
1 Introduction 
 

Namibia hosts abundant uranium resources, which have 
been  grouped  into  three  types  according  to  their 
lithological  setting.  These  include:  a)  occurrences 
associated with plutonic rocks, b) sedimentary occurrences 
and c) pedogenic occurrences (Roesener and Schreuder, 
1994).  The  world-class  Rössing  deposit  in  Namibia 
typifies the leucogranite-hosted uranium deposits (Cuney, 
1980a).  The  Rössing  Uranium  Mine,  situated 
approximately 60 km NE of Swakopmund, Namibia, is the 
only economic leucogranite-hosted uranium deposit being 
exploited at present. The Paleozoic Rössing deposit is, by 
virtue of its age, host rocks, size, grade and U-Th ratio that 
yields extremely low radioactivity, exceptional in both 
African  and  global  contexts  (Barnes  and  Hambleton-

Jones,  1978).  The  Rössing  deposit  also  typifies  the 
‘‘intrusive-alaskite’’  types.  In  keeping  with  recent 
developments,  the  term ‘‘leucogranite-hosted’’  is  used 
here,  rather  than  “intrusive-alaskite’’  or  ‘‘alaskite-
hosted’’,  allowing  a  more  generic  overview  of  the 
leucogranites of the Central Zone of the Damara Orogen. 

Several uranium occurrences and deposits have been 
found in the Gaudeanmus area near the Rössing deposit, 
including  one  located  about  3.5km  southeast  of  the 
Rössing deposit (Fig.1). Recent studies of the mineralizing 
fluids  and  uranium  mineralogy  in  uraniferous 
leucogranites of the Gaudeanmus area (Chen et al., 2013 
and 2014; Fan et al., 2015; Zong et al., 2015), and at the 
Rössing, Rössing South, and Ida Dome deposits (Cuney, 
1980a and 1980b; Nex et al., 2001, 2002; Basson et al., 
2004; Kinnaird et al., 2007; Corvino and Pretorius, 2013), 
have  shed  some  light  on  the  mineralizing  processes. 
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However, the uranium genesis and the sources of the 
mineralized  fluids  are  still  in  debate.  There  are  four 
theories: 1) based on their compositions and setting along 
the boundary between the Khan and Rössing Formation, 
Smith (1965) suggested that the uraniferous leucogranites 
originated  from  uraniferous  protosediments  during 
amphibolite-facies  metamorphism;  2)  Barnes  and 
Hambleton-Jones  (1978)  interpreted  oxidation  halos 
observed in the leucogranite as cryptic enclaves of Khan 
Formation meta-sediments, leading them to suggest the 
Khan  Formation  as  the  source  for  the  uranium 
mineralization; 3) Jacob (1978), Haack et al. (1983), and 
Nex et al. (2001) showed that the pre-Damaran basement 
rocks  are  anomalously  radioactive  and  can  therefore 

provide an alternate source of uranium, and 4) Brynard 
and  Andreoli  (1988)  proposed  that  the  uraniferous 
leucogranites  were  derived  by  remelting  of  high-heat 
producing (HHP) red granite.  This paper presents the 
results  of  a  systematic  study on  the geochemistry  of 
uraniferous  leucogranites  and  Sm-Nd  systematics  of 
uraninites  within  uraniferous  leucogranites.  It  also 
addresses the uranium genesis of uraniferous leucogranites 
in the Gaudeanmus area. 

 
2 Geological Setting 
 

Across the African continent, the Neoproterozoic to 
early Paleozoic (650–460 Ma) Damara Belt constitutes 

 

Fig. 1. Geological map of the Gaudeanmus area, Namibia, showing the location of significant uranium anomalies (inset map shows 
location relative to structural domains of southwestern Africa; after Chen et al., 2013).  
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part of the Pan-African Mobile Belt, which resulted from 
continental collision of the Congo and Kalahari cratons 
(Coward,  1983).  In  Namibia  it  consists  of  two main 
branches, the N-trending coastal branch and the NW-
trending intracontinental inland branch. The inland branch 
is  further  subdivided  into  several  structural  domains, 
including Northern Platform, Northern Zone, Central Zone 
(further  subdivided  into  northern  and  southern), 
Okahandja  Lineament  Zone,  Southern  Zone,  Southern 
Marginal Zone, and Southern Foreland (Fig. 1; Martin et 
al., 1977; Kitt, 2008). The boundaries of each domain 
were  defined  by  interpreted  regional  aeromagnetic 
structures  or  lineaments  (Corner,  1983).  All  of  the 
leucogranite-hosted uranium occurrences in Namibia are 
situated  in  the  Central  Zone  (Fig.2;  Roesener  and 
Schreuder,  1994).  The  Gaudeanmus  area  lies  in  the 
southern Central Zone (Fig. 1), which is characterized by 
voluminous granitic intrusions and a regional amphibolite 
to granulite-facies metamorphic event (Miller, 1983). 

In  the  Gaudeanmus area,  the  pre-Damara basement 
gneisses  (~2  Ga)  are  unconformably  overlain  by  the 
Neoproterozoic Damara sequence which comprises the 
Nosib Group and the Swakop Group. The Nosib Group 

has been divided into the Etusis and Khan formations. The 
overlying Swakop Group comprises the Rössing, Chuos, 
Karibib, and Kuiseb formations (Table 1). Uraniferous 
leucogranites occur as veins intrude into the Rössing and 
Khan formations, or the Karibib and Kuiseb formations (in 
cases where the Rossing Formation is thin or absent). 

 
3 Leucogranite Petrology 

 
The Central Zone of Damara Belt is renowned for the 

emplacement  of  voluminous  intrusions,  covering  an 
exposed area of at least 75,000 km2. Among over 300 
intrusive bodies, 96% are granites, with the rest being of 
mafic rocks, diorite, and granodiorite (Miller, 1983). The 
granites are subdivided into four suites, as described in 
Miller (1983), including the Salem Suite, the Red gneissic 
granites, the equigranular-textured Grey Granites and the 
sheeted  leucogranites.  The  Salem  suite  includes 
porphyritic  granite  (552.5±2.2  Ma,  LA-ICP-MS  U-Pb 
zircon) and biotite granite (540.2±3.9 Ma, LA-ICP-MS U-
Pb zircon), and contains abundant garnet (Wang, 2013). 
The ages of the red gneissic granite and grey granite are 
535.6±7.2 Ma (SHRIMP U-Pb monazite) and 520.4±4.2 

 

Fig. 2. Map showing distribution of various domes, the Welwitschia Lineament and spatially associated primary uranium deposits of 
the Central Zone (based on data from Corner, 1983; Anderson and Nash, 1997; Basson and Greenway, 2004; and Kinnaird and Nex, 
2007).  
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Ma  (SHRIMP  U-Pb  zircon),  respectively  (Longridge, 
2011). 

The  sheeted  leucogranite  can  be  grouped  into  six 
distinct types (presented in Table 2) based on observable 
field characteristics of structural setting, form of intrusion, 
colour, grain size, texture, radioactivity and macro-scale 
mineralogy (Nex, 1997). Only D and E-type leucogranites 
are uranium-bearing. D-type leucogranites dominate the 
study area, with few E-type leucogranite outcrops, the and 
E-type leucogranites are a product of variably influenced 
metasomatic alteration of the D-type (Freemantle, 2010). 
 
4 Uranium Mineralogy 

 
On the basis of thin-section microscopic observation 

and electron-probe analysis, it is shown that uranium in 
the leucogranites mainly occurs as independent uranium 
minerals, with minor amounts substituting for thorium in 
thorium-bearing  accessory  minerals.  Uranium minerals 
chiefly  consist  of  uranium  oxides,  uranium-titanium 

oxides, and uranium silicates, and commonly coexist with 
zircon, apatite, monazite, pyrite, molybdenite, galena, and 
sphalerite (Fig. 3a). Uranium oxides comprise uraninite, 
pitchblende,  and  broggerite.  Uraninite  is  crystallized 
during  fractional  crystallization  of  the  leucogranite 
magma, and is characterized by large grain sizes around 
0.1–0.05 mm (Fig. 3b). Occasionally these grains reside 
within rock-forming minerals (e.g. plagioclase and biotite) 
and the contacts between uraninite and host minerals tend 
to generate radioactive halos. In contrast, pitchblende is 
present as veins or veinlets (Fig. 3c), which are inferred to 
have  formed  during  a  post-magmatic  hydrothermal 
overprint. Uranium-titanium oxides include a group of 
complex  minerals,  such  as  brannerite,  betafite,  and 
uranpyrochlore,  which  are  also  crystallized  during 
fractional  crystallization  of  the  leucogranite  magma. 
Uranium  silicates  include  coffinite,  uranothorite,  and 
uranophane, the latter of which forms as a secondary 
uranium mineral (Fig. 3d), due to supergene leaching. The 
primary uranium minerals, such as uraninite, broggerite 

 

 

Table 1 Stratigraphic succession of Central Damara Belt in Gaudeanmusarea, Namibia (after Smith, 1965; Nex, 1997) 

Group Subgroup Formation Maximum 
thickness Lithology Age 

Swakop 

Khomas 

Kuiseb >3000m Pelitic and semi-pelitic schist and gneiss, migmatite, calc-silicate rock, quartzite.  

Karibib 1000m Marble, calc-silicate rock, pelitic and semi-pelitic schist and gneiss, biotite 
amphibolite schist, quartz schist, migmatite.  

Chuos 700m Diamictite, calc-silicate rock, pebbly schist, quartzite, ferruginous quartzite, 
migmatite. 

～710 Ma 
（Hoffmann et 
al.，2004） 

Discordance

Ugab Rössing 200m Marble, pelitic schist and gneiss, biotite-hornblende schist, migmatite, 
calc-silicate rock, quartzite, metaconglomerate.  

Discordance 

Nosib  

Khan 1100m 
Migmatite, banded and mottled quartzofelds-pathicclinopyroxene-amphibolite 
gneiss, hornblende-biotite schist, biotite schist and gneiss, migmatite, 
pyroxene-garnet gneiss, amphibolite, quartzite, metaconglomerate. 

 

Etusis 3000m 
Quartzite, metaconglomerate, pelitic and semi-pelitic schist and gneiss, 
migmatite, quartzofelds-pathicclinopyroxene-amphibolite gneiss, calc-silicate 
rock, metarhyolite.

 

Major unconformity 

Abbabis Complex Gneissic granite, augen gneiss, quartzofelds-pathic gneiss, pelitic schist and 
gneiss, migmatite, quartzite, marble, calc-silicate rock, amphibolite. 

～2 Ga 
（Longridge et 
al., 2008） 

Table 2 Characteristics of different types of leucogranites in the Gaudeanmus area, Namibia 
Type Diagnostic mineralogical features Radioactivity Age（Ma） References 

A Thin, very light pink to white, bedding parallel, very little accessories, often 
folded and boudinaged within Damaran metasediments

low 
Th>U

547.4±3.6 (LA-ICP-MS 
U-Pb zircon) Wang, 2013 

B 
White as well as light pink, medium grained and homogeneous often bedding 
parallel, folded and boudinaged. Garnet is a distinctive accessory and is found 
in clusters or as disseminated grains mostly < 1 cm in size 

low 
Th>U 

537.8±4.3 (LA-ICP-MS 
U-Pb zircon) Wang, 2013 

C Pale pink-cream, medium-pegmatitic grain size, hypersolvus with interstitial 
clear quartz, magnetite, ilmenite and tourmaline 

Low, high in 
patches, Th>U 

525.4±2.6 (LA-ICP-MS 
U-Pb zircon) Wang, 2013 

D 
White, medium-coarse grain size, granular texture, white feldspar with 
characteristic smoky quartz, frequently visible beta-uranophane and 
occasional betafite 

very high 
 U >Th 

506±8.1(SHRIMP U-Pb 
zircon) 
497±5.5 (LA-ICP-MS 
U-Pb zircon) 

Longridge et 
al., 2008 
 
Wang, 2013 

E Extremely variable colour and grain size, contains ‘‘oxidation haloes’’ 
(Corner and Henthorn, 1978)

High- very high 
U >Th

Age may be the same as 
D-typeleucogranite 

Freemantle, 
2010

F Distinctive red colour, coarse-pegmatitic grain size, pink perthitic feldspar 
and milky coloured quartz 

low 
U≈Th

511.4±4.3 (LA-ICP-MS 
U-Pb zircon) Chen, 2014 
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and brannerite, account for about 69% of the ore minerals, 
and the secondary uranium minerals, such as coffinite, 
uranothorite, pitchblende and uranophane, approximately 
account for 31%. Thus, the leucogranite-type uranium 
deposit in this area is a composite product of magmatic 
fractional  crystallization,  post-magmatic  hydrothermal 
alteration, and supergene leaching (Chen et al., 2013). 
 
5 Geochemical Characteristics 
 
5.1 Analytical methods 

All samples were collected in the No. 18 mineralization 
zone (Fig.  1).  The detailed  description of  samples  is 
presented in Table 3. 

Compositional analyses for whole-rock major and trace 
elements were conducted at the Analytical Laboratory, 
Beijing Research Institute of Uranium Geology. Major 
element compositions were determined using a Philips 
PW2404 X-ray fluorescence spectrometer (XRF),  with 

analytical precision better than 1%; FeO was measured 
using  the  volumetric  method.  Trace  elements  were 
measured with a Finnigan-MAT Element I HR-ICP-MS. 
About 50 mg of powered sample was dissolved in high-
pressure Teflon bombs using a HF + HNO3 mixture. Rh 
was used as an internal standard to monitor signal drift 
during counting. Relative uncertainty is less than 5% when 

 

Fig. 3. Characteristics of uranium minerals in uraniferous leucogranites. 
(a) Uraninite and uranothorite coexisting with zircon and apatite. (b) Hypidiomorphic granular uraninite partially mantled by pyrite. (c) Pitchblende vein 
filling a fracture in chlorite. (d) Vein of supergene mineralization displaying radial uranophane.  

Table 3 Sample description of leucogranite in the 
Gaudeanmus area, Namibia 

Sample no. X Y Depth (m) Lithology 
ZK76-13-2

7510880 508299

288.42–288.56 D-type leucogranite
ZK76-13-4 292.46–292.6 D-type leucogranite
ZK76-13-7 300.22–300.3 D-type leucogranite
ZK76-13-8 300.45–300.5 D-type leucogranite
ZK76-13-9 300.74–300.88 D-type leucogranite
ZK76-13-10 302.1–302.25 D-type leucogranite
ZK76-13-12 305.73–305.88 D-type leucogranite
ZK76-13-13 309.75–309.88 D-type leucogranite
ZK76-13-14 311.03–311.13 D-type leucogranite
ZK76-13-16 315.19–315.3 D-type leucogranite
ZK76-13-18 324.28–324.41 D-type leucogranite
ZK84-6-3 7510604 508101 264.16–264.4 D-type leucogranite

LS-2 7510229 509254  D-type leucogranite
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concentrations of trace and rare earth elements are greater 
than 10 ppm, whereas is the uncertainty is less than 10% 
when  the  concentrations  are  lower  than  10  ppm. 
Analytical procedures for trace and rare earth elements are 
described by Gao et al. (2003). 

Nd isotopic analysis of uraninites was completed at the 
Analytical  Laboratory,  Beijing  Research  Institute  of 
Uranium  Geology,  using  the  analytical  procedures 
described by Zhang et al. (1999). The reported 143Nd/144Nd 
ratios were normalized to a 146Nd/144Nd ratio of 0.7219. 
The analytical result of standard JMC yielded 0.512109±3, 
and the blank of Sm and Nd for the entire analytical 
procedure was less than 50×10-12 (Ding et al., 2016; Zhang 
et al., 2017). 
 
5.2 Major and trace element geochemistry 

Seven  uraniferous  leucogranite  samples  from  the 
Gaudeanmus area were analyzed for their major and trace 
element compositions, and the results are presented in 
Table 4. The uraniferous leucogranites possess high silica 
(68.8wt % –76.0wt % ,  averaging  73.1wt % )  and  total 
alkaline  (K2O+Na2O  8.5wt % –11.8wt % ,  averaging 
9.7wt%) concentrations, with Na2O ranging from 1.5wt%–
4.6wt%, and K2O/Na2O ratios of 1.06–5.71 (mainly over 
1.5  indicating  potassium-rich  compositions); 
concentrations of MnO, TiO2, and MgO are relatively low. 
On the TAS diagram (Irvine et al., 1971), all samples plot 
within the subalkaline domain (Fig.  4a).  The A/CNK 
ratios range from 0.96 to 1.07, with an average of 1.01. On 
the  A/NK-A/CNK diagram,  the  plotted  sample  points 
concentrate  in  the  metaluminous  and  peraluminous 
domains  (Fig.4b),  implying  that  the  uraniferous 
leucogranites  belong  to  subalkaline  metaluminous-
peraluminous rocks. 

Table  4  shows  that  the  analyzed  uraniferous 
leucogranites have total REE concentrations of 96.5 ppm 
to  695  ppm  (average  264  ppm).  On  a  chondrite-
normalized plot,  the LREE display greater enrichment 
than the HREE (Fig. 5a). The LREE define a strongly 
negative slope that flattens through the HREE, showing 
significant  fractionation  between  LREE  and  HREE 
elements (LREE/HREE=2.53–7.71 (average 5.03); (La/
Yb)N=2.14–10.4,  (average  5.85)).  It  also  displays 
moderate Eu depletion (δEu=0.18–0.80，average 0.45), 
indicating that the uraniferous leucogranites may have 
formed from fractional crystallization. 

Based on Table 4 and the trace-element spidergram 
(Fig. 5b), the uraniferous leucogranites are enriched in Rb, 
Th, U, K, and Pb, and depleted in Ba, Nb, Ta, and Sr, 
typical of the continental crust. Rb/Sr ratios range from 
2.03 to 5.50 with an average of 4.36, far higher than the 
global average upper crustal average of 0.32 (Taylor and 
McLennan,  1995),  indicating  highly  mature  crustal 
material in the source areas of the leucogranites. 

On the Rb-Y+Nb diagram proposed by Pearce (1996) to 
discriminate  between  different  tectonic  settings,  the 
uraniferous leucogranites plot within an area overlapping 
post-COLG  (post-collision  granite),  syn-COLG  (syn-
collision granite) and WPG (within plate granite) (Fig. 
6a). However, on the SiO2-Al2O3 diagram proposed by 
Maniar and Piccoli (1989), the leucogranites of this study 
plot in the field for post-orogenic granites (POG) (Fig. 
6b). These diagrams further support the interpretation that 
the  uraniferous  leucogranites  were  formed  in  a  post-
orogenic extensional setting.  
 
5.3 Nd isotopic characteristics of uraninites 

To  further  study  the  genesis  of  the  uranium 

 

Fig. 4. Uraniferous leucogranites from the Gaudeanmus area, Namibia plotted on (a) TAS diagram (after Irvine et al., 1971) and 
(b) A/CNK-A/NK diagram.  
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mineralization  in  Gaudeanmus  area,  the  Nd  isotopic 
characteristics were determined for uraninites from the 
uraniferous leucogranites. Analytical results for the Sm-
Nd study are presented in Table 5, showing a clustering of 
(143Nd/144Nd)i  ratios  at  about  0.511147–0.511231  and 
highly negative εNd(t) values of −14.8 to −16.5. 

In the εNd(t) vs t diagram (Fig. 7), evolution lines for the 
Etusis Formation, Khan Formation, and Kuiseb Formation 
were drawn based on the work of McDermott (1996). The 
evolution line for the Etusis Formation lies in the range of 
pre-Damara basement, indicating that strata of the Etusis 
Formation was mixed with a component of basement 
material, or was derived directly from the basement by 
erosion and subsequent deposition. The analyzed uraninite 
samples plot in the area of pre-Damara basement (Fig. 7). 
 
6 Discussion 
 
6.1 Petrogenesis of uraniferous leucogranites 

At ca. 580 Ma, plate subduction led to convergence of 
the Kalahari and Congo cratons (Blaine, 1977; Sawyer, 
1981), which resulted in continental collision between ca. 
560 and 540 Ma (Kasch, 1983; Longridge et al., 2008). In 
the process of the collision which moulded the Damara 
Belt,  the  Damara  sequence  and  basement  rocks 
experienced  multi-stage  tectonic  events,  including  the 
development of structural domes. The main structure of 
the intracontinental branch of the Damara Belt is NE-
trending. The distinctive domes in the Central Zone is 
formed during the orogeny (Miller, 1979), which is also 
NE-trending. The collision also generated several phases 
of  deformation,  which  is  manifested  as  folds,  faults, 
lineaments, and foliations. 

Magmatism was active during the collision, resulting in 
several episodes of granitoid emplacement. The dioritic 
suite in the Goas area was dated at 563±4 Ma and 546±6 
Ma (SHRIMP U-Pb zircon ages), representing the timing 
of  plate  subduction  (Jacob  et  al.,  2000).  Subsequent 
syntectonic granites in the Gaudeanmus area, have yielded 
LA-ICP-MS U-Pb zircon ages of 552.5±2.2 Ma for a 
porphyritic granite and 540.2±3.9 Ma for a biotitic granite, 
both  of  which are  similar  to  the Salem-type granites 
(Wang, 2013), indicating that the Kalahari and Congo 
cratons began to collide at ca. 560–540 Ma. B, C, and F-
type leucogranites have LA-ICP-MS U-Pb zircon ages of 
537.8±4.3  Ma,  525.4±2.6  Ma,  and  511.4±4.3  Ma, 
respectively (Wang, 2013), indicating emplacement during 
the orogeny. In addition, deformation is dated at 520–508 
Ma in the Central Zone (Jung, 2000; Longridge et al., 
2011). 

It is thought that collision of the Kalahari and Congo 
cratons had ceased by ca. 510–505 Ma, and the 40Ar/39Ar 

 Table 4 Major (wt%) and, trace and rare earth elements
(ppm) concentrations of Uraniferous leucogranites in the 
Gaudeanmus area, Namibia 

Sample ZK76- 
13-2 

ZK76- 
13-4 

ZK76- 
13-7 

ZK76- 
13-9 

ZK76-13 
-13 

ZK76-13
-14 

ZK76-13
-18 

SiO2 72.39 72.16 74.81 73.31 76.02 74.25 68.81
TiO2 0.26 0.03 0.20 0.07 0.04 0.07 0.08 
Al2O3 13.66 14.75 12.84 13.10 12.43 13.45 17.11

TFe2O3 1.22 0.10 1.32 0.68 0.29 0.33 0.44 
FeO 1.05 <0.10 1.15 0.25 0.15 0.15 0.15
MgO 0.59 0.10 0.53 0.20 0.17 0.16 0.27 
CaO 1.33 0.41 0.81 0.99 0.94 0.65 2.00
MnO 0.02 0.01 0.02 0.01 0.01 0.01 0.01 
Na2O 2.43 2.45 2.35 1.77 2.62 1.52 4.59
K2O 6.63 9.34 6.16 8.24 6.00 8.68 4.86 
P2O5 0.35 0.07 0.07 0.37 0.12 0.16 0.34
LOI 0.98 0.59 0.90 1.12 1.23 0.61 1.49 
Total 99.86 100.00 100.01 99.85 99.87 99.89 100.00

A/CNK 1.01 0.99 1.07 0.96 0.99 1.03 1.04 
K2O/ 
Na2O 2.73 3.81 2.62 4.66 2.29 5.71 1.06 

Li 36.10 4.66 22.70 5.87 5.51 7.61 13.8 
Be 2.69 1.72 2.32 1.75 3.10 1.37 10.3
Sc 6.20 1.98 5.45 3.14 2.64 3.14 3.72 
V 39.9 3.88 30.2 9.05 5.92 12.1 8.84
Cr 1.66 0.50 1.10 0.70 0.59 0.85 0.88 
Co 1.67 0.13 1.76 1.92 0.42 0.71 0.57
Ni 1.14 0.21 0.91 0.89 0.51 0.85 1.14 
Cu 13.4 1.42 10.5 15.5 2.16 7.41 1.76
Zn 12.9 2.92 13.10 6.60 3.12 5.94 6.43 
Ga 16.6 13.1 14.8 12.9 12.7 13.5 23.8
Rb 415 520 389 511 390 586 297 
Sr 99.2 94.5 98.6 100 84.9 114 146
Y 120 23.8 53.3 57.9 37.5 47.1 83.0 
Nb 28.3 3.25 25.0 11.4 6.77 11.2 11.5
Mo 1.60 0.72 7.24 1.19 4.84 1.22 57.7 
Cd 0.03 0.02 0.06 0.01 0.02 0.03 0.02
In 0.02 0.00 0.02 0.01 0.01 0.01 0.01 
Sb 1.23 0.39 1.23 1.58 0.68 0.99 5.54
Cs 4.90 6.78 5.03 5.84 8.74 6.24 7.00 
Ba 408 556 322 480 322 507 228
Ta 1.82 0.49 1.85 1.18 1.31 1.13 1.48 
W 1.30 0.46 1.18 1.95 1.10 1.79 0.84
Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Tl 1.89 2.29 1.63 2.30 1.66 2.49 1.34
Pb 169.0 75.5 114.0 65.3 77.1 78.5 88.3 
Bi 0.05 0.04 0.03 0.05 0.09 0.11 0.05
Th 325 70.0 130 88.2 69.0 104 137 
U 1784 422 1209 37.2 627 524 744
Zr 349 119 970 176 420 443 806 
Hf 10.6 3.86 30.0 5.46 12.9 13.7 25.4

Rb/Sr 4.18 5.50 3.95 5.11 4.59 5.14 2.03 
La 144 34.1 30.1 19.4 16.7 50.1 74.5
Ce 285 63.5 60.7 43.0 32.9 94.8 143 
Pr 34.0 6.89 7.12 5.36 3.78 10.9 16.7
Nd 120 23.2 26.4 21.3 13.8 38.4 60.3 
Sm 25.3 4.68 6.88 6.15 3.79 8.53 13.6
Eu 1.40 1.17 0.91 0.99 0.84 1.09 1.02 
Gd 21.6 4.05 6.86 6.63 4.15 7.44 12.2
Tb 4.54 0.85 1.70 1.70 1.08 1.57 2.60 
Dy 27.1 5.22 11.20 11.40 7.15 9.54 16.2
Ho 5.09 1.00 2.33 2.39 1.50 1.95 3.24 
Er 14.1 3.04 7.36 7.35 4.76 6.05 10.1
Tm 1.89 0.44 1.15 1.13 0.76 0.89 1.57 
Yb 9.93 2.39 6.89 6.50 4.65 5.36 9.27
Lu 1.29 0.33 1.01 0.92 0.68 0.80 1.38 

ΣREE 695.24 150.87 170.61 134.22 96.54 237.42 365.68
LREE 609.70 133.54 132.11 96.20 71.81 203.82 309.12
HREE 85.54 17.33 38.50 38.02 24.73 33.60 56.56
LREE/ 
HREE 7.13 7.71 3.43 2.53 2.90 6.07 5.47 

(La/Yb)N 10.40 10.23 3.13 2.14 2.58 6.70 5.76 
δEu 0.18 0.80 0.40 0.47 0.64 0.41 0.24 



Dec. 2017                                                                                                                                              Vol. 91 No. 6                 2133 ACTA GEOLOGICA SINICA (English Edition)  
http://www.geojournals.cn/dzxben/ch/index.aspx     http://mc.manuscriptcentral.com/ags 

age of mica schist in the Damara Belt is 459±4 Ma, 
indicating that magmatism had stopped and the region had 
cooled below about 350℃ by 460 Ma (Gray et al., 2006). 
Two uraniferous leucogranites (i.e. D-type leucogranites) 
have  yielded  LA-ICP-MS U-Pb  ages  of  497±5.5  Ma 
(zircon; Wang, 2013) and 509±1 Ma (U-Pb monazite; 
Briqueu et al., 1980) suggesting emplacement in a post-
orogenic environment. It has previously been noted that 
the known uranium deposits/occurrences in the southern 
Central Zone (i.e. Rössing, Valencia, Rössing South, Ida 

Dome, Goanikontes and Gaudeanmus area) all occur at or 
near the margins of the NE-NNE trending domes (Fig. 2), 
and especially along zones of curvature in the domal 
pattern (Corner, 1983; Anderson et al., 1997; Basson et 
al., 2004; Kinnaird et al., 2007). Formation of the domes 
would have been accompanied by the development of 
joints, fractures, and accommodation space in extensional 
settings. This not only would have provided space for the 
uraniferous leucogranite intrusions, but also would have 
facilitated  uranium  precipitation  and  enrichment.  In 

 

Fig. 5. (a) Chondrite-normalized REE patterns and (b) primitive-mantle normalized trace element spidergram for the uraniferous 
leucogranites in the Gaudeanmus area, Namibia (Sun and McDonough, 1989).  

Fig. 6. (a) Rb vs Y+Nb diagram and (b) Al2O3 vs SiO2 diagram for uraniferous leucogranites in the Gaudeanmus area, Namibia. 
VAG = volcanic arc granite; WPG = within plate granite; Post-COLG = post-collision granite; Syn-COLG = syn-collision granite; ORG = ocean ridge 
granite; IAG = island arc granite; CAG = continental arc granite; CCG = continental collision granite; POG = post orogenic granite; RRG = rift related 
granite; CEUG = continental epeirogenic uplifted granite.  

Table 5 Sm-Nd isotopic compositions of uraninites in uraniferous leucogranites in the Gaudeanmus area, Namibia 
Sample no. Sm 

(ppm) 
Nd 

(ppm) 
147Sm/144Nd 143Nd/144Nd ±2σ (143Nd/144Nd)i εNd(t) tDM(Ga) t2DM(Ga)

ZK76-13-2 1275 2040 0.3779 0.512411 11E-06 0.511168 -16.1 3.29 2.53
ZK76-13-8 318 518 0.3705 0.512376 7E-06 0.511158 -16.3 3.04 2.55 
ZK76-13-10 1332 2131 0.3778 0.512402 5E-06 0.51116 -16.2 2.90 2.54
ZK76-13-12 1182 1990 0.359 0.512328 8E-06 0.511147 -16.5 4.16 2.56 
ZK76-13-16 1059 1754 0.3651 0.5124 7E-06 0.511199 -15.5 3.77 2.48

LS-2 1789 2431 0.4448 0.512694 7E-06 0.511231 -14.8 2.30 2.43 
ZK84-6-3 934 1453 0.3886 0.512464 8E-06 0.511186 -15.7 2.69 2.5

εNd(t) is calculated at t=502 Ma for uraninite (Chen, 2014), with (143Nd/144Nd)CHUR=0.512638 (Goldstein et al. 1984); (147Sm/144Nd)CHUR=0.1967 (Jacobsen and 
Wasserburg, 1980). t2DM is calculated using (147Sm/144Nd)DM=0.2136, (143Nd/144Nd)DM=0.51351 (Liew and Hofmann, 1988). 
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addition to the spatial association with the margins of 
structural domes, most of the uranium deposits are located 
along, or proximal to (on both sides), the Welwitschia 
Lineament (Fig. 2), which is a NNE trending regional 
fault,  implying a strong structural control on uranium 
mineralization. The fault responsible for the Welwitschia 
lineament  induced  secondary  faults,  joints,  and 
schistosities, which helped provide conduits for ascending 
magma  and  accommodation  space  for  intrusion 
emplacement. Intrusion of the uraniferous leucogranites 
took  place  after  formation  of  the  structural  domes, 
indirectly supporting a post-orogenic origin. 

According to the Rb-Y+Nb and SiO2-Al2O3 diagrams 
(Fig. 6), the uraniferous leucogranites were formed in a 
post-orogenic extensional setting. Based on their trace-
element signature (depleted Ba, Nb, Ta, Sr), their REE 
distribution, together with Sm-Nd results, the uraniferous 
leucogranites are interpreted as being derived by partial 
melting of upper-crustal source material. 
 
6.2 Sources of uranium 

The (87Sr/86Sr)i ratios of the uraniferous leucogranites 
are relatively high with a wide range of 0.73035–0.79345 
(Chen,  2014).  Due  to  the  high  Rb/Sr  ratios  of  the 
uraniferous  leucogranites,  it  is  possible  that  a  slight 
disturbance  to  the  Rb-Sr  isotopic  system could  have 
influenced the initial 87Sr/86Sr values; alternatively, the 
Rb/Sr system may not have remained closed as a result of 
post-orogenic geological events (Wu et al., 2002; Ling et 
al.,  2006).  However,  The  (87Sr/86Sr)i  ratios  of  the 
uraniferous leucogranites are still within the range of the 
pre-Damara basement ((87Sr/86Sr)i = 0.70625 to 0.81824), 

thus  it  was  interpreted  as  melts  of  the  pre-Damara 
basement (Chen, 2014). 

The Sm-Nd isotopic system is much more stable, and 
thus its use as a tracer to determine the source rocks of the 
uraniferous leucogranites is better than the Rb-Sr system. 
(143Nd/144Nd)i  ratios  of  pre-Damara  basement  and  the 
uraniferous leucogranites range from 0.510771–0.511163, 
and 0.511102–0.511301, respectively (Chen, 2014). In the 
εNd(t) - t diagram, the uraniferous leucogranites overlap the 
evolution fields defined by the Etusis Formation and pre-
Damara basement (Fig. 7). Although the Etusis Formation 
itself was also derived from the pre-Damara basement, its 
U content is 2.42–3.36 ppm (average of 2.97 ppm). Due to 
the heterogeneity of the pre-Damara basement (Nex et al., 
2001), the U content of uranium-rich part is 11.50–18.40 
ppm (average of 14.63 ppm) (Chen, 2014), so the Etusis 
Formation  was  likely  derived  from the  low  uranium 
basement.  It  is  therefore  inferred that  the  uraniferous 
leucogranites  mainly  originated  from  the  pre-Damara 
basement. Moreover, the uraninite also plot in the area of 
pre-Damara  basement  (Fig.  7),  suggesting  that  the 
magmatic component of the ore came from the same 
uranium-rich, pre-Damara basement. 

Nd model ages may also help to constrain the source of 
the uranium and uraniferous leucogranites (Qi et al., 2007; 
Zhang et al., 2007; Jahn et al., 2013). The uraninites yield 
two-stage Nd model ages of 2.43–2.56 Ga, which is also  
the approximate age of two-stage Nd model ages of the 
pre-Damara basement (2.26–3.32 Ga) (Janoušek et al., 
2010), suggesting that that the uranium-rich, pre-Damara 
basement was the main source of the main magmatic 
component of the uranium mineralization. 

Based  on  uranium  mineralogy,  the  subsequent 
hydrothermal component of uranium mineralization may 
have resulted from remobilization. The pitchblende and 
veinlet-shaped coffinite are generally spatially related to 
the uraninite, uranothorite, euhedral coffinite, pyrite, and 
chlorite,  or  in  fractures  within  them (Fig.  3c).  It  is 
therefore  inferred  that  pitchblende  and  veinlet-shaped 
coffinite were formed by hydrothermal remobilization of 
uranium from uranium minerals that crystallized during 
the  main  magmatic  component  of  mineralization. 
Precipitation  is  attributed  to  reducing  reactions  with 
sulphide  minerals  and  generally  took  place  in  close 
proximity to the primary igneous minerals. 
 
7 Conclusions 

 
Uraniferous leucogranites of the Gaudeanmus area are 

subalkaline and metaluminous to weakly peraluminous 
rocks. They possess high silica (68.81wt%–76.02wt%, 
average 73.11wt%) and total alkali (K2O+Na2O 8.51wt%–

 

Fig. 7. εNd(t) vs t diagram for uraninites and uraniferous 
leucogranites in the Gaudeanmus area, Namibia. 
Data for the pre-Damara basement are from Chen (2014), Seth et al. 
(2002), Kröner et al. (2004), and Janoušek et al. (2010); data for the 
uraniferous leucogranites are from Chen (2014);, and uraninite data are 
from this study.  
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11.79wt%, average 9.66wt%) concentrations, are enriched 
in potassium and depleted in MnO, TiO2, and MgO, and 
have A/CNK ratios of 0.96–1.07 (average of 1.01). Total 
REE concentrations range from 96.54 ppm to 695.24 ppm, 
averaging  264.37  ppm,  with  higher  concentrations  of 
LREE (LREE/HREE=2.53–7.71, average 5.03; (La/Yb)
N=2.14–10.40, average 5.85), and moderate Eu depletion 
(δEu=0.18–0.80, averagely 0.45). The leucogranites have 
high Rb/Sr ratios (2.03–5.50, with an average of 4.36), 
with enriched Rb, Th, U, K, and Pb, and depleted Ba, Nb, 
Ta, and Sr. Based on the trace-element signature, REE 
distribution  and  Sm-Nd  results,  the  uraniferous 
leucogranites were formed in a post-orogenic extensional 
setting and was derived from partial melting of the U-rich 
pre-Damara basement. 

Uraninites show highly negative εNd(t) values of −14.8 
to −16.5 and (143Nd/144Nd)i ratios of 0.511147–0.511231. 
Two-stage Nd model ages for the pitchblende range from 
2.43 to 2.56 Ga, which is similar to the two-stage Nd 
model ages of pre-Damara basement (2.26–3.32 Ga), and 
derived εNd(t) values lie within the range of pre-Damara 
basement. All these lines of evidence suggest that the 
magma-derived  uranium  emplaced  during  the  main 
mineralization event in the Gaudeanmus area mainly came 
from the uranium-rich pre-Damara basement. This was 
overprinted by a subsequent hydrothermal event during 
which uranium was remobilized from the magma-derived 
minerals and precipitated as pitchblende and coffinite. 
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