New Evidence for a Cretaceous Age for a Mesozoic Nonmarine Bivalve Assemblage from Paekto-dong, Sinuiju City, The Democratic People’s Republic of Korea

CholGuk WON, KwangSik SO* and SuHyang JON

Department of Paleontology, Faculty of Geology, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea

Abstract: The Sinuiju Formation in Paekto-dong, Sinuiju City in the Democratic People’s Republic of Korea has yielded Mesozoic nonmarine bivalve fossils, which is the first occurrence of such in the DPRK. Based on these fossil specimens, a new Cretaceous bivalve assemblage, the *Arguniella yanshanensis-Sphaerium anderssoni* Assemblage is erected. This assemblage includes *Arguniella yanshanensis*, *A. lingyuanensis* and *Sphaerium anderssoni* and can be compared with the Jehol Biota. The age of the Sinuiju Formation is also clarified and on the basis of the bivalves and the presence of an *Eosestheria–Ephemeropterys–Lycoptera (E–E–L)* assemblage, the formation is not Upper Jurassic, but Lower Cretaceous in age.

Key words: biostratigraphy, nonmarine bivalves, Sinuiju Formation, Early Cretaceous, DPRK

1 Introduction

In 1967, several taxa of bivalves, *Lymnocyrena ovalis*, *L. amgensis*, *L. wilujca*, *L. sibirica*, *L. elongate*, *L. cf. huphensis*, *L. abrokgangensis*, *L. baiktoensis*, *L. yendaeensis*, *L. sinizuensis*, *L. tani*, *L. shantungensis*, *L. obtusale*, *L.lalistiformis*, *L. rohunda*, *L. tignensis*, *Cyrena hupanensis* and *L. (?) anderssoni* were found in the Sinuiju Formation at Paekto-dong near Sinuiju City in the Democratic People's Republic of Korea (DPRK) (Choe, 1967). Since then, no new Mesozoic bivalve fossils have not been published from Paekto-dong.

In 2014–2016, we returned to Paekto-dong and found many nonmarine bivalve fossils in the Sinuiju Formation (Fig. 1). We have undertaken a systematic review of them and, therefore, we document here the first presence of a nonmarine bivalve assemblage from the Sinuiju Formation in Paekto-dong and consider the age of the Sinuiju Formation is also discussed.

2 General Geologic Setting and Material

The Sinuiju Formation in Sinuiju City is distributed mainly in the Sinuiju basin, which has a length of 50 km and a width of 15 km. The Sinuiju Formation comprises, in ascending order, eight members. The first member consists of purplish-yellow siltstones, fine-grained sandstones and mudstones containing invertebrate and plant fossils. This member is in unconformity with underlying Precambrian basement. The second member is composed of andesites, tuffaceous siltstone with sedimentary intercalations, conformably overlying the lower first unit. The third member consists of grayish-green sandstones, gray to black mudstones and siltstones and yields fossil vertebrate, insects, conchostracans, bivalves, gastropods, ostracodes, and terrestrial plant fossils (Pak and Kim, 1996). This member, which conformably overlies the second unit, is 200–300 m in thickness. The lower part of the fourth unit is made of volcanic sandstones, siltstones, claystones and shales. The
fifth to the eighth units consist of andesites, tuffaceous siltstone and sandstone. They are not exposed in outcrop. Based on the fossils, Pak and Kim (1996) regarded the Sinuiju Formation as Upper Jurassic to Lower Cretaceous in age.

Most of the bivalve fossils collected by us derive mainly from Member 3 of the Sinuiju Formation, whereas Member 2 contains no bivalve fossils. All the specimens described in this paper are housed in the Paleontological Laboratory at the Geology faculty of Kim Il Sung University, Pyongyang. Images of the bivalves and others were taken using a Canon camera.

3 Bivalve Taxonomy

Order Unionida Stoliczka, 1871
Superfamily Anthracosioidea Amalitsky, 1892
Family Ferganoconchidae Martinson, 1956
Genus Arguniella Kolesnikov, 1980 [emended]

Synonymy
1967 Lymnocyrena; Choe, p. 20
1976 Ferganoconcha Chernyshev; Gu et al., p. 292 (pars).
1976 Ferganoconcha; Zhu, p. 25 (pars).
1980 Arguniella Kolesnikov, p. 25.
1980 Ferganoconcha; Zhu, p. 11 (pars).
1982 Ferganoconcha; Shi, p. 4 (pars).
1982 Ferganoconcha; J.S. Yu, p. 38.
1987 Ferganoconcha; Yu, Dong and Yao, p. 9.
1997 Arguniella; Gu, Li and Yu, p. 145.
1999 Arguniella; Chen, p. 102.

Diagnosis:
Hinge plate narrow and nearly straight. No cardinal and lateral teeth. A lamellar ridge arising directly from dorsal margin presents in left valve and a lamellar socket presents in right valve. Lamellar ridge extends across umbo from anterior to posterior; anterior part strong, becoming feeble towards posterior.

Occurrence:
Upper Jurassic?–Lower Cretaceous; Central Asia, Mongolia, Siberia, northern and eastern China, DPRK

Discussion:
Choe (1967) was the first to report freshwater bivalves from the Sinuiju Formation in Paektodong when he considered provisionally that the many bivalves belonged to “Lymnocyrena”. Few notable revisions were made during the next decades. Based on our re-examination, the bivalves more closely resemble Arguniella Kolesnikov, 1980 in shell outline and hinge structure because: (1) the shell is rather inflated, with a projecting umbo and posterior ridge, and a smooth surface with broad concentric wrinkles; and (2) the ligament is opisthodetic.

Arguniella yanshanensis (Gu, 1976)

1967 Lymnocyrena ovalis; Choe, p. 21, fig. 1.
1976 Ferganoconcha yanshanensis Gu, in Gu et al., p. 295, pl. 80, figs 17, 18 (non 16).
1976 Ferganoconcha cf. subcentralis Chernyshev; Gu et al., p. 293, pl. 80, figs. 11, 12 (non 10, 13)
1976 Ferganoconcha quadrata (Martinson), Gu et al., p. 295, pl. 80, figs. 30, 32—35 (non 31) (non Leptesthes quadratus Martinson, 1961, p. 271, pl. 2, fig. 14).
1980 Ferganoconcha curta Chernyshev; Zhu, p. 11, pl. 3, figs. 13—16.
1980 Ferganoconcha cf. jorekonsis Chernyshev; Zhu, pl. 14, figs. 38–41.
1987 Ferganoconcha curta Chernyshev; Yu, Dong and Yao, p. 10, pl. 1, fig. 19.
1987 Ferganoconcha sibirica Chernyshev; Yu, Dong and Yao, p. 10, pl. 1, fig. 17.
1987 Ferganoconcha yanshanensis Gu, in Gu et al.; Yu, Dong and Yao, p. 10, pl. 1, figs. 15, 16.
1999 Arguniella yanshanensis (Gu); Chen, p. 103, pl. 1, figs. 4, 15; pl. 2, figs. 3, 4; pl. 3, fig. 1.
2007 Arguniella yanshanensis (Gu); Jiang, Sha and Cai, p. 207, pl. 1, figs. 3A—K, 7C—D.

Description: The shell is small to moderate in size, up to 26 mm long and 17 mm high, and rather inflated. The shape is rounded trigonal to obliquely oval in outline, and nearly equilateral. Anterior and posterior dorsal margins are nearly straight to slightly convex towards the dorsal side with an umbonal angle between 85 and 105º; anterior and ventral margins are broadly rounded, and the posterior margin is narrowly rounded. The posterior ridge varies from distinct to broadly rounded. The umbo is situated at the anterior two-fifths to one-half of the shell length. The shell surface exhibits commarginal growth lines.

Material examined: 38 specimens (GPSSP 20140621–2015047), mostly single-valved replicas and composite moulds. All are from the Sinuiju Formation in Paekto-dong.

Occurrence: Third member; Sinuiju Formation.

Discussion: Judging from the shell outline, ornament and occurrence of the projecting, inflated umbones, Lymnocyrena ovalis of Choe (1967) should be re-assigned to Arguniella yanshanensis. The variation of shell outline in the Paekto-dong specimens varies from rounded trigonal to obliquely oval but all are regarded as belonging to the same species. A. quadrata (Martinson, 1956; see Martinson, 1961, p. 230) differs from A. yanshanensis in being smaller (length 13–15 mm, height 9–10 mm) and in having a multi-angular outline.

Arguniella lingyuansensis (Gu, 1976)

Fig. 3a–b

1967 Lymnocyrena baektoensis; Choe, p. 23, fig. 7
1976 Ferganoconcha lingyuansensis Gu, in Gu et al., p.
4 Discussion

4.1 Bivalve assemblage and concentration

Based on the abovementioned, the fossil bivalves from the Sinuiju Formation are *Arguniella yanshanensis* (Gu, 1976), *A. lingyuanensis* (Gu, 1976) and *Sphaerium anderssoni* (Choe, 1967). These fossils are characterized by their wide distribution and great abundance. Hence, the specimens are referred to as the *Arguniella yanshanensis–Sphaerium anderssoni* Assemblage, which only consists of three species belonging to two genera. *Arguniella yanshanensis* (Gu, 1976) is most abundant, followed by *A. lingyuanensis* (Gu, 1976); *Sphaerium anderssoni* is comparatively rare. The fossils are not evenly distributed throughout the Sinuiju Formation. Even within the same package of finely laminated layers, the fossil density may vary from extremely high to moderate or low, and some bedding planes may be devoid of fossils.

Bivalve concentrations also exist in the third member and they are not thick (mostly around 20 mm). Most of the concentrations form beds, but some can be referred to as clumps and lenses (Fig. 2). In the bivalve concentrations, there are only two bivalve species, *Arguniella lingyuanensis* and *Arguniella yanshanensis*, and they occur in high abundance (Fig. 2). Usually these bivalves are preserved in the same bed. Besides bivalves, additional organisms preserved have been recorded in the bivalve concentrations, including gastropods and conchostracans (Fig. 2).

Within the finely laminated layers, most of the bivalves and conchostracans are strongly compacted. In the bivalves, mainly the umbalon areas with the greatest convexity were affected, whereas conchostracans are strongly compacted and flattened. Compaction was most likely also responsible for the commonly sheared arrangement of the two valves of *Eosestheria*. Kobayashi and Kusumi (1953) noted a similar arrangement of valves when analyzing conchostracans from eastern Asia. They explained the dislodgement of the two valves as caused by weak currents. A prerequisite is the partial or complete decay of the soft parts (in particular the ligament and muscles) that keeps the two valves connected during life.

Fig. 2. Concentration of *Arguniella*. GPSP 20140506 (Scale bar 10 mm).
However, in our case, currents as a causative factor can be ruled out, because not only are the conchostracan valves randomly oriented but also the displacement occurred in all possible directions.

4.2 Correlation and age

4.2.1 Arguniella–Sphaerium Assemblage

The Arguniella–Sphaerium Fauna and its counterparts are widely distributed in northern and eastern China, Mongolia and the far east of Russia. In northern China, this fauna has been found in the Jehol Group in western Liaoning and northern Hebei (Chen, 1999), the Chengzihe Formation in eastern Heilongjiang (Gu et al. 1997), the Yingzhuilazi, Linzitou, Xiahuapidianzi and Hengtongshan formations in eastern Jilin (Zhu, 1989), the Zhalannuoer Group in the Hailar Basin (Zhao et al. 1980), and the Donglanggou and Dahuichang formations in Beijing city (Bureau of Geology and Mineral Resources of Beijing, 1991). Among the Arguniella-Sphaerium Fauna, only Margaritifera (Late Triassic?, Early Jurassic–Recent) and Solenoides (Early Jurassic–Late Cretaceous) are known from early Jurassic times (Ma, 1996). None of the other genera has been reported from known Jurassic strata to date. Beyond Asia, Nippononaia is present in the Barremian (and possibly late Hauterivian) of southern England (Barker et al. 1997) and Sphaerium first appears in the Upper Cretaceous in North American (Henderson, 1935; Gray, 1988). The Chengzihe Formation of the Jixi Group in eastern Heilongjiang, northeast China, yields not only the nonmarine Arguniella—Sphaerium fauna but also contains fossiliferous marine intercalations. Based on the study of ammonites and marine bivalves, its age and that of its counterparts in eastern Heilongjiang has been considered to range from late Barremian to early Albian, but mainly Aptian (Sha et al. 2002, 2003; Sha, 2007; Futakami et al. 1995; Gu et al. 1997; Jiang and Feng, 2001; Jiang and Cai, 2004; Jiang et al., 2004) (Fig. 5).

Consequently, the inferred age range of the Arguniella–Sphaerium Fauna should be considered as being mainly late Barremian–early Albian (Jiang et al., 2007). Many radiometric ages have been obtained from the volcanic rocks using Ar-Ar, K-Ar, U-Pb, and Rb-Sr dating methods in China (Sha, 2007). Most of the resulting dates range between 119 and 133 Ma, with a concentration around 125 Ma (late Barremian–middle Aptian) (Smith et al. 1995; Chen and Chen, 1997; Swisher et al. 1999, 2002). The Fuxin Formation contains the highest known horizon of the Arguniella–Sphaerium Fauna (Jiang and Sha, 2006). In Transbaikalia and adjacent areas of Russia, this fauna is distributed in the lower Zhaskoiskii Stage and the upper Osezhinskii Stage (Kolesnikov, 1980). In Mongolia, it is found in the Tormhonskar and Unduruhinskar formations in the central region and in the Shaganshabskii Formation in the southeast (Martinson, 1961; Zaitev et al. 1975). As a result, the known ages of the Arguniella–Sphaerium Fauna range from late Barremian to early Albian. On the basis of species composition and stratigraphic distribution, it can be subdivided into, in ascending order: the Arguniella yanshanensis–Sphaerium anderssoni, Margaritifera (Mengynaita) mengynensis–Nakamuraanita subrotunda and Arguniella liaoxiensis–Musculiopsis yixianensis assemblages (Figs. 4, 5).

The Arguniella yanshanensis–Sphaerium anderssoni Assemblage is the lowest one in the Arguniella–Sphaerium Fauna and occurs within the Yixian Formation.
(Fig. 4). It consists of only three species belonging to two genera. Besides the two representative species, the other is *A. lingyuanensis*. *Arguniella yanshanensis* is most abundant, followed by *A. lingyuanensis*, and *Sphaerium anderssoni* is comparatively rare (Jiang et al., 2007). The *Arguniella yanshanensis–Sphaerium anderssoni* Assemblage is dated as late Barremian–early Aptian by radiometric dating, hence the age of the Sinuiju Formation bearing this assemblage is late Barremian to early Aptian (Sha, 2007).

In the study area, the *Arguniella yanshanensis–Sphaerium anderssoni* Assemblage occurs within the Sinuiju Formation and consists of only three species belonging to two genera, of which *A. yanshanensis* is the most abundant, followed by *A. lingyuanensis*; *Sphaerium anderssoni* is comparatively rare.

Although *Arguniella yanshanensis*, *A. lingyuanensis*, and *Sphaerium anderssoni* also occur in the Jiufotang Formation, the Sinuiju Formation, unlike in the former, does not contain the trigonioidid bivalve *Nippononaia*, and *Musculiopsis liaoningensis* is not preserved (Ma, 1986; Zhu, 1989; Jiang et al., 2007).

Hence the *Arguniella yanshanensis–Sphaerium anderssoni* Assemblage from Paekto-dong is comparable with that from the Yixian Formation.

4.2.2 E–E–L Assemblage

Besides the bivalve assemblage, we also have many fossils including the insect *Ephemeropsis*, conchostracans *Eosestheria* and the bony fish *Lycoptera* (Fig. 6). *Ephemeropsis trisetalis* is the most representative fossil insect in the Sinuiju Formation, and also one of the typical fossils of the Jehol Biota (Zhou et al., 2003; Pan et al., 2013). *Lycoptera* is also one of the typical representatives of the Sinuiju Formation. *Eosestheria* is also found in abundance in the Sinuiju Formation. Hence, there exists an assemblage of *Eosestheria–Ephemeropsis–Lycoptera* in the Sinuiju Formation (Fig. 6). These genera are very common in this formation and clearly dominate.

The Jehol Biota of northeastern China is defined as the organisms that lived in the Early Cretaceous volcanic-influenced environments, and were buried in lacustrine and, rarely, fluvial sediments, where most turned into exceptionally preserved fossils. Up to now, it has only been discovered in the Yixian and the Jiufotang formations of western Liaoning and adjacent Inner Mongolia and Hebei, and in the Huajiying Formation of northern Hebei. It is limited to a comparatively small area
throughout the Barremian and into the Aptian, i.e. for about 10 Ma.

Since 1976, the Jehol Biota as a lacustrine biota represented by the “Eosestheria–Ephemeroptera–Lycoptera” (E–E–L) assemblage has gradually been accepted and become well known in China (e.g., Chen, 1988). Zhang et al. (1994) restudied the anatomical characters and morphological variation of the “Lycocptera longicepsalus” material from the Jiufotang Formation, and revised it as Jinianichthys longicepsalus. Thus, the temporal range of *Lycocptera*, which has often been regarded as a representative fossil of the Jehol Biota, is now actually limited to the Yixian Formation. Although the aquatic E–E–L assemblage probably no longer well represents the composition of the Early Cretaceous terrestrial ecosystem in western Liaoning, a generally accepted and unambiguous definition of the biota is still lacking (Pan et al., 2013).

E–E–L from the Sinuiju Formation is well comparable with E–E–L from the Lower Cretaceous strata of western Liaoning. This implies that the Yixian and Jiufotang formations and the Sinuiju Formation are chronologically very close. However, the Sinuiju Formation does not contain the trigonioidid bivalve *Nippononaia*.

Consequently, the Sinuiju Formation is not Jurassic, but Lower Cretaceous, i.e. Barremian and into the Aptian (Jiang et al., 2007).

5 Conclusions

The new nonmarine bivalve assemblage from the Sinuiju Formation of Paekto-dong comprises the following: *Arguniella yanshanensis*, *A. lingyuanensis* and *Sphaerium anderssoni*.

Acknowledgements

We thank Jo Song Dae for collaborative field work and help during the fieldwork in Sinuiju in 2014–2016; Pak Myong Hua for sharing ideas on bivalve research; Kim In Can for improving the paper. Dr. Degan Shu and two anonymous reviewers are thanked for their suggestions and comments. Susan Turner (Brisbane) assisted with English.

Manuscript received Aug. 1, 2018 accepted Dec. 20, 2018 associate EIC HAO Ziguo edited by Susan TURNER and FEI Hongcai

References

About the first author
CholGuk WON, Male; born in 1969 in Hyesan City, Ryanggang Province; Professor; chief of Department of Paleontology, Faculty of Geology, Kim Il Sung University; he is now interested in the study on Mesozoic animal fossils. E-mail: geog1@ryongnamsan.edu.kp

About the corresponding author
KwangSik SO, Male; born in 1976 in Pyongwon County, Pyongan South Province; graduated from Kim Il Sung University; Doctor; teacher of Department of Paleontology, Faculty of Geology, Kim Il Sung University; He is now interested in the study on Mesozoic animal fossils. E-mail: ks.so@ryongnamsan.edu.kp