-
天然气水合物(简称水合物)是由水分子与天然气分子在低温、高压环境下形成的一种类似于冰的固态化合物(Sloan et al.,1998)。大量钻探发现在自然界中水合物分布具有明显的非均质性,不同地质、储层和流体疏导条件下,水合物赋存形态不同(Dai et al.,2012),按照水合物与沉积物颗粒之间接触关系,分为孔隙充填型、裂隙充填型。大量研究发现孔隙充填型水合物分布广,在泥岩或砂岩地层均发育,相同条件下砂质储层内水合物较为富集(Dai et al.,2012),而裂隙充填型水合物发育与局部高通量流体运移、相对较细沉积物有关(Cook et al.,2008)。
-
近年来,大量研究发现水合物成藏与油气成藏具有一定相似性,其成藏与温压、气源、流体运移、储层、孔隙水盐度、时间等关键要素有关。由于受温压条件控制,在地震剖面上常常发育似海底反射(bottom simulating reflector,BSR),大量研究发现BSR形成可能是由于上覆地层含水合物造成,也可能是下伏地层含游离气造成的。在印度KG盆地过NGHP-02-17和NGHP-02-16井的砂质地层发现了强BSR,上覆地层为高饱和度砂质储层,下部为饱和水地层(Collett et al.,2019; Zhou Jilin et al.,2023)。在珠江口盆地峡谷脊部的粉砂质储层BSR较发育,上覆水合物层的厚度从几米至几十米不等,中等饱和度,下部可能含游离气层(Qian Jin et al.,2018; Kang Dongju et al.,2020; Liu Bo et al.,2024),受迁移峡谷影响出现了水合物动态成藏,钻探发现了水合物与游离气共存测井异常(Qian Jin et al.,2018; Ye Jianliang et al.,2020; Zhan Linsen et al.,2022),在局部地震剖面上出现双BSR及BSR向上调整。
-
琼东南盆地是我国深水油气、天然气和水合物的重要勘探区域,发现了多个大气田(王振峰等,2011; 张迎朝等,2017; 甘军等,2019),且在陵水36-1发现了深水浅层气藏(黄时卓等,2024)。由于该盆地块体搬运沉积发育,且呈多期次分布,地震反射特征呈弱振幅、杂乱反射且底部反射强等,其反射特征与地层含水合物相似,给水合物BSR识别带来较大困难。大量钻探发现水合物发育较为复杂,既发现了裂隙充填型水合物又发现了孔隙充填型水合物(何玉林等,2022)。同时,在水合物稳定带底界附近的水平砂层,发现了高饱和度水合物和游离气横向的变化,在平面上呈椭圆状分布,受热流体影响中心发育游离气,外缘发育水合物(Kuang Zenggui et al.,2023)。大量钻探和沉积体系分析发现,盆地发育多层近水平展布的砂质或粉砂质地层,厚度几十厘米至几米不等(Meng Miaomiao et al.,2021; Deng Wei et al.,2023),在合适温压条件、良好的流体疏导体系区,有利于形成富集水合物藏。为了查明琼东南盆地深部油气、浅层气及水合物空间与垂向上的分布特征,为将来多气合采提供有利目标,本文利用琼东南盆地覆盖不同凹陷的三维地震资料,结合已有钻探资料,对该盆地水合物与游离气分布特征、潜在分布区及有利砂体进行识别,为未来水合物勘探提供支撑。
-
1 区域地质背景
-
琼东南盆地位于南海西北部,是一个典型的被动大陆边缘断陷盆地,海水深度约100~2800 m,面积约为8.3×104 km2,整体呈北东向延伸。深水面积约为5×104 km2,由西向东依次为乐东凹陷、陵南低凸起、陵水凹陷、北礁凹陷、松南低凸起、松南凹陷、宝岛凹陷、北礁凸起、长昌凹陷、甘泉凹陷等二级构造单元(图1)。新生代沉积位于乐东凹陷沉积中心,沉积厚度达15 km(张功成等,2016)。目前,在该盆地已发现多个大中型气田,如L17和L18气田,盆地内天然气资源丰富(王振峰等,2011; 黄保家等,2012; 张迎朝等,2017; 甘军等,2019)。琼东南盆地常规天然气勘探主要针对中深层地层,浅部地层以浅海—深海相泥岩沉积为主,构造活动微弱,常作为区域盖层。前人利用钻井及地震资料识别了7个层序界面,分别为崖城组、陵水组、三亚组、梅山组、黄流组以及莺歌海组、乐东组(解习农等,2011,2015; 甘军等,2019)。
-
图1 琼东南盆地区域地质单元及研究区位置
-
Fig.1 Location of the Qiongdongnan basin and study area
-
近年来,中国地质调查局广州海洋地质调查局在琼东南盆地进行3次水合物钻探并采集了800 km2的三维地震资料,在GMGS5-W07、GMGS6-W01、GMGS8-W05等多口井发现了厚度不等砂层(Meng Miaomiao et al.,2021; Kuang Zenggui et al.,2023; 孟苗苗等,2024)。基于三维地震资料追踪砂层的展布范围,推测砂质席状朵体沉积的物源来自研究区西南部,向东北部展开(Meng Miaomiao et al.,2022; Cheng Cong et al.,2023),不同水合物目标距离水道-天然堤位置不同。从盆地内形成水合物的气源研究看,GMGS5-W08井岩芯分析表明甲烷含量为79.2%~97.7%,乙烷和丙烷的含量分布范围分别2.1%~14.4%和0.05%~5.15%(Ye Jianliang et al.,2019),形成水合物的气体组分具有较明显的热解成因气的贡献,主要为低成熟度热解成因煤型气,混有少量生物成因甲烷(Lai Hongfei et al.,2021)。受研究资料限制,前人研究工作主要集中在陵水凹陷GMGS5-W07井周围局部区域,甘泉凹陷、陵南低突起的南部区域的水合物分布并不清楚。从前人对深部研究看,渐新世崖城组煤系泥岩和陵水组海陆过渡相-浅海相泥岩为主要烃源岩,而梅山组—黄流组的中央峡谷水道发育的砂岩是主要的油气储层(王振峰等,2011; 黄保家等,2012),为水合物形成提供了充足的生物及热成因气源条件。本文利用油气采集三维地震资料,分析了该区域水合物与游离气发育特征,刻画了有利砂体的空间展布,分析了该砂体与陵水凹陷砂质水合物藏的关系。
-
2 数据与方法
-
2.1 水合物稳定带底界计算
-
本文采用数据为常规油气采集的三维地震及其经宽频重处理的三维地震资料,面积3.7万km2,道间距12.5 m,炮间距50 m。三维地震处理面元网格为12.5 m×25 m,采样间隔为2 ms,浅部地层主频为45 Hz,陵水凹陷的部分三维地震资料进行了宽频处理,宽频处理的地震资料主频为60 Hz。解释了区域块体搬运沉积(mass transport deposit,MTD)底部地层,并利用Sloan水合物相平衡曲线(Sloan et al.,1998),结合区域水合物测井获得的区域地温梯度65℃/km,局部高达102~115℃/km(Wei Jiangong et al.,2019),再结合三维地震资料解释的水深、测量的海底温度等,利用变地温梯度计算了甲烷水合物稳定带底界,水合物测井资料显示浅层速度1600 m/s,把计算水合物稳定带厚度与海底时间相结合,转成稳定带底界的双程旅行时,沿该层位向上50 ms时窗提取最大振幅,分析大区域潜在振幅异常的区域。
-
2.2 频谱分解
-
由于调谐效应,当砂岩储层厚度小于地震子波四分之一波长时,地震剖面上并不会出现振幅响应(Widess,1973)。因此,通过三维地震数据进行不同厚度地层的振幅属性分析时,频谱分解技术得到了广泛应用(Henderson et al.,2007; McArdle and Ackers,2012,2014)。频谱分解技术能够通过数学变换将地震信号从时间域变换到频率域,在频率域,通过研究不同频段地震信号的响应特征,避免了全频带数据不易区分厚储层和薄储层的缺点以及调谐效应的影响。频谱分解技术可以将三维地震数据体变为四维数据体:频谱分解之后,三维数据体变为调谐数据体和单一的离散频率能量体(马佳国等,2019)。调谐数据体是随频率变化的振幅数据体,单一的离散频率体和常规的三维数据体一样,只不过此时只包含的单一的频率成分。因此,通过频谱分解再结合目标储层的厚度,得到不同储层厚度对应的频率范围,优选出适合目标储层的低频、中频和高频三个频段的离散频率体,在平面上研究储层在调谐数据体不同频率上的响应特征,进而得到常规全频段数据体无法得到的地震属性信息(图2)。
-
频谱分解之后得到的低频、中频和高频的离散频率体可以通过三原色(红、绿、蓝)来表示,然后通过RGB三原色融合技术将分频得到的四维数据体重新变回三维数据体。三种基色的色调可以分为0~255共256个等级,通过融合能够定义出256×256×256=16777216种颜色,每种颜色分别代表低、中、高三种频率数据体特定能量强度的组合。比如,白色色调为(255,255,255),由红色(255,0,0)、绿色(0,255,0)和蓝色(0,0,255)均为能量最强时组成(图2)。因此,分频融合后的振幅属性切片越接近白色,指示地震振幅越强。
-
3 水合物储层分布特征
-
研究区位于陆坡末端(图1),海底地形呈西北高、东南低,海底识别出西北-东南方向MTD及多处海底滑坡特征,MTD沉积物源来自西北部陆架,MTD末端发育西南-东北方向水道体系(Meng Miaomiao et al.,2022; Cheng Cong et al.,2023),向东北方向多条水道逐渐汇聚为一条水道(图3)。从沿水合物稳定带底界提取的最大振幅属性看,研究区水合物发育主要分为两个区域,展布面积差异大。区域1位于多期MTD末端叠置区,多个区域强振幅异常指示水合物发育;区域2为典型的水道-天然堤沉积体系,沿水道方向识别出条带状强振幅异常(图3)。
-
图2 频谱分解-RGB三原色融合原理
-
Fig.2 The theory of frequency decomposition and RGB color blending
-
3.1 区域1
-
区域1为水合物钻探区,2018年GMGS5在该区域实施了第一次钻探,发现了W07、W08、W09三个渗漏型水合物矿体,接着又进行GMGS6-9三个钻探航次,既发现了裂隙充填型水合物又发现了砂质水合物藏(Liang Jinqiang et al.,2019; Ye Jianliang et al.,2019; Deng Wei et al.,2021)。通过三维地震资料识别出目标储层厚度在5~30 m之间,经计算低频、中频和高频的频率体范围分别选择18 Hz、42 Hz和63 Hz,对应的调谐厚度能实现目标砂体厚度包络的刻画。通过频谱分解和RGB三原色融合之后得到研究区三维均方根振幅属性体来刻画砂体形态。
-
研究区海底起伏约40 m(图3),地形相对较平缓,海底以下浅部地层与海底大致呈平行关系,造成强振幅地层与围岩地层没有斜交叉现象,不能直接判断其是否为BSR。结合水合物稳定带底界约束,区域1 MTD底界面(层位1)局部区域识别出与海底极性相反的强振幅反射,指示BSR发育或地层含气,位于气烟囱构造顶部,气源充足(图4a、b)。从沿层位1的分频融合均方根属性切片上可以看出,层位1主要呈绿色中频特征,指示中等厚度的强振幅反射。层位1为MTD底界面,绿色区域边界指示层位1强振幅反射边界,呈由西北向东南的朵体特征。前人岩芯分析结果表明,MTD底界面发育富砂质半远洋沉积地层(孟苗苗等,2024),因此推测层位1为MTD底界的浊流沉积地层。层位1朵体末端识别出多个块状分布的亮白色区域,指示较厚的强振幅反射,与地震剖面识别的气烟囱顶部BSR范围吻合,说明气烟囱顶部、MTD底界的浊流沉积层为区域1主要的水合物及浅层气富集区(图4)。
-
图3 地震数据解释的海底水深图(a)和沿甲烷水合物稳定带底界上方50 ms时窗提取最大振幅属性图指示潜在水合物发育区(b)
-
Fig.3 The seafloor depth derived from seismic data (a) and the maximum amplitude extracted along the base of gas hydrate stability zone with a time window of 50 ms up to show the potential gas hydrate occurrences (b)
-
3.2 区域2
-
与区域1相似,区域2海底平坦,BSR与海底平行并未与地层斜交,在不同深度多套地层识别出与海底极性相反的BSR特征(图5a)。区域2目标储层分布在几米至几十米之间,经计算低频、中频和高频的频率体范围分别选择10 Hz、40 Hz和70 Hz,对应的调谐厚度能实现区域2多套目标砂体厚度包络的刻画。通过频谱分解和RGB三原色融合之后得到研究区三维均方根振幅属性体来刻画水合物分布(图5b、c)。
-
图4 琼东南盆地区域1地震剖面及沿水合物发育层位(层位1)的分频融合均方根振幅属性切片
-
Fig.4 Seismic profiles in zone 1 of Qiongdongnan basin, and root-mean-square amplitude slice along gas hydrate-bearing horizon (Horizon 1) derived from frequency decomposition and color blending
-
(a、b)—区域1地震剖面;(c)—沿水合物发育层位(层位1)的分频融合均方根振幅属性切片;红线为图4a和图4b 地震剖面位
-
(a, b) —seismic profiles in zone 1; (c) —root-mean-square amplitude slice along gas hydrate-bearing horizon (Horizon 1) derived from frequency decomposition and color blending; the red lines show the location of seismic profiles in Fig.4a and Fig.4b
-
图5 琼东南盆地区域2地震剖面及沿层位1和层位2的分频融合均方根振幅属性切片
-
Fig.5 Seismic profiles in zone 2 of Qiongdongnan basin, and root-mean-square amplitude slice along Horizon 1 and Horizon 2 derived from frequency decomposition and color blending
-
(a)—区域2地震剖面;(b)—沿层位1的分频融合均方根振幅属性切片;(c)—沿层位2的分频融合均方根振幅属性切片;红线为图5a 地震剖面位置
-
(a) —seismic profile in zone 2; (b) —root-mean-square amplitude slices along Horizon 1 derived from frequency decomposition and color blending; (c) —root-mean-square amplitude slices along Horizon 2 derived from frequency decomposition and color blending; the red line shows the location of seismic profile in Fig.5a
-
层位1为MTD地层底界面,与区域1的层位1为同一地层,上方均发育三期MTD地层。从地震剖面看,向西北陆坡方向,层位1发育呈弱振幅反射特征的MTD地层,向东南方向识别出水道充填特征,呈强振幅反射,且位于水合物稳定带底界之上,为有利的水合物富集储层(图5a)。从沿层位1的均方根振幅属性切片看,MTD底界呈亮棕色,与周围暗色调区域有明显的边界,而且可以识别出NW-SE向条带状擦痕,指示MTD头部可能位于西北方向陆坡。MTD末端识别出SW-NE向亮白色条带状异常,指示较厚的强振幅反射,对应地震剖面水道充填相,为水合物潜在发育区(图5b)。层位1下方发育多层与海底极性相反的强振幅反射,层位2为其顶界面(图5a)。从沿层位2均方根振幅属性切片看,识别出与区域1相似的NW-SE向海底扇体特征,呈亮白色。对应地震剖面上负极性强振幅反射,但上方发育多期MTD地层,浅层沉积物较厚,这些振幅异常区位于海底之下~300 ms,位于水合物稳定带之下,可能为浅层气发育区(图5a)。向东南方向,浅部地层以水道沉积为主,地层较薄,层位2附近负极性强振幅异常位于水合物稳定带底界附近,指示水合物发育,在均方根属性切片上呈斑块状亮白色特征(图5)。
-
4 浅层气储层分布特征
-
区域2发育冷泉系统砂质储层水合物,水合物钻探GMGS6-W01井位于一个活动冷泉系统上,钻探发现在浅部砂质储层内水合物饱和度达60%,且发现厚层的块状、脉状等裂隙充填型水合物(Meng Miaomiao et al.,2021)。受MTD地层圈闭,砂质水合物层下方发育多层与海底极性相反的强振幅反射(图6a),指示浅层气发育(陈子归等,2022; Cheng Cong et al.,2023; 孟苗苗等,2024)。其中层位1与层位2之间振幅异常主要位于砂质水合物层下方气烟囱构造顶部,从最小振幅属性平面图看,振幅异常呈圆形分布,与气烟囱构造形状吻合(图5c,图6)。该振幅异常上方发育同相轴上拱的管状构造,连通近海底砂层,为该砂质水合物提供气源,且局部强振幅位于水合物稳定带底界附近(图6a),为最有利的砂质水合物及浅层气发育区。区域2指示浅层气发育的强振幅异常主要赋存于层位2下方,面积较大,为第四纪以来水道砂体(裴健翔等,2023),局部负极性强振幅指示浅层气发育(图6c)。向东南方向,浅部地层逐渐变薄,局部层位2下方强振幅位于水合物稳定带底界附近,局部位置可能发育水道砂体水合物层(图6a)。
-
图6 琼东南盆地区域2地震剖面及沿层位1向下10 ms和层位2向下40 ms的最小振幅属性图
-
Fig.6 Seismic profile in zone 2 of Qiongdongnan basin, and minimum amplitudes extracted along Horizon 1 with a time window of 10 ms down and along Horizon 2 with a time window of 40 ms down
-
(a)—区域2地震剖面;(b)—沿层位1向下10 ms最小振幅属性图;(c)—沿层位2向下40 ms的最小振幅属性图;红线为图6a 地震剖面位置
-
(a) —seismic profile in zone 2; (b) —minimum amplitudes extracted along Horizon 1 with a time window of 10 ms down; (c) —minimum amplitudes extracted along Horizon 2 with a time window of 40 ms down; the red line shows the location of seismic profile in Fig.6a
-
5 琼东南盆地砂质储层水合物与浅层气分布特征
-
第四纪以来研究区发育水道、天然堤、海底扇、海底滑坡和MTD等沉积体系,砂质水合物储层主要为MTD底界的水平砂体(图4~6)。研究区北部海底滑坡碎屑流、MTD头部及海底扇体均呈西北-东南分布,推测其沉积物源主要来自西北陆坡,研究区南部以水道-天然堤沉积体系为主,水道呈西南-东北发育,其沉积物源来自西南方向(图2,图7)。
-
区域1水合物及BSR异常区位于西南水道末端,远离西南砂质沉积物源,水合物赋存在MTD底界的海底扇体沉积体系,为有利的砂质储层水合物。但水合物及浅层气异常区主要在气烟囱构造顶部发育(图4),推测区域1水合物成藏受高通量流体运聚控制。
-
区域2为主要的水道发育区,水道较宽、数量较多。通过分频融合均方根属性切片和最小振幅属性刻画出区域2水道扇体及水道-天然堤体系分布(图5b、c,图6c),水道内部为弱反射,两侧天然堤呈强反射,局部区域识别出BSR特征,指示水合物发育,为有利的砂质水合物靶区(图7)。与区域1不同,区域2水合物层下方发育多层负极性强振幅反射,位于多期MTD下方,指示浅层气发育(图5a,图6a、b)。区域2浅层气富集层位(层位2)也为水道-天然堤沉积体系,为有利的富砂质储层(图6c)。受浅层MTD地层厚度控制,区域2西南方向层位2强振幅异常位于甲烷水合物稳定带底界附近,指示水合物响应特征,在横向上出现含水合物与含游离气层过渡现象(图6a)。
-
琼东南盆地油气钻探结果表明研究区发育热成因气烃源岩,主要位于崖城组煤系及海相地层(樊奇等,2021,2022),浅层气层下方发育的气烟囱构造为热成因气向上运移提供了良好的疏导体系并且控制浅层气藏分布(图6a)。同时浅层微生物降解有机质及对深部热成因气的二次改造为浅层气成藏提供了充足的生物成因气源(何家雄等,2013; Lai Hongfei et al.,2021)。总体而言,区域2发育水道-天然堤及水道末端扇体沉积体系,发育泥质半深海和相对富砂的浊流沉积地层,局部稳定带底界附近强振幅反射为有利的砂质储层水合物及浅层气目标(图7)。
-
图7 琼东南盆地砂质储层水合物及浅层气分布图
-
Fig.7 The distributions of gas hydrate and shallow free gas in sand-rich reservoirs in Qiongdongnan basin
-
6 结论
-
(1)频谱分频-RGB融合均方根振幅属性切片能够清晰识别薄砂体与周围地层岩性变化边界,有利于精细刻画水合物砂质储层沉积相。结合前期钻探结果、地震剖面,通过分频融合属性切片识别出研究区海底扇体和水道-天然堤沉积体系,为有利的砂质储层。
-
(2)研究区水合物层主要富集在块体搬运沉积体底界海底扇体、水道末端扇体和水道-天然堤沉积体系富砂质地层,为有利的砂质储层水合物富集区。水合物层下方多层浅层气发育,浅层多期块体搬运沉积体提供了良好的盖层,局部块体搬运沉积体地层厚度较薄区域,浅层气异常区位于水合物稳定带底界附近,可能形成水合物藏。同时,受水合物稳定带底界深度变化影响,同一套储层出现浅层气层和水合物层过渡。
-
参考文献
-
Chen Zigui, Jiang Tao, Kuang Zenggui, Cheng Cong, Xiong Pengfei, Chen Yue. 2022. Accumulation characteristics of gas hydrate-shallow gas symbiotic system in Qiongdongnan basin. Earth Science, 47(5): 1619~1634 (in Chinese).
-
Cheng Cong, Jiang Tao, Kuang Zenggui, Lai Hongfei, Liang Jinqiang, Ren Jinfeng, Chen Zigui, Chen Yue, Li Tao, Xiong Pengfei. 2023. Sand-rich Pleistocene deep-water channels and their implications for gas hydrate accumulation: Evidence from the Qiongdongnan basin, northern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 198: 104101.
-
Collett T S, Boswell R, Waite W F, Kumar P, Roy S K, Chopra K, Singh S K, Yamada Y, Tenma N, Pohlman J, Zyrianova M. 2019. India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: Gas hydrate systems along the eastern continental margin of India. Marine and Petroleum Geology, 108: 39~142.
-
Cook A E, Goldberg D, Kleinberg R L. 2008. Fracture-controlled gas hydrate systems in the northern Gulf of Mexico. Marine and Petroleum Geology, 25(9): 932~941.
-
Dai S, Santamarina J C, Waite W F, Kneafsey T J. 2012. Hydrate morphology: Physical properties of sands with patchy hydrate saturation. Journal of Geophysical Research: Solid Earth, 117: B11205.
-
Deng Wei, Liang Jinqiang, Zhang Wei, Kuang Zenggui, Zhong Tong, He Yulin. 2021. Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan basin, northern South China Sea. Marine and Petroleum Geology, 124: 104810.
-
Deng Wei, Liang Jinqiang, Yang Zhen, Kuang Zenggui, Yan Pin, Meng Miaomiao, Zhang Zijian. 2023. Fluid migration patterns in shallow horizontal sand bodies pierced by vertical gas seepage in the Qiongdongnan basin, South China Sea. Journal of Asian Earth Sciences, 256: 105796.
-
Fan Qi, Li Qingping, Li Lixia, Lv Xin, Zhu Zhenyu, Sun Tao. 2021. Gas hydrate accumulation model in the Central Canyon of the Southeast basin of Hainan. Journal of Northeast Petroleum University, 45(5): 13~20 (in Chinese with English abstract).
-
Fan Qi, Li Qingping, Wu Tao, Li Lixia, Pang Weixin, Zhu Zhenyu. 2022. Accumulation of natural gas hydrate based on migrating system: A case study of H zone of Qiongdongnan basin. Petroleum Geology & Experiment, 44(2): 262~269 (in Chinese with English abstract).
-
Gan Jun, Zhang Yingzhao, Liang Gang, Yang Xibing, Li Xing, Song Peng. 2019. Deposition pattern and differential thermal evolution of source rocks, deep water area of Qiongdongnan basin. Earth Science, 44(8): 2627~2635 (in Chinese with English abstract).
-
He Jiaxiong, Yan Wen, Zhu Youhai, Zhang Wei, Gong Faxiong, Liu Shilin, Zhang Jingru, Gong Xiaofeng. 2013. Bio-genetic and sub-biogenetic gas resource potential and genetic types of natural gas hydrates in the northern marginal basins of South China Sea. Natural Gas Industry, 33(6): 121~134 (in Chinese with English abstract).
-
He Yulin, Liang Jinqiang, Shi Wanzhong, Kuang Zenggui, Deng Wei, Wang Ren, Xu Litao, Du Hao. 2022. Influencing factors and accumulation modes of gas hydrate in south low uplift and its surrounding area of Qiongdongnan basin. Earth Science, 47(5): 1711~1727 (in Chinese with English abstract).
-
Henderson J, Purves S J, Leppard C. 2007. Automated delineation of geological elements from 3D seismic data through analysis of multichannel, volumetric spectral decomposition data. First Break, 25(3): 87~93.
-
Huang Baojia, Li Xushen, Wang Zhenfeng, Li Li, Huang Yiwen. 2012. Source rock geochemistry and gas potential in the deep water area, Qiongdongnan basin. Offshore Oil and Gas, 24(4): 1~7 (in Chinese with English abstract).
-
Huang Shizhuo, Li Fang, Song Peng, Hu Bin, Sun Wanyuan. 2024. Geophysical identification technology of ultra deep water and shallow gas reservoirs in Qiongdongnan basin. Earth Science, 49(1): 313~323 (in Chinese with English abstract).
-
Kang Dongju, Lu Jing'an, Zhang Zijian, Liang Jinqiang, Kuang Zenggui, Lu Cheng, Kou Beibei, Lu Qiuping, Wang Jingli. 2020. Fine-grained gas hydrate reservoir properties estimated from well logs and lab measurements at the Shenhu gas hydrate production test site, the northern slope of the South China Sea. Marine and Petroleum Geology, 122: 104676.
-
Koh C A, Westacott R E, Zhang W, Hirachand K, Creek J L, Soper A K. 2002. Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilibria, 194: 143~151.
-
Kuang Zenggui, Cook A, Ren Jinfeng, Deng Wei, Cao Yuncheng, Cai Huimin. 2023. A flat-lying transitional free gas to gas hydrate system in a sand layer in the Qiongdongnan basin of the South China Sea. Geophysical Research Letters, 50: e2023GL105744.
-
Lai Hongfei, Fang Yunxin, Kuang Zenggui, Ren Jinfeng, Liang Jinqiang, Lu Jing'an, Wang Guangli, Xing Congzhi. 2021. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan basin, South China Sea: Implications from site GMGS5-W08. Marine and Petroleum Geology, 123: 104774.
-
Lee M W, Collett T S. 2012. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well. Marine and Petroleum Geology, 34(1): 62~71.
-
Liang Jinqiang, Zhang Wei, Lu Jing'an, Wei Jiangong, Kuang Zenggui, He Yulin. 2019. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan basin of the South China Sea: Insights from site GMGS5-W9-2018. Marine Geology, 418: 106042.
-
Liu Bo, Wang Xiujuan, Su Pibo, Li Qingping, Wan Xiaoming, Li Jie, Li Yuanping, Zhou Jilin, Jin Jiapeng, Sun Luyi. 2024. Identification of interbedded gas hydrate and free gas using amplitude versus offset forward modelling. Geophysical Prospecting, 72(4): 1536~1552.
-
Ma Jiaguo, Wang Jianli, Zhou Qing, Li Wenbin, Li Fuqiang. 2019. Frequency division RGB fusion technique for fine description of sedimentary microfacies. Complex Hydrocarbon Reservoirs, 12(3): 27~31 (in Chinese with English abstract).
-
Meng Miaomiao, Liang Jinqiang, Lu Jing'an, Zhang Wei, Kuang Zenggui, Fang Yunxin, He Yulin, Deng Wei, Huang Wei. 2021. Quaternary deep-watersedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan basin, northwest South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 177: 103628.
-
Meng Miaomiao, Liang Jinqiang, Kuang Zenggui, Ren Jinfeng, He Yulin, Deng Wei, Gong Yuehua. 2022. Distribution characteristics of Quaternary channel systems and their controlling factors in the Qiongdongnan basin, South China Sea. Frontiers in Earth Science, 10: 902517.
-
Meng Miaomiao, Yan Shaoni, Liang Jinqiang, Sun Qiliang, Kuang Zenggui, Ren Jinfeng, Yu Han. 2024. Sedimentary characteristics of mass transport deposits and its influence on underlying gas hydrate reservoirs in the Qiongdongnan basin. Acta Geologica Sinica, 10. 19762/j. cnki. dizhixuebao. 2024226 (in Chinese with English abstract).
-
McArdle N J, Ackers M A. 2012. Understanding seismic thin-bed responses using frequency decomposition and RGB blending. First Break, 30: 57~66.
-
McArdle N J, Iacopini D, KunleDare M A, Paton G S. 2014. The use of geologic expression workflows for basin scale reconnaissance: A case study from the Exmouth subbasin, North Carnarvon basin, northwestern Australia. Interpretation, 2: SA163~SA177.
-
Pei Jianxiang, Song Peng, Guo Minggang, Mao Xuelian. 2023. Sedimentary evolution and hydrocarbon exploration prospect of the quaternary central canyon system in the Qiongdongnan basin. Earth Science, 48(2): 451~464 (in Chinese with English abstract).
-
Qian Jin, Wang Xiujuan, Collett T S, Guo Yiqun, Kang Dongju, Jin Jiapeng. 2018. Downhole log evidence for the coexistence of structure II gas hydrate and free gas below the bottom simulating reflector in the South China Sea. Marine and Petroleum Geology, 98: 662~674.
-
Sloan E D, Subramanian S, Matthews P N, Lederhos J P, Khokhar A A. 1998. Quantifying hydrate formation and kinetic inhibition. Industrial & Engineering Chemistry Research, 37(8): 3124~3132.
-
Wang Zhenfeng, Li Xushen, Sun Zhipeng, Huang Baojia, Zhu Jitian, Yao Zhe, Guo Minggang. 2011. Hydrocarbon accumulation conditions and exploration potential in the deep-water region, Qiongdongnan basin. China Offshore Oil and Gas, 23(1): 7~13+31 (in Chinese with English abstract).
-
Wei Jiangong, Liang Jinqiang, Lu Jing'an, Zhang Wei, He Yulin. 2019. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea—Results of the fifth gas hydrate drilling expedition. Marine and Petroleum Geology, 110: 287~298.
-
Widess M. 1973. How thin is a thin bed? Geophysics, 38: 1176~1180.
-
Xie Xinong, Zhang Cheng, Ren Jianye, Yao Bochu, Wan Ling, Chen Hui, Kang Bo. 2011. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea. Chinese Journal of Geophysics, 54(12): 3280~3291 (in Chinese with English abstract).
-
Xie Xinong, Ren Jianye, Wang Zhenfeng, Li Xushen, Lei Chao. 2015. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading. Earth Science Frontiers, 22(1): 77~87 (in Chinese with English abstract).
-
Ye Jianliang, Wei Jiangong, Liang Jinqiang, Lu Jing'an, Lu Hailong, Zhang Wei, all the participants of GMGS5. 2019. Complex gas hydrate system in a gas chimney, South China Sea. Marine and Petroleum Geology, 104: 29~39.
-
Ye Jianliang, Qin Xuwen, Xie Wenwei, Lu Hailong, Ma Baojin, Qiu Haijun, Liang Jinqiang, Lu Jing'an, Kuang Zenggui, Lu Cheng, Liang Qianyong, Wei Shipeng, Yu Yanjiang, Liu Chunsheng, Li Bin, Shen Kaixiang, Shi Haoxian, Lu Qiuping, Li Jing, Kou Beibei, Song Gang, Li Bo, Zhang He'en, Lu Hongfeng, Ma Chao, Dong Yifei, Bian Hang. 2020. The second natural gas hydrate production test in the South China Sea. China Geology, 3(2): 197~209.
-
Zhan Linsen, Kang Dongju, Lu Hailong, Lu Jingan. 2022. Characterization of coexistence of gas hydrate and free gas using sonic logging data in the Shenhu area, South China Sea. Journal of Natural Gas Science and Engineering, 101: 104540.
-
Zhang Gongcheng, Zeng Qingbo, Su Long, Yang Haizhang, Chen Ying, Yang Dongsheng, Ji Mo, Lu Chengfu, Sun Yuhao. 2016. Accumulation mechanism of LS 17-2 deep water gaint gas field in Qiongdongnan basin. Acta Petrolei Sinica, 37(S1): 34~46 (in Chinese with English abstract).
-
Zhang Yingzhao, Xu Xinde, Gan Jun, Zhu Jitian, Guo Xiaoxiao, He Xiaohu. 2017. Geological characteristics, origin and accumulation model of deep water giant gas field and exploration trend in Qiongdongnan basin. Acta Geologica Sinica, 91(7): 1620~1633 (in Chinese with English abstract).
-
Zhou Jilin, Wang Xiujuan, Collett T S, Li Sanzhong, Kuang Zenggui, Lu Yintao, Deng Wei, Yan Weichao, Qian Jin, Jin Jiapeng. 2023. Characterization of a complex sand-rich gas hydrate reservoir system in the Indian marine continental margin with downhole log and seismic data. Marine and Petroleum Geology, 155: 106370.
-
陈子归, 姜涛, 匡增桂, 程聪, 熊鹏飞, 陈岳. 2022. 琼东南盆地天然气水合物与浅层气共生体系成藏特征. 地球科学, 47(5): 1619~1634.
-
樊奇, 李清平, 李丽霞, 吕鑫, 朱振宇, 孙涛. 2021. 琼东南盆地中央峡谷天然气水合物成藏模式. 东北石油大学学报, 45(5): 13~20.
-
樊奇, 李清平, 吴涛, 李丽霞, 庞维新, 朱振宇. 2022. 基于运移输导体系的天然气水合物成藏类型——以琼东南盆地H区为例. 石油实验地质, 44(2): 262~269.
-
甘军, 张迎朝, 梁刚, 杨希冰, 李兴, 宋鹏. 2019. 琼东南盆地深水区烃源岩沉积模式及差异热演化. 地球科学, 44(8): 2627~2635.
-
何家雄, 颜文, 祝有海, 张伟, 龚发雄, 刘士林, 张景茹, 龚晓峰. 2013. 南海北部边缘盆地生物气/亚生物气资源与天然气水合物成矿成藏. 天然气工业, 33(6): 121~134.
-
何玉林, 梁金强, 石万忠, 匡增桂, 邓炜, 王任, 徐立涛, 杜浩. 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 47(5): 1711~1727.
-
黄保家, 李绪深, 王振峰, 李里, 黄义文. 2012. 琼东南盆地深水区烃源岩特征与天然气潜力. 中国海上油气, 24(4): 1~7.
-
黄时卓, 李芳, 宋鹏, 胡斌, 孙万元. 2024. 琼东南盆地超深水浅部气藏地球物理识别技术. 地球科学, 49(1): 313~323.
-
孟苗苗, 阎少妮, 梁金强, 孙启良, 匡增桂, 任金锋, 余晗. 2024. 琼东南盆地块体搬运体系沉积特征及其对下伏水合物藏的影响. 地质学报, 10. 19762/j. cnki. dizhixuebao. 2024226.
-
裴健翔, 宋鹏, 郭明刚, 毛雪莲. 2023. 琼东南盆地第四纪中央峡谷体系沉积演化与油气前景. 地球科学, 48(2): 451~464.
-
王振峰, 李绪深, 孙志鹏, 黄保家, 朱继田, 姚哲, 郭明刚. 2011. 琼东南盆地深水区油气成藏条件和勘探潜力. 中国海上油气, 23(1): 7~13+31.
-
解习农, 张成, 任建业, 姚伯初, 万玲, 陈慧, 康波. 2011. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制. 地球物理学报, 54(12): 3280~3291.
-
解习农, 任建业, 王振峰, 李绪深, 雷超. 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系. 地学前缘, 22(1): 77~87.
-
张功成, 曾清波, 苏龙, 杨海长, 陈莹, 杨东升, 纪沫, 吕成福, 孙钰皓. 2016. 琼东南盆地深水区陵水17-2大气田成藏机理. 石油学报, 37(S1): 34~46.
-
张迎朝, 徐新德, 甘军, 朱继田, 郭潇潇, 何小胡. 2017. 琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究. 地质学报, 91(7): 1620~1633.
-
摘要
南海北部天然气水合物勘探与钻探揭示天然气水合物与下伏浅层气具有复杂的共存关系,而天然气水合物与浅层气的共存区是未来非常规资源联合开发的目标。为查明琼东南盆地砂质储层高富集水合物与浅层气有利目标区,结合已有钻探结果及三维地震数据,通过频谱分解-RGB振幅属性融合刻画了砂质储层水合物与浅层气的空间分布特征。研究结果表明,第四纪以来块体搬运沉积体底界海底扇体为良好的富砂质储层,局部位置位于气烟囱构造顶部,受深部高通量流体运聚控制,为高富集水合物的主要目标区。研究区浅层气潜力区主要位于水道末端扇体和水道-天然堤沉积体系,多层浅层气在水合物层下方发育,浅层气藏为上方水合物提供充足的气源条件,同时浅层块体搬运沉积体与含水合物地层为浅层气发育提供良好盖层,因此,琼东南盆地存在水合物与浅层气共存的有利砂质储层勘探靶区。此外,受浅层块体搬运沉积体厚度影响,局部浅层气异常区位于水合物稳定带底界附近,有利于更大规模的水合物成藏,该目标具有良好的商业开发潜力。
Abstract
Gas hydrate exploration and drilling in the northern slope of the South China Sea have revealed a complex coexistence of gas hydrate and underlying shallow gas reservoirs. This coexistence area presents a promising target for future unconventional resource development and test production.This study aims to identify favorable target areas for high-concentration gas hydrate and shallow gas accumulations in sand-rich reservoirs in the Qiongdongnan basin. We use well log data and three-dimensional seismic data to characterize the spatial distribution of these reservoirsby spectral decomposition and RGB color blending techniques. Our findings show that sand-rich reservoirsare predominantly located within submarine fans located at the base of Quaternary mass transport deposits (MTDs). High gas hydrate accumulation sare locally observed at the top of gas chimney structures, which are controlled by high-flux fluid migration from deep sediments.Shallow gas, exhibiting multiplelayers, is trapped at the end of submarine fans and within channel-levee systems beneath the gas hydrate layer. This shallow gas acts as a significant source for overlying gas hydrate accumulation. Conversely, the formation of gas hydrate reduces sediment permeability, hindering upward gas migration and contributing to the enrichment of shallow gas reservoirs.Therefore, the Qiongdongnan basin presents favorable sand reservoir exploration targets characterized by the coexistence of gas hydrate and shallow gas. In addition, due to the changing of thickness of MTDs, local shallow gas anomaly area locate at the base of gas hydrate stability zone, creating conditions conducive to the formation of massive gas hydrate accumulations.This presents a highly promising target for future commercial development and exploration efforts.
Keywords
gas hydrate ; shallow gas ; sand-rich ; submarine fan ; Qiongdongnan basin