2008

中煤级煤吸附甲烷的物理模拟与数值模拟研究

傅雪海,秦勇,权彪,范炳恒,王可新

中国矿业大学资源与地球科学学院,江苏徐州,221008

内容提要:基于184个中煤级(镜质组最大反射率 Ro. max 介于 0.65%~2.50%)煤在平衡水条件下的等温吸附 实验成果,模拟了中煤级煤的朗格缪尔体积和压力与煤级的关系,建立了不同埋深(温度、压力)条件下不同煤级煤 饱和吸附气量量板,探讨了压力和温度对中煤级煤吸附甲烷能力的综合效应,对比分析了中煤级煤吸附特征与低、 高煤级煤的差异,提出了中煤级煤吸附气量预测的方法。

关键词:中煤级煤;吸附甲烷;温度效应;模拟

中煤级煤系指镜质组最大反射率(Roimax)介于 0.65%~2.50%之间除长焰煤外的所有烟煤。本文 在前期低煤级煤和特高煤级煤等温吸附实验研究的 基础上(傅雪海等,2002,2005),基于中国矿业大学 化石能源团队在科研中实测的平衡水、不同温度条 件下的等温吸附实验资料及国内外对我国中煤级煤 的实验成果(张群等,1999;张建博等,2000;钟玲文 等,2002;张新民等,2002;马东民,2003;杨起等, 2005),从中筛选出有镜质组反射率配套资料的等温 吸附实验共计 184 样次(其中在 20℃、30℃、40℃、 50℃下的平行煤样 15 组),涉及到我国东北、华北、 华南和西南地区中生代和晚古生代主要煤田或含煤 区中的气煤到贫煤。

吸附原理及实验方法 1

1.1 吸附原理

煤是一种多孔介质,其大分子结构还存在着晶 体缺陷(秦勇,1994),具有较大的内表面积和容纳空 间。甲烷在煤储层中的吸附作用同甲烷分子与煤表 面的相互作用以及甲烷分子之间的相互作用有关。 甲烷气体与煤表面相互作用的低温红外光谱实验表 明:甲烷与煤核表面的相互作用是各向异性的,当甲 烷在煤核表面呈正三角锥重叠时能量最低,相互作 用势最大;在-100~30℃范围内未发现化学吸附态 的存在(陈昌国,1995)。量子化学计算得出,当甲烷 吸附于煤 d₀₀₂ 面时,最大吸附势仅为 2.65 kJ/mol, 显然属于物理吸附过程,即表面凝聚。典型甲烷分 子的直径在 0.20~0.36 nm 之间,煤的甲烷吸附势 能函数分析揭示,在距煤孔隙表面 0.5 nm 左右,吸 附势能已趋近于零,即煤孔隙表面对甲烷的吸附以 单层吸附为主。大量实验还证明,煤对气体的吸附 是可逆的,储层条件下,煤对气相介质的吸附符合朗 格缪尔单分子层吸附理论(Mavor et al., 1990)。煤 的吸附能力是煤的物性和外部温度、压力及吸附介 质的函数。在温度和吸附质一定的条件下,煤对气 体的吸附量可用朗格缪尔方程: $V = V_{L} p / (P_{L} + p)$ 来描述,式中,V为压力 p 时的吸附量,m³/t;V_L为 朗格缪尔体积, m^3/t ; P_I 为朗格缪尔压力,MPa。 V_I 表征煤具有的最大吸附能力,PL为解吸速度常数与 吸附常数的比值,表示煤的吸附量为其最大吸附量 一半时的压力,即 $V=V_L/2$ 时, $p=P_L$ 。 V_L 和 P_L 的 大小决定于煤的性质,可由等温吸附实验求得。

1.2 实验方法

实验在高压等温吸附仪上进行,温度误差控制 在±0.2℃以内,压力精度为 3.51 kPa。为了再现 储层条件,采用美国材料实验协会(ASTM)所推荐 的标准(ASTM D1412-93,1981),即在储层温度和 平衡水含量条件下进行气体吸附实验。

平衡水分含量的确定方法:首先将样品破碎到 小于 60 目(0.25 mm),称重 100 g,精确到 0.2 mg, 把预湿煤样或自然煤样放入装有过饱和 K₂SO₄溶 液的恒温箱中,该溶液可以使相对湿度保持在 96%

注:本文为国家"973"项目(编号 2002CB200211700)、国家自然科学基金重点项目(编号 40730422)与面上项目(编号 40572095)、国家 "863"项目(编号 2006AA06Z231)资助成果。

收稿日期:2008-05-07;改回日期:2008-07-26;责任编辑:周健。

作者简介:傅雪海,男,1965年生。博士,教授,能源地质专业。电话:0516-83995716;Email:fuxuehai@163.com。

相

~97%之间。48h后煤样即被全部湿润,间隔一定时间称重一次,直到恒重为止。平衡水分含量等于工业分析中空气干燥基水分(M_{ad})含量与测试煤样水平衡时吸附水分含量之和。

实验最高压力为 12 MPa 时,实验压力点数 6 个,每个压力点的吸附平衡时间大于 12 h;实验温 度从 20 ~ 50℃;吸附质为甲烷气体,纯度为 99.99%。实验过程中,计算机自动记录下不同时间 样品缸和参考缸的温度和压力数据。实验结束后, 根据朗格缪尔单分子层吸附原理,进行数据处理,计 算朗格缪尔体积和朗格缪尔压力,拟合等温吸附曲 线。钟玲文等(2002)和 Krooss 等(2002)研究认为 不同温度、压力条件可以得出不同的朗格缪尔参数, 系较高温度、压力条件下朗格缪尔单分子层理论拟 合已不适应。因此,本次朗格缪尔体积和压力是在 最高压力不超过 12 MPa、最高温度不超过 50℃下 拟合得出的。

2 $V_{L,daf}$ 、 $P_{L,daf}$ 与 $R_{o,max}$ 的关系

研究样品不同温度(20℃、30℃、40℃、50℃)、平衡水条件下的朗格缪尔体积(V_{L,daf},daf为干燥无灰基)随煤级的增加而增大(图 1),二者呈线性正相关,即:

$V_{L20,daf} = 17.63 R_{o,max} + 3.1924 r = 0.7$	'9 (1)
$V_{L_{30,daf}} = 15.679 R_{o,max} = 0.7263 r = 0.8$	39 (2)
$V_{L40,daf} = 13.825 R_{o,max} = 0.2061 r = 0.8$	31 (3)
$V_{L50,daf} = 13.474 R_{o,max} = 0.6523 r = 0.9$	0 (4)
关系数介于 0.79~0.90 之间,可见中煤级	煤对甲
的吸附能力总体受煤级的控制,还受煤岩品	成分、煤

烷的吸附能力总体受煤级的控制,还受煤岩成分、煤 变质类型等的影响,煤岩成分的影响小于低煤级煤

而高于特高煤级煤(傅雪海等,2002,2005)。

研究样品不同温度、平衡水条件下朗格缪尔压 力(*P*_{L,daf})与煤级关系呈抛物线型,不同温度条件下 均在 *R*_{o,max}为 1.7%左右(焦煤)出现拐点,即焦煤以 前随煤级的增加而减小,焦煤以后随煤级的增加而 增大(图 2)。有:

$$P_{L20} = 0.9283R_{o,max}^2 - 3.2545R_{o,max} + 4.327$$

$$r = 0.84 \quad (5)$$

$$P_{L30} = 1.8815R_{o,max}^2 - 5.768R_{o,max} + 6.3377$$

$$r = 0.79 \quad (6)$$

$$P_{L40} = 3.6046R_{o,max}^2 - 12.973R_{o,max} + 13.663$$

$$r = 0.83 \quad (7)$$

$$P_{L50} = 5.3347R_{o,max}^2 - 19.40R_{o,max} + 19.342$$

$$r = 0.89 \quad (8)$$

相关系数介于 0.79~0.89 之间,可见中煤级煤的朗格 缪尔压力总体受煤级的控制,还受其他因素的影响,与 煤级的关系呈"二段式"变化,前段与低煤级煤相接,随 煤级的增高而减少,后段与特高煤级煤相接,随煤级的 增高而略有增大(傅雪海等,2002,2005)。

Fig. 2 The relationship of $P_{L,daf}$ to $R_{o,max}$

3 温度对朗格缪尔体积的影响

根据上述拟合得到的煤级与朗格缪尔体积的关系,可计算出不同煤级、不同温度下的朗格缪尔体积,得出不同温度区间(20~30℃、30~40℃、40~ 50℃)同一煤级温度每升高1℃,朗格缪尔体积的减 量如表1。

由表1可知,在同一温度区间,随煤级的增加, 温度每升高1℃,朗格缪尔体积减量均增大,且低温 度区间朗格缪尔体积减量较大,在20~30℃区间内

表 1 不同温度区间朗格缪尔体积的减量(m³/t・℃) Table 1 The decrement of Langmuir volume under different temperature interval(m³/t・℃)

	-		
$R_{ m o,max}$ ($\%$)	$20\sim 30$ °C	30~40°C	40~50°C
0.65	0.518	0.068	0.067
0.90	0.566	0.115	0.076
1.20	0.625	0.170	0.087
1.70	0.723	0.263	0.104
2.00	0.781	0.319	0.115
2.50	0.879	0.411	0.132

煤级 $R_{o,max}$ 从 0.65%增加到 2.50%,相应朗格缪尔体积的减量从 0.518 m³/t・℃增大到 0.879 m³/t ・℃;在 40~50℃区间内煤级 $R_{o,max}$ 从 0.65%增高 到 2.50%,相应朗格缪尔体积的减量从 0.067 m³/t ・℃增大到 0.132 m³/t・℃。在同煤级条件下,随 温度增加朗格缪尔体积减量逐渐减少,煤级 $R_{o,max}$ 为 0.65%,温度从 20℃升至 50℃,相应朗格缪尔体 积减量从 0.518 m³/t・℃减少到 0.067 m³/t・℃; 煤级 $R_{o,max}$ 为 2.50%,温度从 20℃升至 50℃,相应 朗格缪尔体积的减量从 0.879 m³/t・℃减少到 0.132 m³/t・℃。

4 中煤级煤吸附甲烷含量数值模拟

设地表恒温带深度为 25 m 左右,恒温带温度 约为 17.5℃,按正常地温梯度低于 3℃/100 m,地层 水的静水压力梯度按 1 MPa/100 m,考虑地层浅部 略欠压,计算地层 20℃、30℃、40℃、50℃对应的储 层埋深和压力如表 2。

表 2 地层 20~50℃对应的储层埋深和压力

Table 2The buried depth and pressure of coal reservoircorresponding stratum temperature of $20 \sim 50^{\circ}$ C

地层温度(℃)	20	30	40	50
储层埋深(m)	125	450	800	1200
储层压力(MPa)	1	4	8	12

根据上述拟合得到的煤级与朗格缪尔体积和压力的关系,可计算出不同煤级、不同温度下的朗格缪尔参数,利用朗格缪尔方程计算得到表 2 中相应温度、压力下各煤级的饱和吸附量,绘制不同埋深条件下各煤级煤的饱和吸附量量板如图 3。由图 3 可知,中煤级储层的饱和吸附气量在埋深 1200 m 以浅总体随煤级、埋深增加而增大。同一埋深条件下,在焦煤(Ro,max 1.7% 左右)以前饱和吸附气量随煤级呈线性增加,焦煤以后增速逐渐趋缓;同一煤级条

件下,饱和吸附气量在埋深浅于 450 m 时随埋深增 大而增加较大,即此时,压力使吸附气量增加的正效 应大于温度使吸附气量减少的负效应,在埋深大于 450 m 以后,吸附气量在焦煤之前随埋深增大而略 有增加,焦煤以后增加明显,但埋深大于 800~1200 m 以后,增幅均趋缓,此时反映压力正效应与温度 负效应相当,预示着埋深大于 1200 m 以后温度负 效应将大于压力正效应,从而使饱和吸附气量随埋 深增加而逐渐减少。

图 3 不同埋深条件下煤级与饱和吸附气量的关系 Fig. 3 The relationship of coal rank to saturated adsorption methane content under different buried depth

5 结论

184 个中煤级煤平衡水条件下的等温吸附实验 成果的模拟表明:

(1)在最高压力不超过 12 MPa、最高温度不超 过 50℃的条件下,中煤级煤对甲烷的吸附符合朗格 缪尔方程。

(2)中煤级煤朗格缪尔体积随煤级的增加而呈 线性增大;朗格缪尔压力与煤级关系呈抛物线型,在 *R*_{o,max}为1.7%左右(焦煤)出现拐点,即焦煤以前随 煤级的增加而减小,焦煤以后随煤级的增加而增大。

(3)温度增加,中煤级煤朗格缪尔体积减少,在 同一温度区间,随煤级的增加,温度每升高1℃,朗 格缪尔体积减量均增大,且低温度区间朗格缪尔体 积减量较大;同煤级条件下,随温度增加朗格缪尔体 积减量逐渐减少。

(4)建立了中煤级煤不同埋深条件下饱和吸附 气含量量板,得出埋深 450 m以浅,煤对甲烷吸附 的压力正效应大于温度的负效应,800~1200 m压 力正效应与温度的负效应相当,大于 1200 m以后 温度负效应将大于压力正效应,从而使饱和吸附气 量随埋深的增加而逐渐减少。

参考文献

- 陈昌国.1995.煤的物理化学结构和吸附(解吸)甲烷机理的研究.重 庆大学博士学位论文,26~31.
- 傅雪海,秦勇,李贵中,等.2002.特高煤级煤平衡水条件下的吸附实验.石油实验地质,24(2):177~180.
- 傅雪海,焦宗福,秦勇,等.2005.低煤级煤平衡水条件下吸附实验.辽 宁工程技术大学学报,24(2):161~164.
- 马东民. 2003. 煤储层的吸附特征实验综合分析. 北京科技大学学报, 25(4):291~294.
- 秦勇. 1994. 中国高煤级煤的显微岩石学特征及结构演化. 徐州:中国 矿业大学出版社, 408.
- 杨起,刘大猛,黄文辉.2005.中国西北煤层气地质与资源综合评价. 北京:地质出版社,223~227.
- 张建博,王红岩,赵庆波,2000.中国煤层气地质.北京:地质出版社, 39~47.
- 张群,杨锡禄.1999.平衡水条件下煤对甲烷的等温吸附特性研究.煤

炭学报,24(6):565~570.

- 张新民,庄军,张遂安.2002.中国煤层气地质与资源评价.北京:科学 出版社,37.
- 钟玲文,郑玉柱,员争荣,等.2002.煤在温度和压力综合影响吸附性 能及气含量预测.煤炭学报,27(6):581~585.
- ASTM D1412-93. 1981. Standard test method for moisture in the analysis sample of coal and coke. In: Brown E T, ed. Rock Characterization, Testing and Monitoring. Oxford: Pergamon Press.
- Krooss B M, Bergen F, Gensterblum Y. 2002. High-pressure methane and carbon dioxide adsorption on dry and moistureequili-brated Pennsylvanian coals. International Journal of Coal Geology, 51:69~92.
- Mavor M J, Owen L B, Pratt T J. 1990. Measurement and evaluation of coal sorption isotherm data. SPE 20728, SPE 65th Annual Technical Conference and Exhibition. New Orleans, LA, September, 23~26.

Study of Physical and Numerical Simulations of Adsorption Methane Content on Middle-rank Coal

FU Xuehai, QIN Yong, QUAN Biao, FAN Bingheng, WANG Kexin School of Mineral Resource and Earth Sciences, CUMT, Xuzhou, Jiangsu, 221008

Abstract

Based on the results of isothermal adsorption experiments on 184 middle-rank coal samples under equilibrium moistures (with vitrinite reflectances of between 0.65% and 2.50%), this study simulates the relationship between Langmuir volume and Langmuir pressure in the middle-rank coal; establishes the master curve of saturated adsorption methane content of different coal rank under various buried depths (temperature and pressure); discusses the integrated effect of middle-rank coal adsorption and the difference of isothermal adsorption characteristics between middle-rank and low, high rank coals. In the end, this study proposes a prediction method for adsorption methane content of middle-rank coal.

Key words: middle-rank coal; adsorption methane content; temperature effect; simulation