西澳 Darling Range 地区红土型铝土矿地 球化学特征及源区研究

孙朋飞^{1,2)},江思宏²⁾,韩宁²⁾

1) 中国地质大学(北京)地球科学与资源学院,北京,100083;

2) 国土资源部成矿作用与资源评价重点实验室,中国地质科学院矿产资源研究所,北京,100037

内容提要:Darling Range 位于西澳大利亚地区,红土型铝土矿资源丰富。本文对 Darling Range 地区红土型铝 土矿及相关岩石开展了元素地球化学分析,并对铝土矿中的碎屑锆石和其下伏的花岗岩开展了 LA -ICP-MS 锆石 U-Pb 测年,目的是探讨西澳地区红土型铝土矿的成矿作用及其源区。结果表明,西澳地区红土型铝土矿的主量元 素以 Al₂O₃、Fe₂O₃、SiO₂和 TiO₂为主,Al₂O₃与 SiO₂呈显著的负相关关系,与 TiO₂则呈现显著的正相关关系,表明 铝土矿的形成过程是一个去 Si 富 Al、Ti 的过程。铝土矿微量元素富集 Th、U、Nb、Ta、Zr、Hf、Ti,相对亏损 Ba、K、 Sr、P、Sm;稀土总量较低,为1.36×10⁻⁶~65.58×10⁻⁶,稀土元素球粒陨石标准化分布曲线略微向右倾斜,富集轻 稀土。铝土矿碎屑锆石 U-Pb 年龄分布于 1167Ma 和 1267Ma 与 2539~2696Ma(16 颗)两个年龄段,分析锆石来源 前者可能来自 Albany-Fraser 造山带;后者加权平均年龄为 2579±15Ma(MSWD=1.16),与研究区本次获得的太 古宙花岗岩,还有少量的锆石来自 Albany-Fraser 造山带。结合元素地球化学钛率(Al₂O₃/TiO₂)、lgCr-lgNi、微量 元素比值、稀土元素配分模式对铝土矿源区进行示踪表明,Darling Range 地区的太古宙花岗岩为红土型铝土矿的 主要物质来源。

关键词:西澳;Darling Rang地区;铝土矿;U-Pb年代学;地球化学;源区研究

铝土矿是生产金属铝的主要原料(Calagari and Abedini,2007;Bogatyrev et al.,2009;Zarasvandi et al.,2012),在国民经济建设中有不可或缺的地位。 我国是铝土矿消费大国,国内缺乏优质的铝土矿资源,铝土矿对外依存度高。澳大利亚是我国铝土矿 第二大进口国,其西部 Darling Range 地区铝土矿 资源丰富(1988 年资源量已达 35 亿 t;Hickman et al.,1992),冶炼便利,有助于解决我国日益增长的 铝土矿需求。

铝土矿为潮湿热带-亚热带气候条件下地表风 化作用的产物,富含 Al、Fe 和 Ti 的氢氧化物和氧 化物(Calagari and Abedini,2007; Wang Qingfei et al.,2012)。根据下伏基岩不同,铝土矿主要分为以 铝硅酸盐为基岩的红土型和碳酸盐岩为基岩的喀斯 特型 两种类型(Bárdossy, 1982; Bárdossy and Aleva, 1990),后者仅占 14%左右(Mameli et al., 2007)。喀斯特型铝土矿由于物质来源丰富,通常很 难确定其源岩,而红土型铝土矿与下伏基岩在成分 和矿物学上具有一定的联系(Horbe and Costa, 1999;Mutakyahwa et al., 2003;Deng et al.,2010; Liu et al.,2010)。前人对铝土矿的岩石学、矿物 学、地球化学、成矿环境与物质来源进行了大量的研 究(Schroll and Sauer,1968;Bárdossy, 1982; Bárdossy and Aleva, 1990;Anand et al., 1991,2003;Calagar and Abedini, 2007; Taylor and Eggleton, 2008; Bogatyrev et al.,2009;Gu et al.,2013;Zamanian et al.,2016;Zhang Qiming et al.,2015),并在利用铝土 矿矿物学、钛率(Al₂O₃/TiO₂)、微量元素比值、稀土元 素配分模式等判断铝土矿的物质来源研究方面取得 了重要进展(Schroll and Sauer,1968;Gu et al., 2013;Zhang Qiming et al.,2015)。

Darling Range 地区铝土矿产自红土层,为典型的红土型铝土矿。多数红土型铝土矿被认为是富铝 硅酸盐矿物母岩在原地及附近铝土矿化作用形成,

收稿日期:2016-05-03;改回日期:2017-08-21;责任编辑:周健。

注:本文为国家地质大调查项目(编号 1212011120325 和 121201103000150006)资助的成果。

作者简介:孙朋飞,男,1991年生。硕士研究生,主要从事成矿规律研究。Email:1453940880@qq.com。通讯作者:江思宏,男,1968年 生。博士,研究员,博士生导师,主要从事金属矿床成矿规律研究。Email:jiangsihong1@163.com。

但有时区域地层也能为铝土矿提供成矿物质 (Valeton et al., 1997; Taylor and Eggleton, 2008; Wang et al., 2012; Gu et al., 2013)。其实铝土矿的 形成是一个复杂缓慢的过程,除了母岩之外,还受到 气候、地貌和排水、植被等因素影响(Hickman et al., 1992; Sun Pengfei et al., 2016). Darling Range 地区岩石类型丰富,主要有太古宙的花岗岩、 片麻岩、辉绿岩,新元古代侵入的拉斑玄武岩和石英 辉绿岩(Anand et al., 1991, 2003)。前人研究认为 Darling Range 地区红土型铝土矿的成矿物质来源 可能包括母岩原地风化淋滤产物(Anand et al., 1991; Hickman et al., 1992; Anand and Paine, 2002)、水流沉积物(Grubb, 1971)及风成沉积物 (Brimhall et al., 1988; Glassford and Semeniuk, 1995)。但是, Darling Range 地区的红土型铝土矿 与区域广泛分布的太古宙花岗岩到底具有怎样的关 系?铝土矿的形成是否还有其他物质来源?为此本 文对 Darling Range 地区红土型铝土矿中的碎屑锆 石和其下伏花岗岩中的锆石开展了 LA-ICP-MS U-Pb 测年,并对铝土矿和花岗岩的元素地球化学特征 进行了研究,试图探讨西澳地区红土型铝土矿的成 矿作用,并对其源区进行约束。

1 区域地质背景

研究区位于西澳南部的 Darling Range 地区, 面积约 5×10⁴ km²,是一个遭受抬升和切割的高原 (Anand and Butt,2003)(图 1)。大地构造位置处于 太古宙伊尔岗克拉通西南缘的西部片麻岩地体 (Western Gneiss Terrane, Myers,1990)。研究区 主要断裂构造为南北走向的 Darling 断层,也是伊 尔岗克拉通西部边界。断层以西为中生代珀斯 (Perth)盆地,为二叠纪一早白垩世冈瓦纳大陆解体 之后西澳大利亚板块从印度板块分离的重要构造标 志(Harris,1994;Cawood and Nemchin,2000)。

Darling Range 地区出露的岩石类型主要由花 岗质片麻岩、副片麻岩、变质花岗岩、花岗岩和 Mount Saddleback 的绿岩带组成。研究区最老岩 石为 Jimperding 和 Balingup 片麻岩杂岩体以及 Chittering 变质带 (Wilde and Low, 1978; Myers, 1990),经历了多期的可达麻粒岩相或者角闪岩相的 变形 变 质 作 用, 年 龄 范 围 从 3.34 ~ 2.76Ga (Nieuwland and Compston, 1981; Fletcher et al., 1985)。Darling Range 地区分布最广泛的岩石是侵 入在片麻岩和绿岩中的花岗岩,变质程度低,侵位年 龄为 2.65 ~ 2.55Ga (Myers, 1990)。 Mount Saddleback 绿岩与花岗岩和混合岩多呈断层接触关 系,锆石的 U-Pb 年龄数据表明长英质火山岩的年 龄为 2.67~ 2.65Ga (Hickman et al., 1992),形成 时代早于花岗岩,主要由弱变质的长英质和超镁铁 质火山岩和火山碎屑岩组成,含少量的沉积岩。而 在研究区北部 Collie 和 Wilge 含煤盆地中同时也沉 积了二叠纪砂岩和粉砂岩 (Anand et al., 2003)。

红土型铝土矿可由不同类型的母岩在不同古地 理环境于特定的时期形成,通常它的年龄不会老于 新近纪(Meyer et al.,2002)。位于 Darling Range 中部的 Jarrahdale 和 Boddington 铝土矿矿床深风 化剖面的古地磁年龄为新近纪,与西伊尔岗克拉通 相同,中生代之后缺少老的深风化剖面的古地磁年 龄(Anand and Butt,2003)。同时一些锆石年代学 资料显示 Darling Range 地区可能从二叠纪开始就 经历了长期广泛的风化淋滤作用(Anand and Paine, 2002;Chivas and Atlhopheng,2010)。

2 矿床地质特征

研究区铝土矿红土层剖面自下而上可分为松散 的覆盖层、硬壳、碎屑层、黏土层和底部母岩层。硬 壳层垂向上可细分为豆状硬壳、碎屑状—豆状硬壳 和碎屑状硬壳,它们之间并无明显的界线。红土层 的厚度为 2~50m 不等,平均厚约 20m,铝土矿矿体 的厚度为 2~7m,最大可达 20m(Anand et al., 1991; Hickman et al., 1992; Anand and Butt, 2003)。铝土矿矿体分布不太规则,在中等斜坡上厚 度较大,坡度过陡或者过缓厚度都会降低,表明铝土 矿的形成受地形控制。母岩层的不同也会导致铝土 矿的形成受地形控制。母岩层的不同也会导致铝土 矿的厚度不同,花岗岩上的铝土矿的厚度为 2~7m, 而在 Mount Saddleback 地区产在镁铁质绿岩上面 的铝土矿的厚度一般为 6~7m,局部可达 20m 厚。

铝土矿中主要矿物为三水铝石、针铁矿、赤铁 矿、石英、白云母、锐钛矿,少量的一水软铝石、磁赤 铁矿、刚玉、钛铁矿、金红石和高岭石等。其中的很 多矿物如石英、白云母、锐钛矿、钛铁矿、金红石、锆 石等,在花岗岩中很常见。铝土矿一般呈块状构造, 矿石的结构主要有鲕状、角砾状(图 2e)、豆状(图 2c、d)等。花岗岩中主要矿物为石英、微斜长石、斜 长石、辉石、黑云母等,斜长石发生高岭土化(图 2b),黑云母发生绿泥石化(图 2a)。

铝土矿中石英、白云母含量与下伏的基岩相对应,基岩为花岗岩时矿石中石英含量远超过镁铁质

岩,而白云母在镁铁质岩中几乎没有(Hickman et al.,1992)。针铁矿分布于整个红土剖面,赤铁矿数 量少于前者,磁赤铁矿一般与刚玉、赤铁矿及少量的 高岭石出现在红土剖面的上部;针铁矿、赤铁矿和磁 赤铁矿具有向着红土剖面的顶部逐渐增多的特点; 主要矿物三水铝石与石英的含量呈负相关关系,金 红石主要以副矿物的形式存在于铝土矿层中,上述 特征在其他下伏基岩为花岗岩的红土型剖面中很常 见(Horbe and Costa,1999;Meyer et al.,2002)。

3 样品及测试方法

本次对 Darling Rang 地区的铝土矿及其下伏

花岗岩开展了主微量元素分析和 LA-ICP- MC 锆石 U-Pb 测年。采集各类样品 23 件,包括 9 件铝土矿 矿石、6 件花岗岩样品、3 件铁质硬壳(其中 1 件为铁 质硬壳和铝土矿的界限)、3 件黏土样品、1 件铝土矿 碎屑锆石测年样品和 1 件花岗岩锆石测年样品,具 体的采样位置见图 1。样品的测试结果如表 1 所 示,分析测试流程如下。

主量元素分析采用 X 荧光光谱仪,Ba、Sr 分析 采用 ICP-AES,其他元素(包括稀土元素)分析采用 ICP-MS,分析测试工作是由核工业地质分析测试研 究中心完成。测试精度:Fe₂ O₃和 FeO 的 RSD< 10%,其他主量元素的 RSD<2%~8%,微量和稀

图 2 Darling Range 地区铝土矿及花岗岩的结构构造

Fig. 2 Microphotographs showing bauxite ore and granite texture and structure of Darling Range (a)—似斑状花岗岩;(b)—粗粒花岗岩;(c)—豆状铝土矿,豆状鲕粒环带构造发育,自内而外,赤铁矿含量减少,铝土矿含量增多;(d)—豆 状铝土矿,赤铁矿交代早期石英颗粒,充填于石英内部;(e)—角砾状铝土矿;(f)—豆状铝土矿,豆石含赤铁矿和铝土矿以石英碎屑颗粒为 核心;Qtz—石英;Aug—辉石;Bt—黑云母;Hem—赤铁矿;Chloritized biotite—绿泥石化黑云母;Kaolinitization plagioclase—高岭土化斜长 石;Bauxite and hematite-bearing clay—含铝土矿和赤铁矿黏土;Bauxitic clay—铝土矿化黏土;Hematite and bauxite—含赤铁矿和铝土矿; Bauxite—铝土矿

(a)—Porphyritic-like granite; (b)—coarse-grained granite; (c)—pissolitic bauxite, pissolitic oolitic and zonal structures are developed, with the content of hematite decreasing while the content of bauxite increasing outward; (d)—pissolitic bauxite, with the hematite replacing the early quartz and filling within quartz; (e)—brecciaed bauxite; (f)—pissolitic bauxite, containing hematite and bauxite with quartz clastic particles as the core; Qtz—quaztz; Aug—augite; Bt—biotite; Hem—hematite

土元素的 RSD<10%。

用于 LA-MC-ICP-MS 锆石 U-Pb 测年的锆石 样品挑选是由廊坊市科大岩石矿物分选技术服务公 司完成的。将挑选颗粒较好的锆石用环氧树脂固 定,待环氧树脂充分固化后抛光至锆石露出核部,然 后进行锆石的阴极发光(CL)和电子相分析。锆石 测年是在中国地质科学院矿产资源研究所 LA-MC-ICP-MS 实验室完成,锆石定年分析所用仪器为 Finnigan Neptune 型 MC-ICP-MS 及与之配套的 Newwave UP 213 激光剥蚀系统。采用单点剥蚀的 方式,数据分析前用锆石 GJ-1 进行调试仪器,使之 达到最优状态,锆石 U-Pb 定年以锆石 GJ-1 为外 标,U、Th 含量以锆石 M127(U:923×10⁻⁶; Th: 439×10⁻⁶; Th/U: 0.475 为外标进行校正 (Nasdala et al., 2008)。测试过程中在每测定 5~7 个样品前后重复测定两个锆石 GJ-1 对样品进行校 正,并测量一个锆石 Plesovice,观察仪器的状态以 保证测试的精确度。数据处理采用 ICPMSDataCal

表 1 西澳 Darling Range 地区花岗岩、铝土矿及黏土的主量元素(%)、微量元素(×10⁻⁶)和稀土元素(×10⁻⁶)分析结果表

Table 1 Major (%) ,rare earth ($\times 10^{-6}$) and trace ($\times 10^{-6}$) elements data of granite,

bauxite and clay samples from Darling Range of western Australia

m m	长旦	WA	WA 9	WZA 4	WAG	WA 7	WA	WAO	WA	WA	WA	WA	WA	WA	WA	WA	WA	WA	WA	WA	WA	WA
Part <	件写	14-1	W A-Z	W A-4	W A-0	vv A-7	14-8	W A-9	-10	-12	-13	-14	-15	-16	-17	-18	-19	-20	-21	-22	-23	-24
Norm		ANT THE		豆荚		that we a	在而	富粘			44		+ 5	ज ८७	含铁	含铁	含铁	= 44	含铁			
Part Part Part Part Part Part Part Part	뜨 써	似斑	铁质	状铁	铝土	川 私	用你	土角	黏土	显认	显认	显认	木风	风化	质风	质风	质风	显认	质硅	秋山	私工	铝土
No No No No No <td>石圧</td> <td>八化出出</td> <td>硬壳</td> <td>质硬</td> <td>矿石</td> <td>小田</td> <td>小田</td> <td>砾状</td> <td>层</td> <td>ᇳᆂ</td> <td>ᇳᆂ</td> <td>加工</td> <td>化化出出</td> <td>北内</td> <td>化花</td> <td>化花</td> <td>化花</td> <td>ᇳᆂ</td> <td>质硬</td> <td>*FI _L.</td> <td>邪[]</td> <td>矿石</td>	石圧	八化出出	硬壳	质硬	矿石	小田	小田	砾状	层	ᇳᆂ	ᇳᆂ	加工	化化出出	北内	化花	化花	化花	ᇳᆂ	质硬	*FI _L.	邪[]	矿石
SNO SNO S. 20 C C C C <td></td> <td>闪石</td> <td></td> <td>売</td> <td></td> <td>1.19</td> <td>1.19</td> <td>铝土</td> <td></td> <td>P</td> <td>'n</td> <td>тy</td> <td>闪石</td> <td>1</td> <td>岗岩</td> <td>岗岩</td> <td>岗岩</td> <td>19</td> <td>壳</td> <td></td> <td></td> <td></td>		闪石		売		1.19	1.19	铝土		P	'n	тy	闪石	1	岗岩	岗岩	岗岩	19	壳			
Al-O Biol	SiO_2	59.81	2.15	0.75	0.73	21.81	36.06	46.25	54.07	6.45	4.38	14.83	66.08	83.5	65.09	77.36	75.86	25.29	46.69	74.64	61.2	5.34
TFe 6 38 1.1 78.3 1.1 8.3 1.1 8.3 1.1 8.3 1.1 8.3 1.1 8.3 1.1 8.3 1.1 8.3 0.1 0.10 <th< td=""><td>Al_2O_3</td><td>16.86</td><td>36.12</td><td>10.56</td><td>36.7</td><td>29.83</td><td>29. 52</td><td>25.26</td><td>18.46</td><td>42.66</td><td>40.92</td><td>35.07</td><td>17.54</td><td>9.52</td><td>16.89</td><td>13.47</td><td>11.32</td><td>19.73</td><td>30.34</td><td>15.02</td><td>23. 24</td><td>31.83</td></th<>	Al_2O_3	16.86	36.12	10.56	36.7	29.83	29 . 52	25.26	18.46	42.66	40.92	35.07	17.54	9.52	16.89	13.47	11.32	19.73	30.34	15.02	23. 24	31.83
Mede Sing Sing <th< td=""><td>TFe</td><td>6.38</td><td>35. 14</td><td>76.85</td><td>35.14</td><td>33.51</td><td>16.09</td><td>13.42</td><td>15.55</td><td>29.64</td><td>36.15</td><td>28.21</td><td>3.27</td><td>0.36</td><td>6.88</td><td>0.5</td><td>5.18</td><td>38.06</td><td>4.75</td><td>1.45</td><td>2.07</td><td>38.71</td></th<>	TFe	6.38	35 . 14	76.85	35.14	33.51	16.09	13.42	15.55	29.64	36.15	28.21	3.27	0.36	6.88	0.5	5.18	38.06	4.75	1.45	2.07	38.71
CAC0 3.85 0.88 0.86 <th< td=""><td>MgO</td><td>2.15</td><td>0.03</td><td>0.12</td><td><0.01</td><td>0.07</td><td>0.03</td><td>0.03</td><td>0.15</td><td><0.01</td><td><0.01</td><td>0.04</td><td>0.86</td><td>0.18</td><td>0.18</td><td>0.14</td><td>0.17</td><td>0.09</td><td>0.02</td><td>0.1</td><td>0.04</td><td><0.01</td></th<>	MgO	2.15	0.03	0.12	<0.01	0.07	0.03	0.03	0.15	<0.01	<0.01	0.04	0.86	0.18	0.18	0.14	0.17	0.09	0.02	0.1	0.04	<0.01
Nace 0 2 0 0 0 0	CaO	3.85	0.08	0.06	0.04	0.11	0.13	0.05	0.08	0.06	0.05	0.07	1.82	0.1	0.08	0.06	0.08	0.06	0.05	0.06	0.05	0.04
K+O 4.97 0.06 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08	Na_2O	3.27	0.06	0.04	0.02	0.06	0.06	0.04	0.08	0.06	0.03	0.08	3.55	0.15	0.14	0.09	0.1	0.05	0.1	0.08	0.05	0.02
Made 0	K_2O	4.97	0.06	0.02	0.03	0.03	0.03	0.06	0.03	0.02	0.01	0.04	4.53	1.63	1.65	1.18	0.22	0.06	0.12	0.19	0.17	0.04
Trice0.741.812.872.872.872.872.870.830.740.730.740.	MnO	0.08	0.01	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.04	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01
Pictor 0.38 0.40 0.47 0.58 0.40 0.40 0.68 0.68 0.11 0.20 <	TiO_2	0.74	3.18	2.67	2.18	2.35	0.93	0.48	0.5	3.35	6.13	2.57	0.38	0.21	0.33	0.39	0.45	1.33	0.23	0.12	0.18	1.01
機夫機 1 2 1	P_2O_5	0.36	0.04	0.07	0.05	0.05	0.03	0.03	0.04	0.06	0.05	0.03	0.1	0.02	0.02	0.03	0.02	0.03	0.01	0.02	0.01	0.04
Tord 99. 99 99. 99 <td>烧失量</td> <td>1.5</td> <td>23.11</td> <td>8.86</td> <td>24.93</td> <td>11.97</td> <td>17.06</td> <td>14.29</td> <td>11.02</td> <td>17.62</td> <td>11.97</td> <td>19.01</td> <td>1.81</td> <td>4.24</td> <td>8.66</td> <td>6.76</td> <td>6.54</td> <td>15.27</td> <td>17.57</td> <td>8.18</td> <td>12.91</td> <td>22.88</td>	烧失量	1.5	23.11	8.86	24.93	11.97	17.06	14.29	11.02	17.62	11.97	19.01	1.81	4.24	8.66	6.76	6.54	15.27	17.57	8.18	12.91	22.88
Fred 8.68 8.48 8.73 8.73 8.74 0.74 0.74 0.74 0.74 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.75 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.74 0.74 0.74 0.75 0.77 0.74 0.75 0.77 1.41 1.75 0.74 1.42 1.25 0.75 1.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.75 1.41 1.45 1.45 1.45 1.45 1.45 1.45 1.45 <th< td=""><td>Total</td><td>99.97</td><td>99.98</td><td>99.99</td><td>99.83</td><td>99.83</td><td>99.94</td><td>99.92</td><td>99.98</td><td>99. 94</td><td>99. 74</td><td>99.96</td><td>99.96</td><td>99.92</td><td>99.93</td><td>99.98</td><td>99.94</td><td>99.98</td><td>99.89</td><td>99.86</td><td>99.92</td><td>99.92</td></th<>	Total	99.97	99.98	99.99	99.83	99.83	99.94	99.92	99.98	99 . 94	99 . 74	99.96	99.96	99.92	99.93	99.98	99.94	99.98	99.89	99.86	99.92	99.92
AY 0 2 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1	FeO	2.69	0.44	0.73	0.31	1.94	0.64	0.44	0.47	1.67	2.51	0.99	1.59	0.31	0.74	0.22	0.52	0.46	0.39	0.25	0.4	0.28
A/T 12 11 13 10 <t< td=""><td>A/S</td><td>0.28</td><td>16.8</td><td>14.08</td><td>50</td><td>1.37</td><td>0.82</td><td>0.55</td><td>0.34</td><td>6.61</td><td>9.34</td><td>2.36</td><td>0.27</td><td>0.11</td><td>0.26</td><td>0.17</td><td>0.15</td><td>0.78</td><td>0.65</td><td>0.2</td><td>0.38</td><td>5.96</td></t<>	A/S	0.28	16.8	14.08	50	1.37	0.82	0.55	0.34	6.61	9.34	2.36	0.27	0.11	0.26	0.17	0.15	0.78	0.65	0.2	0.38	5.96
La 1.01 059 0.16 0.63 2.64 2.48 4.94 9.10 1.03 1.03 1.05 0.01 1.25 1.28 1.03 <th< td=""><td>A/T</td><td>22.85</td><td>11.36</td><td>3.96</td><td>16.83</td><td>12.69</td><td>31.74</td><td>52.3</td><td>37.14</td><td>12.73</td><td>6.68</td><td>13.65</td><td>45.68</td><td>44.91</td><td>50.72</td><td>34.27</td><td>25.38</td><td>14.83</td><td>133.07</td><td>122.1</td><td>128.4</td><td>31.51</td></th<>	A/T	22.85	11.36	3.96	16.83	12.69	31.74	52.3	37.14	12.73	6.68	13.65	45.68	44.91	50.72	34.27	25.38	14.83	133.07	122.1	128.4	31.51
Ce 231 301 1. 75 08 2. 2 33 1. 7 1.0 1.2 1.38 44.2 1.0 1.2 5. 1.7 85 1.7 85 1.7 85 1.7 85 1.7 1.0 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.57 1.2 1.2 1.2 1.2 2.2 2.57 1.7 1.34 0.55 0.57 1.2 0.57 1.34 0.54 1.41 0.54 1.5 0.61 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.55 0.51	La	124	1.07	0.59	0.16	6.63	21.6	23.4	47.8	4.98	3.56	1.99	81.1	25	22.4	40.9	16	10.3	1.95	0.61	1.26	1.82
Pr 26.9 0.33 0.47 0.43 2.74 6.13 0.91 0.88 0.4 1.43 4.02 1.25 0.53 0.67 2.68 2.84 0.3 0.11 0.34 0.54 Md 107 1.32 0.88 0.81 1.75 5.76 1.41 1.24 2.29 0.21 1.27 3.29 0.34 0.23 0.23 0.25 Eu 3.55 0.60 0.60 0.60 0.61 0.26 0.61 0.41 0.41 0.41 1.42 2.29 0.34 0.20 0.35 0.45 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.43 0.42 0.43	Ce	231	3.04	1.75	0.43	15.6	28	28.3	54.3	15.7	10.9	12.5	138	44.2	40.8	71.1	26.5	25.5	17.8	3.21	42.8	30
Not 107 1.32 0.87 0.15 5.38 7.26 7.34 16.5 3.29 3.31 1.75 5.7 1.4 1.24 22 9.21 1.2 1.07 0.34 0.15 1.24 <th1.24< th=""> <th1.24< th=""> <th1.24< td="" th<=""><td>Pr</td><td>26.9</td><td>0.33</td><td>0.21</td><td>0.05</td><td>1.43</td><td>2.73</td><td>2.74</td><td>6.13</td><td>0.91</td><td>0.88</td><td>0.46</td><td>14.3</td><td>4.02</td><td>3.53</td><td>6.67</td><td>2.68</td><td>2.84</td><td>0.3</td><td>0.11</td><td>0.34</td><td>0.54</td></th1.24<></th1.24<></th1.24<>	Pr	26.9	0.33	0.21	0.05	1.43	2.73	2.74	6.13	0.91	0.88	0.46	14.3	4.02	3.53	6.67	2.68	2.84	0.3	0.11	0.34	0.54
Sm 18.7 0.3 0.28 0.68 0.43 7.44 1.91 1.62 3.07 1.27 3.29 0.40 0.12 0.23 0.52 Eu 3.55 0.06 0.70 0.21 0.19 0.16 0.27 0.12 0.12 0.12 0.20 0.68 0.57 0.54 0.55 0.54 1.55 1.44 1.64 1.38 0.12 0.12 0.30 0.35 0.45 0.55 1.54 1.46 1.64 2.38 1.22 2.30 0.30 0.15 0.46 0.57 0.51 0.55 0.54 1.55 1.54 1.46 1.64 2.38 1.22 2.30 0.30 0.15 0.46 0.55 1.54 1.56 1.51 0.16 0.35 0.56 0.71 0.13 0.56 0.71 0.31 0.56 0.71 0.31 0.56 0.71 0.31 0.56 0.31 0.57 0.57 0.57 0.57 0.57 0.57 <td>Nd</td> <td>107</td> <td>1.32</td> <td>0.87</td> <td>0.175</td> <td>5.38</td> <td>7.26</td> <td>7.34</td> <td>16.5</td> <td>3.29</td> <td>3.31</td> <td>1.75</td> <td>50.7</td> <td>14</td> <td>12.4</td> <td>22</td> <td>9.21</td> <td>12</td> <td>1.07</td> <td>0.37</td> <td>1.31</td> <td>2.22</td>	Nd	107	1.32	0.87	0.175	5.38	7.26	7.34	16.5	3.29	3.31	1.75	50.7	14	12.4	22	9.21	12	1.07	0.37	1.31	2.22
La 3.5.5 0.60 0.00 0.10 0.11 0.10 0.12 0.14 0.11 0.16 0.10 0.14 0.16 0.16 0.12 0.18 0.12 0.18 0.10 0.12 0.18 0.10 0.10 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 <th< td=""><td>Sm</td><td>18.7</td><td>0.3</td><td>0.28</td><td>0.08</td><td>1.24</td><td>1.09</td><td>1.06</td><td>2.19</td><td>0.68</td><td>0.83</td><td>0.45</td><td>7.64</td><td>1.91</td><td>1.62</td><td>3.07</td><td>1.27</td><td>3.29</td><td>0.34</td><td>0.12</td><td>0.23</td><td>0.52</td></th<>	Sm	18.7	0.3	0.28	0.08	1.24	1.09	1.06	2.19	0.68	0.83	0.45	7.64	1.91	1.62	3.07	1.27	3.29	0.34	0.12	0.23	0.52
Ged 1.5 0.5 0.7 0.7 0.5 0.6 0.4 0.5 0.4 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.6 0.6 0.6 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.5 0.6 <td>Eu</td> <td>3.55</td> <td>0.06</td> <td>0.07</td> <td>0.02</td> <td>0.19</td> <td>0.15</td> <td>0.16</td> <td>0.27</td> <td>0.12</td> <td>0.12</td> <td>0.07</td> <td>1.34</td> <td>0.15</td> <td>0.18</td> <td>0.16</td> <td>0.12</td> <td>0.48</td> <td>0.04</td> <td>0.02</td> <td>0.07</td> <td>0.11</td>	Eu	3.55	0.06	0.07	0.02	0.19	0.15	0.16	0.27	0.12	0.12	0.07	1.34	0.15	0.18	0.16	0.12	0.48	0.04	0.02	0.07	0.11
Interplant 1 0.00	Gd	16	0.26	0.12	0.08	0.89	0.9	1.11	2.08	0.66	0.54	0.45	5.84	1.46	1.64	2.38	1.22	2.39	0.39	0.15	0.46	0.57
Ibs Ibs <thibs< td="" tht<=""><td>lb D</td><td>2.64</td><td>0.06</td><td>0.04</td><td>0.02</td><td>0.16</td><td>0.13</td><td>0.12</td><td>0.21</td><td>0.14</td><td>0.09</td><td>0.11</td><td>0.56</td><td>0.13</td><td>0.11</td><td>0.19</td><td>0.15</td><td>0.46</td><td>0.07</td><td>0.06</td><td>0.08</td><td>0.1</td></thibs<>	lb D	2.64	0.06	0.04	0.02	0.16	0.13	0.12	0.21	0.14	0.09	0.11	0.56	0.13	0.11	0.19	0.15	0.46	0.07	0.06	0.08	0.1
Ho 2.5 0.68 0.68 0.2 0.12 0.08 0.08 0.11 0.11 0.2 0.26 0.05 0.07 0.11 0.13 0.55 0.11 0.18 0.18 0.19 0.11 0.13 0.25 0.07 0.13 0.25 0.07 0.13 0.26 0.07 0.13 0.23 0.24 0.25 0.23 0.24 0.25 0.23 0.24 0.25 0.23 0.24 0.25 0.23 0.26 0.75 0.24 0.25 0.23 0.25 0.24 0.25 0.33 0.44 0.55 0.44 0.33 0.22 0.21 0.41 0.43 0.45 0.45 0.55 0.44 0.55 0.44 0.53 0.44 0.55 0.44 0.53 0.45 0.51 0.44 0.53 0.45 0.55 0.44 0.51 0.44 0.51 0.54 0.55 0.44 0.55 0.54 0.55 0.44 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 <th< td=""><td>Dy</td><td>13.1</td><td>0.39</td><td>0.38</td><td>0.08</td><td>0.75</td><td>0.57</td><td>0.64</td><td>0.9</td><td>0.79</td><td>0.54</td><td>0.94</td><td>2.16</td><td>0.63</td><td>0.46</td><td>0.85</td><td>0.69</td><td>2.72</td><td>0.44</td><td>0.39</td><td>0.43</td><td>0.5</td></th<>	Dy	13.1	0.39	0.38	0.08	0.75	0.57	0.64	0.9	0.79	0.54	0.94	2.16	0.63	0.46	0.85	0.69	2.72	0.44	0.39	0.43	0.5
IF 1.27 0.31 0.23 0.07 0.33 0.23 0.23 0.33	Ho	2.5	0.08	0.08	0.02	0.12	0.08	0.08	0.11	0.17	0.11	0.2	0.26	0.06	0.07	0.1	0.13	0.56	0.1	0.08	0.14	0.09
Im I. I 0.08 0.08 0.02 0.02 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 <	Er	1.21	0.31	0.25	0.07	0.39	0.25	0.20	0.34	0.00	0.35	0.79	0.78	0.3	0.19	0.37	0.28	1.01	0.37	0.30	0.40	0.28
Ib 7.05 0.45	Im VI	1.1	0.08	0.05	0.02	0.05	0.04	0.03	0.05	0.1	0.07	0.15	0.08	0.04	0.03	0.04	0.05	0.32	0.06	0.03	0.09	0.07
Lu 1.02 0.07 0.03 0.03 0.03 0.02 0.04 0.03 0.14 0.03 0.01 0.03 0.03 0.01 0.03 0	ID I	1.00	0.45	0.30	0.13	0.42	0.25	0.3	0.46	0.80	0.00	1.04	0.73	0.32	0.21	0.41	0.43	2.40	0.59	0.31	0.75	0.44
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LU	1.02	0.07	0.05	1 26	0.05	0.02	0.04	0.00	20.04	0.09	0.14	0.13	0.00	0.00	140.07	0.08	0.32	0.09	0.00	0.18	0.07
$ \begin{array}{c} \lambda C V \\ \delta C V \\ \Theta C V $	(L_a/Vb)	12 62	1.04	1 16	1.30	33. 29	61 07	56 14	131.4 75 10	4 14	4 66	1 27	503.02 70.01	56 21	00.1	72 08	26 51	2 02	23.01	0.00	40.00	2 07
bla 0.31 0.07 1.02 0.32 0.33 0.37 0.33 0.32 0.33 0.34 0.33 0.34 0.35 0.35 0.36 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	(La/ ID) _N	0.61	1.7	1.10	0.92	0.53	01.97	0.46	0.38	4.14	4.00	1.37	0.50	0.26	0.33	0.17	0.28	0.5	0.34	1.4	0.55	0.64
LCC 0.34 1.25 1.25 2.1 2.1 2.5 3.66 Cr 2.7 1.05 1.24 1.25 2.14 3.23 1.21 1.36 1.3 3.04 140 3.5 2.1 1.5 3.4 3.1.4 3.1 3.4 3.14	0Eu 8Co	0.01	1 24	1.02	1 23	1 18	0.40	0.40	0.50	1 67	1.47	3 08	0.03	0.20	1 01	0.06	0.20	1 14	5 00	2 87	15 72	7 34
HREE 10.09 3.58 2.85 2.13 10.79 27.21 24.45 30.26 7.63 8.37 4.51 27.8 30 29.18 32.67 18.37 5.03 10.21 3.11 17.8 16.64 V 97.5 907 1528 570 674 252 180 138 497 715 426 44.8 19.2 25.9 32.9 62.8 205 91.4 25.1 25.8 30 Cr 27 1509 1795 1228 199 61.7 33.4 31.4 224 197 197 9.39 5.16 11.5 9.01 18.6 74.1 39.7 9.83 21.5 201 Rb 138 2.66 1.22 2.15 2.64 2.14 3.23 1.21 1.36 1.3 3.04 140 3.5 20.1 15.9 3.62 4.55 3.47 1.83 Y 70 1.86 1.54 0.48 2.32 2.01 2.17 2.65 5.03 2.87 7.02 7.55 </td <td>IRFF/</td> <td>0. 54</td> <td>1. 24</td> <td>1.22</td> <td>1.20</td> <td>1.10</td> <td>0.70</td> <td>0.72</td> <td>0.07</td> <td>1.07</td> <td>1. 11</td> <td>0.00</td> <td>0.52</td> <td>0.00</td> <td>1.01</td> <td>0.00</td> <td>0.5</td> <td>1. 17</td> <td>0.05</td> <td>2.07</td> <td>10.72</td> <td>7.01</td>	IRFF/	0. 54	1. 24	1.22	1.20	1.10	0.70	0.72	0.07	1.07	1. 11	0.00	0.52	0.00	1.01	0.00	0.5	1. 17	0.05	2.07	10.72	7.01
Number 97 907 1528 570 674 252 180 138 497 715 426 44.8 19.2 25.9 32.9 62.8 205 91.4 25.1 25.8 369 Cr 27 1509 1795 1228 199 61.7 33.4 31.4 224 197 197 9.39 5.16 11.5 9.01 18.6 74.1 39.7 9.83 21.5 2.01 Rb 138 2.66 1.22 2.15 2.64 2.14 3.23 1.21 1.36 1.3 3.04 140 35.9 43.1 30.8 9.49 7.02 8.33 13.8 11.4 3.1 Sr 614 1.3 1.02 0.95 4.14 7.4 8.6 12.9 3.49 3.82 1.89 147 15.5 20.1 15.9 3.64 9.77 3.14 3.25 3.74 1.64 Ba 2612 1	HRFF	10.09	3.58	2.85	2.13	10.79	27.21	24.45	30.26	7.63	8.37	4.51	27.8	30	29.18	32.67	18.37	5.03	10.21	3.11	17.8	16.64
Cr 27 1509 1705 1228 199 61.7 33.4 31.4 224 197 197 9.39 5.16 11.5 9.01 18.6 74.1 39.7 9.83 21.5 201 Rb 138 2.66 1.22 2.15 2.64 2.14 3.23 1.21 1.36 1.3 3.04 140 35.9 43.1 30.8 9.49 7.02 8.33 13.8 11.4 3.1 Sr 614 1.3 1.02 0.95 4.14 7.4 8.6 12.9 3.94 3.82 1.89 147 15.5 20.1 15.9 3.64 4.55 3.47 5.32 3.47 1.83 Y 70 1.86 1.54 0.48 2.32 2.01 2.17 2.65 5.03 2.87 7.02 7.35 2.04 1.79 2.63 3.64 9.77 3.14 3.25 3.74 1.64 Ba 2612 17 3.87 11.3 12.6 15.5 19.6 23.5 14.4 9.55	V	97 5	907	1528	570	674	252	180	138	497	715	426	44 8	19.2	25 9	32.9	62.8	205	91.4	25 1	25 8	369
Rb 138 2.66 1.22 2.15 2.64 2.14 3.23 1.21 1.36 1.37 1.00 3.01 1.01 <t< td=""><td>Cr</td><td>27</td><td>1509</td><td>1795</td><td>1228</td><td>199</td><td>61 7</td><td>33 4</td><td>31 4</td><td>224</td><td>197</td><td>197</td><td>9 39</td><td>5 16</td><td>11 5</td><td>9 01</td><td>18 6</td><td>74 1</td><td>39 7</td><td>9.83</td><td>21.5</td><td>201</td></t<>	Cr	27	1509	1795	1228	199	61 7	33 4	31 4	224	197	197	9 39	5 16	11 5	9 01	18 6	74 1	39 7	9.83	21.5	201
No 160 16	Rh	138	2.66	1. 22	2.15	2.64	2.14	3. 23	1. 21	1.36	1.3	3. 04	140	35.9	43.1	30.8	9.49	7.02	8.33	13.8	11.4	3.1
Y 70 1.86 1.54 0.62 1.11 1.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 <th0< td=""><td>Sr</td><td>614</td><td>1.3</td><td>1.02</td><td>0. 95</td><td>4.14</td><td>7.4</td><td>8.6</td><td>12.9</td><td>3.94</td><td>3.82</td><td>1.89</td><td>147</td><td>15.5</td><td>20.1</td><td>15.9</td><td>3. 62</td><td>4. 55</td><td>3.47</td><td>5.32</td><td>3.47</td><td>1.83</td></th0<>	Sr	614	1.3	1.02	0. 95	4.14	7.4	8.6	12.9	3.94	3.82	1.89	147	15.5	20.1	15.9	3. 62	4. 55	3.47	5.32	3.47	1.83
A 1.00 1.00 1.01 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.11 0.10 0.11 <t< td=""><td>Y</td><td>70</td><td>1.86</td><td>1.54</td><td>0.48</td><td>2.32</td><td>2.01</td><td>2.17</td><td>2.65</td><td>5. 03</td><td>2.87</td><td>7.02</td><td>7.35</td><td>2.04</td><td>1.79</td><td>2.63</td><td>3. 64</td><td>9.77</td><td>3. 14</td><td>3. 25</td><td>3.74</td><td>1.64</td></t<>	Y	70	1.86	1.54	0.48	2.32	2.01	2.17	2.65	5. 03	2.87	7.02	7.35	2.04	1.79	2.63	3. 64	9.77	3. 14	3. 25	3.74	1.64
Image: Date	Ba	2612	17	3.87	11.3	12.6	15.5	19.6	23.5	14.4	9. 55	19.3	1409	588	1044	707	78.7	34.3	28.5	52.4	28.8	14.4
U 7.44 2.04 1.18 1.65 2.46 2.65 2.62 3.23 4.35 4.16 4.3 2.07 1.67 2.08 2.51 1.92 25.4 7.64 8.82 9.16 35.5 Nb 21.5 13.4 13.6 8.4 12.6 15.3 13.9 20.7 79.8 64.1 70.4 9.98 5.04 8.27 9.18 6.42 27 28 10.9 32.6 11.9 Ta 1.34 0.93 0.91 0.61 0.66 0.55 0.41 0.58 8.81 6.21 8.07 0.4 0.29 0.39 0.42 0.3 2.6 3.52 1.47 3.82 1.22 Zr 369 180 101 121 154 171 197 345 346 332 418 244 316 300 432 213 230 210 57 244 453 Hf 9.63 6.07 3.87 4.91 5.37 4.66 5.65 9.59 12.8 6.28 8	Th	50.8	14.4	7.5	7.89	56.1	65.4	81. 9	125	41.9	36.1	64	28.7	28	45.9	41	24.4	32.5	76.2	12.3	40.9	549
Nb 21.5 13.4 13.6 8.4 12.6 15.3 13.9 20.7 79.8 64.1 70.4 9.98 5.04 8.27 9.18 6.42 27 28 10.9 32.6 11.9 Ta 1.34 0.93 0.91 0.61 0.66 0.55 0.41 0.58 8.81 6.21 8.07 0.4 0.29 0.39 0.42 0.3 2.6 3.52 1.47 3.82 1.22 Zr 369 180 101 121 154 171 197 345 346 332 418 244 316 300 432 213 230 210 57 244 453 Hf 9.63 6.07 3.87 4.91 5.37 4.66 5.65 9.52 10.5 9.59 12.8 6.28 8.26 8.41 11.1 5.5 6.58 7.54 2.24 11.3 21.6	U	7.44	2.04	1.18	1.65	2.46	2.65	2.62	3. 23	4.35	4.16	4.3	2.07	1.67	2.08	2.51	1.92	25.4	7.64	8.82	9.16	35.5
Ta 1. 34 0. 93 0. 91 0. 61 0. 66 0. 55 0. 41 0. 58 8. 81 6. 21 8. 07 0. 4 0. 29 0. 39 0. 42 0. 3 2. 6 3. 52 1. 47 3. 82 1. 22 Zr 369 180 101 121 154 171 197 345 346 332 418 244 316 300 432 213 230 210 57 244 453 Hf 9. 63 6. 07 3. 87 4. 91 5. 37 4. 66 5. 65 9. 52 10. 5 9. 59 12. 8 6. 28 8. 26 8. 41 11. 1 5. 5 6. 58 7. 54 2. 24 11. 3 21. 6	Nb	21.5	13.4	13.6	8.4	12.6	15.3	13.9	20.7	79.8	64.1	70.4	9.98	5.04	8.27	9.18	6.42	27	28	10.9	32.6	11.9
Zr 369 180 101 121 154 171 197 345 346 332 418 244 316 300 432 213 230 210 57 244 453 Hf 9.63 6.07 3.87 4.91 5.37 4.66 5.65 9.52 10.5 9.59 12.8 6.28 8.26 8.41 11.1 5.5 6.58 7.54 2.24 11.3 21.6	Ta	1.34	0.93	0.91	0.61	0.66	0.55	0.41	0.58	8.81	6.21	8.07	0.4	0.29	0.39	0.42	0.3	2.6	3.52	1.47	3.82	1.22
Hf 9. 63 6. 07 3. 87 4. 91 5. 37 4. 66 5. 65 9. 52 10. 5 9. 59 12. 8 6. 28 8. 26 8. 41 11. 1 5. 5 6. 58 7. 54 2. 24 11. 3 21. 6	Zr	369	180	101	121	154	171	197	345	346	332	418	244	316	300	432	213	230	210	57	244	453
	Hf	9.63	6.07	3.87	4.91	5.37	4.66	5.65	9.52	10.5	9.59	12.8	6.28	8.26	8.41	11.1	5.5	6.58	7.54	2.24	11.3	21.6

4.3程序(Liu et al., 2008),测量过程中绝大多数 分析点²⁰⁶ Pb/²⁰⁴ Pb > 1000,未进行普通铅校正, ²⁰⁴ Pb由离子计数器检测,²⁰⁴ Pb 含量异常高的分析点 可能受包体等普通 Pb 的影响,对²⁰⁴ Pb 含量异常高 的分析点在计算时剔除,锆石年龄谐和图用 Isoplot 3.0程序获得。详细实验测试过程可参见 Hou Kejun et al. (2009)。

4 分析测试结果

4.1 锆石 U-Pb 年龄

花岗岩样品(WA14-1)和角砾状铝土矿样品 (WA14-8)采自不同的地区,但锆石的特征相似。 锆石均以长柱状晶体居多(如图 3 所示),铝土矿样 品中锆石长轴虽略小于花岗岩,但是也均大于 100μm。长宽比也具有相似的特征,多数处于1:1 ~2:1之间,少数处于2:1~3:1之间。铝土矿 中碎屑锆石部分具磨圆,花岗岩样品中锆石相对自 形,也有个别具磨圆,可能是锆石制靶过程中被磨 圆,对于铝土矿样品中被磨圆的锆石则有可能是搬 运过程中导致的。

岩浆锆石一般具有亮色分带的 CL 图像,典型 的岩浆锆石具振荡环带,而变质锆石多有暗色不分 带的 CL 图像(Jian Ping et al.,2001; Wu Yuanbao and Zheng Yongfei,2004)。一般认为 Th/U>0.4 为岩浆锆石,Th/U<0.1 为变质锆石,只是通过 Th/U 比值判别成因误差较大,需要结合锆石内部 结构来判别锆石的成因(Li Changmin,2009)。花岗 岩的 Th、U 及 Th/U 比值分别为 152.10 ~ 1695.00、249.40~1262.30 和 0.12~2.32(如表 1 所示)。Th/U 比值结合锆石 CL 图像显示,多数锆 石具弱的振荡环带,部分锆石无环带,但年龄与其相 近,为岩浆锆石(如图 3 所示)。如图 4 所示,锆石大 多处于谐和线上及谐和线附近,表明样品中 U-Pb 体系基本封闭。剔除 5 个年龄偏差较大的点,其余 21 颗锆石年龄较为一致,²⁰⁷ Pb/²⁰⁶ Pb 加权平均年龄 为 2585±12Ma, MSWD=0.83, 与前人测得研究区 的花岗岩年龄较为一致(Myers, 1990; Nemchin and Pidgeon, 1997)。

铝土矿中碎屑锆石²⁰⁷ Pb/²⁰⁶ Pb 年龄可分为 1167Ma和1267Ma与2539~2696Ma(16颗)两个 年龄段,前者Th、U及Th/U分别为37.50×10⁻⁶ ~90.00×10⁻⁶、25.80×10⁻⁶~137.20×10⁻⁶和 0.66×10⁻⁶~1.45×10⁻⁶,后者Th、U及Th/U比 值分别56.80×10⁻⁶~1875.00×10⁻⁶、435.80× 10⁻⁶~3600.10×10⁻⁶和0.10~1.20。Th/U比值 结合CL图像,锆石多具有弱的生长环带,多为岩浆 锆石,部分无分带,但与岩浆锆石的年龄相同,也应 该为岩浆锆石。如图4所示,铝土矿碎屑锆石U-Pb 年龄谐和图相对于花岗岩具有明显的U-Pb不一致 线,可能与二者遭受到了不同程度的风化淋滤,造成 部分Pb丢失有关。2539~2696Ma年龄段,根据谐 和年龄图,剔除谐和度小于90%的点,15个点加权 平均年龄为2579±15Ma,MSWD=1.16。

4.2 主量元素

花岗岩主要成分有 SiO₂(59.81%~83.50%)、 Al₂O₃(9.52%~16.89%)、TFe(0.36%~6.38%)、 Na₂O(0.09%~3.55%)、K₂O(0.22%~4.97%)和 Ti₂O(0.21%~0.74%)。未风化的花岗岩 Na 和 K 含量相对于风化的花岗岩较高,这些元素容易在风 化淋滤过程中迁移出去。

铝土矿矿石中主量元素以Al₂O₃(19.73%~ 42.66%)、TiO₂(0.48%~6.13%)、Fe₂O₃(12.98% ~38.43%)、SiO₂(0.73%~46.25%)为主,变化范 围较大(表1),这四项元素总和为74.44%~ 85.07%,反映了红土化作用较强,成熟度较高的特 点(Zhang Qiming et al.,2015)。矿石中Al₂O₃、 TiO₂和Fe₂O₃含量要大大高于花岗岩与黏土(表 1),表明花岗岩在风化过程中,Al、Fe和Ti等元素

图 3 西澳 Darling Range 地区花岗岩(WA14-1)与铝土矿(WA14-8)锆石阴极发光图像 Fig. 3 Cathodoluminescence images of zircons of the granite (WA14-1) and bauxite (WA14-8) in Darling Range of western Australia

图 4 西澳 Darling Range 地区花岗岩(WA14-1)与铝土矿(WA14-8)的锆石 U-Pb 年龄谐和图与加权平均年龄图 Fig. 4 U-Pb concordia diagrams of zircons and weighted average ages of the granite (WA14-1) and bauxite (WA14-8) in Darling Range of western Australia

发生了明显的富集,也说明这些元素在风化过程中 不易发生迁移,从而在原地保留下来而发生了富集。 而 SiO₂含量则相反,表明铝土矿的形成是一个去 Si 富 Al、Fe 和 Ti 的风化过程。碱及碱土元素为极易 迁移元素,在铝土矿形成过程中,风化淋滤作用会导 致这些元素的含量降低(Mutakyahwa et al,2003)。 研究区铝土矿中 K₂O、Na₂O、CaO 和 MgO 含量相 对较低,其 K₂O 含量为 0.01%~0.06%,Na₂O 含 量为 0.02%~0.09%,CaO 含量为 0.04%~ 0.13%,MgO 含量为<0.01%~0.09%,明显低于 花岗 岩 与 黏 土 (表 1)。烧失量为 11.97%~ 24.93%,总体较高,可能与矿石矿物主要为三水铝 石,一水软铝石含量较少有关。

 Al_2O_3 与 SiO₂呈显著的负相关关系,与 TiO₂则 呈现显著的正相关关系(图 5),相关系数 r 分别为 -0.72和 0.73(r为 Pearson 相关系数)。R 型分析 也表明铝土矿的形成是一个去 Si,富 Al、Ti 的成矿 过程。Fe₂O₃-Al₂O₃-SiO₂图解显示研究区铝土矿具 中等一强的红土化作用,矿石主要落入红土和铁质 铝土矿区域(图 6)。

虽然铝土矿中铝硅比值 A/S(Al₂O₃/SiO₂)值 较小,变化范围较大为 0.55~50.00(表 1),具高硅 高铝的特点,但是这些硅主要以石英的形式存在,对 冶炼有害的可溶性硅含量较少。钛率(Al₂O₃/ TiO₂)也是反映铝土矿成因机理的重要标志,成矿 物源相似的岩类具有相近的钛率(Mameli et al., 2007)。研究区铝土矿与花岗岩具相近的钛率,分别 为 12.69~52.30 和 22.84~50.72,表明二者之间 成因关系密切。

4.3 微量元素

母岩的性质对风化产物元素的组成起决定性作 用,从而铝土矿中微量元素对其母岩具有继承性和 演化性(Yan Jian et al.,2013;Zhang Qiming et al., 2015)。如表1所示,铝土矿矿石的所有微量元素中 除V(180.00×10⁻⁶~715.00×10⁻⁶)、Cr(33.40× 10^{-6} ~1228.00×10⁻⁶)、Zr(121.00×10⁻⁶~453.00

图 5 西澳 Darling Range 地区铝土矿 Al₂O₃-SiO₂(a)和 Al₂O₃-TiO₂(b)相关性图解

Fig. 5 Diagrams showing correlations between Al_2O_3 -Si $O_2(a)$ and Al_2O_3 -Ti $O_2(b)$ in Darling Range of western Australia

图 6 西澳 Darling Range 地区 Fe₂O₃-Al₂O₃-SiO₂ 铝土矿的矿物学分级(据 Aleva,1994),SiO₂- Al₂O₃- Fe₂O₃ 图解表示红土化作用的程度(据 Schellmann,1982 转引自 Zamanian et al.,2016) Fig. 6 The Fe₂O₃-Al₂O₃-SiO₂ triangular diagram showing the mineralogical classification of the bauxite ores (after Aleva,1994) and the SiO₂- Al₂O₃- Fe₂O₃ triangular diagram of bauxites showing degree of lateritization in

Darling Range of western Australia (after Schellmann,1982 quoted in Zamanian et al.,2016)

×10⁻⁶)含量较高,其他元素含量均较低。

在微量元素蛛网图上(图7),花岗岩明显富集 Th、La、Ce、Zr、Hf、Sm,相对亏损Nb、Ta、Sr、P、Ti, 而铝土矿明显富集稳定元素Th、U、Nb、Ta、Zr、Hf、 Ti,相对亏损Ba、K、Sr、P、Sm。表明铝土矿继承了 一部分花岗岩的微量元素特征,但是也具有明显的 区别,表明花岗岩在风化过程中,微量元素发生了较 为明显的活化迁移,导致部分元素迁移发生了亏损, 如Ba、K、Sm等,而部分微量元素残留下来发生了 富集,如U、Nb、Ta和Ti等元素。其中大离子亲石 元素出现贫Rb、Ba、K、Sm富Th、U的特征,主要与 Rb、Ba、K、Sm等元素活动性较强,易于溶解迁移, 丰度呈现明显贫化状态。而Th、U又属于高场强 元素,地球化学性质较稳定,其氧化物在表生条件下 具有十分稳定和难溶的特性(Yan Jian et al., 2013)。风化过程中 Th、U 存留在残积物中或者吸附在黏土矿物中,逐渐在铝土矿中富集,这类元素分布特征在铝土矿矿床中很常见(Yan Jian et al., 2013; Jiao Yang et al., 2014)。

母岩的风化产物(豆荚状铁质硬壳、铝土矿、黏 土)在垂向上表现出相同的富集和亏损规律。豆荚 状铁质硬壳与铝土矿元素富集特征几乎相同(图 7),表明经历了相同的风化淋滤作用后,微量元素表 现出相同的迁移规律。黏土总体上与铝土矿相似 (图 7),只是其在 Ti 的富集上并不明显,二者之间 差别较大。

4.4 稀土元素

4.4.1 花岗岩和铝土矿稀土元素特征

如表1所示,花岗岩的稀土元素总量为58.814 ×10⁻⁶~561.83×10⁻⁶(均值为208.09×10⁻⁶),粘

2018 年

595

表 2 西澳 Darling Range 地区花岗岩(WA14-1)与铝土矿(WA14-8)的锆石 LA-ICP-MS 测年结果表

Table 2 LA-ICP-MS zircon U-Pb dating results of granite and bauxite in Darling Range of western Australia

	Total Ph Th232 11238			T1 232 /			同位素	素比值					年龄	(Ma)			谐和
Spot #	1 otal Pb $(\times 10^{-6})$	$1 h^{202}$	$(\times 10^{-6})$	I h ²⁰² /	$^{207}\mathrm{Pb}/$	⊥ 1	$^{207}\mathrm{Pb}/$	⊥ 1	²⁰⁶ Pb/	⊥ 1	²⁰⁷ Pb/	⊥1	$^{207}\mathrm{Pb}/$	⊥1	$^{206}\mathrm{Pb}/$	+1	度
	(\ 10)	(~10)	(~10)		$^{206}\mathrm{Pb}$	$\perp 1\sigma$	$^{235} m{U}$	$\perp 1\sigma$	²³⁸ U	$\perp 1\sigma$	$^{206}\mathrm{Pb}$	$\pm 1\sigma$	$^{235}\mathrm{U}$	$\pm 1\sigma$	$^{238} m{U}$	$\pm 1\sigma$	(%)
WA1	4-1																
1	1115.0	1695.0	729.4	2.32	0.15243	0.00234	9.11989	0.18980	0.43157	0.00597	2373	26	2350	19	2313	27	98
2	555.5	593.4	629.1	0.94	0.15424	0.00178	8.48454	0.11666	0.39717	0.00460	2394	19	2284	13	2156	21	94
3	383.9	410.7	279.4	1.47	0.17226	0.00236	11.26950	0.17302	0.47249	0.00497	2580	23	2546	14	2495	22	97
4	823.8	562.4	467.5	1.20	0.24067	0.00390	16.71956	0.41792	0.50082	0.00829	3124	26	2919	24	2617	36	89
5	444.6	263.1	704.0	0.37	0.15385	0.00244	8.56587	0.12941	0.40227	0.00321	2391	27	2293	14	2180	15	94
6	408.5	326.5	379.2	0.86	0.17570	0.00240	11.95554	0.18800	0.49226	0.00674	2613	22	2601	15	2580	29	99
7	285.2	323.8	249.4	1.30	0.17196	0.00463	10.83524	0.26326	0.45623	0.00725	2577	45	2509	23	2423	32	96
8	772.7	888.1	474.4	1.87	0.17124	0.00245	11.13212	0.16503	0.46996	0.00388	2570	24	2534	14	2483	17	97
9	269.2	371.1	320.9	1.16	0.17703	0.00294	10.45194	0.22741	0.42656	0.00663	2625	28	2476	20	2290	30	92
10	554.1	582.8	359.1	1.62	0.16984	0.00272	11.18681	0.17468	0.47673	0.00361	2567	27	2539	15	2513	16	98
11	423.9	197.8	570.9	0.35	0.16718	0.00244	10.46915	0.16135	0.45308	0.00426	2532	25	2477	14	2409	19	97
12	514.0	501.8	388.4	1.29	0.17316	0.00254	11.25839	0.19069	0.47098	0.00562	2589	24	2545	16	2488	25	97
13	647.0	755.6	429.5	1.76	0.17239	0.00279	10.67641	0.18476	0.44854	0.00546	2581	28	2495	16	2389	24	95
14	480.2	468.4	392.8	1.19	0.17494	0.00266	10.23077	0.16106	0.42390	0.00468	2605	25	2456	15	2278	21	92
15	392.9	152.1	1262.3	0.12	0.11867	0.00182	3.86793	0.07686	0.23581	0.00337	1936	28	1607	16	1365	18	83
16	470.5	467.8	275.5	1.70	0.17185	0.00268	11.88542	0.18639	0.50107	0.00428	2576	26	2595	15	2618	18	99
17	442.3	457.5	342.3	1.34	0.17048	0.00265	10.03244	0.16024	0.42635	0.00340	2562	26	2438	15	2289	15	93
18	547.8	581.3	392.3	1.48	0.17708	0.00351	10.90773	0.21392	0.44650	0.00605	2626	33	2515	18	2380	27	94
19	597.0	543.1	538.2	1.01	0.16874	0.00338	10.30500	0.19916	0.44232	0.00433	2546	33	2463	18	2361	19	95
20	349.4	346.2	268.7	1.29	0.16983	0.00305	10.58654	0.19637	0.45123	0.00500	2567	31	2488	17	2401	22	96
21	259.6	156.2	298.7	0.52	0.17766	0.00414	11.28682	0.31630	0.45872	0.00679	2631	39	2547	26	2434	30	95
22	646.9	658.1	490.3	1.34	0.17357	0.00247	10.99773	0.20626	0.45810	0.00652	2592	24	2523	18	2431	29	96
23	399.0	242.1	491.0	0.49	0.16763	0.00249	10.02003	0.17525	0.43180	0.00454	2600	25	2437	16	2314	20	94
24	556.3	499.5	545.9	0.91	0.17504	0.00284	10.18330	0.19694	0.42026	0.00597	2607	27	2452	18	2262	27	91
25	476.2	484.5	348.3	1.39	0.17168	0.00458	10.74583	0.28615	0.45211	0.00589	2574	45	2501	25	2405	26	96
26	354.1	313.0	411.8	0.76	0.17137	0.00351	9.99574	0.20648	0.42126	0.00428	2572	34	2434	19	2266	19	92
WAI	4-8	5 00 (0104 5	0.00	0.15140	0.0000	11 20000	0 10/17		0.00007	05.51		0501	10	0500	10	0.0
1	1756.8	708.4	3124.5	0.23	0. 17142	0.00236	11.69982	0.16447	0.49393	0.00307	2571	22	2581	13	2588	13	99
Z	298.3	56.8	548.7	0.10	0. 16995	0.00276	11.60738	0.19954	0.49466	0.00482	2557	26	2573	16	2591	21	99
3	347.9	383.1	632. Z	0.61	0.16794	0.00236	10.97311	0.17304	0.47275	0.00425	2539	24	2521	15	2496	19	98
4	1568.7	1875.0	3100.9	0.60	0.17000	0.00233	10.46801	0.14948	0.44606	0.00388	2558	23	2477	13	2378	10	95
Э С	300.8	144.3	000.9	0.22	0.17164	0.00249	11.38200	0.17269	0.47991	0.00373	2074	24	2000	14	2027	10	98
0	307.2	807.3	123.2	1.20	0.17004	0.00265	10.00880	0.10200	0.43594	0.00299	2010	20 26	2490	14	2552	15	93
0	200.0 605.6	202.7	423.0	0.02	0.16700	0.00270	11.70229	0.10014	0. 49740	0.00370	2520	20	2576	15	2610	15	99
0	542 1	211 7	0.07 0	0.20	0. 17156	0.00275	11.04014	0.19020	0.50114	0.00337	2539	20	2505	10	2019	17	90
9 10	505 8	211.7	1178 1	0.21	0. 16805	0.00334	10 06/01	0. 10563	0. 30031	0.00402	2513	20 20	2520	19	2480	18	99
10	548 5	820 1	1170.1	0.32	0.17200	0.00237		0.18511	0.40920	0.00420	2587	23	2408	16	2282	16	90
11	340.J 315 5	325 5	522 1	0.75	0.17490	0.00290	12 00853	0. 20308	0. 50008	0.00333	2605	20 21	2490	16	2614	20	95
12	267 0	184 7	167 8	0.04	0.17543	0.00280	11 94016	0.20308	0. 49185	0.00474	2610	26	2600	15	2579	10	99
14	7 4	37 5	25.8	1 45	0.07837	0.00271	2 24902	0.16269	0.20837	0.00521	1167	152	1107	51	1220	28	0.8
15	33.7	90.0	137.2	0.66	0. 08018	0.00257	2. 36511	0.07767	0. 21342	0.00260	1267	63	1232	23	1247	14	98
16	896.9	1502.7	1475.8	1.02	0. 18473	0.00279	12, 23381	0. 21433	0. 47818	0.00584	2696	24	2623	16	2519	26	95
17	470.7	367.2	819.4	0.45	0.17582	0.00278	11.90939	0.18481	0.48908	0.00408	2614	26	2597	15	2567	18	98
18	319.4	302.1	534.8	0.56	0.17514	0.00308	11.70960	0.20166	0. 48277	0.00450	2607	24	2582	16	2539	20	98
												-		-			_

土为 5.86×10⁻⁶~131.39×10⁻⁶(均值为 61.97× 10⁻⁶),铝土矿稀土总量较低,为 1.36×10⁻⁶~ 65.58×10⁻⁶(均值为 37.54×10⁻⁶),表明在风化作 用过程中发生了稀土元素的活化迁移。铝土矿 Σ LREE 含量为 0.92×10⁻⁶~63.00×10⁻⁶(均值为 34. 15×10^{-6}), **ΣHREE** 基本没有发生富集, 呈一条 水平的直线,含量为 0. $43 \times 10^{-6} \sim 10.82 \times 10^{-6}$ (均 值为 3. 39×10^{-6}), (La/Yb)_N值为 0. $85 \sim 56.91$, 绝 大多数小于 5,表明 **ΣLREE** 的富集并不明显, 铝土 矿矿石 **ΣLREE**/**ΣHREE** 比值范围变化较大, 为 2. 13

arling Range 地区花岗岩(WA14-1)和铝土矿(WA14-8)锆石中稀土元素含量分析表(×10 ⁻⁶)	
西澳 Darling I	
表 3	

Table 3 Rare earth elements data in zircon of granite and bauxite samples from Darling Range of western Australia($\times 10^{-6}$)

	Će		93	08	. 77	60	48	. 44	44	36	26	70	. 59	. 79	19	98	91	.43	46	. 15	. 15	39	62	. 70	04	58	06	12		05	. 56	10	89
╞	u Ø		53 3.	45 4.	42 13	55 2.	54 5.	44 10	55 2.	47 4.	42 1.	46 7.	27 99	36 37	44 7.	44 6.	54 3.	47 16	55 2.	43 20	48 14	48 2.	26 5.	45 13	53 4.	44 6.	54 3.	56 2.	-	29 1.	05 23	18 7.	34 3
	δE		0.	0	°.	0.	<u>.</u>	°.	0		0.	0.	0.	0.	0	°.	0.	0.	0.	0.	·.	·.	0.	· ·	°.	0.	0.	0.	-	0	0.0	0.	
	LaN/ Yb _N		0.01	0.00	0.00	0.02	0.01	0.00	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.02	0.00	0.00	0.01	0.01	0.01	0.03		0.04	0.00	0.00	6
	LKEE/ HREE		0.23	0.14	0.12	0.24	0.15	0.14	0.32	0.17	0.12	0.14	0.06	0.10	0.14	0.14	0.24	0.11	0.29	0.10	0.16	0.34	0.04	0.12	0.23	0.22	0.25	0.40		0.19	0.01	0.04	5
	HREE		1668.76	1111.02	916.98	957.18	617.97	628.24	616.86	1438.47	1368.17	968.02	515.60	941.75	1325.90	896.47	349.46	828.65	864.94	1129.65	769.20	661.75	974.14	1167.57	553.12	670.71	940.88	560.81		1962.94	692.66	1226.36	0.00
	LREE		379.17	153.27	112.12	233.22	92.78	86.57	198.97	241.54	165.11	133.66	32.73	91.30	187.29	129.83	82.58	92.86	248.49	114.38	120.74	224.73	37.49	135.32	128.51	150.91	236.70	221.64		376.92	7.55	52.38	0
	ZREE		047.93	264.29	029.09	190.40	710.75	714.80	815.83	680.01	533.28	101.68	548.33	033.06	513.19	026.30	432.05	921.52	113.43	244.03	889.95	386.48	011.63	302.90	581.62	821.62	177.58	782.45	-	339.86	700.20	278.74	
,	Lu	-	107.36 2	97.07	58.11 1	67.87	53.34	49.66	43.46	94.17	111.13	70.44 1	52.81	68.50 1	87.91	66.39 1	31.79	59.40	62.51 1	80.41 1	62.08	39.94	70.38 1	81.86 1	44.13	52.43	59.42 1	45.39	-	148.50 2	67.48	101.02	
)	$_{\mathrm{Yb}}$	-	578.78	184.95	347.74	373.26	279.32	278.46	227.33	514.92	544.05	364.33	254.33	371.45	190.04	357.51	164.68	310.72	327.09	134.88	331.31	230.81	128.42	180.52	239. 23	290.32	335.98	224.42		766.82	317.76	504.49	-
	Tm	-	67.56	49.40	38.79	41.01	29.55 2	28.66	25.42 2	60.66	60.15	40.81	25.42 2	42.26	57.98	38.08	17.01	34.74 3	36.02	49.36	34.21	24.84	46.33	52.28	24.45	30.36 2	39.46	23.82	-	86.75 3	32.90	57.20	-
	Er	-	352.51	223.39	195.15	195.32	131.97	132.28	128.67	318.05	301.38	206.72	103.95	209.57	292.14	188.01	68.69	180.73	177.54	247.28	162.51	127.55	215.25	242.04	109.59	133.63	202.50	108.15	-	124.19	146.57	275.33	
	Но	-	91.34	49.53	49.08	49.05	27.64	28.45	31.91	79.91	69.99	51.22	20.12	50.17	73.18	44.94	13.91	46.04	43.99	58.69	35.98	33. 39	48.75	58.51	24.70	30.68	49.86	24.83	-	00.09	31.27	62.25	
,	Dy	-	93.99	39.43	53.61	45.15	67.62	78.77	94.35	242.40	90.51	54.37	46.43	42.06	217.07	32.35	33.61	33.80	32.40	75.97	00.32	14.30	27.05	72.39	68.94	91.25	54.73	75.00	-	290.82 1	76.41	69.41	_
	Tb		32.23 2	13.85	15.21	14.86	6.40	6.79	10.84	25.14 2	17.80	15.88]	3.52	13.15	22.49 2	13.17	3.48	13.59]	14.43	16.83]	8.78	13.97	9.52	17.06	7.12	8.55	17.64]	8.72	-	28.83 2	5.86	14.51	-
	Gd	-	144.99	53.40	59.29	70.64	22.12	25.17	54.88	103.23	73.15	64.25	9.01	44.59	85.08	56.02	16.30	49.62	70.97	66.23	34.00	76.95	28.44	62.92	34.95	33.49	81.30	50.48	-	116.94	14.39	42.15	-
	Eu	-	17.74	5.78	4.94	10.17	3.44	2.31	8.05	11.05	7.68	6.30	0.43	3.00	8.06	5.19	2.57	4.71	10.27	5.46	3.46	10.08	1.42	5.77	4.81	3.57	11.29	8.35	-	7.80	0.12	1.41	
	Sm	-	68.95	28.53	18.47	45.30	11.93	9.21	35.71	45.97	41.98	23.85	1.74	10.74	34.09	21.25	13.17	16.17	46.20	18.21	12.61	53.51	7.76	21.51	22.29	18.17	49.34	40.88	-	53.28	2.12	8.89	
	ΡN		82.27	35.26	14.86	65.92	20.13	12.79	61.03	61.41	63.84	24.17	0.90	6.78	38.24	24.94	19.81	13.12	71.37	14.69	14.20	69.01	8.90	19.62	35.18	29.80	67.92	68.77		115.67	0.74	7.74	
	\Pr		10.21	4.46	1.25	8.19	2.21	1.57	7.40	6.43	7.73	2.47	0.08	0.52	3.67	2.65	2.27	1.03	9.06	1.09	1.45	7.93	0.85	1.54	3.61	3.05	7.50	9.17	-	20.57	0.05	1.08	
	Ce		188.36	75.96	71.67	95.56	53.07	60.15	79.91	112.70	39.05	75.44	29.55	70.12	101.45	74.17	42.09	57.69	102.11	74.78	87.83	78.51	18.17	85.87	60.11	92.98	95.27	85.96	-	133.04	4.49	32.41	
	La	i-1	11.63	3.28	0.92	8.09	1.99	0.54	6.87	3.97	4.82	1.42	0.02	0.14	1.78	1.63	2.67	0.14	9.48	0.16	1.18	5.68	0.40	1.01	2.51	3.34	5.37	8.52	-8	46.56	0.04	0.85	
╞	样号	WA14	-	2	ŝ	4	S	9	7	~	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	WA14	1	2	ŝ	-

5.36

0.37

28.29 24.55 4.99 61.37 16.27 152.19 47.26 190.84 37.59 329.47 63.18 1083.05 184.90 898.16 0.21 0.01

3.97 117.86 5.24

9

34.59 53 03 60 41 40 38 14
 85
 84
 8434 98 õ 6.8 17. 5 33. 5 22. 78. ы. 6 \sim ŝ 续表 0.18 0.28 0.02 0.03 0.28 0.11 0.11 29 03 02 80 80 3Eu . . *.* Ċ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8 00 00 LaN0 Yb_N ÷ . ं HREE LREE/ 0.02 0.02 0.04 0.07 0.01 0.01 0.17 0.02 06 03 01 5 *.* ं 17 46 28 30 28 1872 76 10 25 25 26HREI 776. 1416. 1465. 2280. 2421. 379. 238. 1294 604. 984 954 LREE 94 18 33 59 39 65 36 93 75 78 44 26. 24. 11. 22. 206. 29. 13. 54. 33. 28. 88 93 40 6087 03 615443 65 148 EE 1470. 1566. 2306. 2445. 1444. 2007. 616. 402. 987. ΣR 324 789. 2067 20 40 81 89 89 24 23 33 42 48 14 90 94 77 Ľ 110. 118. 119. l 69. 184. 155. 147. 44. 31. 79. 71. 59. 117 97 74 93 91 91 91 229 229 229 71 71 118 113 113 Υb 1019. 568. 316. 632. 638. 961. 240. 443. ±11. 829 168. 369 109.13 114.65 4657 15 99 34 56 70 97 76 33 Ъ 94. 62. 36. 68. 70. 27. 17. 19. 15. 96. 40 38 36 36 524.43 564.70 137.56 79.15 242.60 212.21 466.20 71 핖 315. 323. t63. 295. 176. 59 03 26 06 89 05 40 63 07 75 36 Нo 63. (6 40. : 69. (6 70. 3 21. 103. 127. 32. 17. 63. 48. 105. 56 64 04 58 94 81 42 40 31 78 19 25 Ď 312. 48. 213. 266. 13. 68. 86. 324. 126. 277. 54 91. 111.90 9.22 12.97 14.88 15 57 24.34 06 63 30 6218Tb 26. 25. 2 20. 4. 10. 21. 80 55 65 73 53 6685 23 06 90 15 36 g 119. 50. 24. 30. 56. 60. 23. 13. 27. 54. 0.18 0.43 0.65 7.29 0.16 0.37 0.35 0.35 1.05 2.34 0.29 53 30 Еu · · · 43 32 30 50 32 27 57 74 74 79 31 Sm 7.7.7 4.4 3.3 3.3 13. <u>1</u>1. 2. 6 ŝ 2 i. _s 6.49 14.24 34.04 1.03 3.03 3.13 2.54 1.92 1.95 53 64ΡQ \sim i ÷ en i 0.15 0.36 0.16 0.14 0.18 1.31 2.64 08 0.07 4.96 52 31 Ρr N. ं ं *.* 14.88 16.0211.1472 90 01 32 23 61 31 64 S 12. 22. 37. 56. 17. ы. 22. 15. 0.05 03 23 11 94 25 01010128 44 20 La ं 4 · · ं ΠÞ B 8 9 110 112 23 14 15 16 17 180 壮

~27.21,部分轻重稀土比值较大则反映矿石遭受的 风化淋滤作用较强。

花岗岩类样品明显富集 Σ LREE,含量为 55.78 ×10⁻⁶~511.15×10⁻⁶(均值为 195.68×10⁻⁶), Σ HREE含量为 2.77×10⁻⁶~50.68×10⁻⁶(均值 12.40×10⁻⁶), Σ LREE/ Σ HREE为 10.09~32.67 (均值为 24.68),轻重稀土比值较大,同时(La/ Yb)_N值为 11.59~73.38,具有明显轻稀土富集的 特点(表 1 和图 9)。黏土 Σ LREE含量为 4.43× 10⁻⁶~127.19×10⁻⁶(均值为 59.23×10⁻⁶), Σ HREE含量为 1.43×10⁻⁶~4.20×10⁻⁶(均值为 2.74×10⁻⁶), Σ LREE/ Σ HREE比值为 3.11~ 30.26(均值为 17.06)及(La/Yb)_N的值为 1.21~ 75.19,绝大多数小于 2,与铝土矿相似。

花岗岩具有较为明显的 Eu 负异常,其 δ Eu 值 为 0.17~0.61;而铝土矿的 δ Eu 值为 0.46~0.82, 具有一定的 Eu 负异常,而黏土的 δ Eu 值为 0.38~ 0.56,与铝土矿异常值相近。花岗岩的 δ Ce 值为 0.90~1.01(均值为 0.95),基本无异常,铝土矿的 δ Ce 值为 0.72~7.32(均值为 2.07),多数呈正异 常,黏土的 δ Ce 值变化较大,为 0.67~15.72,同铝 土矿相似,既有正异常,也有负异常(图 8)。

在稀土元素球粒陨石标准化图上(图 8),花岗 岩标准曲线向右倾,明显富集轻稀土。铝土矿标准 化曲线则略微向右倾斜,与黏土的配分曲线趋势相 似,铝土矿与花岗岩总体趋势一致,倾斜程度不同, 可能与源岩在风化过程中稀土元素受到了活化迁移 有关。

4.4.2 锆石稀土元素特征

对铝土矿中碎屑锆石和花岗岩中锆石进行了稀 土元素分析,结果见表 3。花岗岩中锆石稀土元素 总量 较高为 432.04 × 10⁻⁶ ~ 2047.93 × 10⁻⁶, Σ LREE 含量为 32.73 × 10⁻⁶ ~ 379.17 × 10⁻⁶, Σ HREE 含量为 349.46 × 10⁻⁶ ~ 1668.76 × 10⁻⁶, Σ LREE/ Σ HREE 比值为 0.04~0.39,且(La/Yb)_N 比值趋近于零(0.00~0.03),表现出轻稀土亏损,重 稀土富集特征。

铝土矿碎屑锆石可分为 1167Ma 和 1267Ma 与 2539~2696Ma 年龄段,前者稀土元素总量略小于 花岗岩锆石,后者范围则与其相近,分别为 402.14 ×10⁻⁶~616.65×10⁻⁶和 605.30×10⁻⁶~2445.54 ×10⁻⁶。前者 Σ LREE 总量远低于花岗岩锆石,后 者则与花岗岩锆石相近,分别为 11.93×10⁻⁶~ 22.39×10⁻⁶和 7.55×10⁻⁶~376.92×10⁻⁶。

Fig. 7 Primitive-mantle-normalized pattern of trace elements spidergrams of granites, bauxite and clay in Darling Range of western Australia (primitive-mantle normalization values from Sun and McDonough, 1989)

ΣHREE 总量较为富集,分别为 379.96×10⁻⁶ ~ 604.72×10⁻⁶和 597.64×10⁻⁶~2421.18×10⁻⁶。 二者的ΣLREE /ΣHREE 比值小于花岗岩锆石,分 别为 0.02~0.06 和 0.01~0.21。同花岗岩锆石一 致,铝土矿中锆石 (La/Yb)_N比值趋近于零(0.00~ 0.04),锆石稀土元素的配分具有明显左倾(图 9 所 示),且具明显富集重稀土元素特征。

5 铝土矿源区研究

5.1 锆石年代学指示源区

铝土矿碎屑锆石分布于 1167Ma 和 1267Ma 与 2539~2696Ma(数量占 88.89%)年龄段。有限的

图 8 西澳 Darling Range 地区花岗岩、铝土矿及 黏土的稀土元素配分模式图

(标准化值据 Sun and McDonough, 1989)

Fig. 8 Chondrite-normalized REE patterns of granites bauxite and clay in Darling Range of western Australia (normalizing values after Sun and McDonough, 1989)

地质年代学研究表明,研究区缺少 1167Ma 和 1267Ma 相关地质事件记载及出露岩层,而 Darling Range 南部的 Albany-Fraser 造山带中存在 1345~ 1260Ma 和 1214~1140Ma 的构造热事件(Clark et al.,1999,2000)。Cawood and Nemchin (2000)研究认为,Darling Range 地区的西部珀斯盆地中出现的 1300~1000Ma 年龄段碎屑锆石与 Albany-Fraser 造山带的年龄事件对应较好,因此研究区铝土矿中 1167Ma 和 1267Ma 年龄的碎屑锆石可能来 自 Albany-Fraser 造山带。

碎屑锆石中的 2539~2696Ma 年龄段,加权平 均年龄为 2579±15Ma,与本文获得的其下伏太古 宙花岗岩的加权平均年龄 2585±12Ma 在误差范围 内一致。铝土矿中的太古宙时代碎屑锆石与太古宙 花岗岩里的锆石具有很多相似的特征,花岗岩和太 古宙的碎屑锆石 Th、U和 Th/U相似,明显不同于 中元古代的碎屑锆石。值得注意的是,前人对 Darling Range 地区的花岗岩类锆石进行研究时发

图 9 西澳 Darling Range 地区花岗岩、铝土矿中锆石稀土 元素配分模式图(标准化值据 Sun and McDonough,1989) Fig. 9 Chondrite-normalized REE patterns in zircons of granites and bauxite in Darling Range of western Australia (normalizing values after Sun and McDonough,1989)

现,研究区错石具弱的分带或者无分带,主要与 CL 图像强度较弱,不能很好显示锆石结构有关,也有使 用 HF 酸刻划显示研究区花岗岩锆石内部结构,证 明以岩浆锆石居多(Nemchin and Pidgeon,1997; Pidgeon and Nemchin,1998;Pidgeon et al.,2013)。 此外锆石的形态上也均呈长柱状为主,极少数碎屑 锆石具磨圆状,说明锆石经短距离搬运,可能与锆石 为原地风化淋滤产物有关。综上所述,太古宙的花 岗岩为铝土矿的形成提供了主要的物质来源,中元 古代的碎屑锆石指示 Albany-Fraser orogen 可能提 供了部分物质来源。

5.2 地球化学指示源区

Ti、Zr、Hf、Nb、Ta、Cr 和 Ni 等元素在风化过 程中相对较稳定(MacLean and Kranidiotis,1987; Kurtz et al.,2000;Panahi et al.,2000),近年来,被 国内外众多学者广泛用于判断铝土矿源岩的研究 (Calagari and Abedini.,2007; Zarasvandi et al., 2012;Gu et al.,2013;Jiao Yang et al.,2014; Zamanian et al.,2015)。这里运用钛率(Al₂O₃/ TiO₂)、lgCr-lgNi、微量元素比值、稀土元素配分模 式对西澳地区的红土型铝土矿可能的成矿母岩进行 探讨。

物质来源相同的岩石钛率一般较为接近,研究 区铝土矿的钛率为12.69~52.30,花岗岩的钛率为 22.84~50.72,表明花岗岩可能为铝土矿的物质 来源。

lgCr-lgNi图解可以较好地反映铝土矿的类型 和物质来源(Schroll and Sauer,1968),如图 10 所 示,Darling Range地区铝土矿主要处于高铁红土型 铝土矿及附近,分布较为分散,接近于花岗岩区,表 明其物质来源主要为花岗岩。其次靠近砂岩、页岩 板岩、玄武岩区,可能与研究区分布少量的沉积岩及 镁铁质岩也提供次要的物质来源有关。

还可用 Zr/Hf、Nb/Ta 等微量元素图解来判断 铝土矿的物质来源。通过对花岗岩与铝土矿以及黏 土做 Zr-Hf、Nb-Ta 图解,如图 11 所示,铝土矿、黏 土、铁质硬壳均与花岗岩呈较好的线性关系,并且都 落在由铝土矿的点拟合而成的风化线(WL)上,表 明花岗岩可能为铝土矿、黏土、铁质硬壳共同的物质 来源。

稀土元素配分模式图均显示铝土矿、黏土与铁 质硬壳具相似的分布模式,表明三者有共同的物质 来源。而与花岗岩相比均表现出向右倾斜程度不等 的曲线,但铝土矿稀土元素含量明显偏低,可能与稀 土元素在风化淋滤作用过程中发生活化迁移有关。 δEu 在整个含铝岩系中很稳定,可以作为判别物质 来源的指标(Mameli et al.,2007)。研究区花岗岩、

图 10 西澳 Darling Range 地区铝土矿 lgNi-lgCr 图解 (底图据 Schroll and Sauer, 1968)

Fig. 10 Plot of lgNi versus lgCr of bauxite ores in Darling Range of western Australia (base map from Schroll and Sauer, 1968)

图 11 西澳 Darling Range 地区不同类型岩石的 Zr-Hf 和 Nb-Ta 图解 Fig. 11 Zr-Hf and Nb-Ta diagrams for different types of rocks in Darling Range of western Australia

铝土矿和黏土的 δEu 的值分别为 0.17~0.61、0.46 ~0.82 和 0.38~0.56,表现出相近的负铕异常,表 明铝土矿和黏土的物质来源主要为花岗岩。

6 结论

(1) 西澳 Darling Range 地区的红土型铝土矿 的主量元素以 Al₂ O₃、Fe₂ O₃、SiO₂ 和 TiO₂ 为主, Al₂O₃与 SiO₂ 呈负相关关系,与 TiO₂ 呈正相关关 系;铝土矿富集 Th、U、Nb、Ta、Zr、Hf、Ti,相对亏损 Ba、K、Sr、P、Sm,花岗岩则富集 Th、La、Ce、Zr、Hf、 Sm,相对亏损 Nb、Ta、Sr、P、Ti,表明铝土矿继承了 一部分花岗岩的微量元素特征;花岗岩稀土总量为 58.81×10⁻⁶~561.83×10⁻⁶,铝土矿稀土总量较低 为 1.36×10⁻⁶~65.58×10⁻⁶,铝土矿标准化曲线 则略微向右倾斜,与花岗岩总体趋势一致,倾斜程度 不同,表明在风化作用过程中发生了稀土元素的活 化迁移。而铁质硬壳、黏土同铝土矿保持相同的富 集和亏损模式,表明物质来源相同。

(2) 锆石年代学研究表明, 铝土矿中的碎屑锆石 有两个年龄段, 分别为 1167~1267Ma 和 2539~ 2696Ma, 并以后一个年龄段为主, 其加权平均年龄 为 2579±15Ma, 与获得的太古宙花岗岩的锆石年 龄 2585±12Ma 在误差范围内近于一致, 表明铝土 矿中的碎屑锆石主要来源于研究区内的太古宙花岗 岩, 部分可能来自 Albany-Fraser 造山带。

(3)地球化学特征显示,铝土矿矿石与花岗岩钛 率(Al₂O₃/TiO₂)相近;lgCr-lgNi图解接近花岗岩 区;铝土矿与花岗岩的Zr-Hf、Nb-Ta图解呈线性关 系;铝土矿与花岗岩相比均表现出向右倾斜程度不 等的曲线,且负Eu异常相近;上述元素地球化学特 征也表明本区花岗岩为铝土矿的主要物质来源。

References

Aleva G J J. 1994. Laterites: concepts, geology, morphology and

chemistry. International Soil Reference and Information Centre (ISRIC), Wageningen, The Netherlands, $1 \sim 169$.

- Anand R R, Gilkes R J. 1987. The association of maghemite and corundum in Darling Range laterites, western Australia. Soil Research, 25(3): 303~311.
- Anand R R, Gilkes R J, Roach G I D. 1991. Geochemical and mineralogical characteristics of bauxites, Darling Range, western Australia. Applied Geochemistry, 6(3): 233~248.
- Anand R R, Paine M. 2002. Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Australian Journal of Earth Sciences, 49: 3~162.
- Anand R R, Butt C R M. 2003. Distribution and evolution of 'laterites' and lateritic weathering profiles, Darling Range, western Australia. Australian Geomechanics, 38: 41~58.
- Bárdossy G, Aleva G J J. 1990. Lateritic bauxites. Developments in Economic Geology. Amsterdam: Elsevier Scientific Publishing Company, 1~624.
- Bárdossy G. 1982. Karst bauxites, bauxite deposits on carbonate rocks. Developments in Economic Geology. Amsterdam: Elsevier Scientific Publishing Company, 1~441.
- Bogatyrev B A, Zhukov V V, Tsekhovsky Y G. 2009. Formation conditions and regularities of the distribution of large and superlarge bauxite deposits. Lithology and Mineral Resources, 44(2): 135~151.
- Brimhall G H, Lewis C J, Ague J J, Dietrich W E, Hampel J. 1988. Chemically mature aeolian dust. Nature, 333: 30.
- Calagari A A, Abedini A. 2007. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. Journal of Geochemical Exploration, 94(1): 1~18.
- Cawood P A, Nemchin A A. 2000. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, western Australia. Sedimentary Geology, 134(3): 209~234.
- Chivas A R, Atlhopheng J R. 2010. Oxygen-isotope dating the Yilgarn regolith. Geological Society, London, Special Publications, 346(1): 309~320.
- Clark D J, Hensen B J, Kinny P D. 2000. Geochronological constraints for a two-stage history of the Albany-Fraser orogen,

western Australia. Precambrian Research, 102(3): 155~183.

- Clark D J, Kinny P D, Post N J. 1999. Relationships between magmatism, metamorphism and deformation in the Fraser complex, western Australia: constraints from new SHRIMP U-Pb zircon geochronology. Australian Journal of Earth Sciences, 46(6): 923~932.
- Deng J, Wang Q, Yang S, Liu X, Zhang Q, Yang L, Yang Y. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in western Guangxi, China: constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences, 37(5): 412~424.
- Fletcher I R, Wilde S A, Rosman K J R. 1985. Sm-Nd model ages across the margins of the Archaean Yilgarn Block, western Australia. Australian Journal of Earth Sciences, 32: 73~82.
- Glassford D K, Semeniuk V. 1995. Desert-aeolian origin of late Cenozoic regolith in arid and semi-arid southwestern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 114(2): 131~166.
- Grubb P L C. 1971. Mineralogicalanomalies in the Darling Ranges bauxites at Jarrahdale, western Australia. Economic Geology, 66: 1005~1016.
- Gu J, Huang Z, Fan H, Jin Z, Yan Z, Zhang J. 2013. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan- Zheng ' an- Daozhen area, northern Guizhou Province, China. Journal of Geochemical Exploration, 130: 44 ~59.
- Harris L B. 1994. Structural and tectonic synthesis for the Perth Basin, western Australia. Journal of Petroleum Geology, 17 (2): 129~156.
- Hickman A H, Smurthwaite A J, Brown I M, Davy R. 1992. Bauxite mineralization in the Darling Range, western Australia. Geological Survey of Western Australia, 1~82.
- Horbe A M C, da Costa M L. 1999. Geochemical evolution of a lateritic Sn-Zr-Th-Nb-Y-REE-bearing ore body derived from apogranite: the case of Pitinga, Amazonas—Brazil. Journal of Geochemical Exploration, 66(1): 339~351.
- Hou Kejun, Li Yanbe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4):481~492 (in Chinese with English abstract).
- Jian Ping, Chen Yuqi, Liu Dunyi. 2001. Petrographical study of metamorphic zircon: basic roles in interpretat ion of U-Pb age of high grade metamorphic rocks. Earth Science Frontiers, (03): 183~191 (in Chinese with English abstract).
- Jiao Yang, Wang Xunlian, Cui Yinliang, Jiang Yongguo, Zhou Hongrui, Gao Jinhan, Wang Genhou. 2014. Geochemical Characteristics and provenance analysis of the Tianshengqiao bauxite in Wenshan County, Yunnan Province. Geoscience, 28 (4): 731~742 (in Chinese with English abstract).
- Kurtz A C, Derry L A, Chadwick O A, Alfano M J. 2000. Refractory element mobility in volcanic soils. Geology, 28(8): 683~686.
- Li Changmin. 2009. A review on the minerageny and situ

microanalytical dating techniques of zircons. Geological Survey and Rresearch, 03: 161 \sim 174 (in Chinese with English abstract).

- Liu X, Wang Q, Deng J, Zhang Q, Sun S, Meng J. 2010. Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. Journal of Geochemical Exploration, 105(3): 137~152.
- Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1): 34~43.
- MacLean W H, Kranidiotis P. 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82(4): 951~962.
- Mameli P, Mongelli G, Oggiano G, Dinelli E. 2007. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (western Sardinia, Italy); insights on conditions of formation and parental affinity. International Journal of Earth Sciences, 96(5): 887~902.
- Meyer F M, Happel U, Hausberg J, Wiechowski A. 2002. The geometry and anatomy of the Los Pijiguaos bauxite deposit, Venezuela. Ore Geology Reviews, 20(1): 27~54.
- Mutakyahwa M K D, Ikingura J R, Mruma A H. 2003. Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania. Journal of African Earth Sciences, 36(4): 357~369.
- Myers J S. 1990. Westerngneiss terrane, Geology and Mineral Resources of western Australia. Western Australia Geological Survey, 13~31.
- Nasdala L, Hofmeister W, Norberg N, Martinson J M, Corfu F, Dörr W, Frei D. 2008. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247 ~265.
- Nemchin A A, Pidgeon R T. 1997. Evolution of the Darling range batholith, Yilgarn craton, western Australia: a SHRIMP zircon study. Journal of Petrology, 38(5): 625~649.
- Nieuwland D A, Compston W. 1981. Crustal evolution in the Yilgarn Block near Perth. Geological Society of Australia, Special Publication, 159~171.
- Panahi A, Young G M, Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochimica et Cosmochimica Acta, 64(13): 2199~2220.
- Pidgeon R T, Nemchin A A, Cliff J. 2013. Interaction of weathering solutions with oxygen and U-Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, western Australia. Contributions to Mineralogy and Petrology, 166(2): 511~523.
- Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures

of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology, 132(3): 288~299.

- Song Biao, Zhang Yuhai, Wang Yusheng, Jian Ping. 2002. Monut making and procedure of the SHRIMP dating. Geological Review, (S1): 26~30 (in Chinese with English abstract).
- Sun Pengfei, Jiang Sihong, Xun Chunji, Bai Daming, Han Ning. 2016. Geological characteristics and ore-controlling factors of the bauxite deposits in Darling Range, western Australia. Geological Review, (01): 171~186 (in Chinese with English abstract).
- Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42 (1): 313~345.
- Taylor G, Eggleton R A. 2008. Genesis of pisoliths and of the Weipa Bauxite deposit, northern Australia. Australian Journal of Earth Sciences, 55(S1): S87~S103.
- Valeton I, Schumann A, Vinx R, Wieneke M. 1997. Supergene alteration since the upper Cretaceous on alkaline igneous and metasomatic rocks of the Poços de Caldas ring complex, Minas Gerais, Brazil. Applied Geochemistry, 12(2): 133~154.
- Wang Q, Liu X, Yan C, et al. 2012. Mineralogical and geochemical studies of boron-rich bauxite ore deposits in the Songqi region, SW Henan, China. Ore Geology Reviews, 48: 258~270.
- Wang Qingfei, Deng Jun, Liu Xuefei, Zhang Qizuan, Li Zhongming, Kang Wei, Cai Shuhui, Li Ning. 2012. Review on research of bauxite geology and genesis in China. Geology and Exploration, 48 (3): 430 ~ 448 (in Chinese with English abstract).
- Wilde S A, Low G H. 1978. Perth, Western Australia, 1:250 000 Geological Series Explanatory Notes. Western Australia Geological Survey, 1~36.
- Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 16:1589~1604 (in Chinese with English abstract).
- Yan Jian, Dou Song, Zhang Daohong. 2013. Geochemical characteristics and sources of ore-forming metals of datie bauxite

deposit, Qiubei County, Yunnan Province, China. Acta Mineralogica Sinica, $(04): 462 \sim 470$ (in Chinese with English abstract).

- Zamanian H, Ahmadnejad F, Zarasvandi A. 2016. Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran. Chemie der Erde-Geochemistry, 76 (1): 13~37.
- Zarasvandi A, Carranza E J M, Ellahi S S. 2012. Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran. Ore Geology Reviews, 48, 125~138.
- Zhang Qiming, Qin Jianhua, Liao Zhenwen, Liu Caize. 2015. Geochemical characteristics and material source of the Late Permian bauxite deposits in southeastern Yunnan Province. Geoscience, 29(1);32~44 (in Chinese with English abstract).

参考文献

- 侯可军,李延河,田有荣. 2009. LA-MC-ICP-MS 锆石微区原位 U-Pb 定年技术. 矿床地质,28 (4):481~492.
- 简平,程裕淇,刘敦一. 2001. 变质锆石成因的岩相学研究——高级 变质岩 U-Pb 年龄解释的基本依据. 地学前缘,(03): 183 ~191.
- 焦扬,王训练,崔银亮,姜永果,周洪瑞,高金汉,王根厚. 2014. 云南 文山县天生桥铝土矿地球化学特征与物源分析.现代地质,28 (4):731~742.
- 李长民. 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与 研究,(03):161~174.
- 宋彪,张玉海,万渝生,简平. 2002. 锆石 SHRIMP 样品靶制作、年龄 测定及有关现象讨论. 地质论评,(S1): 26~30.
- 孙朋飞,江思宏,薛春纪,白大明,韩宁. 2016. 西澳 Darling Range 地 区铝土矿特征及成矿控制因素. 地质论评,(01): 171~186.
- 王庆飞,邓军,刘学飞,张起钻,李中明,康微,蔡书慧,李宁. 2012. 铝土矿地质与成因研究进展.地质与勘探,48(03):430~448.
- 吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释 的制约. 科学通报,(16):1589~1604.
- 严健,豆松,张道红. 2013. 云南丘北大铁铝土矿地球化学特征及成 矿物质来源. 矿物学报,(04):462~470.
- 张启明,秦建华,廖震文,刘才泽. 2015. 滇东南晚二叠世铝土矿地 球化学特征及物源分析. 现代地质,29(1): 32~44.

Geochemical Characteristics and Source of the Laterite-type Bauxite Deposit in Darling Range, Western Australia

SUN Pengfei^{1,2)}, JIANG Sihong²⁾, HAN Ning²⁾

 School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083;
 MLR Key Laboratory of Metallogeney and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037

Abstract

Located in western Australia, Darling Range is rich in laterite-type bauxite resources. In order to understand metallogenesis of the laterite-type bauxite in Darling Range and constrain the source of oreforming materials, this study carried out element geochemistry analysis and LA -ICP-MC dating of detrital zircons from bauxite and underlying granite. The results show that the bauxite in the Darling Range are composed mainly of Al_2O_3 , Fe_2O_3 , SiO_2 , and TiO_2 . Al_2O_3 has a negative relationship with SiO_2 , but a positive relationship with TiO₂. It suggests that bauxite experienced the loss of Si and enrichment of Al and Ti during the ore-forming process. Geochemical analysis shows that the bauxite is enriched in Th, U, Nb, Ta, Zr, Hf and Ti, and depleted in Ba, K, Sr, P and Sm. The bauxite is characterized by low REE contents from 1. 36 $\times 10^{-6}$ to 65. 58 $\times 10^{-6}$, and the chondrite-normalized REE pattern slightly tilts to the right and shows enrichment in LREE. LA-ICP-MC detrital zircon U-Pb ages of the bauxite can be assigned to two groups: 1167~1267 Ma (2 zircons) and 2539~2696 Ma (16 zircons). The former younger detrital zircons possibly came from Albany-Fraser orogeny, while the later older detrital zircons have the weighted average ages of 2579 ± 15 Ma (MSWD=1.16), consistent with 2585 ± 12 Ma (MSWD=0.83) of Archean granite, with the difference within the error. This indicates that besides the zircons from Archean granite, minor zircons in the laterite-type bauxite may derive from Albany-Fraser orogeny belt. Using Al₂O₃/TiO₂ ratio, lgCr-lgNi plot, trace element ratios, and REE pattern to trace the source of laterite-type bauxite deposit, it can be concluded that Archean granite is the major source of ore-forming materials for the laterite-type bauxite deposit in the Darling Range of western Australia.

Key words: western Australia; Darling Range; bauxite; U-Pb geochronology; geochemistry; source