obduction-type 
(Coleman  and  Peterman,  1975;  David  et  al.,  1981; 
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Pedersen and Malpas,  1984;  Sorensen and Grossman, 
1989; Pearce, 1989; Flagler and Spray, 1991; Claoue-long 
et al., 1995; Amri et al., 1996; Floyd et al., 1998; Cox et 
al., 1999; Li Wuxian and Li Xianhua, 2003; Li and Li, 
2003; Koepke et al., 2004, 2007; Yoshikawa and Ozawa, 
2007; Skjerlie et al., 2000; Whitehead et al., 2000; Freund 
et al., 2014; Gai Yongsheng et al., 2015; Jiang et al., 2015; 
Kang Lei et al., 2015; Zeng et al., 2015; Yang et al., 
2017). Therefore, it is important to identify different kinds 
of  plagiogranites  formed in  the  different  evolutionary 
stages  of  ophiolites  through  field  and  laboratory 
investigations, as well as accurately dating such rocks, as 
this enables the reconstruction of the regional tectonic 
evolution of orogenic belts. 

The Central Asian Orogenic Belt (also known as the 
Altaids) is a vast accretionary orogen between the Siberian 
Craton (SC) to the north and Tarim and North China 
cratons (NCC) to the south. The belt is considered to be 
the world’s largest Phanerozoic accretionary orogen (Fig. 
la; ŞengÖr et al., 1993; Badarch et al., 2002; Jahn et al., 
2004; Windley et al., 2001, 2007; Xiao et al., 2009 , 2015; 
Xiao and Santosh, 2014; KrÖner et al., 2017; Safonova, 
2017).The southeastern  Altaids,  spreading  through the 
Inner Mongolia and Xinjiang regions in North China, is a 
key  area  for  understanding  the  Paleozoic  tectonic 
evolution of the Altaids, and is characterized by a series of 
island arcs, fore-arc or back-arc basins, ophiolitic belts and 
microcontinents  from the  Neoproterozoic  to  Mesozoic 
(Wang and Liu, 1986; Shao, 1989; Tang, 1990; ŞengÖr 
and Natal’in, 1996; Badarch et al., 2002; Khain et al., 
2003; Kovalenko et al., 2004; Xiao et al., 2003, 2009, 
2010, 2013; Li, 2006; Windley et al., 2007; KrÖner et al., 
2008, 2011; Xu et al., 2013; Zhao et al., 2013). The 
tectonic evolution of the southeastern Altaids has long 
been a subject of research (Tang and Yan,1993; Xiao et 
al., 2003, 2009; Miao et al., 2008; Jian et al., 2008, 2010; 
Zhang et al., 2011; Zhao et al., 2013; Kang Jianli et al., 
2016; Wang Dandan et al., 2016; Zhu Junbin and Ren 
Jishun,  2017;  Zhang  Yongsheng  et  al.,  2017;  Dang 
Zhicai et al., 2018), but the precise timing of the formation 
of the Paleo-Asian Ocean and the exact location and 
timing of its closure remain controversial (ŞengÖr and 
Natal’in, 1996; Miao et al., 2008; Xu et al., 2013; Zhao et 
al., 2016). 

From south to north, five ENE–WSW-trending tectonic 
zones can be identified in the southeastern Altaids of Inner 
Mongolia, which are the southern early to mid-Paleozoic 
orogenic  belt  (SOB),  the  Hunshandake  block  (HB) 
(Solonker  suture  zone),  the  northern  early  to  mid-
Paleozoic orogenic belt (NOB), the Erenhot–Hegenshan 
ophiolite  accretionary  belt  (EHOB),  and  the  Uliastai 
continental margin (Xiao et al., 2003; Jian et al., 2012) 

(Fig. 1b). 
The recently discovered Diyanmiao ophiolite is in the 

eastern part of the EHOB (Fig. 1b). The NE-trending 
EHOB extends ca. 500 km from Erenhot in the southwest 
to the Hegenshan Mountains in the northeast, and from 
west to east contains numerous ophiolite slices, including 
the Erenhot, Hegenshan, Meilaotewula, and Diyanmiao 
ophiolites (Li et al., 2015). To date, the EHOB has been 
extensively studied, but there are many conflicting ages 
for ophiolites in this region (Miao et al., 2008; Jian et al., 
2012). For example, fossils in cherts in fault contact with 
the Hegenshan ophiolite suggest a Middle–Late Devonian 
age  (Liu,  1983;  Liang,  1991).   Proposed  ages  from 
isotopic dating encompass the Late Devonian to early 
Carboniferous (e.g. Huang Bo et al., 2016), late Silurian to 
early Carboniferous (e.g. Liu Jiayi, 1983; Liang Rixuan, 
1994), Early Devonian (e.g. Bao Zhiwei et al., 1994), 
early  Carboniferous  (e.g.  Zhang  et  al.,  2015;  Cheng 
Yinhang et al., 2016; Wang Shuqing et al., 2017; Zhu 
Junbin and He Zhengjun, 2017; Li Yingjie et al., 2015, 
2018), late Carboniferous to early Permian (Miao et al., 
2008; Wang Jinfang et al., 2017a, b), Late Cretaceous 
(Nozaka and Liu, 2002), and two periods in the early 
Carboniferous and Early Cretaceous (Jian et al., 2012). 
The reasons for these conflicting ages can be attributed to 
two aspects. Firstly, it is not clear if the fossil-bearing 
sedimentary rocks overlie the ophiolite rocks. Secondly, it 
is difficult to obtain magmatic zircons ideal for isotopic 
dating from the mafic rocks of the ophiolites. However, 
plagiogranites represent ideal material for the dating of 
magmatic zircons in ophiolites and can provide reliable 
formation ages (e.g. Pidgeon et al., 1998; Buchan et al., 
2005; Baines et al., 2005; Li et al., 2013; Yin Zhengxin et 
al., 2015). 

Therefore, further detailed studies of typical ophiolites 
in the southeastern Altaids are required. The Diyanmiao 
ophiolite  preserves  a  relatively  complete  suite  of 
lithological units (Li Yingjie et al., 2012; 2013; 2018; Li 
et al., 2018), and is an ideal unit in which to carry out an 
ophiolite study. Zircon U–Pb dating of  gabbros in the 
Diyanmiao ophiolite indicates its formation in the early 
Carboniferous (Li et al., 2018). However, the Diyanmiao 
ophiolite has not been extensively studied. Plagiogranites 
have been recently identified in the Diyanmiao ophiolite. 
In this study, we carried out a detailed geological and 
petrological investigation, and acquired new LA–ICP–MS 
zircon U–Pb age and major–trace element data for the 
plagiogranites. The objectives of this study were to: (1) 
determine the age of the plagiogranites and constrain the 
age  of  the  EHOB;  (2)  constrain  the  origin  of  the 
plagiogranites based on detailed geochemical analysis; and 
(3) to constrain the late Paleozoic tectonic evolution of the 
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Fig. 1. (a), Tectonic framework of the north China-Mongolia segment of the Central Asian Orogenic Belt (modified from 
Jahn, 2004); (b), sketch geological map of the northern China-Mongolia tract (modified from Badarch et al., 2002; Miao et 
al., 2008; Xiao et al., 2009; Jian et al., 2010, 2012; Zhang et al., 2015b). Some of the Paleozoic isotopic ages of ophiolitic 
mélanges are shown (modified from Jian et al., 2008, 2010, 2012; Xiao et al., 2009; li et al., 2013a; li et al., 2015); (c), sim-
plified geological map of the Diyanmiao area (modified from li et al., 2012), showing the sample location of this study.  
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EHOB. 
 

2 Geology and Petrography 
 

The Diyanmiao ophiolite is located in central Inner 
Mongolia, China (118°00′–118°30′ E, 44°20′–44°40′N; Fig. 
lb and c). The ophiolite can be divided into the northern 
Baiyinbulage subzone and southern Naolaiketu ophiolite 
subzone (Fig. 1c). Each subzone strikes ENE–WSW to NE
–SW with a length of ca. 100 km and width of 6 km (Fig. 
1c). The Diyanmiao ophiolite is well exposed and consists 
mainly of harzburgite, layered gabbro, medium- to coarse-
grained isotropic gabbro, fine-grained isotropic gabbro, 
anorthosite,  spilite,  pillow  basalt,  variolite,  brecciated 
basalt, keratophyre, baschtauite, and overlying chert. The 
ophiolite represents a well-preserved original ophiolitic 
sequence, which from base to top includes harzburgite, 
layered  gabbro,  medium-  to  coarse-grained  isotropic 
gabbro, fine-grained isotropic gabbro, anorthosite, spilite, 
pillow  basalt,  and  chert.  Most  of  these  rocks  are 

continuously exposed in an antiform (Li Yingjie et al., 2012, 
2013; Li et al., 2018). Ductile shear zones are developed in 
the Diyanmiao ophiolite. Locally, the ophiolite is strongly 
deformed, and mylonitized and foliated rocks and tectonic 
schists are present. The Diyanmiao ophiolite is a structural 
lens that was emplaced into the early Permian strata of the 
Shoushangou formation and Dashizhai formation. Rocks of 
the Shoushangou formation and Dashizhai formation near 
the ophiolite belt exhibit extensive cleavage development, 
fragmentation, hyllitization, and mylonitization (Li et al., 
2018). 

Plagiogranites  are  exposed  both  in  the  northern 
Baiyinbulage subzone and southern Naolaiketu ophiolite 
subzone.  In  the  former,  five  irregular  short  veins  of 
plagiogranites (named NI to NV) intrude into pillow basalts 
(Fig. 2a). These plagiogranite veins have lengths of up to 
several meters  and widths of  0.5–1.0m (Fig.  2a).  No 
obvious deformation was observed in the plagiogranites 
(Fig. 2c). The wall rocks of the plagiogranites are pillow 
basalts, with a typical pillow structure (Fig. 2b). In the 

 

Fig. 2. Field occurrence and microtextures of plagiogranites and pillow basalts in the Diyanmiao ophiolite. 
(a), contact relationship between plagiogranites and pillow basalts; (b), field feature of pillow basalts; (c), field feature of plagiogranites; (d), microtex-
tures of plagiogranites. Pl-plagioclase; Ab, Albite; Qtz, quartz.  
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southern Naolaiketu ophiolite subzone, two irregular and 
short  veins  of  plagiogranite  (SI  and  SII)  intrude  into 
gabbros. These veins have lengths of a few meters and 
widths of 0.5–1.0m. 

These rocks have a porphyritic texture (Fig. 2c and d) 
and the phenocrysts include altered plagioclase and quartz. 
Most mineral grains are 0.05 to 0.6mm in size. Plagioclase 
is hypidiomorphic tabular, exhibits partial albite twinning, 
is mainly albitic, and has been partly altered to kaolin and 
sericite. Quartz within these samples is allotriomorphic 
granular and occurs within interstices between plagioclase 
grains.  The  groundmass  is  mainly  microcrystalline 
plagioclase and quartz. 

The plagiogranite samples used for this study were 
collected  from plagiogranite  veins  NI  and  NII  in  the 
northern Baiyinbulage ophiolite subzone (Fig. 2a). The 
sample locations (118°05′24′′ E, 44°30′59′′N) are shown in 
Fig. 1c. 

 
3 Analytical Methods 
 
3.1 Zircon U-Pb dating analyses  

Zircon grains were separated by conventional magnetic 

and density techniques, and then selected by hand-picking 
under  a  binocular  microscope.  Representative  zircon 
grains  along  with  TEMORA  standard  (417Ma)  were 
embedded in epoxy resin and polished to expose the 
crystals  for  dating.  Transmitted  and  reflected  light 
micrographs as well as cathodoluminescence (CL) images 
were obtained for the polished zircon grains before U–Pb 
isotope analyses in order to reveal their internal structure 
and  external  morphology  and  guide  the  selection  of 
potential analytical spots.  

The CL images were made using a JSM6510 Scanning 
electron  microscope  with  GATAN  CL  at  Beijing 
Gaonianlinghang Geo Analysis Co. Ltd., Beijing. 

Zircon grains from the plagiogranites were dated in situ 
on an ArF-excimer (193-nm wavelength) laser ablation 
multiple-collector  inductively  coupled  plasma  mass 
spectrometer  (LA-ICP-MS)  at  the  Tianjin  Institute  of 
Geology  and  Mineral  Resources,  China  Geological 
Survey. The ICP-MS used was Neptune made by Thermo 
Fisher, and the UP193-FX ArF laser ablation system (ESI 
Company) was used for the laser ablation experiments. 
The instrumental conditions and analytical processes were 
similar to those described by Hou et al. (2009). U and Pb 

 

Fig. 3. CL cathodoluminescence images of representative zircon grains and their apparent ages of samples of plagiogranites 
from the Diyanmiao ophiolite: (a) Tw0187; (b) Tw0188. 
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concentrations were calibrated by using TEMORA and GJ
-1 as external standards (Jackson et al., 2004). 207Pb/ 206Pb, 
206Pb/238U, 207Pb/235U, and 208Pb/232Th ratios, calculated 
using the ICPMSDataCal program (Liu et al., 2009) and 
the Isoplot program (Ludwig, 2003), were corrected for 
both instrumental mass bias and elemental and isotopic 
fractionation  by  using  standard  glass  NIST612 as  an 
external standard. The age data are in Table 1. 
 
3.2 Mineral geochemistry 

Electron  microprobe  analysis  was  carried  out  on 
plagioclase with a JEOL JXA 8100 M electron microprobe 
(EMPA) at  the  Hebei  Geology and  Mineral  Institute, 
China.  The  operating  conditions  were  as  follows: 
accelerating  voltage  15kV,  beam current  20nA,  beam 
diameter 1μm. Peak and background counting times were 
set at 30s. All data were corrected with standard ZAF 
correction procedures  (Table  2).  Natural  minerals  and 
synthetic  glasses  were  used  as  standards.  Detailed 
procedure has been described in Wang et al. (2009). 

 
3.3 Major and trace elemental analyses 

Major elements were analyzed by X-ray fluorescence 
(XRF) (Rigaku 3270E) at the Tianjin Institute of Geology 
and  Mineral  Resources,  China  Geological  Survey. 
Analytical precision was generally better than 2% for most 
oxides,  monitored  by  analyses  of  Chinese  national 
standard  samples  GSR–1,  GSR–2  and  GSR–3.  Trace 

element data also were obtained at the Tianjin Institute of 
Geology and Mineral Resources, China Geological Survey 
by inductively coupled plasma mass spectrometer (ICP-
MS) using the analytical procedure of Liu et al. (2008). 
The analytical  precisions  for  most  trace elements  are 
greater  than  5% ,  monitored  by  analyses  of  Chinese 
national  standard  samples  GSR–1  and  GSR–3.  The 
analytical precision was better than 5% for trace elements. 
The major and trace elemental data from plagiogranite 
samples are listed in Table 3. 

Table 1 LA-ICP-MS zircon U-Pb isotopic analysis of plagiogranites in the Diyanmiao ophiolite 

Spots no. 
Element (ppm) 

Th/U 
Isotopic ratios Apparent age (Ma) 

Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ
 TW0187 plagiogranite 
TW0187-01 23 88 0.26 0.0531 0.0007 0.3950 0.0412 0.0540 0.0056 333 4 338 35 371 234
TW0187-02 45 115 0.39 0.0516 0.0005 0.3829 0.0236 0.0538 0.0033 325 3 329 20 362 139
TW0187-03 62 160 0.39 0.0525 0.0006 0.4015 0.0219 0.0555 0.0030 330 3 343 19 433 119
TW0187-04 23 73 0.31 0.0522 0.0006 0.3824 0.0405 0.0531 0.0056 328 4 329 35 335 240
TW0187-05 133 219 0.61 0.0520 0.0005 0.3880 0.0140 0.0541 0.0019 327 3 333 12 377 79
TW0187-06 189 325 0.58 0.0514 0.0006 0.3781 0.0221 0.0534 0.0031 323 3 326 19 346 132
TW0187-07 15 40 0.37 0.0526 0.0009 0.3917 0.0743 0.0540 0.0112 331 6 336 64 371 466
TW0187-08 15 56 0.27 0.0523 0.0007 0.3871 0.0523 0.0537 0.0073 329 4 332 45 358 306
TW0187-09 148 289 0.51 0.0522 0.0005 0.3807 0.0247 0.0529 0.0034 328 3 328 21 324 145
TW0187-10 20 68 0.29 0.0525 0.0006 0.3927 0.0484 0.0542 0.0067 330 4 336 41 381 278
TW0187-11 11 50 0.23 0.0526 0.0007 0.3856 0.0630 0.0532 0.0091 330 5 331 54 336 389
TW0187-12 26 88 0.30 0.0527 0.0006 0.4001 0.0338 0.0551 0.0048 331 4 342 29 416 196
TW0187-13 16 53 0.30 0.0533 0.0007 0.4007 0.0690 0.0545 0.0097 335 4 342 59 392 400

 TW0188 plagiogranite 
TW0188-01 8 38 0.20 0.0527 0.0009 0.4014 0.0840 0.0553 0.0126 331 6 343 72 424 509
TW0188-02 113 165 0.68 0.0525 0.0006 0.4077 0.0300 0.0563 0.0041 330 4 347 26 464 161
TW0188-03 15 59 0.25 0.0526 0.0008 0.3884 0.0741 0.0536 0.0103 330 5 333 64 353 435
TW0188-04 100 172 0.58 0.0527 0.0006 0.3897 0.0322 0.0537 0.0044 331 4 334 28 357 185
TW0188-05 14 50 0.27 0.0521 0.0008 0.3893 0.0617 0.0541 0.0085 328 5 334 53 377 354
TW0188-06 44 95 0.46 0.0521 0.0006 0.3901 0.0293 0.0543 0.0041 327 4 334 25 384 169
TW0188-07 20 73 0.28 0.0522 0.0006 0.3933 0.0403 0.0547 0.0057 328 4 337 34 399 232
TW0188-08 35 117 0.30 0.0522 0.0007 0.3866 0.0317 0.0537 0.0043 328 4 332 27 360 182
TW0188-09 36 123 0.29 0.0522 0.0006 0.3885 0.0224 0.0539 0.0031 328 4 333 19 368 130
TW0188-10 14 50 0.28 0.0520 0.0011 0.3804 0.1080 0.0531 0.0154 327 7 327 93 332 658
TW0188-11 23 82 0.28 0.0521 0.0007 0.3838 0.0408 0.0534 0.0056 327 4 330 35 346 237
TW0188-12 29 91 0.31 0.0512 0.0006 0.3791 0.0334 0.0537 0.0046 322 4 326 29 357 195
TW0188-13 77 153 0.50 0.0513 0.0006 0.3740 0.0213 0.0528 0.0029 323 3 323 18 322 124
TW0188-14 26 76 0.34 0.0513 0.0006 0.3777 0.0466 0.0534 0.0065 323 4 325 40 345 276 

 

Table 2 Electron microprobe analyses of plagioclases in the 
plagiogranite from the Diyanmiao ophiolite 

Sample b0124 b0124 b0124 b0183 
Rock type plagiogranite plagiogranite plagiogranite plagiogranite
Mineral Pl Pl Pl Pl 

SiO2 68.72 68.93 68.73 68.56
Al2O3 19.92 19.72 18.93 20.15 
FeO 0.08 0.01 1.35 -
MgO - - 0.14 - 
CaO 0.36 0.37 0.14 0.66
Na2O 11.76 12.05 10.96 11.52 
K2O 0.19 0.12 1.08 0.03
Total 101.07 101.19 101.33 100.93 

Cations per 32 
oxygens     

Si 2.979 2.983 3.015 2.970
Al 1.018 1.006 0.979 1.029 
Ca 0.017 0.017 0.007 0.031
Na 0.988 1.011 0.932 0.968 
K 0.011 0.006 0.060 0.002

Sum 5.012 5.023 4.993 4.100 
An 1.65 1.65 0.67 3.07
Ab 97.30 97.73 93.31 96.76 
Or 1.05 0.61 6.02 0.17
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4 Analytical Results 
 
4.1 LA-ICP-MS zircon U-Pb dating 

U-Pb dating results for zircons from two plagiogranite 
samples (TW0187, TW0187) were listed in Table 1. The 
zircon grains from two plagiogranite samples range from 
80 to 110m with length to width ratios of 2:1 to 3:1. Most 
grains  are  colorless  to  light  yellow,  transparent  and 
euhedral with well-developed patchy oscillatory zoning in 
CL  images  (Fig.  3a,  Fig.  3b),  suggesting  an  acidic 
magmatic crystallization in ancient and modern oceanic 
plagiogranites (Belousova et al., 2002; Schwartz et al., 
2005; Baines et al., 2009; Grimes et al., 2009). They have 
relatively low Th content (mostly 15–189ppm) and high U 
content (mostly 40–325ppm; Table 1), and the Th/U ratio 
varies from 0.23 to 0.61 (Table 1) indicating a magmatic 
origin  of  the zircon grains  (Wu Yuanbao and Zheng 
Yongfei., 2004). 27 analyses on these zircons show good 
concordance  on  the  206  Pb/238U–207  Pb/235U  concordia 
diagram and yield weighted mean 206 Pb/238U ages of 328.6 
±2.1Ma and 327.1 ±2.1Ma (Fig. 4). The mean age is 

interpreted  to  be  the  crystallization  age  of  the 
plagiogranites. 

 
4.2 Mineral geochemistry 

Electron  microprobe  analyses  of  plagioclase  in  the 
Diyanmiao  plagiogranites  were  presented  in  Table  2. 
Plagioclases in the plagiogranites have high contents of 
albite (Ab) (93.31–97.73wt%), minor anorthite (An) (0.67
–3.07wt%) and orthoclase (Or) (0.61–6.02wt%).  

 
4.3 Whole-rock geochemistry 

The SiO2 contents of four plagiogranite samples range 
from 74.37 to 76.68wt% (average=75.25wt%). The other 
major  elements  have  the  following  concentrations: 
TiO2=0.22–0.24wt %  (average=0.23wt % );  CaO=1.72–
3.38wt% (average=2.26wt%); and MgO=0.52–1.53wt% 
(average=0.9wt%). Mg# values vary from 32.45 to 55.66 
(average=43.11) (Table 3). The plagiogranite samples are 
characterized by low A12O3 (11.99–13.30wt%) and P2O5 

(0.03–0.04wt % ),  and  intensively  high  Na2O  (4.52–
5.06wt%) and low K2O (0.03–0.4wt%) resulting in Na2O/

Fig. 4. Zircon U–Pb concordia diagrams and histograms of weighted mean ages of plagiogranites from the Diyanmiao ophiolite.  
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K2O=11.3–183 and moderate A/CNK ratios (0.87–1.21). 
The rocks are aluminous–peraluminous. On a total alkalis
–silica  classification  diagram  (Fig.  5a),  data  for  the 
plagiogranite  samples  plot  in  the  granite  field  of  the 
subalkaline series. On a SiO2 vs. K2O diagram (Fig. 5b), 
data for samples of plagiogranites and pillow basalts plot 
in  the  low-K  tholeiite  series,  indicating  a  genetic 
relationship between the two rock types. 

The plagiogranites have low ∑REE (23.62–39.77ppm), 
small negative Eu anomalies (δEu=0.44–0.62), and flat 
chondrite-normalized REE patterns ((La/Yb)N=0.68–0.76) 
(Fig. 6a), similar to normal and transitional mid-ocean 
ridge basalts (N-MORB and T-MORB). In addition, the 
chondrite-normalized REE patterns of the plagiogranites 
are similar in shape, but show higher concentrations as 
compared with those of the pillow basalts and gabbros in 
the Diyanmiao ophiolite (Fig. 6a). 

Primitive-mantle-normalized trace element patterns are 
characterized by Th, U, Zr, and Hf enrichment, and Nb, P, 
and Ti depletion. The plagiogranites have low Sr (78.2–
146ppm) and high Yb and Y contents (1.96–3.56 and 14.8
–27.9ppm, respectively), similar to other plagiogranites in 
ophiolites  (Pearce  et  al.,  1984;  Zhang  et  al.,  2008). 
Moreover, the plagiogranite trace element patterns are 
broadly similar to those for associated pillow basalts in the 
Diyanmiao ophiolite, but the plagiogranites have higher 
Th, U, Zr, Hf, Nb, and Ta contents and lower Ti contents 
(Fig. 6b). As such, the plagiogranites and gabbros in the 
Diyanmiao ophiolite have complementary trace element 
patterns (Fig. 6b). 

All these features of the Diyanmiao plagiogranites are 
typical of fractionation-type plagiogranites, being similar 
to plagiogranites from the Troodos Ophiolite in Cyprus 
(Freund  et  al.,  2014)  and  and  the  Jebel  Fayyad 
plagiogranites  from  the  Oman  Ophiolite  (Rollinson, 

2009). 
 

5 Discussion 
 
5.1 Origin of the plagiogranites 

Previous research has indicated that silicic rocks in 
ophiolites form in different stages, from mid-ocean ridge 
spreading  through  to  the  migration,  subduction,  and 
obduction  stages.  The  different  genetic  types  of 
plagiogranites  are  as  follows  (Li  and  Li,  2003).  (1) 
Fractionation-type  plagiogranites  (i.e.,  oceanic 
plagiogranites)  form  by  fractional  crystallization  and 
differentiation  of  oceanic  basaltic  magmas  at  low 
pressures,  which  typically  form  small  dikes.  Field 
observations indicate that fractionation-type plagiogranites 
are typically located in the upper gabbroic and basaltic 
rocks of an ophiolite sequence. The crystallization age of 
this type of plagiogranite represents a minimum age for 
the oceanic crust (Coleman and Peterman, 1975; David et 
al., 1981; Amri et al., 1996; Floyd et al., 1998; Claoue-
long et  al.,  1995; Li  Xianwu and Li Xianhua,  2003; 
Freund et al., 2014). (2) Shearing-type plagiogranites form 
by the partial melting of ophiolitic gabbros (or basalts) 
within shear zones, which develop in the lower part of the 
oceanic  crust  due  to  plate  movement.  This  type  of 
plagiogranite is generally produced in or near a ductile 
shear zone in gabbro from the lower ophiolite sequence, 
and forms a fine-grained vein network (length<1m). These 
plagiogranites are slightly younger than the age of the 
associated section of oceanic crust (Pedersen and Malpas, 
1984; Flagler and Spray, 1991; Koepke et al., 2004, 2007; 
Grimes et al., 2013). (3) Subduction-type plagiogranites 
are formed by the partial melting of oceanic crust and 
overlying  abyssal  deposits  during  subduction.  These 
plagiogranites  are  commonly  found  in  the  mantle 

 

Fig. 5. TAS classification diagram (after Le Maitre, 2002) of the plagiogranite in Diyanmiao ophiolite (a) and K2O vs. SiO2 
diagrams of the plagiogranite and pillow basalt in the Diyanmiao ophiolite (b).  
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peridotite  of  a  suprasubduction  zone  type  (SSZ-type) 
ophiolite, and date the timing of subduction (Sorensen and 
Grossman,  1989;  Li  and  Li,  2003a;  Yoshikawa  and 
Ozawa, 2007).  (4) Obduction-type plagiogranites  form 
during the obduction of ophiolites by partial melting of 
sediments in the lower subducting marginal basin. This 
type of plagiogranite typically intrudes mantle peridotite 
of the lower part of the ophiolite sequence, and its age 
corresponds  to  the  timing  of  the  obduction  and 
emplacement of oceanic crust (Pearce, 1989; Cox et al., 
1999; Skjerlie et al., 2000; Whitehead et al., 2000).  

The formation environment/mechanisms and source(s) 

of silicic rocks determine their spatial occurrence and 
geochemical characteristics (Li Xianwu and Li Xianhua, 
2003;  Li  and  Li,  2003;  Koepke  et  al.,  2004,  2007; 
Yoshikawa  and  Ozawa,  2007; Skjerlie  et  al.,  2000; 
Whitehead  et  al.,  2000;  Freund  et  al.,  2014).  The 
Diyanmiao  plagiogranites  occur  in  the  upper  pillow 
basalts of the ophiolite sequence as irregular veins and 
small-scale  bodies,  which is  consistent  with  the  field 
occurrence  of  fractionation-type  plagiogranites,  and 
contrasts with the occurrence of shearing-, subduction-, 
and  obduction-type  plagiogranites.  In  addition, 
plagiogranites  in  the  Diyanmiao  ophiolite  are 

Table 3 major (wt%), trace element (ppm) analyzing results of the plagiogranites, pillow basalts and gabbros in the 
Diyanmiao ophiolite 

Rock type plagiogranite plagiogranite plagiogranite plagiogranite pillow 
basalt 

pillow 
basalt 

pillow 
basalt gabbro gabbro gabbro gabbro

Sample 41730 41731 41732 41733 GS4590-1 GS4590-2 XGS01-1 XT1214-2 XT1214-3 GS3432-1 GS3432
SiO2 75.25 74.37 76.68 74.71 50.17 48.96 49.68 45.49 45.94 45.53 46.84

Al2O3 12.91 13.23 11.99 13.30 14.12 14.61 15.81 17.05 15.19 16.35 15.25
Fe2O3T 2.05 2.11 1.99 2.27 8.34 9.00 8.82 4.82 7.26 5.11 4.98

CaO 1.84 3.38 2.11 1.72 9.94 8.35 5.26 17.32 16.94 19.54 19.47
MgO 0.74 0.52 0.79 1.53 10.3 11.3 11.61 10.64 9.86 8.58 8.71
K2O 0.04 0.03 0.07 0.40 0.08 0.15 0.11 0.03 0.02 0.01 0.02
Na2O 5.06 5.49 5.11 4.52 2.51 3 3.80 0.51 0.42 0.3 0.3
TiO2 0.22 0.24 0.22 0.22 0.55 0.62 0.64 0.14 0.31 0.19 0.14
P2O5 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.08 0.03 0.04
MnO 0.02 0.03 0.03 0.03 0.16 0.17 0.14 0.14 0.15 0.13 0.14
LOI 1.79 0.54 0.90 1.13 4.05 4.24 4.03 3.44 3.12 3.81 3.65

TOTAL 99.80 100.00 99.92 99.77 99.87 99.98 99.48 96.22 96.24 95.82 95.93
Na2O/K2O 151.5 183 73 11.3 2.59 20 34.55 17 21 30 15 

Mg# 41.16 32.45 43.16 55.66 70.89 71.18 72.13 80.03 71.02 75.26 75.87
Rb 1.21 0.97 1.47 4.41 0.8 1.4 1.89 0.61 0.42 0.20 0.61
Cr 5.75 5.07 6.52 4.44 520.9 712.5 574 8.85 11.9 9.19 8.85
Co 3.51 2.51 2.90 4.96 37.8 46.8 46.2     
Ni 4.15 3.01 5.46 3.36 144.1 183 222 141 203 144 141 
Sc 9.55 9.49 8.92 9.65 25.2 30.6 35.1 40.6 44.3 43.1 40.6
V 36.9 39.4 34.0 36.1 137.8 179.1 217 141 203 144 141
Zr 118 126 114 72.6 35.1 31.0 16.6 2.80 7.67 4.51 2.80
Hf 4.17 4.47 4.03 2.54 1.48 1.42 0.76 0.14 0.31 0.20 0.14
Ta 0.15 0.16 0.14 0.07 0.03 0.03 0.05 0.24 0.24 0.44 0.24
Sr 78.2 146 110 109 204 115 104 138 130 70.1 138
Ba 11.6 10.0 10.5 22.8 27.1 30.3 26.1 8.85 11.9 9.19 8.85
Nb 1.65 1.74 1.58 0.88 0.40 0.37 0.42 0.62 0.72 1.11 0.62
Cs 0.10 0.06 0.15 0.40 0.08 0.33 0.23 0.19 0.14 0.04 0.19
Ga 8.70 11.9 8.18 9.42 12.1 11.3 12.3 27.2 27.9 28.0 27.2
Pb 1.06 1.41 0.76 1.03 2.48 1.07 0.62 0.19 0.14 0.041 0.19
Th 0.67 0.72 0.64 0.62 0.18 0.07 0.29 0.09 0.07 0.09 0.09
U 0.57 0.60 0.51 0.44 0.11 0.05 0.04 0.01 0.02 0.01 0.01
Y 23.8 27.9 23.9 14.8 13.2 15.24 17 4.85 9.03 6.01 4.74
La 3.04 3.36 3.21 2.08 1.61 0.74 0.97 0.16 0.34 0.16 0.34
Ce 9.24 10.1 9.53 6.87 2.41 1.99 2.28 0.41 1.03 0.48 0.65
Pr 1.24 1.37 1.29 0.80 0.59 0.41 0.49 0.09 0.24 0.11 0.12
Nd 5.84 6.63 6.27 3.68 3.52 2.49 2.96 0.58 1.46 0.72 0.65
Sm 1.81 2.06 1.93 1.23 1.29 1.2 1.36 0.29 0.61 0.38 0.30
Eu 0.30 0.37 0.32 0.28 0.51 0.47 0.66 0.23 0.33 0.19 0.17
Gd 2.35 2.78 2.54 1.53 1.7 1.82 2.27 0.40 0.82 0.50 0.40
Tb 0.46 0.56 0.49 0.31 0.38 0.41 0.45 0.11 0.22 0.14 0.11
Dy 3.39 4.02 3.50 2.17 2.73 3.01 3.14 0.83 1.56 1.07 0.79
Ho 0.76 0.91 0.81 0.50 0.6 0.68 0.66 0.18 0.35 0.23 0.18
Er 2.47 2.94 2.58 1.62 1.54 1.77 1.96 0.56 1.03 0.69 0.53
Tm 0.44 0.50 0.43 0.27 0.29 0.33 0.30 0.1 0.19 0.12 0.09
Yb 3.08 3.56 3.07 1.96 1.73 2.09 2.03 0.61 1.18 0.77 0.59
Lu 0.52 0.61 0.53 0.32 0.23 0.28 0.30 0.1 0.18 0.12 0.09

ΣREE 34.94 39.77 36.50 23.62 19.13 17.67 19.83 4.65 9.54 5.68 5.02
LREE/HREE 1.59 1.50 1.62 1.72 1.08 0.70 0.78 0.61 0.73 0.56 0.80

(La/Yb )N 0.71 0.68 0.75 0.76 0.63 0.24 0.32 0.18 0.19 0.14 0.39
δEu 0.44 0.47 0.44 0.62 1.05 0.97 1.14 2.06 1.43 1.33 1.5 
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characterized by relatively low Al2O3 (11.9–13.30wt%) 
concentrations that are comparable with fractionation- and 
shearing-type  plagiogranites  (Al2O3<15wt%)  (Pedersen 
and Malpas, 1984; Flagler and Spray, 1991; Li Xianwu 
and Li Xianhua, 2003; Gao XiaoFeng et al., 2011) and 
different  from  subduction-type  (Al2O3>15wt % )  and 
obduction-type  plagiogranites  (highly  variable  Al2O3). 
Plagiogranites  in  the  Diyanmiao  ophiolite  are  also 
characterized by high Na2O (4.52–6.06wt%), very low 
K2O  (0.03–0.07wt % ),  and  high  Na2O/K2O  ratios 
(average=105.3)  that  are  similar  to  fractionation-type 
plagiogranites (Na2O/K2O>3–5) and higher than shearing-
type  plagiogranites  (Na2O/K2O>1)  (Pedersen  and 
Malpas,1984; Flagler and Spray,1991; Li and Li, 2003; 
Gao et al., 2011). These rocks have low ∑REE (23.62–
39.77 ppm),  small  negative Eu anomalies (δEu=0.44–
0.62), and flat chondrite-normalized REE patterns ((La/
Yb)N=0.68–0.76; Fig.  6a),  similar  to fractionation-type 
plagiogranites and slightly different from shearing-type 
plagiogranites (minor light REE enrichment with a wide 

range of δEu) and distinctly different from subduction-
type (light REE enriched and heavy REE depleted) and 
obduction-type plagiogranites (LREE enriched) (Fig. 6c)
(Pedersen and Malpas, 1984; Flagler and Spray, 1991; Li 
and Li,  2003; Gao XiaoFeng et al.,  2011). Primitive-
mantle-normalized  trace  element  patterns  of  the 
Diyanmiao plagiogranites have overall flat patterns (Fig. 
6b) with obvious P and Ti anomalies, consistent with 
fractionation-type plagiogranites (Fig. 6d), but are slightly 
different from shearing-type plagiogranites (gently right-
dipping patterns), and clearly distinct from subduction-
type  (marked  Sr  anomaly  and  steeply  right-dipping 
patterns)  and  obduction-type  plagiogranites  (highly 
variable right-dipping patterns) (Fig. 6d). The chondrite-
normalized REE patterns of the plagiogranites are similar 
to those of the gabbros and pillow basalts (Table 3; Fig. 
6a). The REE concentrations increase from the gabbros to 
the pillow basalts and to the plagiogranites (Fig. 6a), 
which  is  consistent  with  progressive  fractional 
crystallization and differentiation. The plagiogranites have 

 

Fig. 6. Chondrite-normalized REE distribution patterns (normalizing values after Boynton, 1984) (a) and Primitive mantle-
normalized trace element spider diagram (normalizing values after Sun and McDonough, 1989) (b) of the plagiogranite, pillow 
basalt and gabbro in Diyanmiao ophiolite, REE patterns (c) and trace elements spidegrams (d) (modified from Li and Li, 2003; 
Gao Xiaofeng et al., 2011) of different types of granitoids within ophiolites.  
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complementary Eu anomalies to the gabbros (Fig. 6a), 
which  can  be  interpreted  as  reflecting  magma 
crystallization resulting in the formation of gabbros with 
positive Eu anomalies and a residual melt with negative 
Eu anomalies (Tang et al., 2007). 

Brophy (2009) and Brophy and Pu (2012) summarized 
the  geochemical  characteristics  of  fractionation-  and 
shearing-type  plagiogranites  in  global  examples  of 
ophiolites. Fractionation-type plagiogranites have steadily 
increasing La and Yb abundances with increasing SiO2, 
with total REE abundances being significantly higher than 
those in  associated  mafic  rocks  (Fig.  7).  In  contrast, 
shearing-type plagiogranites have constant or decreasing 
La and constant Yb abundances with increasing SiO2, with 
∑REE being lower than those in associated mafic rocks 
(Fig. 7). As shown in Table 3, the average ∑REE of the 
plagiogranites and associated pillow basalts and gabbros 
are 6.22, 18.15, and 33.7ppm, respectively, showing that 
the ∑REE increase with increasing SiO2. In addition, the 
La and Yb contents increase with increasing SiO2 (Fig. 7). 
These  features  suggest  that  plagiogranites  in  the 
Diyanmiao ophiolite are fractionation-type plagiogranites. 

On  a  Th/Yb–Ta/Yb  plot  (Fig.  8a),  data  for  the 
plagiogranites and pillow basalts plot within the tholeiitic 
series field. On a Hf/3–Th–Ta diagram (Fig. 8b), data for 
the plagiogranites and pillow basalts plot within the island 
arc tholeiite (IAT) field. On a Th/Yb–Ta/Yb diagram (Fig. 
8c), data for six samples plot within the oceanic island arc 
field, with one sample lying at the boundary of the oceanic 
island arc field. These characteristics suggest that both the 

pillow  basalts  and  plagiogranites  in  the  Diyanmiao 
ophiolite  formed  in  an  incipient  oceanic  arc  setting 
(Weaver et al., 1979; Hawkine, 2003; Dilek and Fumes, 
2009, 2014) and are the products of submarine eruptions 
and the differentiation of oceanic basaltic magmas. In an 
R1–R2  diagram  (Fig.  8d),  data  for  the  plagiogranite 
samples plot within the mantle plagiogranite field, again 
suggesting  that  the  plagiogranites  formed  by  the 
differentiation of oceanic basalts. 

In summary, the available geological and geochemical 
data suggest that  the plagiogranites  are leucocratic  or 
silicic end-member rocks in the Diyanmiao ophiolite, are 
part  of  the  oceanic  crust,  and  are  fractionation-type 
oceanic  plagiogranites  formed  by  the  fractional 
crystallization of mafic magmas during gabbro formation. 
Such  plagiogranites  have  been  reported  from  Oman, 
Troodos and other SSZ-type ophiolites  (Pearce et al., 
1984; Rollinson, 2009; Freund et al., 2014). 

 
5.2 Age of the Diyanmiao ophiolite and its implications 

Although  ophiolites  are  dominated  by  mafic  and 
ultramafic rocks, minor granitoids (generally<10% of the 
rock  mass)  within  these  sequences  provide  important 
information about the ophiolite origins, including robust 
ages and evidence for the evolution of these segments of 
oceanic crust (Jian Ping et al., 2003b; Li Xianwu and Li 
Xianhua, 2003; Wang Cunzhi et al., 2011).  

The Diyanmiao ophiolite is considered to be part of the 
Erenhot–Hegenshan ophiolite belt, and it can be compared 
with other ophiolites in the Erenhot–Hegenshan ophiolite. 

 

Fig. 7. La–SiO2 and Yb–SiO2 (after Brophy, 2009) plots of plagiogranite, gabbro and pillow basalt in the Diyanmiao ophiolite.  
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The  age  of  the  Erenhot–Hegenshan  ophiolite  is 
controversial, which has implications for understanding 
the  Paleozoic  tectonic  evolution  of  the  southeastern 
Altaids. In particular, fossil ages are not consistent with 
isotopic ages (Miao et al., 2008; Jian et al., 2012). Fossil 
ages of the Erenhot–Hegenshan ophiolite are mainly from 
fossils  in  overlying  deep-sea  sedimentary  rocks  (e.g., 
cherts and limestones), but the relationship between the 
sedimentary rocks and ophiolite is unclear. Zircon U–Pb 
dating of magmatic rocks in ophiolites can provide useful 
age constraints, but this approach is challenging because 
such rocks rarely contain zircons and often contain a 
composite magmatic and xenocrystic zircon population 
(Jian et al., 2012; Koglin et al., 2009; Liati et al., 2003; 
Freund et al., 2014). Fractionation-type plagiogranites are 
ideal for precise dating of ophiolite formation (Freund et 
al.,  2014).  Given that  fractionation-type plagiogranites 
typically represent the latest additions to the ophiolitic 
crust, their crystallization ages reflect the last stages of 

ophiolite formation (e.g., Robinson et al., 2008; Rioux et 
al., 2012; Grimes et al., 2013). 

Our new LA–ICP–MS U–Pb age data for fractionation-
type  plagiogranites  in  the  Diyanmiao  ophiolite  yield 
consistent ages of 328.6±2.1 and 327.1±2.1Ma (i.e., early 
Carboniferous), which constrain the timing of the last 
stages of ophiolite formation (Rioux et al., 2012). These 
ages are similar to U–Pb ages of 354±7Ma reported for 
microgabbro  and  333±4Ma  for  plagiogranite  in  the 
Hegenshan  ophiolite  (Jian  et  al.,  2012),  354±4.5  and 
353±3.7Ma  reported  for  gabbro  and  345±5.5Ma  for 
plagiogranite in the eastern Erenhot ophiolite (Zhang et 
al., 2015b), 343±7Ma reported for plagiogranite in the 
Jiaoqier ophiolite (Miao et al., 2007), and 315±6.2Ma 
reported for gabbros from the Meilaotewula ophiolite (Li 
Yingjie et al., 2015) (Fig. 1a). These age data confirm the 
occurrence of a vast Carboniferous ophiolitic complex belt 
from Erenhot to Hegenshan. 

The early Carboniferous Diyanmiao ophiolite comprises 

 

Fig. 8. Th/Yb-Ta/Yb classification diagrams (a), Hf/3–Th–Ta diagram (after Wood, 1980) (b) and Th/Yb–Ta/Yb tectonic discrimi-
nant diagrams (after Pearce, 1982) (c) of the plagiogranite and pillow basalt in the Diyanmiao ophiolite, and R2–R1 tectonic dis-
criminant diagram of the plagiogranite in the Diyanmiao ophiolite (after De La Rache et al., 1980; Hong et al., 1996).  
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a relative complete ophiolite sequence within the Erenhot–
Hegenshan ophiolite belt. It is structurally located between 
the early Permian Shoushangou formation and Dashizhai 
formation,  which  indicates  that  the  ophiolite  was 
tectonically  emplaced  after  the  early  Permian.  The 
Diyanmiao ophiolite thus provides important information 
about  the  rocks,  original  ophiolite  sequence,  spatial 
distribution,  formation  environment,  emplacement  age, 
and tectonic evolution of the Erenhot–Hegenshan ophiolite 
belt.  The Diyanmiao ophiolite represents an important 
north-directed subduction event of Paleo-Asian oceanic 
crust beneath the southern margin of the Siberian plate, 
and provides key evidence regarding the location and age 
of the collision between oceanic and continental crust. 

 
6 Conclusions 
 

(1)  Geological,  petrological,  and  geochemical 
characteristics  of  plagiogranites  in  the  Diyanmiao 
ophiolite indicate that they formed by crystal fractionation 
from  a  tholeiitic  magma  during  oceanic  spreading, 
representing  a  silicic  end-member  of  the  Diyanmiao 
ophiolite and paleo-oceanic crust. 

(2)  LA–ICP–MS  U–Pb  zircon  dating  of  the 
plagiogranites  yielded  ages  of  328.6±2.1  and 
327.1±2.1Ma, indicating an early Carboniferous age for 
the Diyanmiao ophiolite. 

(3) The discovery of fractionation-type plagiogranites in 
the Diyanmiao ophiolite and their ages provide important 
petrological and age constraints on the formation and 
evolution of the Erenhot–Hegenshan oceanic basin in the 
Paleo-Asian Ocean. 
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