
1 Introduction 
 

An  understanding  of  the  geological  history  of  a 
reservoir is a basic requirement for petroleum exploration 
(Punanova et al., 2006; Lee et al., 2004; Dodds, 2000; 
Ingram  et  al.,  2004).  Reservoir  development  is  an 
important factor in the selection of an exploration area and 
for the potential success of a target layer. Burial history is 
a fundamental part of studying hydrocarbon accumulation, 
and restoring the denuded thicknesses in a study area is the 
key to burial history research (Kemp et al., 2005; Tokatli 
et al., 2006; Blamey et al., 2014; Grobe et al., 2015; 
English et al., 2016). The methods used to restore the 
formations in a sedimentary basin and to calculate the 

denudation thickness at an unconformity can be roughly 
divided into four types: geothermic method based on the 
ancient scale method, geological method based on the 
principles of stratigraphy and sedimentology, geophysical 
method based on well  logging and seismic data,  and 
geochemical method based on the principle of chemical 
distribution or accumulation (Lastett et al., 1987; Carter et 
al.,  2000;  Henry,  1996).  Each method  has  their  own 
limitations according to regional basin development and 
tectonic history of the area. The most effective method to 
estimate denudation thickness can be selected based on the 
characteristics of the basin of interest. 

A series of analyses was undertaken to select the most 
appropriate research method for investigating the well 
YS201. (1) To satisfy the basic condition that the upper 
structural  layer  experiences  higher  paleogeothermal 
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conditions  than  the  lower  layer,  we  conducted 
paleogeothermal vitrinite reflectance and apatite fission 
track analyses to determine the paleogeothermal gradient, 
but the analyzed layers are too deep for this method 
(Xiang  Caifu  et  al.,  2007).  (2)  Meso-Cenozoic 
sedimentary  basin  compaction  laws  were  generally 
apparent, meaning that porosity analysis and acoustic time 
data yield reliable results.  Therefore,  we can use the 
porosity of a sedimentary basin, combining with acoustic 
time  data,  to  estimate  the  denudation  thickness  of 
sedimentary strata. (3) For poly–cyclic superposed basins 
of the Phanerozoic, the sedimentary and tectonic evolution 
of the basins should first be analyzed in detail. Then, the 
stratigraphic contrast method should be used to determine 
the  range  of  denudation.  Finally,  a  combination  of 
geothermic analysis and data on depositional fluctuations 
was used to calculate the definite value of the denuded 
thickness (Yuan Yusong et al., 2008). 

The  Yaoyingtai  region  of  the  Songliao  Basin  is 
characteristic of Meso–Cenozoic sedimentary basins in 
that strata compaction laws are generally apparent and the 
relationship between acoustic time and depth appears to 
have remained unchanged during the denudation of strata. 
Through the acoustic time method and sedimentary rate 
method, combined with sedimentation rates, the denuded 
thickness  of  the  Yingcheng,  Nenjiang,  and  Mingshui 
groups can be estimated. 

The  geological  processes  which  lead  to  reservoir 
development are important in understanding hydrocarbon 
accumulation  within  a  basin  (Karlsen  et  al.,  1993; 
Nedkvitne et al., 1993). Accurate analysis of multiphase 
tectonic events is required, as geological structures can 
influence  migration  and  control  the  location  of 
accumulations within the basin (Du Letian et al., 2015; 
Pang Xiongqi et al., 2015). Understanding the tectonic 
history therefore improves the efficiency of hydrocarbon 
exploration, as the distribution of hydrocarbon reservoir 
can be more accurately predicted. The main phases of 
reservoir  development  are  source  rock  deposition, 
reservoir maturation, and trap formation (He Bizhu et al., 
2016). Study of these phases of reservoir development 
reveals numerous variables, including tectonic events (Ma 
Yongsheng et al., 2016; Wang Pujun et al., 2007), burial 
history (Sachse et al., 2016; Premarathne et al., 2016), 
thermal evolution (Raznitsin,  2014; Karimpouli  et  al., 
2013), and digenetic history. Analyses of the geological 
history  may  provide  direct  geochemical  evidence  of 
hydrocarbon accumulation, such as studies of reservoir 
fluid inclusions (Liu Dehan, 1995; Zheng Youye et al., 
1998；Zou Caineng et al., 2007), the dating of digenetic 
minerals, and analyses of reservoir bitumen (Mark et al., 
2006; Mark et al., 2005). 

This study examines reservoir fluid inclusions in order 
to determine the age of hydrocarbon accumulation. The 
reservoir  fluids  in  inclusions  enable  the  age  of 
hydrocarbon accumulation to be established, and they also 
indicate  the  chemistry,  temperature,  and  pressure 
conditions  during  accumulation.  These  reservoir  fluid 
inclusions are generally unaffected by later  secondary 
changes in the oil reservoir and offer an effective way to 
understand the relevant geological processes (Burruss et 
al., 1983; Haszeldine et al., 1984). The study mainly used 
homogenization temperatures, salinity, and laser Raman 
spectra of reservoir fluid inclusions, combining with data 
of  burial  history,  deposition  rates,  and  the  calculated 
hydrocarbon accumulation stage for the first member of 
the Quantou group and the Denglouku group to aid our 
understanding of the reservoir history. The results indicate 
potential layers for gas reservoir exploration (Lethaeuser 
et al., 1989; Zhao Mengjun et al., 2004; Jones et al., 2000; 
Kelly, et al., 2000). 

 
2  Geological  Setting  and  Petroleum 
Geological Characteristics 
 

The  Meso-Cenozoic  Songliao  Basin,  located  in 
northeast China, is one of China’s largest inland fault-
depression lacustrine basins (Ge Rongfeng et al., 2010). 
The basin is 750 km long and 330–370 km wide, with a 
total surface area of >260,000 km2. The Changling fault 
depression is located in the south of the Songliao Basin, 
and the Yaoyingtai region, studied here, is located in the 
southern Chaganhua sub-sag and Daerhan fault complex 
(Fig.  1).  The  fault  structure  is  N–S  trending,  has  a 
westward–facing monoclinal form, and is 420 km2 in area 
(Chen Juan et al., 2008; Li Zongquan et al., 2008). The 
formations in the basin are (from oldest to youngest) the 
Jurassic Huoshiling group (J3h); the Lower Cretaceous 
Shahe group (K1sh), Yingcheng group (K1yc), Denglouku 
group  (K1d),  and  Quantou  group  (K1q,  this  group  is 
divided  into  four  members);  the  Upper  Cretaceous 
Qingshankou group (K2qn), Yaojia group (K2y), Nenjiang 
group (K2n), Sifangtai group (K2s), and Mingshui group 
(K2m); and the Neogene Taikang group (Nt). This study 
concentrates on the Denglouku group and the first member 
of Quantou group. 

The Songliao Basin has experienced three episodes of 
tectonic movement: the end of the Yingcheng tectonic 
event,  equivalent  to  phase  III  of  the  Yanshanian 
movement, which led to uplift and faulting across the 
study area;  the  end of  the  Late  Cretaceous Nenjiang 
tectonic event, which affected the whole basin and caused 
uplift across the study area; and the Late Cretaceous uplift 
during  deposition  of  the  youngest  sediments  of  the 
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Mingshui group, which led to localized intense faulting, 
uplift, and denudation. The final period of uplift had less 
impact on the study area than the previous two events. 
Intense tectonic movements have a significant controlling 
effect on the hydrocarbon accumulation (Zhao Wenzhi et 
al., 2004). The Yaoyingtai region is located between two 
sub-sags, and this uplifted area is a favorable structure for 
hydrocarbon migration and accumulation (Wang Yougong 
et al., 2014；Hu Ming et al., 2010). 

 

3 Analytical Methods and Analytical Results 
 
3.1  Calculation  of  denudation  thickness  and 
reconstruction of burial history from a single drill hole 

Existing drill holes and seismic data indicate that the 
study area was affected by the late Nenjiang and late 
Yingcheng tectonic events, both of which involved uplift 
that led to erosion. Seven drill holes exist within the study 
area, and the combined drill hole information could be 
used to calculate the denudation thickness from acoustic 
time data. The homogenization temperatures of reservoir 
fluid inclusions were determined from wells located near 
the YS201 well; consequently, the burial history of the 
YS201 well can be used to represent the overall burial 
history for the Yaoyingtai region. 
 

3.1.1  Denudation  thickness  of  the  Nenjiang  group 
calculated using the acoustic time method 

The Songliao Basin is a Meso–Cenozoic basin in which 
the formation compaction law is well observed, and the 
acoustic time method can thus be used to calculate the 
denudation thickness. By utilizing lithology data from the 
drill holes logs, we can extract acoustic time data for the 
mudstone of the Nenjiang group and construct a time–
depth  curve,  thereby  yielding  a  compaction  curve 
(equation (1)).  The same method is used to construct 
another time–depth curve for the strata (Sifangtai group) 
that lie across the surface of denuded strata (Liu Jingyan et 
al., 2000). The compaction curve is calculated as follows:  

T = (T0–c) exp (–bx) + c                      (1) 
Where T and x represent the acoustic propagation time 

of logging data and formation depth, respectively; T0 is the 
travel time of the acoustic wave near the surface (in 
water); and b and c are unknowns that are calculated using 
best fit values via statistical methods. b represents the 
compact law in the compaction curve, and c represents the 
propagation time of acoustic waves in rock; its value 
depended  on  the  lithology,  porosity,  and  pore  fluid. 
Laboratory studies have shown that the propagation time 
of acoustic waves in rock is generally 128–233 μs/m. 
Therefore, based on the characteristics of the rock strata 
and for reasonable physical conditions, c can be estimated 

 

Fig. 1. Map showing division of deep tectonic units in the south of the Changling fault depression.  
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and subsequently b can be calculated. Once appropriate 
values for b and c have been determined, a reasonable 
compaction curve equation can then be established. By 
using the comparison of the slopes and positions of the 
two time–depth curves for the Nenjiang group and for the 
Sifangtai group, we infer that the acoustic time method is 
accurate in terms of calculating denudation thickness (Mu 
Zhonghai et al.,  2000; Chen Ruiyin et al.,  2006). As 
shown in Fig. 2, the slope of the compaction curve for the 
older strata (the Nenjiang group) is greater than that for 
the younger strata (the Sifangtai group), indicating that the 
compaction of sediments across the unconformity surface 
was continuous; therefore, we can use the acoustic time 
method to restore the denuded thickness. A correlation 
coefficient is generally used to evaluate the strength of a 
relationship between two variables. The equation (1) is 
calculated as follows: 

ln (T–c) = (T0–c) –bX  
The  equation  is  converted  into  a  linear  equation 

Y=mX+n, with T0 taken from the range 620–650 μs/m. The 

original thickness of the Nenjiang group is calculated to be 
1161.63 m, compared with a present thickness of 622.45 
m. The difference between these two values is the amount 
of denudation; therefore, a 539.18 m thickness of sediment 
has been eroded from the Nenjiang group. 
 
3.1.2 Sedimentation rate method used to calculate the 
denuded thickness of the Yingcheng and Mingshui 
groups 

Lithological data taken from the drill hole logs indicate 
that the Yingcheng group comprises a series of volcanic 
rocks, mostly grey and brown rhyolite and light brown 
volcanic breccia. The group does not contain mudstone, 
meaning we are unable to use the acoustic time method to 
estimate the denudation thickness. An alternative approach 
is to use the sedimentation rates combined with duration 
of denudation to calculate the thickness of denuded strata 
during this period (Tan Kaijun et al., 2004; Ken et al., 
2008). The denudation duration is the difference in age 
between  the  strata  immediately  above  and  below the 
erosional boundary; i.e., Te – Ti. Previous studies have 
estimated  deposition  rates  for  the  Yingcheng  and 
Mingshui groups of 270 and 211 m/Ma, respectively (Guo 
Wei et al., 2009). The age of the Yingcheng group spans 
from 136 to 124 Ma, and the age of the Mingshui group 
spans from 67.7 to 65 Ma (Table 1). The denudation 
thickness  of  the  Yingcheng  and  Mingshui  groups  is 
determined as  506 m and 144.85 m,  respectively,  as 
obtained using the following equation (2): 

 (Hi+2He)/(Ti+1–Ti) = He/(Te–Ti)                 (2) 
Where Te is the onset age of erosion, Ma; He is the 

thickness of eroded strata, m; Ti+1 is geological age of the 
lower  boundary  of  eroded  strata,  Ma;  Hi  is  residual 
thickness of eroded strata, m; Ti is geological age of upper 
boundary of eroded strata, Ma. 
 
3.2 Calculating the age of onset of denudation 

If the thickness of eroded strata, the residual thickness, 
and  the  geological  age  of  the  upper  and  lower 
unconformity surfaces are known, we can calculate the 
beginning time of the erosion period. The onset age of 

 

 

Fig. 2. Acoustic time–depth fitting graphs of the YS201 
well.  

Table 1 Statistics of the denudation thickness of the YS201 well 
Geological 

age 
Depth of lower 
boundary (m) 

Strata thickness 
(m) 

Geological age of  
lower boundary (Ma)

Denudation  
thickness (m) 

Beginning age of 
denudation (Ma)

Nt 290 150 6 0 — 
K2m 570 280 67.7 144.85 65.7* 
K2s 968 398 73 0 — 
K2n 1590.45 622.45 84 539.18 76.5* 
K2y 1692 101.55 88.5 0 — 

K2qn 2315.4 623.4 100 0 — 
K1q 3379 1063.6 112 0 — 
K1d 3892 513 124 0 — 
K1yc 4500 608 136 506 125.9* 

Note: *The values are obtained by rounding retained to one decimal place. 
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erosion was determined according to equation (2),  by 
combining denudation thickness data, the geological age 
of the upper boundary of eroded strata, and the residual 
thickness  of  the  Nenjiang,  Yingcheng,  and  Mingshui 
groups (Table 1). The calculated age of denudation onset 
for the Yingcheng group is 125.9 Ma, for the Nenjiang 
group is 76.5 Ma, and for the Mingshui group is 65.7 Ma.          
 
3.3 Reconstruction of the burial history 

The  term  ‘burial  history’  refers  to  the  complete 
stratigraphy of a basin sedimentary unit or a series of units 
(sequence  and  group)  from  the  original  depositional 
environment to the present time or a certain geological 
period.  This  study  used  the  inversion  backstripping 
method  to  reconstruct  the  burial  history.  The  main 
principle of backstripping method is to reconstruct the 
stratigraphy from the residual layer, working through the 
geological history, stripping step by step, until the pre-
erosional  situation  is  achieved,  while  the  compacted 
thickness  of  each layer  remains  unchanged.  With  the 
increasing burial depth, the overburden loading on older 
formations increases, meaning that porosity decreases and 
volume decreases. We can assume that the lateral position 
of  the  formation  remains  unchanged  during  the 
sedimentation process and only the longitudinal position 
changes. During the process of compaction, the formation 
volume  decreases,  and  the  formation  thickness  also 
decreases.  According  to  the  assumption  that  the 

sedimentation  rate  remains  constant,  the  compacted 
thickness  does  not  change  across  the  area  except  in 
response  to  geological  events  such  as  faulting  and 
denudation.  The  calculation  for  the  stripping  method 
includes three factors: the compacted thickness of the 
formation, the original un–compacted formation thickness, 
and the thickness of the formation in each geological 
period. The backstripping process, therefore, is required to 
solve three problems, as follows. (1) The first problem 
arises from the principle of sedimentary compaction, by 
using the porosity–depth curve across the study area and 
burial depths to calculate the thickness of the compacted 
thickness. (2) The thickness of the original un–compacted 
formation when the burial depth is 0 m can be derived 
from the  compacted  thickness  and  the  porosity–depth 
curve. (3) For each formation (except for the structural 
layer),  under  the  condition that  its  skeleton thickness 
(compacted  thickness)  remains  unchanged,  since 
nowadays the embedded depth of stratum status, step by 
step stripping is applied until the pre-erosional situation is 
achieved; the burial depth of each formation can then be 
calculated (Yan Baozhen et al., 2006). Employing the 
compaction coefficients of the sandstone and mudstone 
porosity–depth curves in the YS201 well, and utilizing the 
‘peeling  back  mathematical  model’  proposed  by  Yan 
Baozhen et al. (2006), the ancient burial depth of the 
stratum is calculated (Table 2). Combining the calculated 
ancient buried depth, and the denudation thickness and 

 

Fig. 3. Distribution of fluid inclusions under microscope. 
(a), Fluid inclusions from 3278.35 m in the first member of Quantou Formation of YS102 well; (b), Fluid inclusions from 3714.74m in Denglouku Forma-
tion of YS2 well.  

Table 2 Recovery burial history data of YS201 well 

Formation Geological
age 

Sandstone 
content 

Mudstone
content 

Formula of sandstone
porosity-depth curve

Formula of mudstone
porosity-depth curve 

Skeleton 
thickness (m) 

Paleo-buried
depth (m) 

Mingshui group K2m — — — — 570 570 
Sifangtai group K2s 0.4824 0.495 y=0.762e-0.0009x y=0.020e0.0082x 324.68 465 
Nenjiang group K2n 0.204 0.7679 y=0.7883e-0.0007x y=0.439e-0.0001x 369.41 677 

Yaojia group K2y 0.128 0.7976 y=0.801e-0.0007x y=2.934e-0.0015x 97.83 126 
Qingshankou group K2qn 0.2727 0.7154 y=2.729e-0.0015x y=15.56e-0.0024x 594.29 633.5 

Quantou group K1q 0.4757 0.5156 y=0.4022e-0.0007x y=0.3594e-0.0005x 860.22 1179 
Denglouku group K1d 0.4739 0.501 y=0.2954e-0.0005x y=0.3978e-0.0005x 427.85 605 
Yingcheng group K1yc 0 0 — — 382.81 617.8 
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onset time (Table 1) for each of the Yingcheng, Nenjiang, 
and Mingshui groups, we can reconstruct the burial history 
for the sediments in the YS201 well (Fig. 6). 

 

4 Analysis of Reservoir Fluid Inclusions 
 

The  fluid  (oil,  gas,  water)  in  fluid  inclusions  was 
captured and sealed within the crystal lattice of authigenic 
mineral or within healing digenetic micro–fractures. These 
inclusions  record  the  original  chemistry  of  fluids  at 
different stages of diagenesis. The inclusions record the 
composition and properties of water and hydrocarbon, and 
the physical and chemical conditions during the different 
phases  of  hydrocarbon  filling  of  the  reservoir 
(Bhattacharya et al.,  2014).  The preservation of these 
inclusions allows us to gain homogenization temperatures 
to  study  the  hydrocarbon  filling  period  and  the 
accumulation time of the reservoir (Bhullar et al., 1999; 
Goldstein, 2001; Chi Guoxiang et al., 2003; Munz et al., 
2004).  This  work  used  laser  Raman  spectroscopy  to 
determine  whether  inclusions  contain  hydrocarbon 
signatures.  We  then  measured  fluid  inclusion 
homogenization temperatures and salinity to determine the 

hydrocarbon accumulation stage and age in the Yaoyingtai 
region. 
 
4.1 Fluid inclusion characteristics 

Reservoir  fluid  inclusions  were  collected  from  the 
YS101,  YS102,  YS2,  YS202,  and  LS2  wells.  The 
inclusions  analyzed  were mostly  housed in  secondary 
microcracks which cut through quartz and feldspar grains, 
and partly along microfractures within quartz,  created 
during diagenesis. The sampled hydrocarbon inclusions 
were  mainly  gas–liquid  two-phase  inclusions.  The 
individual inclusions were small, mostly located in bands 
along secondary microcracks within quartz grains. 

(1) The first member of the Quantou group: Samples 
were taken from the YS101, YS102, and YS202 wells, 
and most of the inclusions were gas–liquid two-phase 
inclusions with a gas–liquid ratio of <5%. The individual 
inclusions were small, 3–6 μm across. In these samples the 
majority  of  the  inclusions  were  located  in  secondary 
microcracks within quartz and feldspar grains, with the 
rest  distributed  along  microfractures  within  quartz,  as 
created during diagenesis (Fig. 3a). (2) The Denglouku 
group: Samples were taken from the YS101, YS2, YS202, 

 

Fig. 4. Microscopic photographs of hydrocarbon-containing inclusions and the corresponding Raman spectra. 
(a), Gas–liquid two–phase inclusions of YS202 well in the 3236.60 m; (b), corresponding Raman spectra in the 3236.60 m of inclusion in (a); (c), Gas-
liquid two-phase inclusions of YS2 well in the 3714.74 m; (d), Corresponding Raman spectra in the 3714.74 m of inclusion in (c).  
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and LS2 wells. The individual inclusions were small, 3–8 
μm across. In these samples the majority of the inclusions 
were located in secondary microcracks within quartz and 
feldspar, and partly hosted in sparry calcite cement (Fig. 
3b). In the two–phase gas–liquid inclusions the gas–liquid 
ratio is <5%. 
 
4.2 Reservoir fluid-inclusion composition 

Micro laser Raman spectroscopy was used to analyze 
reservoir fluid inclusions to determine their composition 
(Chen Yong et al., 2005). The analyses were performed at 
the Test Research Center, Beijing Ministry of Nuclear 
Industry, Beijing, China, using a LABHR-VIS LabRAM 
HR800  micro  laser  Raman  spectrometer  with  a 
wavelength of 532 nm, temperature of 25°C, and humidity 

of 50%. In general, the CH4 and CO2 contents of the fluid 
inclusions (at room temperature) gave Raman spectrum 
peaks at 2913–2919 cnt and 1386–1390 cnt, respectively. 
The samples of the first member of the Quantou group and 
of the Denglouku group were taken from the YS101, YS2, 
YS202,  YS102,  and  LS2  wells.  The  microscopic 
fluorescent  light  and micro laser  Raman spectroscopy 
analyses indicate that the types of inclusions are oil, gas, 
and gas–liquid two–phase inclusions. 

(1) The first member of the Quantou group: Analyses of 
21  inclusions  showed  strong  blue  fluorescence  under 
fluorescent  light,  indicative  of  the  presence  of 
hydrocarbons. At a depth of 3343 m  within the YS101 
Well and at 3236.60 m in the YS202 well, gas–liquid two-
phase  inclusions  were  found  (Fig.  4a).  The  main 

 

Fig. 5. Histograms of homogenization temperature and salinity for reservoir inclusions. 
(a), Homogenization temperature histogram of inclusions in the first member of Quantou group; (b), Salinity inclusions histogram of inclusions in 
the first member of Quantou group; (c), Homogenization temperature histogram of inclusions in Denglouku group; (d), Salinity inclusions histogram 
of inclusions in Denglouku group.  
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components of these two–phase inclusions were 
CH4, CO2, and H2O (Fig. 4b). At a depth of 
3236.60 m in the YS202 well, gas–liquid two–
phase inclusions were found, mainly CH4. 
(2)  The  Denglouku  group:  Analyses  of  28 
inclusions  showed  strong  blue  fluorescence 
under fluorescent light, confirming the presence 
of hydrocarbons. At a depth of 3538 m in the 
YS101  well,  gas–liquid  two-phase  inclusions 
were identified; the main components were CH4 
and CO2. At a depth of 3453.86 m in the YS202 
well and at 3714.74 m in the YS2 well (Fig. 4c), 
gas–liquid  two–phase  inclusions  were  found. 
CH4 and CO2 were dominant in the YS202 well, 
and CH4, CO2, and H2O in the YS2 well (Fig. 
4d). 
 
4.3 Fluid inclusion temperatures 
Reservoir  fluid-inclusion  homogenization 
temperatures and salinity were measured at the 
Beijing Ministry of Nuclear Industry using a 
BX51  fluorescent  light  microscope  and  a 
LINKAM THMS600 heater with a temperature 
of 24 °C and humidity of 40%. A total of 62 
points were analyzed in fluid inclusions within 
the first member of the Quantou group, and 139 
points from the Denglouku group; the results are 
listed in Table 3. 
For the first member of the Quantou group, the 
reservoir  fluid  inclusion  homogenization 
temperature was 89–164°C with a peak at 110–
120°C; the peak frequency was 30.6% (Fig. 5a). 
Inclusion salinity was (0.71–15.96)wt% with a 
peak at (6–8)wt% (Fig. 5b). These results show 
that  hydrocarbon  accumulation  in  the  first 
member of the Quantou group reservoir was a 
single-stage event (Gao Xianzhi et al., 2000). 
For the Denglouku group, the reservoir fluid 
inclusion homogenization temperature was 83–
186°C with a peak at  130–140°C; the peak 
frequency  was  25.2%  (Fig.  5c).  Inclusion 
salinity was (0.71–3.32)wt% with a peak at (4–
6)wt %  (Fig.  5d).  The  results  indicate  that 
accumulation in the Denglouku group reservoir 
was also a single-stage event. 
 
5 Discussion 
 
In  the  field  of  petroleum  geology,  the 
homogenization temperature of reservoir fluid 
inclusions  is  used  to  study  the  period  of 
hydrocarbon migration and to reconstruct the 
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history of the reservoir. This approach is usually combined 
with the thermal and burial history, as once we have 
estimated the timing of hydrocarbon migration, we can 
estimate the filling time of the reservoir (Shan Xiuqin et 
al., 2007; Xiao Xianming et al., 2002). The burial history 
of the YS201 well can be drawn from the analysis above. 
Previous studies in the region have provided a thermal 
history  curve.  If  we  place  the  peak  homogenization 
temperature of fluid inclusions from the first member of 
the Quantou group and the Denglouku group into the 
diagram of the burial history and thermal history, the 
accumulation ages of these two layers can be calculated 
(Yang Guang et al., 2011; Jiang Tao et al., 2010). For the 
first member of the Quantou group, the reservoir fluid-
inclusion homogenization temperatures show a peak at 
110–120°C. Placing this temperature into the burial and 
thermal  history  of  the  YS201  well  (Fig.  6),  the 
accumulation  age  of  hydrocarbon  reservoir  is  79  Ma 
(middle Nenjiang group), corresponding to the middle 
Late Cretaceous. The hydrocarbon gas of the first member 
of the Quantou group reservoir migrated over a large 
distance. The homogenization temperature and salinity for 
the first member of the Quantou group both have a single 
peak,  so  this  reservoir  experienced  a  single-stage 
accumulation.  For  the Denglouku group, the reservoir 
fluid–inclusion homogenization temperatures also show a 
single peak at 130–140°C. Using this temperature value in 
the burial and thermal history for the YS201 well (Fig. 6), 
the reservoir accumulation age is 79 Ma (the middle Late 
Cretaceous).  The  similarity  of  the  two ages  indicates 

contemporaneous hydrocarbon migration for the reservoirs 
of  the  first  member  of  the  Quantou  group  and  the 
Denglouku group. Analysis of the fluorescence of the 
hydrocarbon inclusions of the Denglouku group reservoir 
and the first  member of the Quantou group reservoir 
indicates  consistent  petroleum  characteristics  in  the 
hydrocarbon inclusions in the two reservoirs, indicating 
that both reservoirs were derived from the same source 
and accumulated at the same time. 
 
6 Conclusions 
 

(1)  Using  acoustic  time  data  we  calculated  the 
denudation thickness for the Nenjiang group to be 539.18 
m. Using sedimentation rates and denudation times, the 
denudation thicknesses for the Yingcheng and Mingshui 
groups are 506 m and 144.85 m, respectively. 

(2) Analysis of reservoir fluid inclusions in the first 
member  of  the  Quantou group yields peak values of 
homogenization temperature and salinity of 110–120°C 
and  (6–8)wt % ,  respectively.  The  Denglouku  group 
reservoir  inclusions  also  have  peak  values  of 
homogenization temperature and salinity of 130–140°C 
and (4–6)wt%, respectively. These values show that the 
accumulation of hydrocarbons occurred simultaneously in 
the two layers. 

(3)  Through  combining  the  peak  homogenization 
temperatures of fluid inclusions in the first member of the 
Quantou group and in the Denglouku group to the burial 
history of the YS201 well, it is determined that the two 

 

Fig. 6. Burial history of the YS201 well.  
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reservoirs accumulated at the same time, at 79 Ma (middle 
Late Cretaceous). 
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