U–Pb Zircon Geochronology and Geochemistry of the Neoproterozoic Liujiaping Group Volcanics in the Northwest Margin of the Yangtze Block: Implications For the Breakup of the Rodinia Supercontinent
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

This study was supported financially by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110205110004), the National Nature Sciences Foundation of China (Nos. 41472191, 41172186, 40972136, and 40572121), and the Fundamental Research Funds for the Central Universities (Nos. CHD2011TD020, CHD2009JC046, 2013G1271092, and 2013G1271091).


U–Pb Zircon Geochronology and Geochemistry of the Neoproterozoic Liujiaping Group Volcanics in the Northwest Margin of the Yangtze Block: Implications For the Breakup of the Rodinia Supercontinent
Author:
Affiliation:

Fund Project:

This study was supported financially by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110205110004), the National Nature Sciences Foundation of China (Nos. 41472191, 41172186, 40972136, and 40572121), and the Fundamental Research Funds for the Central Universities (Nos. CHD2011TD020, CHD2009JC046, 2013G1271092, and 2013G1271091).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Investigation of the petrogenesis and the origin of zircons from the volcanic rocks of the Liujiaping Group of the back-Longmenshan tectonic belt in the northwest margin of the Yangtze Block is conducted by analysis of U–Pb geochronology and geochemistry. Results show that selected zircons are characterized by internal oscillatory zonings and high Th/U ratios (0.43–1.18), indicating an igneous origin. Geochronological results of LA–ICP–MS U–Pb dating of the Liujiaping Group zircons yield an age of 809 ± 11 Ma (MSWD = 2.2), implying that the volcanic rocks were formed in the Late Neoproterozoic. Geochemical analysis shows that the rocks are calc-alkaline, supersaturated in Al, and metaluminous to weakly peraluminous. Rare-earth elements are present at high concentrations (96.04–265.48 ppm) and show a rightward incline and a moderately negative Eu anomaly, similar to that of continental rift rhyolite. Trace element geochemistry is characterized by evident negative anomalies of Nb, Ta, P, Th, Ti, inter alia, and strong negative anomalies of K, Rb, Sr, et al. We conclude that the Liujiaping Group volcanic rocks resulted from typical continental crust source petrogenesis and were formed in a continental margin setting, which had no relation to subduction, and thus, were the products of partial melting of the lower crust due to crustal thickening caused by active continental margin subduction and arc–continent collision orogeny in the northwestern Yangtze Block and were triggered by the breakup of the Rodinia supercontinent during the Neoproterozoic.

    Abstract:

    Investigation of the petrogenesis and the origin of zircons from the volcanic rocks of the Liujiaping Group of the back-Longmenshan tectonic belt in the northwest margin of the Yangtze Block is conducted by analysis of U–Pb geochronology and geochemistry. Results show that selected zircons are characterized by internal oscillatory zonings and high Th/U ratios (0.43–1.18), indicating an igneous origin. Geochronological results of LA–ICP–MS U–Pb dating of the Liujiaping Group zircons yield an age of 809 ± 11 Ma (MSWD = 2.2), implying that the volcanic rocks were formed in the Late Neoproterozoic. Geochemical analysis shows that the rocks are calc-alkaline, supersaturated in Al, and metaluminous to weakly peraluminous. Rare-earth elements are present at high concentrations (96.04–265.48 ppm) and show a rightward incline and a moderately negative Eu anomaly, similar to that of continental rift rhyolite. Trace element geochemistry is characterized by evident negative anomalies of Nb, Ta, P, Th, Ti, inter alia, and strong negative anomalies of K, Rb, Sr, et al. We conclude that the Liujiaping Group volcanic rocks resulted from typical continental crust source petrogenesis and were formed in a continental margin setting, which had no relation to subduction, and thus, were the products of partial melting of the lower crust due to crustal thickening caused by active continental margin subduction and arc–continent collision orogeny in the northwestern Yangtze Block and were triggered by the breakup of the Rodinia supercontinent during the Neoproterozoic.

    参考文献
    相似文献
    引证文献
引用本文

LI Zuochen, PEI Xianzhi, LI Ruibao, PEI Lei, LIU Chengjun, CHEN Youxin, XU Tong, YANG Jie, WEI Bo.2015. U–Pb Zircon Geochronology and Geochemistry of the Neoproterozoic Liujiaping Group Volcanics in the Northwest Margin of the Yangtze Block: Implications For the Breakup of the Rodinia Supercontinent[J]. ACTA GEOLOGICA SINICA(English edition),89(4):1213~1225

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-08-17
  • 最后修改日期:2014-07-04
  • 录用日期:
  • 在线发布日期: 2015-08-14
  • 出版日期: