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Abstract: Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry
iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle—
lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks
are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the
other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron
mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement
were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and
Heshangqgiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons)
ages of granodioritic rocks were measured as 126.1£0.5 Ma, 126.8£0.5 Ma, 127.3£0.5 Ma and
126.3+0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method.
Based on the above results combined with previous dating, it is inferred that the iron deposits in the
Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf
compositions of £(7) of the granodiorite are mainly from —3 to —8 and their corresponding ""*Hf/'""Hf
ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We
infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with
dioritic rocks. These new results provide significant evidence for further study of this ore district so as
to understand the ore-forming event in the study area.

Key words: Zircon U-Pb age, Hf isotope, porphyry iron deposit, Ningwu ore district, Middle—Lower
Yangtze River polymetallic ore belt

1 Introduction

The Middle-Lower Yangtze River polymetallic ore belt
(MLYRB) covers an area of ~30000 km” and is one of the
most important metallogenic belts in East China,
comprising seven ore districts, including (from west to
east) the Edong, Jiurui, Anqing-Guichi, Tongling, Luzong,
Ningwu and Ningzhen (Fig. 1) districts (Chang et al.,
1991; Zhai et al., 1992a; Mao et al., 2011). There are more
than 200 polymetallic (Cu-Fe-Au, Mo, Zn, Pb, Ag)
deposits and widespread magmatic rocks (intrusions,
volcanic-subvolcanic rocks) in the Late Mesozoic. The
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Ningwu ore district is one of the most important ore
districts composed of more than 30 magnetite-apatite
deposits, which are known as porphyry iron deposits in
China (Fig. 2). There are extensive magmatic rocks
comprising volcanic-subvolcanic rocks and granodioritic
rocks in the Ningwu ore district. The ages of these igneous
rocks and associated metallogenic system have been the
major concern among geologists. In the past 10 years, the
precise SHRIMP zircon U-Pb, LA-ICP-MS zircon U-Pb
and mica Ar-Ar methods were applied to the
determination of timing of magmatism and mineralization.
Formation ages of four volcanic eruption cycles in the
Ningwu ore district were dated at 134.8-126.6 Ma (Zhang
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Fig. 1. Geological map of the Middle-Lower Yangtze River polymetallic ore belt, showing the locations of porphyry-skarn-
stratabound Cu-Au-Mo-Fe (>135 Ma) and magnetite-apatite deposits (<135 Ma), related granitoids and Cretaceous basins (after
Mao et al., 2011). TLF, Tancheng-Lujiang fault; XGF, Xiangfan-Guangji fault; YCF, Yangxing-Changzhou fault.

et al., 2003; Hou and Yuan, 2010; Zhou et al., 2011), and
ages of subvolcanic rocks (diorite porphyrite), which are
the main wall rock and considered to be related to
porphyry iron deposits, were measured at 131.1-128.2 Ma
(Fan et al., 2010; Hou and Yuan, 2010; Xue et al., 2010),
whereas the range of iron mineralization ages is very
broad, 122.9-134.9 Ma (Yu and Mao, 2004; Ma et al.,
2006, 2010; Yuan et al, 2010). The ages of iron
mineralization throughout the whole period of volcanic
activity have been obtained in previous studies, but
whether the mineralization continued throughout the
whole wvolcanic period, i.e. all the four wvolcanic
formations, has not been revealed yet.

There are two types of magmatic rocks occurring in iron
deposit areas. One is dioritic rocks, which are ore hosted
rocks and closely related to iron mineralization, and the
other is granodioritic rocks, which occur as stocks and cut
ore bodies. To constrain the timing of iron mineralization
and Dbetter understand the magmatism and iron
mineralization, we performed in situ zircon U-Pb and Hf
isotopic analyses based on detailed field investigation for
granodioritic stocks in the Washan, Nanshan, Dongshan
and Heshanggiao iron mines in the middle of the Ningwu
ore district.

2 Regional Geological Setting and Geology of
Mineral Deposits

The MLYRB, featuring widespread porphyry iron
deposits, lies on the northern margin of the Yangtze craton
and south of the southeastern margin of the North China
craton and the Qinling-Dabieshan orogenic belt. The
Ningwu ore district in the Ningwu volcanic basin is
situated in the eastern part of the MLYRB (Fig. 1). It
extends from Nanjing (Jiangsu Province) in the northeast
to Wuhu (Anhui Province) in the southwest, about 60 km
long and 20 km wide with a total area of 1200 km® (Fig.
2). The ore district is bounded by the (NNE-striking)
Yangtze fault, (NNE-striking) Fangshan-Xiaodanyang
fault, (NW-striking) Nanjing-Hushu fault and (E-W-
striking) Wuhu fault, and is regarded as an NNE-trending
inherited fault-controlled basin (Zhai et al., 1992b).

The Ningwu ore district is characterized by extensive
well-developed volcanic-subvolcanic rocks and associated
magnetite-apatite deposits, which are considered to be
porphyry iron deposits (NRG, 1978). The stratigraphic
sequence outcropped in the Ningwu ore district is composed
of carbonate, silty and clastic rocks of the Middle-Upper
Triassic  Qinglong, Zhouchongeun and Huangmagqing
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Fig. 2. Geological map showing the distribution of iron deposits of Ningwu ore district (after

NRG, 1978).

Formations, and volcanic rock series of the Middle
Jurassic Xiangshan and Xihengshan Formations and the
Early Cretaceous. At the Late Cretaceous, volcanic rocks
were covered by the Pukou and Chishan Formations and
Tertiary sedimentary rocks (NRG, 1978; IGCAS, 1987).
Cretaceous volcanic-subvolcanic rocks in the ore
district can be divided into four volcanic eruptive-
accumulative cycles, i.e. the Longwangshan Formation,
the Dawangshan Formation, the Gushan Formation and
the Niangniangshan Formation from the bottom up (NRG,
1978) (Fig. 3). Each Formation started with explosive
volcanic activity followed by more effusive eruptions, and
ended with volcanic sedimentation. The Longwangshan
Formation is mainly distributed in the eastern and northern

parts of the basin, covering about 20% of the total area. It
consists of sedimentary tuff, silty mudstone and volcanic
agglomerate in the lower part, while gibelite, shoshonite
and basaltic latite in the upper part. The Dawangshan
Formation is the main part of the volcanic rocks,
occupying about 75% of the total area. It consists mainly
of augite, basaltic latite in the lower part, purple andesite
in the middle part, and trachyte and trachytic flood tuff in
the upper part. The Gushan and Niangniangshan
Formations cover about 5% of the total area, with the
former occurring in the south and north parts of the ore
district, and composed mainly of andesite, dacite and
volcanic breccia, where the latter just occurring near
Niangniangshan Mountain in the west, and composed
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Fig. 3. Stratigraphic column of the Ningwu volcanic basin with the age of volcanic rocks (Modified after Zhou

etal., 2011).

mainly of leucophonolite and hauynite phonolite. These
four formations contact one another unconformably
(Wang et al., 2001a). Subvolcanic rocks were formed in
the late stage of each volcanic cycle and have similar
components. The rocks are generally attributed to diorite
porphyrite series, i.e. diorite porphyrite, gabbro diorite,
gabbro diorite porphyrite, trachyandesitic porphyrite, and
andesite porphyrite. Subvolcanic rocks occurring in the
Dawangshan cycle is considered to have a close
relationship with iron mineralization (NRG, 1978). At the
late stage of volcanic activity, a number of granodioritic
intrusions occurred in the central part of the area, mostly
as small rock bodies (NRG, 1978).

The Ningwu ore district comprises three major
orefields: the Meishan, Washan and Zhonggu orefields
from north to south (Fig. 2). The Washan, Dongshan,
Gaocun (Taocun)-Nanshan, Heshanggiao, Meishan, and
Gushan iron deposits are the representatives in these
orefields. Mineralization is mostly developed at the apical
part of subvolcanic plutons or the surrounding volcanic
rocks to form disseminated, massive, breccia, stockwork
and hydrothermal vein ore. The ore minerals include
chiefly magnetite, hematite, rare pyrite and chalcopyrite,
while the major gangue minerals are apatite, albite,

diopside, actinolite, epidote, chlorite and sericite.
Hydrothermal alteration is commonly extensive and is
characterized by three distinguished alteration zones in
space from bottom upwards: 1) alkaline alteration zone, a
light colour zone, comprising albite and diopside; 2) dark
alteration zone consisting of diopside, actinolite, epidote
and chlorite; 3) leucocratic alteration zone made up of
quartz, pyrite, hematite, kaolinite, anhydrite and
carbonate. Ore bodies mostly occur in secondary alteration
zones.

3 Sampling and Analytical Methods

3.1 Sampling and petrology

The samples for dating were collected from four
intrusions occurred cutting across the ore bodies in the
Washan, the Nanshan, the Dongshan, and the Heshanggiao
deposits, respectively. The detailed location and
description of samples are listed as follows.

The Washan deposit, characterized by the breccia ore
and the hydrothermal vein-type ore, is a large-sized typical
porphyry iron deposit. Sample WS-92 was collected from
the granodiorite porphyry stock at north of 2# line, —90m
in the mine. The stock is very thin with width of about
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15m which cut across the western end of the ore body
(Fig. 4a). The granodiorite porphyry is characterized by a
porphyritic texture with phenocrysts of plagioclase
(~30%), quartz (~5%), hornblende and biotite. Pyrite is
rare.

The Nanshan deposit, characterized by the disseminated
ore and the hydrothermal vein-type ore, is a large-sized
iron deposit, 2 km to the north of the Washan deposit.
Sample NS-6 was collected from the granodiorite
porphyry stock. The stock is thin with width of about 10m,
and occurred crossing the north end of the ore body in the
Nanshan deposit (Fig. 4b). The rock sample is light meat
red with porphyritic structure. Phenocryst is content of
plagioclase (~60% ), K-Na feldspar (>10%), quartz
(15-20% ) and hornblende (~5% ). Microcrystalline
matrixes are mainly plagioclase and quartz. Pyritization
frequently occurred.

The Dongshan deposit is a medium-sized iron deposit
with high ore grade, and is characterized by the stockwork
ore and the hydrothermal vein ore. Sample DSC-11 was
collected from the granodiorite porphyry stock at middle

Fig. 4. Positions of sampling.
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of 3# line, —107m in the mine (Fig. 4c). The stock cut
across the eastern end of the ore body. It is composed of
plagioclase (~25%), albite (~20% ), quartz (~5%),
phenocrysts,  and
microcrystalline feldspar and quartz as interstitial matrix.

hornblende  and  biotite  as
The Heshanggiao deposit is a large-sized iron deposit
started mining recently. The granodiorite porphyry was
destructive to the diorite porphyrite which was
development of disseminated magnetite (Fig. 4d). Sample
HSQ-6 was collected from the drill core of ZKT3908 at
—265 m. The granodiorite porphyry is composed of
plagioclase (~50%), K-Na feldspar (20-35%), quartz
(~15%), and minor hornblende (<3%) and biotite (<5%),
with a little chloritization but magnetite mineralization.

3.2 Analytical methods

The samples were first crushed. Then, individual
zircons were separated using conventional heavy liquid
and magnetic techniques. Representative grains were
handpicked under a binocular microscope, mounted in
epoxy resin discs, and then polished. Zircons were

. Dongshan deposit

-237 m Diorite porphyrite
with disseminated magnetite

-262 m Granodiorite porphyry
crossing diorite porphyrite

Diorite porphyrite

-265 m Granodiorite porphyry
Sem

Core of ZKT3908 from Heshanggiao deposit
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examined under transmitted and reflected lights, and then
imaged by cathode-luminescence (CL) which was
obtained using a HITACHI S3000-N microprobe in
Institute of Geology, Chinese Academy of Geological
Sciences (IGCAS). The zircons, which were euhedral or
subhedral, with striped absorption and clear oscillatory
zoning rims, were selected for U-Pb and Hf isotope dating.

Zircon U-Pb dating

U-Pb dating analyses were conducted by LA-MC-ICP-
MS at the Institute of Mineral Resources, Chinese
Academy of Geological Sciences, Beijing. Detailed
operating conditions for the laser ablation system and the
MC-ICP-MS instrument and data reduction are the same
as description by Hou et al. (2009). Laser sampling was
performed using a Newwave UP 213 laser ablation
system. A Thermo Finnigan Neptune MC-ICP-MS
instrument was used to acquire ion-signal intensities. The
array of four multi-ion-counters and three faraday cups
allow for simultaneous detection of ***Hg(on IC5), ***Hg,
2pb(on 1C4), ***Pb(on 1C3), **’Pb(on 1C2), ***Pb(on L4),
*Th(on H2), **U(on H4) ion signals. Helium was
applied as a carrier gas. Argon was used as the make-up
gas and mixed with the carrier gas via a T-connector
before entering the ICP. Each analysis incorporated a
background acquisition of approximately 20-30 s (gas
blank) followed by 30 s data acquisition from the sample.
Off-line raw data selection and integration of background
and analytical signals, and time-drift correction and
quantitative calibration for U-Pb dating was performed by
ICPMSDataCal (Liu et al., 2008). Zircon GJ-1 was used
as external standard for U-Pb dating, and was analyzed
twice every 5-10 analyses. Time-dependent drifts of U-
Th-Pb isotopic ratios were corrected using a linear
interpolation (with time) for every 5-10 analyses
according to the variations of GJ-1 (i.e., 2 zircons GJ-1 +
5-10 samples + 2 zircons GJ-1) (Liu et al., 2008).
Preferred U-Th-Pb isotopic ratios used for GJ-1 are from
Jackson et al. (2004). The GJ-1 standard zircon has a
crystallization age of 608.5+0.4 Ma, and there is no
apparent banding visible in the zircon, which argues for a
homo-geneous standard for in-situ analyses (Jackson et al.
2004). Uncertainty of preferred values for the external
standard GJ-1 was propagated to the ultimate results of the
samples. In all analyzed zircon grains the common Pb
correction was not necessary due to the low signal of
common **Pb and high *"Pb/**Pb. U, Th and Pb
concentration was calibrated by zircon M-127(with U: 923
ppm; Th: 439 ppm; Th/U: 0.475. Nasdala et al., 2008).
Concordia diagrams and weighted mean calculations were
made using Isoplot/Ex_ver3. The zircon Plesovice is dated
as unknown samples and yielded weighted mean

2pp/ P80 age of 337.2+1.7 Ma (20, n=8), which is in
good agreement with the recommended ***Pb/***U age of
337.13+0.37 Ma (20) (Slama et al., 2008).

In situ zircon Hf isotopic analysis

The zircon Hf analyses of four samples (WS-92, DSC-
11, HSQ-5 and NS-6) were done on the same grains as
used for U-Pb dating. Zircon Hf isotope analysis was
carried out in-situ using a Newwave UP 213 laser-ablation
microprobe, attached to a Neptune multi-collector ICP-MS
at MRL Key Laboratory of Metallogeny and Mineral
Assessment, Institute of Mineral Resources, Chinese
Academy of Geological Sciences, Beijing. Instrumental
conditions and data acquisition were comprehensively
described by Hou et al. (2007) and Wu et al. (2006). A
stationary spot was used for the present analyses, with a
beam diameter of 55 pm depending on the size of ablated
domains. Helium was used as carrier gas to transport the
ablated sample from the laser-ablation cell to the ICP-MS
torch via a mixing chamber mixed with Argon. In order to
correct the isobaric interferences of '*Lu and '"°Yb on
TOHE, "°Lw/'"Lu =0.02658 and '"Yb/'Yb =0.796218
ratios were determined (Chu et al., 2002). For instrumental
mass bias correction Yb isotope ratios were normalized to
"2¥b/'Yb of 1.35274 (Chu et al., 2002) and Hf isotope
ratios to '’Hf/"""Hf of 0.7325 using an exponential law.
The mass bias behavior of Lu was assumed to follow that
of Yb, mass bias correction protocols details was
described as Wu et al. (2006) and Hou et al.(2007). Zircon
GJ-1 was used as the reference standard during our routine
analyses, with a weighted mean '°Hf/'”’Hf ratio of
0.282005+0.000016 (20, n=16). It is not distinguishable
from a weighted mean '°Hf/'Hf ratio of
0.282000=0.000005 (20) using a solution analysis method
by Morel et al. (2008).

4 Result

4.1 Zircon U-Pb ages

Zircons in the granodiorite porphyry (WS-92) at the
Washan iron deposit with 100-150 pm long and 50-100
pm wide, are dominantly euhedral, prismatic, colorless
with oscillatory zoning, showed in CL images (Fig. 5).
Uranium and thorium concentrations range from 74.4 to
375.6 ppm, and from 74.3 to 284.6 ppm, respectively.
Corresponding Th/U ratios are relatively high with
ranging from 0.6 to 1.0, indicating their magmatic origin
(Belousova et al., 2002; Hoskin and Black, 2000; Wang et
al., 2011). 19 analyses of these zircons from the sample
WS-92 were obtained and the LA-MC-ICP-MS U-Pb data
of these zircons are summarized in Table 1. Of these 19
analyses yielded a weighted average age of 126.1+0.5 Ma
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Fig. 5. Representative Cathodoluminescence (CL) images of zircons for intrusions with data of zircon U-Pb ages. The circles repre-

sent locations of zircon U-Pb and Hf isotopic analyses.

(n=19, MSWD=1.7) (Fig. 6). This age is interpreted as the
emplacement age of granodiorite porphyry at the Washan
deposit.

Zircons in the granodiorite porphyry (NS-6) at the
Nanshan iron deposit are 100-180 pum long and 50-100
pm wide, and are dominantly euhedral, prismatic, and
colorless with oscillatory zoning (Fig. 5). Uranium and
thorium concentrations range from 63.3 to 276.9 ppm, and
from 61.1 to 273.2 ppm, respectively. Corresponding Th/
U ratios are relatively high with ranging from 0.6 to 1.3
(Table 1). These indicate a magmatic genesis for the
zircons (Belousova et al., 2002; Hoskin and Black, 2000;
Wang et al., 2011). 19 analyses of these zircons from the
sample NS-6 were obtained and the LA-MC-ICP-MS U-
Pb data of these zircons are summarized in Table 1. Of
these 19 analyses yielded a weighted average age of

126.8+0.5 Ma (r=19, MSWD=0.8) (Fig. 6). This age is
interpreted to be the emplacement age of granodiorite
porphyry at the Nanshan deposit.

Zircons in the granodiorite porphyry (DSC-11) at the
Dongshan iron deposit are 120-250 pm long and 80-130
pm wide, and are dominantly euhedral, prismatic, and
colorless with oscillatory zoning (Fig. 5). Uranium and
thorium concentrations range from 26.3 to 160.2 ppm, and
from 19.1 to 160.3 ppm, respectively. Corresponding Th/
U ratios are relatively high with ranging from 0.6 to 1.1
(Table 1). These indicate a magmatic origin for the zircons
(Belousova et al., 2002; Hoskin and Black, 2000; Wang et
al., 2011). 19 analyses of these zircons from sample DSC-
11 were obtained and the LA-MC-ICP-MS U-Pb data of
these zircons are summarized in Table 1. Of these 19
analyses yielded a weighted average age of 127.3+0.5 Ma
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57 @) 5 Discussion
201
5.1 Geochronology
5 15} The Ningwu volcanic basin is an important ore district
g in the MLYRB, endowed with numerous large iron
Z 10t . . .
deposits and some copper or/and gold deposits. Previous
51 researches have indicated that subvolcanic rocks,
especially diorite porphyrite, are associated with the iron
0—25 -20 15 ~10 =5 0 deposits (NRG, 1978; Yu and Mao, 2002; Yu et al., 2007,
ey (1) (%0) 2008; Hou et al., 2010; Tu et al., 2010).
B ® Timing of these magmatism and mineralization has long
307 been an interesting topic and attracted great attention. In
25 the 1970s and 1980s, the ages of those ore deposits and
-“-é 20 related granodioritic stocks were yielded by the traditional
Z 15} K-Ar and Rb-Sr isochron methods. The commonly
10} accepted ages are 126.8-125.3 Ma for the Longwangshan
5t Formation, 120.2-121.4 Ma for the Dawangshan
Formation, 114.0-109.7 Ma for the Gushan Formation and

800

1000 1200 1400 1800 2000

T (Ma)

1600

Fig. 7. Histogram of Zircon ¢Hf{#) values (a) and two-stage
model ages (b) of intrusions.

105.5-91.0 Ma for the Niangniangshan Formation. The
ages of iron mineralization and subvolcanic rocks are
93.1-118.8 Ma and 120.1-125.1 Ma, respectively (NRG,
1978; IGCAS, 1987). These age data provide constraints
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on the timing of these magmatism and mineralization in
the study area.

In the past ten years, precise SHRIMP zircon U-Pb, LA-
ICP-MS zircon U-Pb and Ar-Ar age dating have been
applied to constraining the magmatism and mineralization,
and a geochron frame of volcanic rocks has been found, as
illustrated in Fig. 3. Geochronlogy of subvolcanic rocks
(diorite porphyrite) associated with iron deposits (i.e. the
host rock) has been systemically measured, and the age
range is 131.1-128.2 Ma (Fan et al., 2010; Hou and Yuan,
2010; Xue et al.,, 2010). However, ages of magnetite-
apatite deposits obtained show a wide geochronological
range of 122.9-134.9 Ma. Yu and Mao (2004) gained an
age of 122.940.2 Ma for the Meishan deposit and
124.94+0.3 Ma for the Gaocun (Taocun) deposit with albite
Ar-Ar dating, and an age of 126.7£0.2 Ma for the
Zhongjiu deposit with phlogopite Ar-Ar dating. Ma et al.
(2010) obtained an age of 126—129 Ma for the Dongshan
iron deposit with in situ Ar-Ar dating on actinolite. Yuan et
al. (2010) obtained ages of 134.9+1.1 Ma, 132.9+1.1 Ma
and >128 Ma with Ar-Ar dating on phlogopite for the
Baixiangshan, Hemushan and Gaocun (Taocun) iron
deposits, respectively. However, whether the
mineralization activity (134.9-122.9 Ma) continued
throughout the whole volcanic period (134.8-126.6 Ma)
has not been revealed yet.

Detailed field investigations conducted by the authors
show that disseminated, massive, breccia, stockwork ore
and hydrothermal vein ores of iron deposits occur in
subvolcanic rocks or surrounding volcanic rocks (the
Dawangshan Formation). And the breccia ore consists of a
matrix of magnetite with actinolite and minor apatite,
hosting diorite porphyrite fragments. The fragments are
mostly poorly rounded with alteration in the rim. The
above geological facts suggest that iron mineralization
occurred later than the cooling of subvolcanic rocks, i.e.
131.1-128.2 Ma (Fan et al., 2010; Hou and Yuan, 2010;
Xue et al., 2010). In the mining areas, minor granodioritic
rocks occurring as rock stocks, cut across ore bodies
without magnetite mineralization (Fig. 4). We collected
such rock samples in the Washan, Nanshan, Dongshan and
Heshanggqiao iron deposits and obtained new zircon LA-
MC-ICP-MS U-Pb ages of 127.3-126.1 Ma for
granodioritic rocks, which also suggests the lower limit of
the timing of mineralization, 127 Ma.

Compared with the ages of volcanic rocks from the four
volcanic formations, the data obtained in this study are
close to those of the Niangniangshan Formation or/and the
Gushan Formation within the error ranges. However, the
ages provided by different authors by means of different
methods with different experimental errors are slightly
different. As stated above, field evidence demonstrates

that the diorite porphyrite was formed in the late of
Dawangshan Formation. In addition, the NRG (1978)
suggested that rubbles of diorite porphyrite and the iron
ore in the Gushan Formation in the Zhonggu orefield and
Meishan mining area, and the iron mineralization should
be earlier than the occurrence of the Gushan Formation.
The data we obtained, which are consistent with one
another, further confirm this understanding and constrain
the iron mineralization in a very short period of 131-127
Ma.

In the late stage of volcanic activity, hydrothermal vein-
type copper and/or gold deposits occurred in part of the
Ningwu ore district (e.g. Tongjing copper-gold deposit,
Dapingshan copper deposit), which are considered to be
closely related with the Niangniangshan Formation (NRG,
1978). The ages of the granodioritic stocks are similar to
that of the volcanic rocks of the Niangniangshan cycle.
Therefore, further research is needed to study the
possibility that granodioritic stocks are related to copper
and/or gold mineralization.

5.2 Magma source

In this study, the '"°Lu/'""Hf ratios of zircons gained
from granodioritic stocks are quite low, which shows that
there is little or no accumulation of radiogenic Hf, and the
"°Hf/'""Hf ratios obtained in this study can basically
represent the Hf isotopic composition of the magma
system during its formation (Wu et al., 2007). As shown in
Table 2, Fig. 7 and Fig. 8, the Hf compositions of the late
Mesozoic granodioritic stocks crossing the iron ore bodies
are characterized by "Lw/'"Hf = 0.000485-0.003908,
O H TTHE=0.281637-0.282904 and &,,(1)=—37.43 to 7.17,
centered on 0.0008-0.0021, 0.28245-0.28265 and —3 to
—8 respectively. The data are clearly different from the
composition of the MORB ("°Hf/'""Hf ratio: Pacific
MORB, 0.28313-0.28326; Atlantic MORB, 0.28302—
0.28335; Indian MORB, about 0.2832; Patchett and
Tatsumoto, 1980; Patchett, 1983; Salters, 1996; Slaters
and White, 1998; Chauvel and Blichert-Toft, 2001), as
well as those of oceanic basalts worldwide (eyd7)>0)
(Salters and Hart, 1991; Hamelin et al., 2010), and are
obviously higher than the &;{¢) value of the lower crust in
the Yangtze Craton (—62.7, =126 Ma, 4.0 Ga crust and
about —20, =126 Ma, 1.9 Ga crust, Zhang et al., 2006;
Zhang and Zheng, 2007) and lower than the '"*Lu/"""Hf
ratio of the crust (average crust: 0.015, Griffin et al., 2002;
lower crust: 0.022, and upper crust: 0.0093, Amelin et al.,
1999), reflecting that the rocks could not be directly
derived by partial melting of the most prominent
components at the surface of the Earth, the depleted
mantle, the OIB-enriched mantle and the crust. In Fig. 8,
the plotted points of the Hf isotopic composition of the
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Table 2 In situ zircon Hf isotope compositions of the granodioritic stocks

Sample t(Ma) '°Yb/''HF 2q oL w!' "' HF 26 e TTHE 20 e (0) e () Town(Ma)  Towa(Ma)  frume
WS-92-1  127.8  0.072729  0.000264  0.001116  0.000011 0282502  0.000016 —9.53  —6.82 1063 1617 —0.97
WS-92-2 1265  0.115177  0.003166  0.001604  0.000041  0.282635  0.000022 486  -2.21 888 1323 -0.95
WS-92-3 1246  0.081302  0.000282  0.001307  0.000003  0.282570  0.000020 —7.14  —4.52 973 1468 ~0.96
WS-92-4  127.6  0.074687  0.000490  0.001266  0.000009  0.282526  0.000020 870  -6.00 1034 1565 ~0.96
WS$-92-5 1257 0.083864  0.001112  0.001699  0.000031 0282595  0.000019 —626  —3.64 947 1413 -0.95
WS-92-6 1250 0.091571  0.001240  0.001538  0.000018  0.282586  0.000017 —6.59  —3.98 956 1434 —0.95
WS-92-7 1248 0.069093  0.000847  0.001178  0.000011  0.282582  0.000017 -6.71  —4.07 952 1440 ~0.96
WS-92-8 1253 0.102590  0.000306  0.001807  0.000006  0.282574  0.000019 699 439 980 1461 —0.95
WS-92-9 1269  0.084486  0.000604  0.001491  0.000009 0282555  0.000018 -7.66  -35.00 998 1501 ~0.96
WS$-92-10 1246 0.051786  0.000449  0.000891  0.000007  0.282545  0.000017 -804  —538 997 1523 —0.97
WS-92-11 1274 0.063532  0.000470  0.001306  0.000005  0.282570  0.000014 —-7.14  —4.45 972 1466 —0.96
WS-92-12 1272 0.049542  0.000241  0.000952  0.000015  0.282557  0.000017 -7.62  —4.91 982 1495 -0.97
WS-92-13 1266  0.058599  0.000334  0.001085  0.000004  0.282594  0.000019 629 3.6l 933 1412 —0.97
WS-92-15 1263 0.084339  0.000632  0.001603  0.000009 0282571  0.000018 -7.11  —4.47 979 1467 ~0.95
WS-92-16 1266  0.093598  0.000385  0.001664  0.000009  0.282634  0.000018 487 223 890 1324 —0.95
WS-92-17 1253 0.073109  0.001028  0.001278  0.000017  0.282593  0.000018 -634  -3.70 940 1417 ~0.96
WS-92-18 1253 0.085523  0.000153  0.001469  0.000002  0.282600  0.000019  —6.07  —3.44 934 1401 ~0.96
WS-92-19 1251 0.066205  0.001019  0.001135  0.000015  0.282541  0.000018 -8.16  -5.51 1009 1531 ~0.97
WS$-92-20  127.6  0.075886  0.001168  0.001371  0.000020  0.282556  0.000018 -7.63  —4.95 994 1498 —0.96
NS-6-2 127.6  0.116202  0.004428  0.001893  0.000093 0282687  0.000020 —3.02  —0.38 820 1207 —0.94
NS-6-3 126.6  0.073898  0.001726  0.001419  0.000054 0282539  0.000019 —825  —5.59 1020 1538 ~0.96
NS-6-4 1268 0071679  0.000359  0.001285  0.000003  0.282476  0.000018 —10.48  —7.80 1105 1678 ~0.96
NS-6-5 126.1  0.090751  0.001252  0.001703  0.000020 0282670  0.000018  -3.62  —0.99 840 1245 ~0.95
NS-6-6 1264 0.090992  0.000396  0.001566  0.000007 0282587  0.000022 —6.55  —3.91 955 1431 —0.95
NS-6-7 127.6  0.069043  0.001305  0.001145  0.000019 0282584  0.000026 —6.65  —3.95 949 1435 -0.97
NS-6-8 1259 0.098499  0.000731  0.001553  0.000014 0282589  0.000021 —6.47  —3.83 952 1426 —0.95
N§-6-9 1257 0.091282  0.000989  0.001454  0.000013 0282602  0.000023 -6.00  -3.36 930 1396 ~0.96
NS-6-10  126.1  0.079755  0.000939  0.001427  0.000021 0282625  0.000021 -521  -2.56 898 1345 -0.96
NS-6-11 126.1 0219897  0.003902  0.003180  0.000053  0.282904  0.000027  4.66 7.17 524 724 —0.90
NS-6-12 1256  0.201006  0.003296  0.003908  0.000045 0282747  0.000028  —0.88 1.55 775 1083 ~0.88
NS-6-13 126.9 0.096178 0.000909  0.001629  0.000010  0.282508  0.000020  —9.32 —6.67 1069 1607 —0.95
NS-6-14 1280  0.050038  0.000232  0.001016  0.000005 0282605  0.000016 -591  -3.19 916 1386 -0.97
NS-6-15 1261 0.112771 0001246  0.002111  0.000035  0.282624  0.000016 —522  —2.63 915 1349 —0.94
NS-6-16 1286  0.067368  0.001186  0.001410  0.000027 0282515  0.000017 -9.10  —6.40 1054 1591 -0.96
NS-6-17 1273 0.171627  0.000711  0.003430  0.000010 0282657  0.000025 —4.06  —1.56 900 1282 —0.90
NS-6-18 1265  0.061183  0.000557  0.001055  0.000010  0.282523  0.000020 880  —6.11 1032 1571 —0.97
NS-6-19  127.8  0.100281  0.000330  0.001561  0.000003 0282559  0.000022 -7.54  —4.87 995 1493 ~0.95
NS-6-20 1274 0.104088  0.001036  0.001622  0.000031  0.282675  0.000021 -343  —0.77 831 1232 —0.95
DSC-11-1 1269  0.037824  0.000424  0.000598  0.000005  0.282489  0.000019 —10.01 -7.28 1067 1646 -0.98
DSC-11-2 1274 0063352 0.000508 0000981  0.000009 0282510  0.000018 -928  —6.57 1049 1600 -0.97
DSC-11-3  127.5  0.055924  0.000278  0.000851  0.000003  0.282480  0.000019 -10.34  -7.61 1087 1667 ~0.97
DSC-11-4  127.4  0.057248  0.000211  0.000917  0.000003  0.282523  0.000015 -8.80  —6.08 1028 1570 —0.97
DSC-11-5  127.0  0.162684  0.000269  0.002537  0.000009  0.282647  0.000020 442 185 893 1300 ~0.92
DSC-11-6  127.5  0.071082  0.000608  0.001060  0.000006  0.282523  0.000018 -881  —6.10 1032 1571 -0.97
DSC-11-7  127.8  0.074300  0.000546  0.001087  0.000004 0282552  0.000016 -7.78  —5.07 992 1506 —0.97
DSC-11-8 1283  0.119490  0.005976  0.001754  0.000091  0.282570  0.000022 -7.14  -4.47 984 1468 -0.95
DSC-11-9 1281  0.041737  0.000511  0.000598  0.000005  0.282474  0.000019 —10.54 =777 1088 1678 —0.98
DSC-11-10 1275 0.042027  0.000206  0.000629  0.000002  0.282458  0.000020 -11.09 —833 111 1714 ~0.98
DSC-11-11 1267  0.063600  0.000493  0.000947  0.000008  0.282401  0.000022 -13.12 —10.42 1200 1844 -0.97
DSC-11-12  127.2  0.064818  0.001265  0.000932  0.000016 0282490  0.000021 -9.96  —7.25 1075 1644 ~0.97
DSC-11-13 1279 0.068897  0.001266  0.001014  0.000019 0282496  0.000021 -9.76  —7.04 1069 1631 —0.97
DSC-11-14  127.6  0.063643  0.000092  0.000971  0.000002  0.282508  0.000024 —-9.33  —6.61 1051 1604 —0.97
DSC-11-16  127.0  0.067715  0.000547  0.001030  0.000005 0282428  0.000022 -12.16  —9.46 1165 1783 -0.97
DSC-11-17 1263 0.071273  0.000228  0.001205  0.000002 0282462  0.000024 —10.98 —8.3I 1123 1710 —0.96
DSC-11-18 1269  0.063111  0.000816  0.001001  0.000011 0282506  0.000021 -9.40  —6.70 1054 1608 ~0.97
DSC-11-19 1277 0.053536  0.000435  0.000971  0.000008 0282563  0.000021 —7.38  —4.66 973 1480 —0.97
DSC-11-20 1286  0.082249  0.001025  0.001376  0.000017 0282569  0.000021 —7.18  —4.48 976 1469 —0.96
HSQ-5-1 1264  0.053038  0.000352  0.000856  0.000007  0.282564  0.000014 -735  —4.64 969 1478 -0.97
HSQ-5-2 1266  0.069150  0.000833  0.001130  0.000015 0282555  0.000017 ~7.67  —4.99 989 1500 ~0.97
HSQ-5-3 1262 0.081105  0.000823  0.001309  0.000018 0282552  0.000018 -7.79  -5.13 999 1509 -0.96
HSQ-54 1257  0.051869  0.000819  0.000845  0.000015 0282570  0.000017 -7.13  —4.45 960 1465 —0.97
HSQ-5-5 1258  0.090218  0.000654  0.001632  0.000013  0.282572  0.000018 -7.08  —4.46 979 1465 -0.95
HSQ-5-6 1258  0.053427  0.000121  0.000839  0.000003  0.282608  0.000019 —5.81  —3.12 908 1380 —0.97
HSQ-5-7 1283 0.045712  0.000281  0.000738  0.000005  0.282511  0.000020 922 647 1040 1595 ~0.98
HSQ-5-8  127.0  0.051382  0.000128  0.000820  0.000004 0282532  0.000021 -847  -5.76 1013 1549 -0.98
HSQ-5-9 1272 0.101513  0.001034  0.002061  0.000029  0.282590  0.000024 —6.45  —3.83 964 1426 —0.94
HSQ-5-10 1259  0.066626  0.000364  0.001026  0.000004  0.282594  0.000022 -6.30  —3.62 932 1413 -0.97
HSQ-5-11 126.3 0.056580 0.000196  0.000919  0.000003  0.282566  0.000020  —7.27 —4.58 968 1473 =0.97
HSQ-5-13 1259 0.057929  0.000580  0.001032  0.000007  0.282557  0.000019  -7.59  -4.92 983 1493 ~0.97
HSQ-3-14 1265 0.047506  0.000711  0.000847  0.000014  0.282551  0.000020 —7.80  —5.10 987 1507 —0.97
HSQ-5-15 1266  0.060705  0.00048  0.001089  0.000009  0.282564  0.000016  ~7.34  -4.66 975 1479 ~0.97
HSQ-5-16 1259 0.027131  0.000248  0.000485  0.000004 0281637  0.000020 —40.15 —37.43 2231 3535 —0.99
HSQ-5-17  125.1  0.093646  0.003929  0.001609  0.000068  0.282610  0.000020 -5.75  —3.13 924 1381 —0.95
HSQ-5-18 1262 0.048050  0.000243 _ 0.000797 _ 0.000005  0.282557 _ 0.000020  -7.61 491 978 1495 ~0.98
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Table 2 Continued
Sample  ¢(Ma) '"°Yb/'"Hf 25 "Ly HE 26 "OHE T HE 26 eur(0)  enr(®(%)  Tomi (Ma)  Toma(Ma)  fiwnr
HSQ-5-19 1273 0.069928 0.000458 0.001289 0.000016 0.282596 0.000018 —6.23 =355 935 1409 —0.96
HSQ-5-20 1269  0.062552  0.000561  0.001024  0.000011  0.282544  0.000020 -8.08 -5.38 1002 1525 -0.97

g 0)=((°HE T THAs/( T HE H)crug, 0-1)% 10000,

an =" HE " HE)s- (" Lw T H < (e = DT HE T H ) cnuro— (T°Lw/ T HP crur(e¥-1)) —1)x 10000,

Toa=1AxIn{1+[("°HE " H)s— (" HE T HOpm)/ [(7Lu' " H)s— (7°Lu/ T H)pu] b

Tomz=Tom— (Tomi =) *((foe )V (feefom))s

fi= ("L HAS/C Lo/ T H ) cpur- 1, foe = (]76LUmeﬂc.f(]7°LUf|77HF)C'1||:R*1‘fDM: (Lo AT L T H D ey 1,
("L "HD)s and "T*HE HI)s are test values, (7°Lu/' T H)cpur = 0.03321, (T°HE T H)cruro = 0.282772 , (7°Lu/ T H)py =0.03842, ("“Ht”’Hﬂw =0.28325
(Blichert-Toft and Albarede, 1997), ( 76Lumeﬂ( 0.015 (Griffin et al., 2002), t is the formation time of the sample, &,,= 1.867x10 i year’ (goderlund etal.,

2004).
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Fig. 8. Hf isotope evolution diagram of zircon of intru-
sions.

The DM line denotes the evolution of the depleted mantle with a pre-
sent-day "Hf/'7Hf=0.28325 and "*Lu/'7Hf=0.0384 (Griffin et al.,
2004).The corresponding solid lines of 1.9Ga, 2.9Ga, 3.5Ga and 4.0Ga
lower crust evolution in the Liantu and Kongling Formation, which
represent the peak ages of crust growth of Yangtze Craton, are calcu-
lated by assuming the o Lu/7HS ratio of 0.009 for average continental
crust from the Yangtze Craton (Zhang et al., 2006, Zhang and Zheng,
2007). The dashed lines were drawn assuming that crust growth oc-
curred respectively at continental crust at 1.9Ga and 2.9Ga with
L/ 7HS ratio of 0.015 for average continental crust (Griffin et al.,
2002).

rock stocks (i.e. the distribution of zircons) are above the
evolution line of the crust in the Yangtze Craton (Zhang et

, 2006; Zhang and Zheng, 2007) in the intermediate
zone connecting the chondrite line to the crustal curve (1.9
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Fig. 9. Plot of the zircon Hf isotopes vs. zircon U-Pb ages
for voleanic-subvolcanic rocks and intrusions in Ningwu ore
district.

Data are from this study, Hou and Yuan (2010) and Yuan et al. (2011).
The zircon Hf isotopes of lower crust are from Kongling metamorphic
rocks in the Yangtze Craton (Zhang et al., 2006).

Ga). In addition, there is one zircon grain with much lower
euf(f) value (—37.43) and higher Tpye age (3535 Ma),
which is similar to those of the initial stage of the Yangtze
craton (Zhang et al., 2006), and two zircon grains with
higher ey(f) values (1.55 and 7.17) and lower Tpy, ages
(1083 Ma and 724 Ma) are consistent with the higher g(f)
values (7.64 to 13.91) and younger Tpma (294 Ma to 581
Ma) of the five grain zircons from the samples of the
Gushan intrusion obtained by Yuan et al. (2011). The
observation also indicates that the granodioritic stocks will
not have only one end member source. Furthermore,
Miinker et al. (2004) and Hanyu et al. (2002) conformed
that the Hf element as high-field strength element can
affect the composition of the rock by slab melts that
originate from subducted oceanic crust. Nebel et al. (2011)
presented that 'Hf/'""Hf decreases from 0.28314 to
0.28268 in the Banda arc, East Indonesia, with an
increasing in the involvement of subducted -crustal
material in the magma source. The Hf isotopic data gained
in this study have similar compositions to the end member
of involved more crustal signatures. The evidence above
reflects dynamic geological evolution which strongly
suggests that the source of the rocks was not formed only
from one single component end member, and crust
material had been assimilated into the source magma
generation during its ascent. By reviewing previous
studies, one can see that almost all of the Hf isotopic
compositions of granodioritic stocks are concordant with
those of volcanic rocks and diorite porphyrite (associated
with iron ore deposits) in the Ningwu basin with the eyq(f)
values concentrated in a range of —1%. to —9%o (Fig. 9).
Combined with previous studies on Nd-Sr-Pb isotopic
characteristics (Xing, 1996; Xing and Xu, 1999; Wang et
al., 2001a; Hou et al., 2010; Yuan et al. 2011), we
therefore consider that granodioritic stocks might share a
similar source with volcanic rocks and diorite porphyrite.
Granodioritic rocks occurred in the Ningwu ore district
have a close original relationship with dioritic rocks.

5.3 Geodynamic background

It is generally accepted that the magmatism and
mineralization in the MLYRB, occurring during the
Mesozoic (145-120Ma), has two major episodes: (1) 156—
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137 Ma high-K calc-alkaline granitoids associated with
148—135 Ma porphyry-skarn-stratabound Cu-Au-Mo-Fe
deposits; (2) 135-123 Ma shoshonitic series associated
with 135-123 Ma magnetite-apatite deposits and other
small-scale economic deposits (Cu, Au, Pb-Zn) (Chang et
al., 1991; Zhai et al., 1992a; Mao et al., 2006, 2009, 2011;
Pan and Dong, 1999; NRG, 1978; Ren et al., 1991; Zhou
et al., 2008a, 2010). And A-type granitoids (126.5-124.8
Ma) are associated with Au and U mineralization,
occurring on the two sides of the lower reaches of Yangtze
River (Zhang et al., 1988; Tang et al., 1998; Xing and Xu,
1999; Fan et al., 2008). During that period of time, the
tectonic regime underwent significant shift, with the main
structural pattern converted from nearly E-W to NE-NNE
(Tao et al., 1998; Qi et al., 2000; Dong et al., 2007),
possibly experiencing crust thickening, delamination of
the lower crust, extension of the tectonic regime,
lithospheric thinning, asthenosphere upwelling and crust-
mantle interaction (Mao et al., 2005, 2011; Li, 2010a, b;
Zhou et al., 2008a; Xie et al., 2006a; Lii et al., 2004; Wang
et al., 2001a, b, 2003; Zhang et al., 2001). It is commonly
considered that these tectonizations are associated with
oblique subduction of the Izanagi plate, which tore up the
low-angle subducted slab and the overlying crust along the
ore belt due to disharmonious movement of the Yangtze
craton and the North China craton beside it (Mao et al.,
2011; Zhu et al., 2003, 2010; Sun et al., 2007; Li, 2000;
Deng et al., 1992; Qiu et al., 1981).

In the second episode, the geochron of volcanic-
subvolcanic rocks and intrusions is concentrated in 135—
125 Ma, belonging to the Early Cretaceous, in the
MLYRB, mainly including the Ningwu basin (135-
126Ma, Zhang et al., 2003; Hou and Yuan, 2010; Xue et
al., 2010; Fan et al., 2010; Zhou et al., 2011; Yuan et al.,
2011), the Luzong basin (135-127Ma, Zhou et al., 2008b,
2010; Xue et al., 2010; Qin et al., 2010; Zeng et al., 2010),
the Jinniu basin (130-125Ma, Xie et al., 2006b, 2011),
and the Fanchang basin (134-128Ma, Lou and Du, 2006;
Yu and Xu, 2009; Yan et al., 2009; Yuan et al., 2010). We
present that the age of iron mineralization in the Ningwu
ore district also varies in a narrow range of 131-127 Ma,
being consistent with that of the earlier volcanic activity
(the Dawangshan Formation). When the oblique
subduction of the Izanagi plate transformed its moving
direction to NE-NNE and tore up the low-angle subducted
slab (Mao et al., 2008, 2011; Zhou et al., 2008a, 2011; Xie
et al., 2006b, 2008a, 2008b; Yuan et al., 2008; Xing and
Xu, 1999). Based on geochemical and geochronological
studies, Xie et al. (2011), Yuan et al. (2008, 2010) and
Yan et al. (2009) suggested that volcanic rocks in the
Fanchang basin, Jinniu basin and part of the Luzong basin
are characterized by bimodal volcanic rocks, occurring in

the same period. Besides, A-type granite occurred partially
and transitorily during 126.5-124.8 Ma (Fan et al., 2008),
slightly later than iron mineralization in the MLYRB. The
above discussion provides evidence that Early Cretaceous
volcanic rocks and the porphyry iron mineralization in the
MLYRB were developed in an extensional tectonic regime
induced by the Izanagi plate while transforming its
moving direction to NE-NNE and the low-angle subducted
slab tearing up (Mao et al., 2005, 2008, 2011; Zhou et al.,
2008a; Xie et al., 2011), and the previous subducted slab
remaining in the asthenosphere might have contributed to
the rock-forming process. Magmatism and mineralization
of porphyry iron deposits in the Ningwu ore district
occurred also in an extensional tectonic regime.

6 Conclusions

Based on the above analyses and discussion, the
following conclusions can be reached:

(1) Emplacement and crystallization (typically for
zircons) of the granodioritic stocks in the study area
occurred at an age range of 126-127 Ma, and the age of
the iron mineralization in the Ningwu ore district is in a
very short period of 131-127 Ma.

(2) Granodioritic rocks occurring in the Ningwu ore
district have a close original relationship with dioritic
rocks.

(3) Magmatism and mineralization of porphyry iron
deposits in the Ningwu ore district occurred in an
extensional tectonic regime induced as the Izanagi plate
transformed its moving direction to NE-NNE.
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