Research Advances

Latest Zircon U-Pb Geochronology of the Qingshan GroupVolcanic rocks along the Tan-Lu Fault Zone of Shandong Province, Eastern China

CAO Guangyue ${ }^{1}$, XUE Huaimin ${ }^{1, *}$ and LIU Zhe ${ }^{2}$
1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
2 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China

Objective

Shandong Province is divided into two parts by the Tan -Lu fault zone: the western part (Luxi) and the eastern part (Jiaodong). Large-scale volcanic activity occurred during the Late Mesozoic in Shandong Province, eastern China (Fig. 1b), and was controlled by the Tan-Lu fault zone and its secondary faults. Mesozoic volcanic rocks in Shandong Province mainly occur within the Cretaceous Qingshan group, overlying the Laiyang group and underlying the Wangsi group. The Qingshan group has been divided into four volcanic cycles, i.e., the Houkuang, Bamudi, Shiqianzhuang and Fanggezhuang formations from the oldest to the youngest. Although geochronology data indicate the volcanic activity occurred during the Early Cretaceous, the starting time and duration of volcanic activity are still equivocal. Two zircon U-Pb ages of volcanic rocks from strata at the lower base of the volcanic sequence along the Tan-Lu fault zone were reported in this paper, which provide new evidence for the discussion of the geological age.

Methods

Zircons were separated using standard heavy liquid and magnetic techniques, and were selected by hand picking under a binocular microscope according to color, shape, transparency and homogeneity. Together with standard zircon crystals (TEMORA), the selected zircons were mounted and polished to half of the grain thickness and then carbon-coated. Cathodoluminescence (CL) images were obtained using a scanning electron microscope (SEM) at the SEM Laboratory of Peking University in Beijing, China. Zircon U-Th-Pb analyses were performed on a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) at the Key Laboratory of Orogenic Belt and Crustal Evolution, Peking University in Beijing, China. The instrument configuration consists of

[^0]an Agilent 7500ce ICPMS instrument equipped with a 193 nm ArF-excimer laser. Helium was used as the carrier gas. The laser beam was accelerated at 5 Hz , with an intensity of $5 \mathrm{~J} / \mathrm{cm}^{2}$. The diameter and depth of the laser analysis pit were $32 \mu \mathrm{~m}$ and $30-40 \mu \mathrm{~m}$, respectively. Plešovice zircon was used as an external standard for all $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ isotopic analyses, and NIST 610 was used as an external standard to calculate the concentrations of $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ and other trace elements in zircon. U-Th- Pb isotopic ratios were calculated using the Glitter program. Data reduction was conducted using Isoplot.

Results

Two samples including trachyandensite (sample No. SD -54) and trachyte (sample No. SD-165) were collected from strata at the lower base of the volcanic sequence along the Tan-Lu fault zone in Shandong Province. Specific details and features of the results are as follows.

Zircons from trachyandensite sample No. SD-54 are euhedral-subhedral, prismatic, and range from 100 to 300 $\mu \mathrm{m}$ in diameter. They have length-to-width ratios of $2: 1$ to 1:1, with distinct oscillatory zoning and occasionally exhibit sector zoning (Fig. 1e). The zircons all have relatively high Th / U ratios ($0.82-1.78$), suggestive of a magmatic origin. All 25 zircons analyzed are concordant and yield a weighted mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ age of $127.7 \pm 0.6 \mathrm{Ma}$ $($ MSWD $=0.26)($ Fig. 1c). This age is interpreted as the crystallization age of the volcanic rocks.

Zircons from trachyte sample No. SD-165 are mostly euhedral-subhedral, prismatic, ranging from 150 to 400 $\mu \mathrm{m}$ in diameter, and have length-to-width ratios of $4: 1$ to 2:1, with distinct oscillatory zoning. However, a few of the inherited zircon grains have a core-rim structure, and the core shows oscillatory zoning. The rim shows thin and light-color rim (Fig. 1e), likely reflecting a metamorphic event. The high Th / U ratios ($0.53-2.46$) of all the zircons suggest a magmatic origin. Of the two inherited zircon analyses, two are concordant and produce ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages

Fig. 1. (a), Generalized geological map of the North China Craton (NCC), showing the main cratonic blocks and orogenic belts; (b), Simplified geological map of Shandong Province, eastern China, showing the locations of samples obtained during this study; (c-d), Concordia diagrams of zircon U-Pb for the volcanic rocks from Qingshan group; (e), Cathodoluminescence (CL) images of zircons from the volcanic rocks.
of 2526 Ma and 2425 Ma , respectively. All the analyses define a discordia with lower and upper intercepts at $127 \pm 16 \mathrm{Ma}$ and $2482 \pm 23 \mathrm{Ma}$ (MSWD=2.2), respectively (Fig. 1d). Excluding analyses of inherited zircons, the 21 young zircons analyzed are concordant and yield a weighted mean ${ }^{206} \mathrm{~Pb} / /^{238} \mathrm{U}$ age of $127.3 \pm 1 \mathrm{Ma}$ $(M S W D=1.17)($ Fig. 1d) which is interpreted as the age of volcanism.

Conclusion

The weighted mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ age of the volcanic rocks from the strata at the lower base of the volcanic sequence

Qingshan group along the Tan- Lu fault zone range from 127.7 to 127.3 Ma , match with the reported starting age (126.4 Ma) of the volcanic activity in the Jiaodong area, suggesting that the Qingshan group volcanic activity in Jiaodong and Tan-Lu fault zone began contemporaneously.

Acknowledgments

This work was financially supported by the Chinese Ministry of Science and Technology (grant No. 2014DFR21270), and the China Geological Survey (grants No. 12120114085401 and 121201102000150021).
Appendix 1 LA-ICP-MS zircon U-Pb isotope dating for the volcanic rocks along the Tan-Lu fault zone in Shandong Province

[^0]: * Corresponding author. E-mail: hmxue99@163.com

