东昆仑东段都兰热水花岗岩锆石 U-Pb 年龄、 地球化学及构造意义

韩建军1),李运冬2),宋传中3),何俊4),韩旭3),祁昌炜1),赵明福1),何孝良2)

1)青海省地质调查局,西宁,810001;2)河南省地质矿产勘查开发局第三地质矿产调查院,郑州,450008;
3)合肥工业大学资源与环境工程学院,合肥,230009;4)中国科学技术大学地球和空间科学学院,合肥,230026

内容提要:都兰热水地区位于东昆仑造山带东段,发育着大量花岗岩岩石组合,主要岩石类型为二长花岗岩和 花岗闪长岩,本文报道了对都兰热水地区二长花岗岩和花岗闪长岩的地球化学、LA-ICP-MS 锆石 U-Pb 定年的研 究结果,为建立完善的年代学格架和构造演化提供了新资料。锆石 U-Pb 同位素定年研究表明东昆仑东段都兰热 水地区的二长花岗岩和花岗闪长岩的结晶侵位时代分别是 232.4±1.3 Ma、230.8±1.1 Ma,属中三叠世花岗岩浆 作用的产物。岩矿特征和岩石地球化学特征显示二长花岗岩和花岗闪长岩属高钾钙碱性 I 型花岗岩,具较高的 K₂O含量(2.2%~4.74%);铝饱和指数 A/CNK 值都小于 1.1,显示准铝质特征;P₂O₅与 SiO₂之间存在明显的负相 关性,还表现出富集轻稀土元素、大离子亲石元素(如 K、Rb、La),亏损重稀土元素和高场强元素(如 Nb、Ta、Ti、P) 及 Eu 负异常特征。结合前人区域地质研究,我们认为东昆仑东段都兰热水地区花岗岩岩石组合是受幔源岩浆的 底侵作用导致下地壳部分熔融而形成,幔源岩浆与壳源岩浆发生不同比例混合,并在岩浆演化过程中发生了一定 的分离结晶作用。晚二叠世阿尼玛卿洋向东昆仑板块俯冲,直至中三叠世都兰热水地区仍处于洋壳俯冲而产生的 火山弧环境,二长花岗岩和花岗闪长岩就是这一阶段的典型产物。

关键词:二长花岗岩;花岗闪长岩;地球化学;锆石 U-Pb 年龄;构造环境;都兰热水

都兰地区是超高压变质作用和碰撞造山作用研 究较为成熟的地区之一,是两大造山带的结合部位。 北部处于柴北缘构造带构造中,众多学者于本世纪 在柴北缘构造带就报道了柯石英这一超高压指示矿 物的存在(Yang Jingsui et al.,2001; Yang J S et al.,2002; Song S G et al.,2003),后续几年中也在 榴辉岩中发现了典型的柯石英(Zhang G B et al., 2009; Zhang Jianxin et al.2009, Zhang J X et al., 2010),近十年的研究厘定出了柴北缘超高压变质 带;南部位于东昆仑造山带东段,东昆仑构造带是中 央造山系的西段部分,广泛发育各时代不同成因、不 同构造环境下的岩浆岩石组合,但造山带的主要组 成还是晚古生代-早中生代碰撞拼合形成的弧岩浆 岩(姜春发等,2000; Mo Xuanxue et al.,2007; Xu Zhiqin et al.,2013; Luo Mingfei et al.,2014)。都 兰地区的岩浆岩旋回主要与东昆仑构造带早古生代 (加里东期)、晚古生代-早中生代(海西-印支期)两大 造山旋回关系密切,区域上花岗岩年代学研究可以看 出古生代花岗岩年龄可分为三期(Yu Shengyao et al.,2011; Wu Cailai et al.,2014),分别是 432 ~ 434Ma、407~397Ma和 383~373Ma;晚古生代-早中 生代的岩浆岩形成年龄主要集中在晚二叠世-中三叠 世(263~239Ma,Li Ruibao et al.,2018)。

都兰热水位于东昆仑造山带东段,地质构造复 杂,岩浆活动频繁,发育大量的花岗质岩体,空间上 也伴有大面积的火山岩出露。大面积出露的花岗质 岩体必定伴随一期或多期次的构造运动,其岩石成 因与构造带的形成、演化关系密切,对此类岩体的深 入研究可以进一步了解汇聚板块边缘和大陆内部壳 幔相互作用及地球动力学过程(Castro et al.,1991;

收稿日期:2019-06-19;改回日期:2019-08-23;网络发表日期:2019-12-16;责任编委:张招崇;责任编辑:黄敏。

作者简介:韩建军,男,1991年生。硕士,工程师。主要从事构造地质学及矿产勘查工作。Email:wsxh91@foxmail.com。通讯作者:李运 冬,男,1984年生。高级工程师。主要从事区域地质矿产调查工作。Email:184264846lyd@163.com。

引用本文:韩建军,李运冬,宋传中,何俊,韩旭,祁昌炜,赵明福,何孝良. 2020. 东昆仑东段都兰热水花岗岩锆石 U-Pb 年龄、地球化学及构造意义. 地质学报,94(3):768~781, doi: 10.19762/j.cnki.dizhixuebao.2020031. Han Jianjun,Li Yundong,Song Chuanzhong,He Jun,Han Xu,Qi Changwei,Zhao Mingfu,He Xiaoliang. 2020. Zircon U-Pb dating and geochemistry of granite in the Reshui area of Dulan County, eastern section of east Kunlun orogen and its tectonic implications. Acta Geologica Sinica, 94(3):768~781.

注:本文为青海省地质勘查基金项目(编号青国土资矿[2009]239号)资助的成果。

Xiao Qinghui et al.,2007; Jia X L et al.,2016),花 岗岩成因研究也成为了近年来地球科学研究领域的 热点之一(Xiao Qinghui et al.,2003,2009; Liu Bin et al.,2012; Luo Mingfei et al.,2014; Chen Guochao et al.,2013,2018)。在都兰热水一带分布 的花岗质岩体与上三叠统鄂拉山组火山岩,两者的 年龄几乎一致(Pan Guitang et al.,1997; Li Yundong et al.,2014),为进一步明确该套花岗质 岩体的准确结晶年龄,全面了解这一期岩浆岩石成 因、岩浆源区及构造意义,笔者以都兰热水一带出露 的花岗岩类岩石为研究对象,提供了 LA-ICP-MS 锆石 U-Pb 年代学和岩石地球化学资料,探讨了这 一套侵入岩的成因及花岗质岩浆的形成过程,对岩 浆作用的构造环境进行分析讨论。

1 地质背景及样品特征

都兰热水地区构造位置处于东昆北岩浆弧构造

单元中,大地构造位置在秦祁昆三大构造带结合部 位(图 1a),位于祁漫塔格-都兰铁、铜、铅、锌、钨、锡、 铋、金、钼成矿亚带中,经历了早古生代和晚古生代-早中生代的多期强烈的造山运动,伴有多期构造-岩 浆活动和成矿作用,区域上的大多矿床也以铁、铜、 铅、锌为主(Xu Changkun et al.,2012;Pan Tong et al.,2004;Zhang Zhanyu et al.,2011),其中铁矿与 中酸性岩浆活动关系密切,在碳酸盐岩发育的地段 形成砂卡岩型铁矿床(Feng Chengyou et al., 2011);另外,斑岩-砂卡岩型铜多金属矿也大多与花 岗质岩浆作用期后的热液有关(Wu Jianhui et al., 2010),可以看出,都兰地区出露的中酸性岩浆活动 对区域成矿影响较为重要。

区域地层主要为石炭系、晚三叠世鄂拉山组,分 布较零散。构造线方向以 NW、NWW 向为主,NE 向次之。研究区出露的地层为三叠世鄂拉山组 (T₃e,图 1b),主要是一套陆相中酸性火山碎屑岩为

图 1 东昆仑东段都兰热水地区大地构造位置(a)及地质简图(b)

主的夹火山熔岩及不稳定沉积碎屑岩的地层(青海 省岩石地层,1997),喷发不整合于侵入岩之上(图 2a、b)。区内有一条倾向 SE 的逆断层(F1)和一条 倾向 SW 的隐伏正断层(F2),地形上对应沟谷,F1 逆断层切割了花岗闪长岩体、二长花岗岩体(图 2d) 和晚三叠世鄂拉山组地层,F2 切割了花岗闪长岩 体,断层形成时间晚于花岗闪长岩体侵位时代。

研究区出露的侵入岩主要是花岗闪长岩体、二 长花岗岩体,是本次研究的主要对象,测试样品位置 在七道班南部出露的二长花岗岩体和克错多南部的 花岗闪长岩体(图1),两者呈脉动接触,局部地区呈 断层接触(F1)。花岗闪长岩主要分布在克错多周 边,大小岩体约5处,侵入体产状有岩基和小岩株, 岩体中多见闪长岩包体(图2c),在较大的侵入岩体 内部岩石结构变化较大,外围花岗闪长岩多呈中细 粒结构,内部结晶较好,呈中粗粒似斑状结构,二者 之间呈涌动接触。二长花岗岩体大小约7处,研究 区外的西北部侵入体以岩基形式大量出露,岩体从 外围到内部,岩体中暗示矿物减少,矿物粒度逐渐变 粗,另外,在岩体外围也可见闪长岩暗色包体。

花岗闪长岩呈灰白色,中细粒花岗结构,块状构造。主要矿物组合为斜长石、钾长石、石英及暗色矿物。斜长石(35%~40%):呈自形-半自形,主要为更长石和中长石,发育环带结构及细密的聚片双晶。 钾长石(10%~25%):多为半形粒状,主要是正长石和条纹长石,见卡式双晶、条纹结构,少见具格子双晶的微斜长石。石英约25%,多呈它形填充在其他矿物之间。暗色矿物主要是角闪石和黑云母,含量10%左右,多色性明显,角闪石具斜消光,中高突起, 黑云母发育平行解理,具平行消光。

二长花岗岩呈肉红色,风化面淡肉红色,中粗粒 花岗结构,块状构造。主要矿物组合为斜长石、钾长

图 2 东昆仑东段都兰热水地区岩体野外照片

Fig. 2 Field photos of intrusive rock from Reshui area in Dulan county, eastern section of east Kunlun orogen

(a)—花岗闪长岩与鄂拉山组不整合接触;(b)—二长花岗岩与鄂拉山组不整合接触;

(c)一花岗闪长岩中闪长岩包体;(d)一二长花岗岩与花岗闪长岩断层接触

 $(a) - Invasive \ boundary \ between \ granodiorite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ Elashan \ formation; (b) - Invasive \ boundary \ between \ monzogranite \ and \ between \ monzogranite \ and \ between \ monzogranite \ boundary \ between \ boundary \ between \ boundary \ between \ boundary \ boundary \ between \ boundary \ boundary \ between \ boundary \ boundary \ boundary \ boundary \ between \ boundary \ bou$

(c)—Dioritic xenoliths in granodiorite;(d)—Fault contact between granodiorite and monzogranite

石、石英、黑云母。斜长石(30%~40%):呈自形-半 自形,主要为更长石和中长石,发育细密的聚片双晶 纹和环带结构,具黏土化、绢云母化。钾长石(30% ~35%):主要是正长石和条纹长石,正长石呈半自 形粒状,具卡式双晶,条纹长石有明显的条纹结构, 其中有石英的包体;见少量微斜长石,具黏土化。石 英约25%,它形粒状充填在其他矿物间。暗色矿物 1%~2%,主要是黑云母,具平行解理,呈褐-浅黄多 色性,具绿泥石化。

2 分析方法

锆石分选、U-Pb 测年工作均在在中国地质调 查局天津地质矿产研究所同位素实验室完成,使用 的测试仪器是一套激光烧蚀多接收器电感耦合等离 子体质谱仪(LA-MC-ICPMS)系统,该系统的多接 收器电感耦合等离子体质谱仪为 Thermo Fisher 公 司制造的 Neptune,其离子光学通路采用能量聚焦 和质量聚焦的双聚焦设计,并采用动态变焦 (ZOOM)使质量色散达到 17%,仪器配有 9 个法拉 第杯接收器和 4 个离子计数器接收器。激光器为美 国 ESI 公司生产的 UP193-FX ArF 准分子激光器, 激光波长 193nm,脉冲宽度 5ns,束斑直径为 1、2、 10、20、25、35、50、75、76、100 和 150μm 可调,脉冲 频率 1~200Hz 连续可调。

锆石测年方法:先将挑选出的粘到载玻片上,套 上 PVC 环,将环氧树脂和固化剂混合注入环内,待 充分固化后从玻片上剥离,进行打磨、剖光,制靶完 成。对靶上锆石样进行显微镜下的反射光和透射光 拍照以及阴极发光(cathode luminescence)拍照,根 据错石阴极发光照片、反射光和透射光照片在锆石 表面选择合适的测年点域(Song Biao et al., 2002), 用无水乙醇清理锆石表面,用激光器进行剥蚀测试, 激光剥蚀的斑束直径为 35µm 或 50µm,利用动态变 焦扩大色散可以同时接收质量数相差很大的 U-Pb 同位素从而进行锆石 U-Pb 同位素原位测定。测试 过程中利用 SRM610、GJ-1 两个外部标样,对仪器 的工作状态进行校准,先对 SRM610、GJ-1 分别测 试两个点,然后每8个样品点测试两个GJ-1,每32 个点加测两个 SRM610。数据处理软件使用 ICPMSDataCal 程序(Liu Y S et al., 2010)和 Isoplot 程序(Ludwig, 2001)进行数据处理,采用 ²⁰⁸ Pb校正法对普通铅进行校正。利用 SRM610 玻 璃标样作为外标计算锆石样品的 Pb、U、Th 含量。

硅酸盐、微量、稀土元素测试在澳实分析检测

(广州)有限公司分析。硅酸盐岩主量分析用 X 荧 光光谱仪检测,仪器型号 PANalytical PW2424,试 样加入含硝酸锂的硼酸锂-硝酸锂熔融助熔剂,充分 混合后,高温熔融,熔融物倒入铂金模子形成扁平玻 璃片后,再用 X 荧光光谱仪分析;另外,用氢氟酸和 硫酸分解试样,以二苯胺磺酸钠为指示剂,用基准重 铬酸钾溶液滴定,计算氧化亚铁含量。微量、稀土元 素测试分别用电感耦合等离子体发射光谱(ICP-AES)和电感耦合等离子体质谱仪(ICP-MS)检测, 称取两份试样,一份试样用高氯酸、硝酸、氢氟酸消 解。蒸至近干后的样品用稀盐酸溶解定容,再用等 离子体发射光谱与等离子体质谱进行分析。另一份 试样加入到偏硼酸锂/四硼酸锂熔剂中,混合均匀, 在 1025°C 以上的熔炉中熔化。熔液冷却后,用硝 酸、盐酸和氢氟酸定容,再用等离子体质谱仪分析。

3 分析结果

3.1 LA-ICP-MS 锆石 U-Pb 定年

测试的二长花岗岩和花岗闪长岩中锆石晶形相 似,大多呈自形-半自形短柱状,锆石颗粒长多数在 110~150µm之间,长宽比大部分为2:1,锆石阴极 发光图像(CL)显示锆石晶形较完好,岩浆振荡环带 发育完整(图3a、b),表现出岩浆锆石的特征。锆石 中Th/U比值均大于0.4,因此,从锆石的内部结构 特征和成分综合判断其为岩浆结晶成因锆石 (Rubatto et al.,2000;Wu Yuanbao et al.,2004), 获得的²⁰⁶ Pb/²³⁸ U加权平均年龄(图3b、d)即代表岩 体的结晶年龄。

LA-ICP-MS 锆石 U-Pb 测年分析结果(表 1)表 明,二长花岗岩样品(YP5)测得 32 个有效测试点, 锆石中 Th 含量为 $103 \times 10^{-6} \sim 857 \times 10^{-6}$,U含量 为 $200 \times 10^{-6} \sim 979 \times 10^{-6}$,Th/U 比值介于 0.4601 ~0.8757 之间,得到²⁰⁶ Pb/²³⁸ U 年龄集中于 223~ 240Ma,对应的加权平均年龄为 232.4±1.3 Ma (MSWD=1.2, N=32),其代表了二长花岗岩的结 晶年龄。

花岗闪长岩样品(YP8)测得 35 个有效测试点, 错石中 Th 含量为 $140 \times 10^{-6} \sim 793 \times 10^{-6}$, U 含量 为 $222 \times 10^{-6} \sim 713 \times 10^{-6}$, Th/U 比值介于 0.5354 ~1.2962 之间,得到²⁰⁶ Pb/²³⁸ U 年龄集中于 225~ 234Ma, 对应的加权平均年龄为 230.8±1.1 Ma (MSWD=0.68, N=35),其代表了花岗闪长岩的结 晶年龄。

图 3 二长花岗岩(a,c)、花岗闪长岩(b,d)的锆石阴极发光图像(CL)和谐和图 Fig. 3 CL images and U-Pb concordia diagrams of zircons from monzogranite(a, c) and granodiorite(b, d)

3.2 岩石地球化学

都兰县热水地区二长花岗岩和花岗闪长岩的主 量元素分析见表 2。二长花岗岩样品中 SiO₂含量 70.28%~75.94%, Al₂ O₃ 含量介于 11.83%~ 14.24%之间,含量变化不大,岩石中 MgO 含量 0.4%~1.21%左右,全碱含量(Na2O+K2O)介于 6.89%~8.13%之间,TAS 图解中样品全部落入花 岗闪长岩(图 4a),里特曼(系列)指数(σ)为1.58~ 2.28,表现为钙碱性;主量元素地球化学特征可以确 定二长花岗岩样品的铝饱和指数 A/CNK 几乎都小 于1(0.84~1.01), A/NK 全部大于1(1.16~ 1.31),样品均显示出具准铝质岩石的特征(图 4b)。 二长花岗岩样品的稀土总量变化较大, Σ REE 值介 于143.3×10⁻⁶~234.5×10⁻⁶间,轻稀土含量明显 高,介于112.29×10⁻⁶~209.1×10⁻⁶之间,重稀土 含量偏低,LREE/HREE 比值为 8.23~19.77,稀土 元素球粒陨石标准化图(图 4c)一致表现为右倾型 曲线,具较明显的 Eu 异常。轻稀土富集,岩石属轻 稀土富集型;而重稀土元素 Ho 到 Lu 的曲线分布平 坦,说明重稀土亏损。在微量元素原始地幔标准化 微量元素蛛网图(图 4d)中,各样品具相似的分配型 式,显示富集 K、Rb、La 等大离子亲石元素,亏损 Nb、Ta、Ti、P 等高场强元素。

花岗闪长岩样品的 SiO₂含量 61.26% ~ 72.74%, Al₂O₃含量介于 13.72% ~ 17.2% 之间, 含

量变化不大, MgO 含量 0.77%~2.73%, 全碱含量 (Na₂O+K₂O)介于 6.26%~7.4%之间, TAS 图解 中大多数样品落入花岗闪长岩中(图 4a), 里特曼 (系列)指数(σ)为 1.47~2.32, 表现为钙碱性; 主量 元素地球化学特征可以确定花岗闪长岩样品 K₂O/ Na₂O 比值几乎都小于 1(0.55~1.1), 岩石相对表 现为富钠; 铝饱和指数 A/CNK 几乎都小于 1(0.90 ~1.03), A/NK 均大于 1(1.34~1.86), 样品显示 出具准铝质岩石的特征(图 4b)。

岩石样品稀土总量(Σ REE)变化范围大,介于 83.76×10⁻⁶~210.06×10⁻⁶间,轻稀土为77.14× 10⁻⁶~195.74×10⁻⁶,LREE/HREE 比值为6.73~ 27.24,稀土元素球粒陨石标准化图(图4c)十分一 致地表现为右倾型曲线,具有弱的负Eu异常。轻 稀土富集,岩石属轻稀土富集型;而重稀土元素Ho 到Lu的曲线分布平坦,说明重稀土略微亏损。在 微量元素原始地幔标准化微量元素蛛网图(图4d) 中,显示明显富集K、Rb、La等大离子亲石元素,亏 损Nb、Ta、Ti、P等高场强元素。

4 讨论

4.1 形成时代

都兰县地区处于东昆仑东段,发育大量的古生 代-中生代花岗质岩体,具有明显的多期次的特征。 针对都兰县地区的古生代花岗岩序列,Wu Cailai et

图 4 二长花岗岩、花岗闪长岩的 TAS 图解(a, Middlemost, 1994); A/CNK-A/NK 图解(b, Shand, 1927);球粒陨石标准化 稀土元素配分图(c,标准化值据 Boynton, 1984)和原始地幔标准化微量元素蛛网图(d,标准化值据 Sun S Set al., 1989) Fig. 4 TAS diagram(a, Middlemost, 1994); A/CNK vs. A/NK diagram(b, Shand, 1927); Chondrite-normalized rare earth element distribution patterns(c, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spidergrams(d, normalization values after Sun S S et al., 1989) for monzogranite and granodiorite

al. (2014)和 Yu Shengyao et al. (2011)对都兰地区 花岗岩进行了 SHRIMP 和锆石 U-Pb 定年研究,该 区花岗岩岩石组合明显分为三期,早期为 432~ 434Ma,与深俯冲/碰撞有关的高压-超高压变质事 件的时代基本一致;中期是 407~397Ma,与俯冲板 片断离折返有关;晚期是 383~373Ma,与造山带岩 石圈地幔拆沉作用有关。东昆仑东段地区广泛发育 的晚古生代-早中生代花岗质侵入岩是布青山-阿尼 玛卿古特提斯洋向北俯冲于东昆仑地块之下而形成 的(Li Ruibao, 2012; Li Bile et al., 2012; Ma Changqian et al.,2015),形成时间集中于晚二叠世-中三叠世,代表了东昆仑南缘古特提斯洋的闭合阶 段,构成了东昆仑造山带弧岩浆岩的主要组成。

本文对都兰热水地区二长花岗岩和花岗闪长岩 进行了锆石 U-Pb 年龄测试,结果表明二长花岗岩 样品²⁰⁶ Pb/²³⁸ U 加权平均年龄为 232.4±1.3 Ma,花 岗闪长岩样品年龄为 230.8±1.1 Ma,两者的结晶侵 位年龄非常相近,应属于同一岩浆-构造活动期的产 物,均形成于中三叠世,单从岩体的侵位时间来看,可 初步推断该期岩浆活动与古特提斯洋闭合阶段有关。

4.2 岩石成因及源区

二长花岗岩和花岗闪长岩的形成年龄非常相近,它们很可能是同源岩浆演化的产物,但也可以是由不同源岩浆差异性的部分熔融导致的。本文研究可以看出,二长花岗岩和花岗闪长岩中含有少量黑云母、角闪石,未见白云母等过铝质矿物,具有较高的 K₂O 和 SiO₂含量,表现为高钾钙碱性系列岩石特征(图 5a),铝饱和指数 A/CNK 值都小于 1.1(图 4b),与 I型花岗岩的典型特征极为接近,且明显区别于 S 型花岗岩特征(Sylvester,1998):含有白云母、堇青石、石榴子石等过铝质矿物,A/CNK>1.1, 且 K₂O>Na₂O。另外,在 I 型花岗岩中 P₂O₅含量

表 1 二长花岗岩、花岗闪长岩的锆石 LA-ICP-MS U-Pb 测年分析结果

Table 1 LA-ICP-MS U-Pb zircon analysis results for monzogranite and granodiorite

4¥ D	元素含量(×10 ⁻⁶)			Th/U			同位素	同位素年龄(Ma)						
作印编号	Dh	Th	TI	Patio	$^{207}\mathrm{Pb}/$	1.	$^{207}\mathrm{Pb}/$	1.	$^{206}\mathrm{Pb}/$	1.	$^{207}\mathrm{Pb}/$	$^{207}\mathrm{Pb}/$	$^{206}\mathrm{Pb}/$	1.
C' m.	10	111		Ratio	$^{206}\mathrm{Pb}$	10	²³⁵ U	10	²³⁸ U	10	²³⁵ U	$^{206}\mathrm{Pb}$	²³⁸ U	10
		r				Y	P5(二长花	吃岗岩)						
1	8	103	200	0.5166	0.0520	0.0018	0.2651	0.0091	0.0370	0.0003	239	283	234	4
2	23	336	576	0.5827	0.0532	0.0007	0.2718	0.0036	0.0371	0.0003	244	336	235	3
3	17	336	417	0.8063	0.0578	0.0007	0.2882	0.0037	0.0362	0.0003	257	523	229	4
4	27	425	688	0.6172	0.0524	0.0004	0.2675	0.0022	0.0370	0.0004	241	302	234	4
5	24	332	613	0.5418	0.0497	0.0005	0.2570	0.0028	0.0375	0.0004	232	182	237	4
6	20	343	493	0.6963	0.0553	0.0007	0.2875	0.0038	0.0377	0.0003	257	425	239	4
7	24	374	634	0.5902	0.0558	0.0006	0.2808	0.0034	0.0365	0.0004	251	443	231	5
8	29	449	746	0.6015	0.0544	0.0005	0.2727	0.0027	0.0364	0.0005	245	386	230	4
9	20	314	491	0.6389	0.0524	0.0009	0.2683	0.0046	0.0371	0.0003	241	304	235	5
10	18	347	431	0.8047	0.0506	0.0007	0.2611	0.0035	0.0374	0.0005	236	224	237	4
11	17	284	412	0.6893	0.0550	0.0011	0.2783	0.0054	0.0367	0.0003	249	414	232	4
12	16	311	375	0.8285	0.0539	0.0009	0.2784	0.0055	0.0375	0.0007	249	365	237	3
13	32	530	716	0.7408	0.0564	0.0012	0.2891	0.0064	0.0372	0.0004	258	469	235	3
14	15	228	372	0.6131	0.0529	0.0008	0.2767	0.0041	0.0379	0.0006	248	324	240	4
15	31	457	817	0.5595	0.0510	0.0004	0.2592	0.0020	0.0369	0.0004	234	240	233	4
16	27	446	659	0.6770	0.0530	0.0007	0.2738	0.0032	0.0374	0.0003	246	330	237	5
17	19	234	508	0.4601	0.0517	0.0005	0.2630	0.0028	0.0369	0.0004	237	271	234	4
18	10	148	256	0. 5800	0. 0509	0.0010	0. 2626	0.0055	0.0375	0.0005	237	234	237	3
19	19	354	484	0.7316	0.0527	0.0006	0.2619	0.0029	0.0361	0.0004	236	314	228	3
20	18	267	485	0.5509	0.0513	0.0006	0.2013	0.0023	0.0364	0.0004	230	253	230	
20	26	425	685	0.6200	0.0510	0.0004	0.2512	0.0025	0.0363	0.0004	234	200	230	2
21	20	527	756	0.0203	0.0526	0.0004	0.2004	0.0020	0.0303	0.0004	234	201	230	5
22	20	957	070	0.0300	0.0510	0.0021	0.2034	0.0133	0.0252	0.0000	242	201	200	
23	12	160	242	0.0131	0.0519	0.0003	0.2310	0.0010	0.0352	0.0003	240	401	223	4
24	10	100	615	0.4000	0.0547	0.0009	0.2704	0.0047	0.0309	0.0003	249	401 265	234	4
20	20	409	593	0.0040	0.0515	0.0005	0.2550	0.0024	0.0300	0.0004	229	200	220	4
20	21	400	523	0.7657	0.0528	0.0007	0.2034	0.0033	0.0362	0.0004	237	319	229	4
27	9	130	230	0.5665	0.0543	0.0011	0.2675	0.0058	0.0357	0.0003	241	385	226	3
28	12	182	312	0.5834	0.0547	0.0010	0.2/4/	0.0047	0.0364	0.0004	246	398	231	3
29	22	306	606	0.5042	0.0529	0.0006	0.2609	0.0028	0.0357	0.0004	235	327	226	5
30	23	312	617	0.5058	0.0524	0.0004	0.2639	0.0022	0.0365	0.0005	238	301	231	5
31	10	137	278	0.4945	0.0542	0.0009	0.2699	0.0049	0.0361	0.0005	243	379	229	4
32	39	662	958	0.6910	0.0552	0.0006	0.2825	0.0022	0.0371	0.0005	253	422	235	5
		2.10	-			Y	P8(花岗)	」长岩)			2.1.5		222	-
1	14	243	345	0.7029	0.0531	0.0009	0.2661	0.0047	0.0363	0.0004	240	334	230	5
2	16	254	392	0.6483	0.0528	0.0007	0.2672	0.0037	0.0367	0.0003	240	321	232	4
3	17	294	387	0.7598	0.0558	0.0010	0.2781	0.0055	0.0362	0.0004	249	443	229	5
4	29	793	612	1.2962	0.0545	0.0008	0.2699	0.0040	0.0359	0.0002	243	393	227	3
5	16	272	374	0.7271	0.0519	0.0010	0.2682	0.0053	0.0375	0.0003	241	282	237	3
6	9	170	228	0.7456	0.0562	0.0015	0.2847	0.0076	0.0368	0.0003	254	459	233	4
7	19	410	459	0.8928	0.0538	0.0008	0.2729	0.0042	0.0368	0.0002	245	364	233	3
8	19	333	483	0.6903	0.0542	0.0007	0.2699	0.0031	0.0361	0.0004	243	381	229	6
9	16	257	387	0.6634	0.0520	0.0008	0.2642	0.0042	0.0368	0.0002	238	287	233	2
10	9	164	233	0.7020	0.0536	0.0012	0.2708	0.0063	0.0367	0.0003	243	353	232	3
11	26	443	638	0.6941	0.0526	0.0010	0.2651	0.0048	0.0366	0.0002	239	311	231	2
12	18	320	456	0.7025	0.0518	0.0006	0.2636	0.0031	0.0369	0.0004	238	277	234	4
13	19	330	487	0.6782	0.0510	0.0005	0.2577	0.0025	0.0367	0.0004	233	240	232	4
14	12	226	320	0.7059	0.0505	0.0009	0.2482	0.0045	0.0356	0.0003	225	219	226	3
15	15	237	365	0.6506	0.0559	0.0012	0.2834	0.0063	0.0368	0.0003	253	448	233	2
16	9	151	240	0.6307	0.0523	0.0016	0.2647	0.0082	0.0367	0.0003	238	299	232	3
17	21	388	524	0.7396	0.0526	0.0010	0.2629	0.0059	0.0362	0.0003	237	313	229	3
18	11	168	281	0.5966	0.0544	0.0013	0.2684	0.0066	0.0358	0.0004	241	389	227	3
			-			-	-	-	-				-	

775

					续表	₹1								
4¥ D	元素	元素含量(×10-6)					同位素	同位素年龄(Ma)						
样前 编号	Pb	Th	U	Ratio	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	1σ
19	14	201	376	0.5354	0.0580	0.0010	0.2874	0.0050	0.0359	0.0006	257	530	228	6
20	14	237	357	0.6645	0.0576	0.0010	0.2844	0.0048	0.0358	0.0004	254	515	227	4
21	28	500	713	0.7010	0.0543	0.0005	0.2726	0.0024	0.0364	0.0004	245	383	231	5
22	10	177	242	0.7328	0.0533	0.0014	0.2685	0.0072	0.0366	0.0004	241	340	231	4
23	16	330	397	0.8303	0.0530	0.0008	0.2633	0.0037	0.0361	0.0004	237	327	228	4
24	17	347	431	0.8060	0.0508	0.0006	0.2537	0.0032	0.0362	0.0003	230	233	229	3
25	16	365	395	0.9247	0.0531	0.0009	0.2656	0.0051	0.0363	0.0003	239	333	230	2
26	9	171	226	0.7583	0.0512	0.0014	0.2501	0.0068	0.0354	0.0003	227	249	225	3
27	10	170	267	0.6365	0.0568	0.0014	0.2859	0.0085	0.0365	0.0004	255	486	231	5
28	12	212	310	0.6842	0.0524	0.0010	0.2650	0.0052	0.0367	0.0004	239	305	232	4
29	9	145	222	0.6545	0.0512	0.0012	0.2601	0.0062	0.0368	0.0004	235	252	233	4
30	9	140	249	0.5623	0.0517	0.0012	0.2601	0.0061	0.0365	0.0004	235	274	231	4
31	15	274	370	0.7400	0.0559	0.0010	0.2776	0.0060	0.0360	0.0005	249	449	228	6
32	11	179	284	0.6301	0.0547	0.0011	0.2791	0.0056	0.0370	0.0003	250	400	234	3
33	11	217	280	0.7737	0.0554	0.0011	0.2747	0.0057	0.0359	0.0003	246	430	228	4
34	13	268	316	0.8467	0.0555	0.0018	0.2783	0.0125	0.0364	0.0005	249	433	230	6
35	13	194	320	0.6054	0.0526	0.0014	0.2645	0.0078	0.0365	0.0003	238	311	231	3

表 2 二长花岗岩和花岗闪长岩的常量元素(%)、稀土和微量元素数据(×10⁻⁶)

Table 2 Major (%) and trace ($\times 10^{-6}$) element compositions of monzogranite and granodiorite

岩性		二长花	花岗岩		花岗闪长岩											
样品号	YP5	YP10	YP28	YP37	YP6	YP8	YP15	YP16	YP19	YP21	YP22	YP23	YP24	YP25	YP32	YP34
SiO_2	70.28	75.94	73.70	71.94	70.52	66.64	68.14	61.26	63.40	68.74	69.40	68.22	71.26	72.74	64.66	71.28
${\rm TiO}_2$	0.22	0.15	0.20	0.30	0.30	0.40	0.45	0.75	0.62	0.30	0.35	0.35	0.28	0.25	0.55	0.35
$\mathrm{Al}_2\mathrm{O}_3$	14.24	12.36	13.00	11.83	13.72	14.66	14.77	16.55	17.20	15.00	14.70	15.20	14.40	13.90	16.45	13.98
$\mathrm{Fe}_2\mathrm{O}_3$	1.14	0.10	0.75	1.42	0.59	1.40	1.49	2.43	1.75	0.97	1.22	1.46	1.12	0.91	1.34	0.46
FeO	1.68	1.35	1.40	2.32	2.98	3.42	2.35	4.03	2.75	1.65	1.78	1.93	1.33	1.25	3.52	2.68
MnO	0.05	0.02	0.04	0.05	0.15	0.05	0.05	0.09	0.07	0.05	0.05	0.05	0.05	0.04	0.06	0.05
MgO	0.61	0.40	0.44	1.21	0.91	2.02	1.11	2.73	1.23	1.10	1.21	1.31	0.88	0.77	1.41	0.81
CaO	2.19	1.46	1.08	2.78	2.19	3.95	3.36	5.12	5.04	3.49	3.09	3.36	2.55	2.42	3.51	2.19
Na_2O	4.22	3.39	3.99	3.18	4.09	3.43	3.82	4.02	4.00	3.54	3.62	3.73	3.77	3.81	4.15	3.38
K_2O	3.66	4.74	3.97	3.62	3.22	3.08	3.33	2.20	2.55	3.38	2.99	3.07	3.15	2.80	2.94	3.73
P_2O_5	0.06	0.02	0.04	0.06	0.06	0.10	0.14	0.16	0.15	0.08	0.13	0.13	0.07	0.07	0.12	0.08
LOI	1.47	0.73	0.96	1.31	1.08	0.82	1.07	1.06	1.10	1.28	1.09	1.01	0.79	0.59	1.28	1.03
Total	99.82	100.66	99.57	99.98	99.81	99.97	100.08	100.40	99.71	99.58	99.63	99.82	99.65	99.55	99.99	99.99
A/CNK	0.96	0.93	1.01	0.84	0.97	0.91	0.92	0.90	0.94	0.95	0.99	0.98	1.01	1.01	1.00	1.03
A/NK	1.31	1.16	1.19	1.30	1.34	1.63	1.49	1.84	1.86	1.58	1.60	1.61	1.50	1.49	1.64	1.46
Mg #	28.67	33.12	27.43	37.48	31.60	43.48	34.90	43.91	33.64	43.73	42.84	41.86	40.15	39.88	34.72	31.82
K_2O/Na_2O	0.87	1.40	0.99	1.15	0.79	0.90	0.87	0.55	0.65	0.95	0.82	0.82	0.83	0.73	0.71	1.10
σ	2.28	2.01	2.06	1.58	1.94	1.79	2.03	2.12	2.06	1.86	1.66	1.83	1.69	1.47	2.32	1.79
La	52.10	39.90	48.70	29.30	39.70	45.30	35.00	34.90	35.00	19.50	29.00	34.70	45.50	36.40	51.20	35.00
Ce	99.60	69.10	92.10	53.60	76.50	80.30	68.20	71.90	72.90	36.50	53.00	61.70	79.90	63.30	92.20	63.70
Pr	10.75	6.22	10.15	5.61	8.39	7.54	7.54	8.24	8.64	3.90	5.36	6.21	7.32	6.07	10.00	6.46
Nd	37.80	18.10	35.60	19.50	30.00	23.90	26.80	30.60	32.30	13.90	17.60	20.00	21.80	18.30	35.30	21.80
Sm	7.97	2.63	6.51	3.58	6.34	3.75	4.69	5.89	6.85	2.64	2.89	3.16	2.84	2.64	5.64	3.52
Eu	0.88	0.45	0.75	0.70	1.34	0.86	1.13	1.47	1.42	0.70	0.74	0.78	0.63	0.62	1.40	0.71
Gd	8.15	2.76	6.18	3.36	6.64	3.73	4.24	5.52	6.59	2.30	2.64	2.89	2.72	2.45	5.02	3.12
Tb	1.24	0.30	0.98	0.53	1.03	0.46	0.51	0.76	0.97	0.31	0.32	0.34	0.26	0.26	0.69	0.45
Dy	6.78	1.39	5.93	3.26	5.93	2.26	2.17	4.06	5.16	1.50	1.58	1.61	1.09	1.15	3.60	2.59
Ho	1.29	0.28	1.20	0.68	1.27	0.47	0.42	0.83	1.05	0.31	0.32	0.33	0.21	0.23	0.69	0.53
Er	3.82	0.90	3.82	2.18	3.93	1.40	1.22	2.44	3.14	0.93	0.95	1.03	0.68	0.72	1.99	1.60
Tm	0.51	0.14	0.55	0.32	0.63	0.21	0.17	0.35	0.43	0.14	0.14	0.14	0.09	0.10	0.27	0.24
Yb	3.16	0.98	3.82	2.32	4.07	1.34	1.07	2.18	2.82	0.98	0.95	1.02	0.64	0.70	1.80	1.76

1+	+	
457	-	.,
<u>ــــــــــــــــــــــــــــــــــــ</u>	70	- 24
_		_

岩性		二长花	花岗岩		花岗闪长岩											
样品号	YP5	YP10	YP28	YP37	YP6	YP8	YP15	YP16	YP19	YP21	YP22	YP23	YP24	YP25	YP32	YP34
Lu	0.45	0.15	0.57	0.36	0.63	0.21	0.16	0.35	0.40	0.15	0.50	0.15	0.11	0.12	0.26	0.26
ΣREE	234.50	143.30	216.86	125.30	186.49	171.43	153.32	169.49	177.67	83.76	115.64	134.06	163.79	133.06	210.06	141.74
LREE	209.10	136.40	193.81	112.29	162.27	161.65	143.36	153.00	157.11	77.14	108.59	126.55	157.99	127.33	195.74	131.19
HREE	25.40	6.90	23.05	13.01	24.12	10.08	9.96	16.49	20.56	6.62	7.05	7.51	5.80	5.73	14.32	10.55
LREE/HREE	8.23	19.77	8.41	8.63	6.73	16.04	14.39	9.28	7.64	11.65	15.40	16.85	27.24	22.22	13.67	12.44
δEu	0.33	0.51	0.36	0.61	0.63	0.70	0.76	0.78	0.64	0.85	0.80	0.77	0.68	0.73	0.79	0.64
Ba	880.00	488.00	549.00	545.00	860.00	549.00	629.00	658.00	714.00	759.00	728.00	782.00	681.00	519.00	971.00	613.00
Th	20.60	36.30	22.10	21.00	16.00	21.90	16.10	9.44	10.70	9.88	13.30	14.70	21.20	17.65	13.25	28.20
Nb	22.80	8.20	22.50	10.50	14.70	8.40	13.30	12.30	15.90	8.20	9.10	9.80	7.60	7.80	12.20	11.50
Sr	168.50	124.50	95.30	181.50	165.50	353.00	528.00	482.00	412.00	470.00	481.00	482.00	378.00	376.00	402.00	240.00
Р	270.00	140.00	200.00	310.00	340.00	500.00	580.00	790.00	750.00	350.00	470.00	520.00	340.00	310.00	660.00	340.00
Zr	205.00	95.00	216.00	135.00	231.00	146.00	154.00	214.00	186.00	106.00	138.00	131.00	113.00	118.00	290.00	149.00
Ti	1300	800	1100	2300	1900	3500	2700	4600	3900	1900	2200	2400	1600	1400	3500	1800
Rb	174.50	185.00	162.50	136.00	124.00	127.50	138.00	89.40	100.50	113.50	96.20	103.50	108.50	103.00	112.00	154.00
Κ	30100	37200	34800	29100	26000	25000	27000	17800	21300	28100	25200	25100	26600	24200	24400	30200
Ta	1.10	0.80	1.70	1.00	1.00	0.70	1.10	0.80	1.30	1.00	0.80	0.90	0.50	0.70	0.70	1.20
Hf	5.60	2.90	6.50	4.10	5.60	3.70	3.90	5.10	4.80	3.00	3.60	3.40	3.10	3.20	7.50	4.40
U	2.43	3.14	2.30	2.53	2.18	1.92	2.58	1.15	2.03	1.60	1.41	1.56	1.55	1.35	1.70	4.63
Sc	7.00	2.00	6.00	7.00	11.00	10.00	4.00	15.00	10.00	5.00	5.00	6.00	4.00	3.00	10.00	5.00
Cs	6.97	5.01	3.33	4.37	5.96	0.04	2.88	3.87	2.44	3.89	2.71	2.91	2.13	2.02	8.34	6.38
V	12.00	10.00	10.00	35.00	14.00	76.00	45.00	113.00	56.00	32.00	36.00	39.00	21.00	19.00	35.00	27.00
Cr	<10.0	10.00	<10.0	10.00	<10.0	20.00	10.00	20.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	<10.0
Со	2.50	1.70	1.50	4.30	3.00	10.30	6.50	16.40	7.40	5.00	8.40	6.60	3.80	3.50	6.30	4.50
Ni	<5.00	<5.00	<5.00	<5.00	5.00	10.00	<5.00	11.00	5.00	7.00	7.00	7.00	<5.00	<5.00	6.00	<5.00
Υ	36.90	8.80	33.70	20.20	38.00	13.30	12.50	23.70	30.20	9.30	9.40	10.10	6.40	7.00	18.30	15.20
Nb/Ta	20.73	10.25	13.24	10.50	14.70	12.00	12.09	15.38	12.23	8.20	11.38	10.89	15.20	11.14	17.43	9.58
Zr/Hf	36.61	32.76	33.23	32.93	41.25	39.46	39.49	41.96	38.75	35.33	38.33	38.53	36.45	36.88	38.67	33.86

注: $Mg^{\#} = 100 * Mg/(Mg+Fe)$

图 5 二长花岗岩、花岗闪长岩的 K₂O-SiO₂ 图解(a,据 Rickwood,1989)和 Na₂O-K₂O 图解(b,据 Collins et al.,1982) Fig. 5 K₂O-SiO₂ diagram (a, Rickwood, 1989) and Na₂O-K₂O diagram

(b, after Collins et al., 1982) of monzogranite and granodiorite

非常低,且随着 SiO₂含量增加而减少,S型花岗岩与 之相反(Chappell,1999;Wu F Y et al.,2003a,b), 本次研究的两种岩石样品中 P_2O_5 与 SiO₂之间存在 明显的负相关性(图略,见表 2)。在花岗岩成因系 列 Na₂O-K₂O 图解(图 5b)中显示绝大多数落入 I 型花岗岩区,综上,岩矿特征和岩石地球化学特征共同指示了二长花岗岩和花岗闪长岩属于I型花岗岩。

花岗岩一般都是来自地壳的部分熔融,若壳源 岩浆与幔源物质发生了混染,岩浆混合后的特征就 会被保留,体现在侵位结晶的岩体中。二长花岗岩

和花岗闪长岩 Mg^{*}值(17.43~43.91,)均小于 45, 富集 K、Rb、La 等大离子亲石元素(LILE),亏损 Nb、Ta、Ti、P 等高场强元素(HFSE),可以认为此 类岩体很可能是下地壳岩石部分熔融形成的(Rapp et al.,1995,1999;Rudnick et al.,2003)。但本次二 长花岗岩和花岗闪长岩在野外多见椭圆状暗色闪长 质包体,岩浆过程中很难分馏的 Nb 和 Ta、Zr 和 Hf 元素也有不同的源区指示,需进一步探讨。样品的 Nb/Ta 比值为 8.2~20.73(表 2),总体介于地壳平 均值和原始地幔平均值之间,多数接近壳源岩石的 Nb/Ta 比值(比值为 11,Green et al.,1987;Green, 1995;Taylor et al.,1985;Barbarin,1999;Zhang Qi et al.,2005);同时,Zr/Hf 比值为 32.76~41.96,也 与地壳和幔源岩石之间 Zr/Hf 比值(比值为 33~ 36.3, Taylor et al., 1985)接近,这些特征都不同程 度的表明了幔源物质对花岗岩的起源与成因有所贡 献,岩石起源并非全部来源于下地壳部分熔融,可能 说明在熔浆运移过程中幔源物质一定程度上与地壳 起源的岩浆发生岩浆混合作用(Liu Chengdong, 2008; Chen Guochao et al., 2016)。另外,在东昆仑 地区幔源玄武质岩浆底侵活动从 251Ma 开始持续 到 220Ma(Luo Zhaohua et al., 2002; Xiong Fuhao et al. 2011),所以都兰热水地区的花岗岩也极有可 能受到幔源岩浆的底侵影响。

原始地幔标准化微量元素蛛网图中 Ti、P 元素 明显负异常,可能是发生钛铁矿、磷灰石分离结晶; 球粒陨石标准化稀土元素配分图中 Eu 的负异常很可能表明的是源区残留了部分斜长石,或是岩浆演化过程中发生了斜长石的分离结晶作用,但是 Sr 和 Ba 元素显示出一定负异常即可表明发生过斜长石分离结晶,所以可以确定在岩浆演化过程中发生过分离结晶作用。

综上,我们认为二长花岗岩和花岗闪长岩有相同的物质来源,是受幔源岩浆的底侵作用导致下地 壳部分熔融而形成,幔源岩浆与壳源岩浆发生不同 程度混合的结果,在岩浆演化过程中发生了一定的 分离结晶作用。

4.3 构造环境及意义

都兰热水地区二长花岗岩和花岗闪长岩地球化 学特征显示主量元素呈高钾钙碱性准铝质岩石的特 征(图 4b,5a),微量元素蛛网图(图 4d)显示富集大 离子亲石元素(Rb、K)而亏损高场强元素(Ta、Nb、 Ti),具有与俯冲带相关的弧岩浆岩特征(Rogers et al., 1990; Sajona et al., 1996)。 Nb 和 Y、Ta 和 Yb 元素在花岗岩的大地构造环境判别中是最为有效的 (Pearce et al., 1984),在Nb-Yb图解(图 6a)中样品 绝大多数均落入火山弧花岗岩(VAG)+同碰撞花 岗岩(syn-COLG)区域中,Ta-Yb 图解(图 6b)中几 乎全部落入火山弧花岗岩中;在 Rb-(Y+Nb)和 Rb-(Yb+Ta)双变量图解(图 6c,d)中可以明确的 把火山弧花岗岩(VAG)和同碰撞花岗岩(syn-COLG)区分开来,投图显示样品也落入火山弧花岗 岩区。因此,可以认为都兰热水地区二长花岗岩和 花岗闪长岩形成于活动大陆边缘的火山弧环境。

东昆仑造山带自早古生代昆中洋盆闭合以后, 从晚古生代-早中生代是一个连续的构造演化过程 (Pan Guitang et al., 1997;姜春发等, 2000; Mo Xuanxue et al., 2007),晚二叠世开始,阿尼玛卿洋 向北俯冲至东昆仑板块下,由于俯冲而引发中生代 花岗质侵入岩大面积发育,火山弧岩浆作用主要发 生于晚二叠世-早三叠世,但是近年来的研究(Ma Changqian et al., 2015; Li Ruibao et al., 2018)均一 致表明洋壳俯冲作用可以延续到中三叠世。本文的 都兰热水地区二长花岗岩和花岗闪长岩形成于中三 叠世,表现为火山弧花岗岩特征,是洋壳不断俯冲、 大洋逐渐闭合阶段的产物,综上,笔者认为该套花岗 岩岩石组合同属东昆仑地区中三叠世洋壳俯冲消减 过程中形成的弧花岗岩。

5 结论

(1)都兰热水地区二长花岗岩和花岗闪长岩进

行了锆石 U-Pb 年龄测试,结果表明二长花岗岩和 花岗闪长岩样品的²⁰⁶ Pb/²³⁸ U 加权平均年龄分别为 232.4±1.3 Ma 和 230.8±1.1 Ma。

(2)二长花岗岩和花岗闪长岩的岩矿特征和岩石 地球化学特征共同指示了岩石成因属于 I 型花岗岩。

(3)二长花岗岩和花岗闪长岩有相同的物质来 源,来源于受幔源岩浆的底侵作用导致下地壳部分熔 融,幔源岩浆与壳源岩浆发生了不同程度混合,并且 在岩浆演化过程中发生了一定程度的分离结晶作用。

(4)东昆仑东段都兰地区在中三叠世仍处于洋壳 俯冲阶段,期间诱发了大面积火山弧花岗质侵入岩。

致谢:本文撰写过程中得到了很多同仁的帮助, 文章修改和数据处理过程中得到了合肥工业大学资 源与环境工程学院李秀财博士的热心帮助,文章审 稿及修改过程得到了编辑部老师及资深的审稿专家 提出了宝贵的修改意见,在此一并表示衷心的感谢。

References

- Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3):605~626.
- Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2:63~114.
- Castro A, Moreno-Ventas I, De La Rosa J D. 1991. H-type (Hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth-Science Reviews, 31(3~4):237~253.
- Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46 (3):535~551.
- Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Pei Lei, Liu Zhanqing, Chen Youxin, Liu Chengjun, Gao Jingming, Wei Fanghui. 2013. Geochronology and genesis of the Helegang Xilikete granitic plutons from the southern margin of the Eastern East Kunlun Orogenic belt and their tectonic Significance, Acta Geologica Sinica, 87 (10): 1525 ~ 1541 (in Chinese with English abstract).
- Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Xu Tong, Zhang Yongming, 2016. Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen: evidence from mafic microgranular Enclaves(MMEs). Earth Science Frontiers, 23(4): 226 ~ 240 (in Chinese with English abstract).
- Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Pei Lei, Li Xiaobing. 2018. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic belt: constraint on the Middle Triassic tectonic evolution of East Kunlun. Acta Petrologica Sinica, 34(3): 567 ~ 585 (in Chinese with English abstract).
- Collins W J,Beams S D,White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia, Contributions to Mineralogy and Petrology,80: 189~200.
- Feng Chengyou, Zhao Yiming, Li Daxin, Liu Jiannan, Xiao Ye, Li Guocheng, Ma Shenchao. 2011. Skarn types and mineralogical characteristics of the Fe-Cu-polymetallic skarn deposits in the Qimantage Area, western Qinghai Province. Acta Geologica Sinica,85(7):1108~1115(in Chinese with English abstract).
- Green T H.Pearson N J. 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high

pressure and temperature. Geochimica et Cosmochimica Acta.51 (1): $55 \sim 62$.

- Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology,120(3):347~359.
- Jia X L, Zhu X Y, Zhai M G, Zhao Y, Zhang H, Wu J L, Liu T. 2016. Late Mesoarchean crust growth event: evidence from the ca. 2.8 Ga granodioritic gneisses of the Xiaoqinling area, southern North China Craton. Science Bulletin, 61 (12): 974 ~990.
- Li Bile, Sun Fengyue, Yu Xiaofei, Qian Ye, Wang Guan, Yang Yanqian. 2012. U-Pb dating and geochemistry of diorite in the easternsection from eastern Kunlun middle uplifted basement and granitic belt. Acta Petrologica Sinica, 28(4):1163~1172(in Chinese with English abstract).
- Li Ruibao, Pei Xianzhi, Li Zuochen, Liu Zhanqing, Chen Guochao, Chen Youxin, Wei Fanghui, Gao Jingming, Liu Chengjun, Pei Lei. 2012. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun. Earth Science Frontiers, 19(5):244~254(in Chinese with English abstract).
- Li Ruibao, Pei Xianzhi, Li Zuochen, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun, Wang Shangming. 2018. Paleo-Tethys Ocean subduction ineastern section of East Kunlun Orogen: evidence from the geochronology and geochemistry of the Wutuo pluton. ActaPetrologica Sinica, 34(11): 3399~3421(in Chinese with English abstract).
- Li Yundong, Liu Xiaoyu. 2014. Geochemistry and tectonic setting of Late Triassic volcanic rocks in Reshui Area, Qinghai. Northwestern Geology, 47(03):14~25(in Chinese with English abstract).
- Liu Bin, Ma Changqian, Zhang Jinyang, Xiong Fuhao, Huang Jian, Jiang Hongan. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes. Acta Petrologica Sinica, 28(6):1785~1807(in Chinese with English abstract).
- Liu Chengdong, 2008. Granitoid Magna Mixing in Eastern Part of The East Kunlun Orogenic Belt. Beijing: Geological Publishing House,1~86(in Chinese without English abstract).
- Liu Y S, Gao S, Hu Z C, Gao C H, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt- peridotite interactions in the Trans- North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1/2):537~571.
- Ludwig K R. 2001. User's Manual for Isoplot/Ex (rev. 2, 49): a Geochronological toolkit for Microsoft Excel. Berkely Geochronology Center, Special Publication, 1a: 1~55.
- Luo Mingfei, Mo Xuanxue, Yu Xuehui, Li Xiaowei, Huang Xiongfei, Yu Junchuan. 2014. Zircon LA-ICP-MS U-Pb age dating, petrogenesis andtectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun. Acta Petrologica Sinica, 30(11):3229~3241(in Chinese with English abstract).
- Luo Zhaohua, Ke Shan, Cao Yongqing, Deng Jinfu, Chen Hongwei. 2002. Late indosinian mantle-derived magmatism in the East Kunlun. Geoliogical Bulletin of China, 21(6): 292 ~ 297 (in Chinese with English abstract).
- Ma Changqian, Xiong Fuhao, Yin Shuo, Wang Liangxun, Gao Ke. 2015. Intensity and cyclicity of orogenic magmatism: an example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31 (12):3555~3568(in Chinese with English abstract).
- Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Review, 37(3~4):215~224.
- Mo Xuanxue, Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Chen Hongwei, Yuan Wanming, Liu Yunhua. 2007. Granitoids and crustal growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(03): 403 ~ 414 (in Chinese with English abstract).
- Pan Guitang, Chen Zhiliang, Li Xingzhen, Yan Yangji, Xu

Xiaosong, Xu Qiang, Jiang Xinsheng, Wu Yinglin, Luo Jianning, Zhu Tongxing, Peng Yongmin. 1997. Geological-Tectonic Evolution in the Eastern Tethys. Beijing: Geological Publishing House,1~218(in Chinese with English abstract).

- Pan Tong, Zhou Luwei, Liu Xiaozhong, Sun Fengyue. 2004. Application of geophysical prospecting for Dulenggou geochemicalanomalies verification in Dulan County, Qinghai Province. Geology and Prospecting, 40(4):55~59(in Chinese with English abstract).
- Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956~983.
- Rapp R P. Watson E B. 1995. Dehydration melting of metabasalt at 8 ~32kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology. 36(4):891~931.
- Rapp R P, Shimizu N, Norman M D, Applegatead G. S. 1999. Reaction between slabderived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa. Chemical Geology, 160(4):335~356.
- Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): $247 \sim 263$.
- Rogers G, Hawkesworth C J. 1990. Reply to comment of C. R. Sternon "A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge". Earth and Planetary Science Letters, 101(1):134~137.
- Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: some examples from the western Alps. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany. 373~400.
- Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Heinrich DH and Karl KT (eds.). Treatise on Geochemistry. Oxford:Pergamon,1~64.
- Sajona F G, Maury R C, Bellon H, Cotten J, Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3):693~726.
- Shand S J. 1927. On the relations between silica, alumina, and the bases in eruptive rocks, considered as a means of classification. Geological Magazine,64(10):446~449.
- Song Biao, Zhang Yuhai, Wan Yusheng, Jian Ping. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(S1):26~30(in Chinese with English abstract).
- Song S G, Yang J S, Liou J G, Wu C L, Shi R D, Xu Z Q. 2003. Petrology,geochemistry and isotopic ages of eclogites from the Dulan UHPM terrane, the North Qaidam, NW China. Lithos, 70:195~211.
- Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. magmatism in the ocean basins. Geological Society, London, Special Publications, 42:313~345.
- Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos,1998,45(1~4):29~44.
- Taylor S R, Mclennan S M. 1985. The continental crust: Its composition and evolution. Journal of Geology, 94 (4): 632 ~633.
- Wu Cailai, Gao Yuanhong, Li Zhaoli, Lei Min, Qin Haipeng, Li Mingze, Liu Chunhua, Ronald B FROST, Paul T ROBINSON, Joseph L WOODEN. 2014. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China. Science China: Earth Sciences, 44 (10): 2142 ~ 2165 (in Chinese without English abstract).
- Wu F Y, Jahn B M, Wilder S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003a. Highly fractionated I-type granites in NE China (I):Geochronology and petrogenesis. Lithos, 66(3~4): 241~273.
- Wu F Y, Jahn B M, Wilder S A, Lo C H, Yui T F, Lin Q, Ge W

C, Sun D Y. 2003b. Highly fractionated I-type granites in NE China ([]): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, $67(3 \sim 4)$: $191 \sim 204$.

- Wu Jianhui, Feng Chengyou, Zhang Dequan, Li Jingwen, She Hongquan. 2010. Geology of porphyry and skarn type copper polymetallic deposits in southern margin of Qaidam basin. Mineral Deposits, 29(5):760 ~ 774 (in Chinese with English abstract).
- Wu Yuanbao, Zheng Yongfei. 2004. Study on the mineralogy of zircon and its constraints on the interpretation of U-Pb age. Chinese Science Bulletin, 49 (16): 1589 \sim 1604 (in Chinese without English abstract).
- Xiao Qinghui, Xing Zuoyun, Zhang Yu, Wu Guangying, Tong Jinsong, 2003. The major frontiers of the recen tstudies of granite. Earth Science Frontiers, 10(3): 221 ~ 229 (in Chinese with English abstract).
- Xiao Qinghui, Qiu Ruizhao, Xing Zuoyun, Zhang Yu, Wu Guangying, Tong Jinsong. 2007. Major frontiers on studies of granite formation. Geological Review, 53(S1): 17~27(in Chinese with English abstract).
- Xiao Qinghui, Deng Jinfu, Qiu Ruizhao, Liu Yong, Feng Yanfang. 2009. A preliminary study of the relationship between granitoids and the growth of continental crust: a case study of the formation of key orogen granitoids in China. Geology in China, 36(3):594~622(in Chinese with English abstract).
- Xiong Fuhao, Ma Changqian, Zhang Jinyang, Liubin. 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf is otopegeochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt. Acta Petrologica Sinica, 27(11):3350 ~3364(in Chinese with English abstract).
- Xu Changkun, Liu Shibao, Zhao Ziji, Zhang Meifen, Zhang Kaicheng, Liu Jianhua, Zhan Fayu, Huang Chaohui, Zhang Zhongyue, Wang Hongying, Zhang Wenjun, Qiao Qiang. 2012. Metallogenic law and prospect direction of iron deposits in the East Kunlun metallogenic belt in Qinghai. Acta Geologica Sinica, 86 (10): 1621~1678(in Chinese with English abstract).
- Xu Zhiqin, Yang Jingsui, Li Wenchang, Li Qihua, Cai Zhihui, Yan Zhen, Ma Changqian. 2013. Paleo-Tethys system and accretionary orogen in the Tibet Plateau. Acta Petrologica Sinica,29(6):1847~1860(in Chinese with English abstract).
- Yang J S, Xu Z Q, Zhang J X, Song S G, Wu C L, Shi R D, Li H B, Maurice B. 2002. Early Palaeozoic north Qaidam UHP metamorphic belt on the north-eastern Tibetan plateau and a paired subduction model. Terra Nova, 14(5):397~404.
- Yang Jingsui, Song Shuguang, Xu Zhiqin, Wu Cailia, Shi Rending, Zhang Jianxin, Li Haibin, Wan Yusheng, Liu Yan, Qiu Haijun, Liu Fulai, Shigenori Maruyama. 2001. Discovery of coesite in the north Qaidam early Paleozoic ultrahigh-high pressure (UHP-HP) metamorphic belt, NW China. Acta Geologica Sinica, 75 (2):175~179(in Chinese with English abstract).
- Yu Shengyao, Zhang Jianxin, Hou Kejun. 2011. Two constrasting magmatic events in the Dulan UHP metamorphic terrane: implication for collisional orogeny. Acta Petrologica Sinica, 27 (11):3335~3349(in Chinese with English abstract).
- Zhang G B, Zhang L F, Song S G. 2009. UHP metamorphic evolution and SHRIMP geochronology of a meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35: 310~322.
- Zhang J X, Mattinson C G, Yu S Y, Li J P, Meng F C. 2010. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology, 28:955~978.
- Zhang Jianxin, Yu Shengyao, Meng Fancong, Li Jinping. 2009. Paried high-pressure granulite and eclogite in collision orogens and their geodynami implications. Acta Petrologica Sinica, 25(9): 2050~2066(in Chinese with English abstract).
- Zhang Qi, Li Chengdong, Wang Yan, Wang Yuanlong, Jin Weijun, Jia

Xiuqin, Han Song. 2005. Mesozoic high-Sr and Low-Yb granitoids and low-Sr and high-Yb grantoids in eastern china: comparison and geological inplications. Acta Petrologica Sinica, 21(6):1527-1537(in Chinese with English abstract).

Zhang Zhanyu, Zhang Yongsheng, Li Hua, Zhong Liangyan, Yu Deli, Liu Guanglian, Shi Tiancheng. 2011. Geological characteristics and metallogenic regularities of the skarn iron polymetallicdeposits in the Dulan area, Qinghai Province. Geology and Exploration, 47(6): 994 ~ 1001 (in Chinese with English abstract).

参考文献

- 陈国超,裴先治,李瑞保,李佐臣,裴磊,刘战庆,陈有炘,刘成军,高 景民,魏方辉.2013.东昆仑造山带东段南缘和勒冈希里克特花 岗岩体时代、成因及其构造意义.地质学报,87(10):1525 ~1541.
- 陈国超,裴先治,李瑞保,李佐臣,刘成军,陈有炘,徐通,张永明. 2016. 东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁 铁质微粒包体的证据. 地学前缘,23(4):226~240.
- 陈国超,裴先治,李瑞保,李佐臣,刘成军,陈有炘,裴磊,李小兵. 2018. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中 三叠世构造演化的制约. 岩石学报,34(03):567~585.
- 丰成友,赵一鸣,李大新,刘建楠,肖晔,李国臣,马圣钞.2011.青海 西部祁漫塔格地区砂卡岩型铁铜多金属矿床的砂卡岩类型和 矿物学特征.地质学报,85(7):1108~1115.
- 姜春发,王宗起,李锦轶. 2000. 中央造山带开合构造. 北京:地质出版社,1~154.
- 李碧乐,孙丰月,于晓飞,钱烨,王冠,杨延乾.2012.东昆中隆起带东 段闪长岩 U-Pb 年代学和岩石地球化学研究.岩石学报,28(4): 1163~1172.
- 李瑞保,裴先治,李佐臣,刘战庆,陈国超,陈有炘,魏方辉,高景民, 刘成军,裴磊.2012.东昆仑东段晚古生代-中生代若干不整合面 特征及其对重大构造事件的响应.地学前缘,19(5):244~254.
- 李瑞保,裴先治,李佐臣,裴磊,陈国超,陈有炘,刘成军,王生明. 2018. 东昆仑东段古特提斯洋俯冲作用——乌妥花岗岩体锆石 U-Pb年代学和地球化学证据. 岩石学报,34(11):3399~3421.
- 李运冬,刘小玉.2014.青海热水地区晚三叠世火山岩地球化学特征 及构造环境.西北地质,47(03):14~25.
- 刘彬,马昌前,张金阳,熊富浩,黄坚,蒋红安.2012.东昆仑造山带东 段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩 石学报,28(06):1785~1807.
- 刘成东.2008.东昆仑造山带东段花岗岩岩浆混合作用.北京:地质 出版社,1~86.
- 罗明非,莫宣学,喻学惠,李小伟,黄雄飞,于峻川.2014.东昆仑香日 德地区晚三叠世花岗岩 LA-ICP-MS 锆石 U-Pb 定年、岩石成因 和构造意义.岩石学报,30(11);3229~3241.
- 罗照华,柯珊,曹永清,邓晋福,谌宏伟.2002.东昆仑印支晚期幔源 岩浆活动.地质通报,21(6):292~297.
- 马昌前,熊富浩,尹烁,王连训,高珂.2015.造山带岩浆作用的强度 和旋回性:以东昆仑古特提斯花岗岩类岩基为例.岩石学报,31 (12):3555~3568.
- 莫宣学,罗照华,邓晋福,喻学惠,刘成东,谌宏伟,袁万明,刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报,13 (03):403~414.
- 潘桂棠,陈智粱,李兴振,颜仰基,许效松,徐强,江新胜,吴应林,罗 建宁,朱同兴,彭勇民.1997.东特提斯地质构造形成演化.北 京:地质出版社,1~218.
- 播形,周录维,刘孝忠,孙丰月.2004.物探方法在青海都兰地区督冷 沟异常查证中的应用[J].地质与勘探,40(4):55~59.
- 宋彪,张玉海,万渝生,简平.2002,锆石 SHRIMP 样品靶制作、年龄 测定及有关现象讨论.地质论评,48(增刊 S1):26~30.
- 吴才来, 部源红, 李兆丽, 雷敏, 秦海鹏, 李名则, 刘春花, Ronald B FROST, Paul T ROBINSON, Joseph L WOODEN. 2014. 都兰花 岗岩锆石 SHRIMP 定年及柴北缘超高压带花岗岩年代学格架. 中国科学: 地球科学, 44(10): 2142~2165.

- 吴健辉,丰成友,张德全,李进文,佘宏全.2010.柴达木盆地南缘祁 漫塔格——鄂拉山地区斑岩-矽卡岩矿床地质.矿床地质,29 (5):760~774.
- 吴元保,郑永飞.2004.锆石成因矿物学研究及其对 U-Pb 年龄解释的制约.科学通报,49(16):1589~1604.
- 肖庆辉,邢作云,张昱,伍光英,童劲松.2003.当代花岗岩研究的几 个重要前沿.地学前缘,10(3):221~229.
- 肖庆辉,邱瑞照,邢作云,张昱,伍光英,童劲松.2007.花岗岩成因研 究前沿的认识.地质论评,53(增刊1):17~27.
- 肖庆辉,邓晋福,邱瑞照,刘勇,冯艳芳.2009.花岗岩类与大陆地壳 生长初探:以中国典型造山带花岗岩类岩石的形成为例.中国 地质,36(3):594~622.
- 熊富浩,马昌前,张金阳,刘彬.2011.东昆仑造山带早中生代镁铁质 岩墙群 LA-ICP-MS 锆石 U-Pb 定年、元素和 Sr-Nd-Hf 同位素 地球化学.岩石学报,27(11):3350~3364.
- 许长坤,刘世宝,赵子基,张梅芬,张开成,刘建华,詹发余,黄朝晖, 张钟月,王红英,张文君,乔强. 2012. 青海省东昆仑成矿带铁矿 成矿规律与找矿方向研究. 地质学报,86(10):1621~1678.
- 许志琴,杨经绥,李文昌,李化启,蔡志慧,闫臻,马昌前.2013.青藏

高原中的古特提斯体制与增生造山作用. 岩石学报,29(6): 1847~1860.

- 杨经绥,宋述光,许志琴,吴才来,史仁灯,张建新,李海兵,万渝生, 刘焰,邱海峻,刘福来,Shigenori Maruyama. 2001. 柴达木盆地 北缘早古生代高压一超高压变质带中发现典型超高压矿物一 柯石英. 地质学报,75(2):175~179.
- 于胜尧,张建新,侯可军. 2011.柴北缘都兰 UHP 地体中两期不同性 质的岩浆活动:对碰撞造山作用的启示.岩石学报,27(11): 3335~3349.
- 张建新,于胜尧,孟繁聪,李金平.2009.造山带中成对出现的高压麻 粒岩与榴辉岩及其地球动力学意义.岩石学报,25(09): 2050-2066.
- 张旗,李承东,王焰,王元龙,金惟俊,贾秀勤,韩松.2005.中国东部 中生代高 Sr 低 Yb 和低 Sr 高 Yb 型花岗岩:对比及其地质意 义.岩石学报,21(6):1527~1537.
- 张占玉,张永胜,李华,钟良燕,于德利,刘光莲,石天成.2011.青海 省都兰地区砂卡岩型铁多金属矿地质特征及成矿规律.地质与 勘探,47(06):994~1001.

Zircon U-Pb dating and geochemistry of granite in the Reshui area of Dulan County, eastern section of east Kunlun orogen and its tectonic implications

HAN Jianjun¹⁾, LI Yundong $^{\ast\,2)}$, SONG Chuanzhong $^{3)}$, HE Jun $^{4)}$, HAN Xu $^{3)}$,

QI Changwei¹⁾, ZHAO Mingfu¹⁾, HE Xiaoliang²⁾

 Qinghai Geological Survey, Xining, 810001;2) Institute of Geological and Mineral resources Survey of Henan Geological Bureau, Zhengzhou, 450008;3) School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009;4) School of earth and space sciences, University of Science and Technology of China, Hefei, 230026 * Corresponding author:184264861yd@163.com

Abstract

The Reshui area is located in Doulan county, eastern section of the East Kunlun orogenic belt. There are a large number of granitic rock combinations. The main rock types are monzogranite and granodiorite. This paper reports on the geochemical and LA-ICP-MS zircon U-Pb dating results of monzogranite and granitic in Reshui area, the results provide new informations for establish a complete chronological framework and tectonic evolution. The zircon U-Pb isotope dating study shows that the crystallization ages of the monzogranite and granodiorite are 232.4 \pm 1.3 Ma and 230.8 \pm 1.1 Ma, which is the product of granitic magmatism during Middle Triassic. The characteristics of rock and geochemistry indicate that the monzogranite and granodiorite are high-potassium-calcium-alkaline I-type granites, with high K₂O content $(2.2\% \sim 4.74\%)$; aluminum saturation index A/CNK values are both less than 1.1, showing quasialuminum characteristics; there is a significant negative correlation between $P_2 O_5$ and SiO₂, and also exhibits enrichment of light rare earth elements and large ion lithophile elements (such as K, Rb, La), loss of heavy rare earth elements and high field strength elements (such as Nb, Ta, Ti, P), and Eu negative anomalies. Combined with the previous regional geological researchs, we believe that the granitic rock combinations in Reshui area is formed the partial melting of the lower crust that effected by the underplating of mantle-derived magma, The mantle-derived magma and the crustal-derived magma are mixed in different proportions, and during the magma evolution occurred fractional crystallization. Animaging ocean subducted to the east Kunlun plate in Late Permian, Reshui area was still in the volcanic arc environment produced by the subduction of the oceanic crust until to Middle Triassic, The monzogranite and granodiorite are typical products in this stage.

Key words: monzogranite; granodiorite; geochemistry; zircon U-Pb dating; tectonic setting; Reshu area in Doulan County