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Abstract New results from deep seismic reflection profiling, wide-angle reflection-refraction profiling and
broadband seismic experiments reveal that a series of south-dipping reflectors occur on the southern margin of the Tarim
block (basin). However, it is these south-dipping structures that are intercepted by another series of north-dipping
reflectors at depths from 30 to about 150 km beneath the foreland of the W Kunlun Mountains. No evidence from the
above geophysical data as well as geochemical and surface geological data indicate the southward subduction of the
Tarim block beneath the W Kunlun Mountains (NW Tibet plateau), forming the so-called “two-sided subduction” model
for the Tibet plateau as proposed by previous studies. So the authors infer that the tectonic interaction between the Tarim
block and the W Kunlun block was chiefly affected by a “horizontal compression in opposite directions”, which brought
about “face-to-face contact” between these two lithospheric blocks and led to the thickening, shortening and densifying
of the lithosphere. Hence a “delamination” was formed due to the gravitational instability created by the thickening and
densifying; then alkaline basic volcanic rocks (mainly shoshonite series) was erupted along the northern margin of the
Tibet plateau owing to the delamination. This inference for the formation of the alkaline basic volcanics has been
confirmed by recent geochemical and petrological studies in Tibet, indicating that different contacts control different
magmatic activities: the alkali basalts are always developed in the “horizontal shortening boundary (contact)” on the
northern margin of the Tibet plateau, while the muscovite granite and two-mica granite (leucogranite) in the
“subductional contact” on the southern margin of the Tibet plateau.
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A multidisciplinary geoscientific investigation (MGI)
was carried out in 1997-1999, which was a key project
jointly supported by State Project 305 of the Xinjiang
Uygur Autonomous Region (XUAR), the former
Ministry of Geology and Mineral Resources (MGMR)
of China and the National Natural Science Foundation
of China (NNSFC). The responsible organization was
the Institute of Geology, Chinese Academy of
Geological Sciences (CAGS), and the main
participating organizations were the Institute of Earth
Sciences, Academia Sinica (Taipei), China University
of Geosciences (Beijing), Geological Institute of the
State Seismological Bureau of China, the 6th
Geophysical Prospecting Party of the MGMR and the

The tectonic relationship between the Indian plate
and Tibet proper has been relatively extensively studied
in the past several decades. However, NW Tibet,
especially the W Kunlun and Karakorum Mountains,
lacks the multidisciplinary geoscientific investigation
and also has seldom been described in the literature, so
the purpose of the project is to study the tectonics of the
western Tibet plateau and approach the formation of the
northwestern boundary of the Tibet plateau and its
dynamic relation with the collision of the Indian and
Eurasian plates.

The MGI includes the wide-angle reflection-
refraction profile, deep seismic reflection profile and
broadband seismic experiment and gravity survey,
combined with geochemical and geological
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reconnaissance. Because of rugged topography and
difficult logistic, our study area was limited to the road
and its vicinity (Fig. 1).

sounding (MT) also shows a low-resistivity (high-
conductivity) layer of about 4.4-9.7 Q -m, at depths of
15-25 km (Fig. 3), which corresponds to the low-

velocity layer in the wide-angle reflection-

refraction profile. It may have acted as the
“décollement”, constraining the south-

400 dipping thrust sheets occurring on the
surface.
350 2.3 Concealed structures

In the deep seismic reflection profile, two
nearly vertical strike-slip faults (cf. in Figs.
30° 4 and 5) revealed by the obvious variation
of the reflectors (Figs. 4 and 5) extend
from the middle of the upper crust down
to the Moho and most probably
correspond to the WNW-NW strike-slip

Alkalic basic volcanics

Station of broadband
seismic experiment

Investigation area

Wide-angle seismic
reflection-refraction profile

Blueschist

Two-mica granite and
muscovite granite (leucogranite)

Deep seismic reflection profile

fault system on the surface between the W
Kunlun Mountains and Tarim basin. It is
noticed that the two concealed strike-slip
faults are most likely the main inducing
structure of the recent earthquakes in the
southwestern Tarim basin.

Fig.1 Schematic map showing the geological and geophysical investigation area
ALT: Altun strike-slip fault; GD: Gangdise; QL: Qilian Mts.; HIM: Himalayas; HX: Hoh Xil;

YZS: Yarlung Zangbo Suture; MBT; Main Boundary Thrust; MCT: Main Central Thrust; MMT:

Main Mantle Thrust

2 Geophysical Properties and Its Geological
Interpretation

2.1 The Moho—Variation of the crustal thickness
The Moho depth obtained from the wide-angle
reflection-refraction profile is, from north to south, 50
km in the Tarim basin (block) and 60 km in the north of
the W Kunlun Mountains, i.e. the Moho of the Tarim
basin dips gently to the south (Fig. 2). The deep seismic
reflection profile and the broadband seismic experiment
also show a clear Moho represented by the nearly
horizontal strong reflectors at depths of 45-55 km (17—
18 s) beneath the Tarim basin and the northern margin
of the W Kunlun Mountains (Figs. 5 and 6), which may
correspond to the Moho given in the wide-angle
reflection-refraction profile.

2.2 Low-velocity layer in the upper crust

A low-velocity layer occurs at depths of 15-20 km in
the wide-angle reflection-refraction profile (Fig. 2),
with a thickness of around 5-10 km. The velocity
ranges from 6.0 km/s—5.9 km/s. The magnetolluric

3 Deep Structure and Collision
Tectonics between the NW Tibet
Plateau and the Tarim Block (Eurasian plate)

The deep seismic reflection profile extends from the
southern Tarim basin southwards into the W Kunlun
Mountains, totalling about 100 km long, cutting across
their contact. From the seismic data, we have the
following primary understanding of the deep structure:
The most prominent feature of the deep seismic
reflectors of the north-dipping band beneath the W
Kunlun Mountains was observed to extend from 8 s (24
km) to 20s (60 km), while the reflectors of the south-
dipping band observed beneath the southern Tarim
basin (Fig. 4). The broadband seismic experiment also
indicates the existence of strong north-dipping
reflectors beneath the W Kunlun Mountains and the
south-dipping ones beneath the southern margin of the
Tarim basin (Fig. 6), but the north-dipping reflectors in
the W Kunlun Mountains become obscure and
significantly weaker when they enter the foreland
between the Kunlun Range and the Tarim basin (Kao et
al., 1999). All of the deep seismic images indicate that
there is no evidence to ascertain a prominent southward
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Fig. 2 Wide-angle reflection-refraction profile showing the P-wave velocity (km/s) across the boundary between the W Kunlun Mits.
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Fig. 3 Magnetotelluric interpretation section across the boundary between the W Kunlun Mts. and Tarim block (basin) (after Ding

Daogui et al., 1996)

subduction from the Tarim basin to the W Kunlun
Mountains as suggested by many geoscientists. In the
mid-1980s a “two-sided subduction” model was
proposed for the Tibet orogenic system (Lyon-Caen and
Molnar, 1984; Willett and Beaumont, 1994; Deng, 1995;
Matte et al., 1996). It suggests that, in addition to the
northward subduction of India beneath southern Tibet,
the Tarim block in the north also was subducted
southwards beneath northern Tibet. Many geoscientists
(Arnaud et al., 1992; Deng, 1995) have given an
account of the southward plunging of the Eurasian
continent (Tarim basin) down to the Tibet plateau along
its northern margin on the basis of their research on the
young alkali basalts in the north of Tibet that are the
product of the southward subduction of the Tarim block
towards the Tibet plateau. However, our deep seismic
profiling and broadband seismic experiment mentioned
above give no evidence of a full-scale subduction of
one block beneath another, but the co-existence of both

the north- and south-dipping structures is observed
(Figs. 5 and 6).

Judging from the above geophysical data, we suggest
an alternative interpretation model that the tectonic
interaction between the W Kunlun Mountains and
Tarim basin was mainly affected by a “horizontal
compression in opposite directions”, which brought
about a “face-to-face contact” of the two lithospheric
blocks and led to the thickening, shortening and
densifying of the lithosphere. Then, the lower part of
the lithosphere was detached and sunk into the
asthenosphere, forming the “delamination” due to the
gravitational instability created by the densified
lithosphere, and losing the balance between the
horizontal compression and the buoyancy, hence a rapid
uplift and extensional fractures were brought about on
the surface. Heating from the asthenosphere caused
partial melting to produce alkaline basic volcanics, the
shoshonite series (Fig. 7), which erupted along the
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Fig. 4 Deep seismic reflection profile from the W Kunlun Mts. to the southern margin of the Tarim basin

Left: North-dipping reflectors in the foreland of the W Kunlun Mits. Right: South-dipping reflectors on the southern margin of the Tarim basin
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Fig.5. Deep seismic reflection profileshowing north-dipping
reflectors beneath the northern margin of the W Kunlun Mts.
(NW Tibet plateau) and south-dipping reflectors beneath the
southern margin of the Tarim basin

extensional fractures in northern Tibet, where we have
not yet found Cenozoic leucogranite. This inference of
the formation of the shoshonite series has been
confirmed by recent geochemical and experimental
petrological studies in Tibet (Deng et al., 1996; Lai,
1999), indicating that different contacts may control the
variation of magmatic activities: the alkaline basic
volcanics is always developed in the “horizontal

compression contact” along the northern margin of
Tibet, while muscovite granite and two-mica granite
(leucogranite) developed in the “subductional contact”
in the southern margin of Tibet (Fig. 8, lower right and
left ).

4 Petrological and Geochemical Evidence of
the Collision Tectonics between the NW Tibet
Plateau and the Tarim Block

Detailed studies for estimating the magma-generating
pressures and depths on the basis of experimental
petrology at high pressures and temperatures and
mineral-melt equilibrium thermodynamics have been
completed by Lai (1999) and Deng et al. (1996),
indicating that the primary or approximately primary
magma of the Cenozoic alkaline basic volcanics on the
northern margin of Tibet may have originated from the
upper mantle-lower crust at depths from 74.3-85.1 km
(Table 1, Lai, 1999) by delamination in the lower
lithosphere, which is consistent with the “horizontal
compression contact” model (Figs. 7 and 8); while the
Cenozoic muscovite granite and two-mica granite
(leucogranite) on - the southern margin of Tibet
originated from the middle-upper crust at depths from
25-40 km in a “subduction contact” (Deng, 1996; Lai,
1999) (Fig. 8).

The values of Mg’, 8Eu, La/Yb and ¥Sr /*Sr are
important indicators for identifying the primary magma
type (Frey et al., 1978, Deng et al., 1996, Tumer et al.,
1996, Lai, 1999). The Mg’ values of the primary
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Table 1 Source depths and pressures of the Cenozoic volcanics on the northern margin of the Qinghai-Tibet Plateau

Area Lithologic features Si0, (%) Mg’ P (10°Pa) g;:g.h

W. Kunlun Potassic basic volcanics (shoshonite series) 43,17 0.62 25.8 85.1

Dahongliutan, W Kunlun Potassic basic volcanics (shoshonite series) 44.89 0.65 225 743

Lixian, Gansu Potassic basic volcanics (shoshonite series) 38.65 0.65 33.0 108.9
B Late Cenozoic
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Fig.6. Broadband seismic experiment showing north-dipping
reflectors beneath the northern margin of the W Kunlun (NW
Tibet Plateau) and south-dipping reflectors beneath the southern
margin of the Tarim basin.

magma for the alkaline basic volcanics should be 0.68-
0.75 (Frey et al., 1978) or 0.65-0.75 (Deng et al., 1996).
The Mg’ values given from the alkaline basic volcanics
on the northern margin of Tibet, used for pressure and
depth estimation, are 0.62-0.68 (Lai et al., 1999). So
they are ascribed to the primary magma or low
evolution-degree magma type.

The 6Eu and Eu anomalies are also the indicators for
identifying the primary magma type. Most of the
alkaline basic volcanics on the northern margin of Tibet
have high 8Eu (>0.7) and low or no negative Eu
anomaly (Deng et al., 1996; Lai, 1999), implying that
the primary magma lacks plagioclase, i.e., it originated
in the deepest crust or lithospheric mantle.

It is notable that deep-seated mantle xenoliths, such as
spinel lherzolite and spinel harzburgite, have been
recently found from Cenozoic alkaline basalt in the
Kangxiwar area, western Kunlun Mountains (Luo et al.,
2000). The spinel belongs to spinel-chromitite series
with the ratio of (Cr)/(Cr+Al)=25%-8%. According to
the thermobarometer of Webb and Wood (1984), the
pressure and depth of these peridotites are 1.6 GPa and
about 60 km respectively (Luo et al., 2000), so the
Cenozoic alkaline basalt carrying these peridotite
xenoliths originated from the area around the

northwestern margin of Tibet.
LM: Lithospheric mantle  Astheno: Asthenosphere
Alkalic basic volcanics

D: Delamination

lithospheric mantle.

Based on the data mentioned above, we can make a
list of discrimination of the tectonic interaction and
evolution on the southern and northern margins of the
Tibet plateau (Fig. 8).

5 Conclusions

No evidence from our deep seismic sounding has
revealed the southward subduction of the Tarim block
beneath the W Kunlun Mountains in the NW Tibet
Plateau. So, we think that the “two-sided subduction”
model proposed by many geoscientists may be
modified. Judging from the above-mentioned
geophysical, geochemical and geological data, the
continental collisions of the southern margin and the
northern margin of the Tibet plateau are different. In the
former case, the intracontinental collisional orogeny
and crustal thickening may have resulted from the
underthrusting or subduction of the Indian continent,
which caused the intrusion of muscovite granite and
two-mica granite. In the latter case, the “horizontal
compression in opposite directions”, i.e. the
compression of the Tarim block from the north and the
Indian continent from the south resulted in thickening
and densifying of the lower part of the lithosphere; thus
delamination occurred owing the gravitational
instability: the thickened and densified lithosphere was
detached and sunk into the asthenosphere. A rapid
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uplift occurred at the surface following the
delamination, and subsequent alkaline volcanic rocks,
the extensive shoshonite, formed by partial melting,

erupted along the extensional fractures.
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