-
粮食是立国之本,钾是农作物生长必须元素,作为农业大国,我国钾肥消耗约50%依赖进口。长期以来国内钾盐资源主要集中于现代陆相盐湖卤水,仅能满足我国30%的钾肥需求(郑绵平等,1989,2010,2012,2015;乜贞等,2010),钾盐的开采和利用直接影响国家粮食安全(姚远等,2004)。钾盐主要产地位于青海柴达木盆地的察尔汗和新疆罗布泊(郑绵平等,2006)。现代盐湖钾盐地质储量有限,具有很大的不可持续性。深入开展对深层古代含盐盆地的钾盐成矿研究,为钾盐矿产开发寻找接替资源,对我国钾盐产业长治久安,平抑国际市场价格,具有重大的社会和经济意义。了解岩盐构造变形特征和及盐体迁移、聚集、保存规律,分析构造变形对钾盐赋存与成矿的影响,对于钾盐的寻找和钾盐运移成矿规律研究具有十分重要的指导意义。
-
岩盐是自然界矿物盐、硬石膏等的结晶体,具有流变性和不可压缩性(Hudec et al.,2007)。沉积盆地中的古代蒸发盐埋藏后,在重力、浮力、构造作用下发生塑性流动,在不同应力状态下局部撤离或汇聚,与周围地层相互作用形成复杂的盐构造样式。不同构造背景下,盐构造主控因素往往也会发生变化,包括盐层厚度( Warsitzka et al.,2013;Mitra et al.,2015)、上覆层厚度(Roca et al.,2006;Santolaria et al.,2021)、同构造沉积作用(尹宏伟等,2011;吴珍云,2014;Pichel et al.,2017)、先存断裂(Zheng Chunfang et al.,2020;段云江等,2021)、基底古隆起(Long Yi et al.,2021)、先存盐底辟(Snidero et al.,2020;Hassanpour et al.,2021)、构造变形速率(Couzens-Schultz et al.,2003;Pichot et al.,2009)以及滑脱层强度(徐雯峤等,2020)等因素影响着盐体的迁移与盐构造的发育。本文通过综合分析前人研究成果,结合地震解析与构造模拟,分析复杂构造区岩盐迁移规律,并以库车坳陷及思茅盆地勐野井为例,探讨复杂构造区有利成钾成矿区域。
-
1 岩盐物理性质
-
蒸发岩指不同物源的卤水在沉积盆地中经过蒸发、浓缩作用,使盐类物质根据溶解度依次析出结晶,形成石膏、石盐、钾盐、光卤石等一系列的水溶性沉积矿物组合,具有易溶、难保存等特性。岩盐的严格定义是指自然界中矿物盐的结晶体(Jackson,1997),在沉积盆地盐构造研究中统称为蒸发岩。作为一种晶体岩石,岩盐密度低且具有不可压缩性。纯盐密度为2170 kg/m3,岩盐一般掺杂有石膏、硬石膏甚至泥岩等其他沉积物(Hudec et al.,2007),密度约为2200 kg/m3,且不随埋深的增加发生变化,当埋深到达6~8 km时,岩盐发生重结晶和溶解(图1b),密度有所减小(Warren,2006;李世琴,2009)。干盐的强度比其他沉积物要低,当盐含水量超过0.01%后,其屈服强度可以忽略不计(图1e),因此湿盐比其他岩石层更容易发生变形。湿盐的形变基本全部由塑性流变完成(图1c),盐上和盐下层的断裂一般传播至盐层的接触处终止(戈红星等,1996;Mcquarrie,2004)。但有研究显示,在50°C、25 MPa差应力下时,应变率超过5×10-9 s-1时,盐层发生脆性变形。盐构造形成背景下,应变速率均在1×10-12 s-1以下(Davison,2009),因此一般地质条件下,盐层在运动过程中发生动态结晶而表现为牛顿流体特征(Schoenherr et al.,2005)。
-
岩盐的应变曲线表现为瞬态蠕变、稳态蠕变、加速蠕变三个阶段(图1d)。岩盐蠕变特性与应力状态和温度有关(郭开元,2004;王者超,2006)。岩盐的流动属于泊肃叶流或科特流(图1a),底辟发育时由于受到周缘地层的黏滞阻力,盐体两侧流动速度较中心更慢表现为泊肃叶流。岩盐周缘地层发生移动时,在顶板拖曳作用下,岩盐顶部流动速度最快,拖曳力由上到下递减,盐体流动速率也越来越低,表现为科特流。实际地质情况下由于构造的复杂性,岩盐流动模式多表现为泊肃叶流和科特流的结合。岩盐的黏度比地幔、泥岩和页岩低,干盐表现为位错蠕变的幂律流体,当含水量大于0.05%时,黏度大幅度降低,表现为扩散蠕变的牛顿流体(图1f),湿盐的扩散蠕变与温度无关,而黏度随着温度的升高而降低(Weijermars et al.,1993)
-
图1 岩盐物理性质(据Jackson et al.,1994;Warren,2006;Hudec et al.,2009;李江海等,2015)
-
Fig.1 Physical properties of salt rock (after Jackson et al., 1994; Warren, 2006; Hudec et al., 2009; Li Jianghai et al., 2015)
-
(a)—流动行为模式;(b)—密度;(c)—流变特性;(d)—蠕变曲线;(e)—强度;(f)—黏度
-
(a) —patterns of mobility behavior; (b) —density; (c) —rheological properties; (d) —creep curve; (e) —strength; (f) —viscosity
-
2 盐构造
-
盐构造是指在不同的地质条件作用下,由于岩盐塑性流动变形而形成的地质构造,包括变形盐体及其周围的相关变形地层(Loncke et al.,2006;余一欣等,2011)。盐构造一般由上覆地层、岩盐层和盐下层三个基本单元共同组成,(戈红星等,1996;Loncke et al.,2006)。盐上层是沉积晚于盐层位于盐层之上的脆性地层,拉张应力环境可形成(铲式)正断层、盐滑脱构造、(假)龟背构造、迷你盆地、罗霍系统等;挤压应力下可形成逆断层相关褶皱、逆冲推覆、反冲断层、箱式褶皱等构造。盐层是盐构造的主要部分,一般由岩盐、石膏、泥岩等成分组成,在重力滑脱、重力扩展、挤压应力下可形成不同类型盐构造。盐下地层是沉积早于盐层,埋藏于盐层之下的地层,也被称为基底,在基地卷入变形背景下多在山前形成叠瓦式逆冲断层,基底形态对岩盐的形成改造起控制作用。
-
根据岩盐的补给方式,可将盐构造分为线状补给型盐构造(图2a)和点状补给盐构造(图2b),线状补给盐构造包括盐背斜、盐墙等;点状补给盐构造包括盐枕、盐株、盐席等。多个盐刺穿构造整体或局部缝合形成盐蓬。根据与围岩接触关系可以分为低成熟度整合型盐构造和高成熟度刺穿型盐构造,其中盐刺穿构造根据形成机制可分为再活化盐底辟、主动盐底辟、被动盐底辟(汪新等,2010;Pilcher et al.,2011;Quirk et al.,2012)。整合性盐构造(盐背斜、盐枕)往往很容易发展为刺穿型盐构造(盐株、盐墙),其演化受盐上层厚度、盐层厚度、构造作用、同沉积与剥蚀强度等因素影响(Vendeville,2007;Duerto et al.,2009)。
-
3 盐构造驱动力及迁移规律
-
岩盐易发生流动变形,进行长距离、大规模的物理迁移,造成厚度及形态剧烈变化。外来盐体与围岩呈侵入式接触,盐体与围岩在沉积环境及成岩时代可能存在较大不连续性。岩盐迁移的距离和规模与岩盐埋深、盐体几何形状、构造背景等有关。岩盐流动的阻力主要为上覆地层的强度和岩盐边界摩擦力,只有当岩盐流动的驱动力大于阻力时,岩盐才会发生塑性变形。岩盐流动性的强弱受含水量、地温梯度等因素影响,岩盐流动的驱动力主要包括浮力和应力差异负载,应力差异负载包括重力差异负载、位移差异负载(挤压、拉张、剪切)和热差异负载。其中热负载由温度变化引起体积变化导致,岩盐受热膨胀并变得有浮力,产生盐内对流(Hudec et al.,2007)。
-
图2 盐构造样式几何分类图(据 Jackson et al.,1991;Hudec et al.,2007;李江海,2015)
-
Fig.2 Geometric classification diagram of salt structure styles (after Jackson et al., 1991; Hudec et al., 2007; Li Jianghai,2015)
-
(a)—线状补给盐构造;(b)—点状补给盐构造
-
(a) —line feed salt structure; (b) —point feed salt structure
-
3.1 浮力
-
浮力曾被认为是驱动盐构造变形的主要因素,岩盐的密度约为2200 kg/m3。随着沉积作用进行,岩盐密度基本不变,在压缩作用下上覆层孔隙度减小,密度不断增加,直至超过盐层密度,密度反转后岩盐在浮力作用下向上运移。研究表明当上覆岩层埋深650~1500 m时,其最深处沉积物密度与岩盐相当,若使上覆沉积物的平均密度超过岩盐则需要埋深约1600~3000 m(Nelson et al.,1989)。随着盐层埋深的增加,上覆地层强度不断增加,岩盐能主动刺穿上覆岩层的阈值厚度为250 m(Warren,2006)。密度反转时上覆地层强度远大于盐层上涌驱动力,因此浮力并非诱发盐构造变形的主要驱动力。
-
3.2 重力差异负载
-
重力差异负载是盐层重力和上覆地层重力共同作用的结果。上覆地层厚度和基底形态的差异导致岩盐在不同位置产生压力差。岩盐在压力差作用下向压力低的区域流动。只有压力差大于上覆岩层的临界压力时,岩盐才可以主动刺穿地层上涌。不考虑构造应力作用的前提下,若上覆岩层厚度均匀且盐顶海拔一致,岩盐不发生流动;上覆地层厚度存在差异时,盐层会向沉积变薄区域流动;盐顶海拔发生变化时,盐层沿基底斜坡向下流动。
-
克拉通稳定盆地内盐构造多由重力差异负载作用形成,如滨里海盆地(余一欣等,2011;杨勤林等,2013;Wu Zhenyun et al.,2015;景紫岩等,2021)。进积作用形成沉积楔差异负载,在重力作用下上覆地层向进积方向发生重力滑移和重力扩展。重力差异负载持续作用,三角盐底辟持续生长,发展为盐株甚至喷出地表形成盐冰川。进积前缘两侧沉积厚度变化大,重力差异负载最明显,更容易发育高幅度的盐刺穿构造。滨里海区域地震剖面可见大型盐底辟构造多发生在进积前缘。基底古隆起也会影响岩盐流动,在古隆起与斜坡交界处发育三角盐底辟,盐底辟之间发育盐撤坳陷与盐焊接,与滨里海南缘地震剖面吻合(图3)。
-
3.3 拉张构造应力
-
拉张应力是形成盐底辟的主要机制,主要发生在断陷盆地或被动大陆边缘斜坡坡上带(Rowan et al.,2003;Hudec et al.,2007)。断陷盆地主要发育基底卷入变形的厚皮盐构造,如红海盆地,在被动大陆边缘斜坡带多发育薄皮盐构造,如墨西哥湾盆地、下刚果盆地。拉张作用形成盐构造的机理为:① 上覆层发生减薄、断裂,强度降低,有利于岩盐主动刺穿;② 新形成的地堑增加了上覆地层的高度差,促进重力差异负载的产生(李世琴,2010)。影响拉张盐构造发育的因素包括基底坡度、上覆层强度、岩盐厚度、同构造沉积等。
-
薄皮伸展盐构造中,上覆盐层在重力扩张和重力滑脱作用下发生破裂,岩盐在上覆地层减薄的软弱区汇聚。拉张背景下盐层厚度控制着盐构造样式,盐层较薄时起滑脱作用,形成盐滚和盐筏构造,盐层较厚时刺穿上覆盐层形成再活化盐底辟。断块的减薄和分离为盐底辟创造了空间,盐底辟沿地堑轴线向上隆起或沿断层向上运移,持续拉伸且盐源补给充足时出露地表形成被动盐底辟(图4)。此后盐底辟作为构造薄弱带优先发生变形,随着拉伸和沉积作用的继续进行,岩盐撤离,翼部地层下沉,盐源层枯竭后形成龟背构造和盐焊接。被动大陆边缘盐底辟主要发育在正断层发育处(Hudec et al.,2013;余一欣等,2021)。基底卷入变形时,基底形成一系列正断层,盐层充填地堑,上覆地层形成低幅度向斜。盐层厚度和拉张速率不同的构造环境下,基底断裂可能影响盐底辟发育位置,和基底未卷入变形时相同,岩盐沿正断层处向上运移,在断层处出现岩盐运移与聚集(Jackson et al.,1994)。
-
图3 进积作用、基底形态控制下物理模拟实验剖面(据Wu Zhenyun et al.,2015)
-
Fig.3 Physical simulation experiment profile controlled by progradation and basement morphology (after Wu Zhenyun et al., 2015)
-
(a)—实验剖面;(b)—实验剖面解释
-
(a) —experimental profile; (b) —interpretation of experimental profile
-
3.4 挤压构造应力
-
挤压应力下岩盐多作为滑脱层或填充背斜核部的物质,挤压盐构造主要发生在造山带前缘或前陆盆地、被动大陆边缘斜坡坡下带和反转裂谷盆地中(Letouzey et al.,1995)。在被动大陆边缘和褶皱造山带前缘多为基底卷入变形的厚皮挤压环境(Rowan et al.,2006;Dooley et al.,2007;Fiduk et al.,2012),在造山带附近或基底存在薄弱带时多为基底不卷入变形的薄皮挤压(Mcquarrie,2004;Yu Yixin et al.,2008;Wu Zhenyun et al.,2014)。挤压环境下岩盐流动主要的驱动力来自于盐的构造增压,浮力起辅助作用,即使盐没有浮力,岩盐也可能到达地表,并在挤压环境中作为被动底辟生长。影响盐构造发育的因素包括上覆沉积层厚度、同构造沉积作用、盐层厚度、岩盐沉积边界、剥蚀作用、基地断裂、挤压速率及盆地反转时断层反转量等(汪新等,2010;尹宏伟等,2011;Izquierdo-Llavall et al.,2018;Neng Yuan et al.,2018;杨克基等,2018;Pla et al.,2019;Zheng Chunfang et al.,2020)。
-
挤压背景下,岩盐填充上覆地层背斜的核部(图5)。同构造沉积位置岩盐向两侧撤离,沉积楔沉积前缘发育断层传播褶皱。无先存盐底辟时,岩盐边界处阻力增加,盆地在岩盐尖灭处发生逆冲推覆构造,岩盐作为滑脱层调节盐上层变形并在断层根部少量聚集。先存盐底辟作为构造薄弱带在挤压应力作用下变形隆起,持续的挤压作用下断层上下盘运移距离增加,形成盐推覆体(Li Shiqin et al.,2012;Wu Zhenyun et al.,2014;Yang Keji et al.,2024)。基底斜坡处发育盐背斜,而无基底斜坡则多发育单斜盐构造。基地斜坡两侧岩盐厚度不一,同时降低岩盐向挤压方向的流动速度,使其在斜坡上汇聚形成盐背斜,与库车坳陷地震剖面相吻合(图5)。
-
4 对深部钾盐找矿启示
-
库车坳陷西段古近系沉积的库姆格列木组厚层膏盐是重要找钾区域之一(Wei Zhao et al.,2014;徐洋等,2017;王凡等,2022)。近年来随着钾盐勘察工作的推进,在库车坳陷已发现多处含钾显示,并在库姆格列木群发现了钾石盐矿层(郑绵平等,2010,2012,2015;Deng Xiaolin et al.,2014)。滇西南思茅盆地是我国海相氯化钾型固体钾盐取得重大突破的希望所在,盆地内的勐野井钾盐矿是目前中国发现的唯一的古代氯化物型钾盐矿床。勐野井钾盐矿已探明岩盐分布面积为3.5 km2,其中钾盐的分布面积为2.8 km2,钾矿层平均KCl含量为8.81%,KCl储量为1676.04×104 t(郑绵平等,2014),但已探明资源储量规模较小,而国外与中国兰坪-思茅盆地同处特提斯成矿构造域的中亚卡拉库姆盆地、中南半岛呵叻盆地都发育有侏罗系—白垩系巨型钾盐矿床(刘成林,2013;苗忠英等,2017),滇西南钾盐成矿条件与资源潜力一直以来是生产、调查、科研单位关注的焦点。
-
图4 Angolan边缘盐构造地震解释及物理模拟切剖面(据Fort et al.,2004)
-
Fig.4 Seismic interpretation and physical simulation profile of the Angolan marginal salt structure (after Fort et al., 2004)
-
(a)—地震剖面解释;(b)—物理模拟切剖面;(c)—物理模拟切剖面
-
(a) —seismic profile interpretation; (b) —physical simulation cross-section; (c) —physical simulation cross-section
-
图5 物理模拟实验剖面及库车坳陷地震解释(据吴珍云,2014)
-
Fig.5 Physical simulation experiment section and seismic interpretation of Kuqa depression (after Wu Zhenyun, 2014)
-
(a)—实验剖面;(b)—实验剖面解释;(c)—地震剖面解释
-
(a) —experimental profile; (b) —interpretation of experimental profile; (c) —interpretation of seismic profile
-
4.1 塔里木盆地库车坳陷
-
库车坳陷位于塔里木盆地北部,南天山造山带南麓,延伸与天山近平行,呈东西向(图6)。喜山运动期间南天山由于印度板块与欧亚板块的碰撞再度活化,在强烈的挤压背景下发育大规模逆冲推覆构造,地壳挤压缩短隆升形成构造负载,库车坳陷发生挠曲沉降接受海侵沉积。库车坳陷发育了古近纪的库姆格列木组厚层和中新统吉迪克组薄层两套膏盐层,在挤压应力、浮力、重力影响下发育了盐枕、盐背斜、盐墙、盐推覆、迷你盆地、盐席、盐焊接等盐构造,形成了“南北分带,东西分段,上下分层”的构造格局(Wang Wei et al.,2017)。
-
进入中生代以来,库车坳陷经历了造山后坳陷、陆内挠曲、前陆盆地三期构造演化。古新世盆地由晚白垩世的区域隆升转变为热舒展作用形成坳陷盆地,并发生大面积海侵。古新世末期,在南北挤压应力作用下,海侵通道关闭,库车坳陷在封闭环境下逐步进入盐湖演化阶段。在此期间地层连续沉积,总体呈向北增厚的楔体,北部为深水带,向南部塔北斜坡湖水逐渐变浅(贾承造等,2003;贾承造,2004; Wei Zhao et al.,2014;徐洋等,2017)。坳陷内部存在不均衡沉降,坳陷内部分布近东西向的水下隆起和次级坳陷,凹凸起伏的基底有利于卤水的分异作用。受隆坳构造格局影响,北部克拉苏和南部秋里塔格为两个主要的沉降和沉积中心,形成古近纪盐湖并沉积巨厚盐层(余海波等,2016;王凡等,2022),该相对低洼区域是钾盐沉积最有利的环境。
-
选取库车凹陷中部剖面(图6,图7a)参考库车盆地地质特征,结合原型盆地剖面的地面长度、地层厚度、地质单元尺度,利用离散元数值模拟软件(ZDEM)设计离散元数值模型(图7b)。其中盐层厚度在右侧凹陷为1200 m,在左侧凹陷为1100 m,凹陷中心顶部设置钾盐层(图7b中绿色层),基底厚度为1800~2000 m,盐上初始盖层厚度为500 m。实验颗粒参数参考前人设置(Morgan,2015;李长圣,2019),颗粒泊松比为0.2,时间步长为50 ms,重力加速度9.8 m/s2。基底和盐上初始盖层设置黏结,对应岩石黏聚力为19.9 MPa,内摩擦角为19.3°。盐层、沉积层不设置黏结,同时减小盐层颗粒半径和杨氏模量使其更符合盐岩易变形的特征,其他参数见表1。模型挤压速度为2 m/s,每挤压1 km发生一次进积作用,进积最大厚度约500 m。
-
数值模拟实验结果和地震剖面解释吻合度较高(图8),地震剖面中北侧发育的叠瓦状逆冲断裂带与先存断裂、古生代基底形态等因素有关(徐雯峤等,2022;Yang Keji et al.,2024)。由于本次实验主要聚焦挤压和同沉积作用下的盐岩及钾盐流动规律,因此对其基底卷入的叠瓦状逆冲断层不做深入探究。结合实验模拟结果,库姆格列木组膏盐沉积后,钾盐在克拉苏冲断带和秋里塔格两个沉积中心浓缩成矿。进入上新世以来,来自南天山施加给前陆盆地的挤压应力持续增强,盐下基底变形主要集中在山前带,发育逆冲断层,在逆冲断层以南的基底仍保留原始形态。盐层作为滑脱层,使得挤压应力很好地向南传递,盐上层变形传播至秋里塔格构造带,随着挤压持续进行,秋里塔格构造带盐上层受挤压应力增强,发生明显的褶皱断裂变形。盐岩具有塑性特征,在区域构造挤压应力及同构造沉积形成的重力负载驱动下,促进了岩盐在克拉苏构造带和秋里塔格构造带大量汇聚(图8)。
-
图6 库车坳陷构造单元划分及剖面位置
-
Fig.6 Structural unit division and section location of Kuqa depression
-
图7 库车凹陷古近纪原型盆地剖面(据余海波等,2016; 剖面位置见图6)及数值模拟模型
-
Fig.7 Cross section of Paleogene prototype basin of Kuqa depression (after Yu Haibo et al., 2016; see Fig.6 for profile location) and the numerical simulation model
-
(a)—库车凹陷古近纪原型盆地剖面;(b)—数值模拟初始模型
-
(a) —Paleogene prototype basin profile of Kuqa depression; (b) —initial model for numerical simulation
-
库车坳陷成盐期构造演化复杂,找钾难度大,但整体稳定并兼有一定活动性的构造特征对成钾是有利的。克拉苏构造带基底卷入变形强烈,而南部秋里塔格构造带位于应力传播末端,基底在新生代变形弱,更有利于钾盐矿床的后期保存。数值模拟结果显示挤压前钾盐规律沉积在顶层,在挤压变形过程中与盐岩发生杂糅并一同向上运移,虽发生不规则流动,但仍位于上部。秋里塔格构造带盐岩大量聚集,顶部发育褶皱和逆冲断层,强烈的盐构造变形导致先存钾盐矿层被破坏,同时也为深埋钾矿向浅部运移提供了可能。王凡(2022)实验测试发现在北部克拉苏区域和秋里塔格南部羊塔—却勒区出现钾的相对高值和溴氯系数高值,并在羊塔地区发现钾盐矿层,同时相关报道显示在秋里塔格断层处地表附近发育多处盐泉,且卤水具有富钾特征(山俊杰等,2019),均可佐证数值模拟的实验结果,即深部钾盐沿断裂带运移至浅层甚至出露地表,说明其下部盐背斜有较好的勘探潜力。
-
4.2 勐野井地区
-
思茅盆地位于滇西三江造山带,东至哀牢山,西至澜沧江,北接兰坪盆地,南靠呵叻盆地,是晚二叠世澜沧江和金沙江俯冲消亡后成长的中—新生代多旋回叠合陆内盆地(陈跃昆等,2009),自东向西整体呈现“三凸夹两凹”的地质格局。勐野井地区位于思茅盆地东南部的江城坳陷(图9),区内有我国唯一探明固体氯化钾型钾盐矿床。
-
勐野井钾盐矿床的岩盐形成年代和物质来源仍存在争议,之前被广泛接受为原生成钾模式。自2010年以来,由中国地质科学院组织的新一轮全国钾盐找矿工作,开展了我国海相钾盐资源基础研究,通过野外地质踏勘、地球物理资料分析、岩石地球化学测试、构造变形分析与模拟等方法,揭示了滇西南勐野井钾盐矿的成盐物质主要来源为海水,成盐时代为侏罗纪(郑智杰等,2012;杨尖絮等,2013;邵春景等,2021;Lou Pengcheng et al.,2021,2022;Miao Zhongying et al.,2022),建立了深部源盐、浅部聚集的“二层楼”成矿模式(郑绵平等,2014)。“二层楼”成矿模式(图10)可以合理解释勐野井钾盐矿盐层强烈揉皱变形、矿体面积小厚度大、沉积相缺失、海源标志、成矿物质多源等现象,为思茅盆地海相钾盐勘探与研究提供重要理论指导。 “二层楼”成矿这一研究成果打破了几十年来在浅部层位找矿的思路,为云南钾盐勘探提供了新的思路和目标层系:特提斯域侏罗纪海相层系。
-
勐野井矿区盐体结构特征显示其经历了长距离物理迁移,遭受过强烈的后期改造作用。矿区钾盐层呈马尾状分布(图11a),盐层普遍含泥砾(图11b),盐体中心部位夹杂砂岩体等大小不等的岩块(图11c),含钾盐体与碎屑岩直接物理接触,无硫酸盐-碳酸盐的过渡。矿区井下采矿剖面可见钾盐褶皱明显(图11d~f),可见明显不均匀流动的标志(图11a)。勐野井矿区内F1、F2、F3均为高角度逆冲断层,F1、F2均为南东走向,断层面倾向北东,控制着矿区的南西和北东边界,其中F2为把边江断裂东南延伸部分。F3断层横截勐野井向斜,产生晚于F1、F2,走向北东,倾向北西,矿区北西段含盐地层在喜山运动期间沿F3抬升并遭受剥蚀(郑智杰等,2012;杨尖絮等,2013;邵春景等,2021)。
-
图8 数值模拟结果(a~c)及地震剖面解释(d,剖面位置见图6)
-
Fig.8 Numerical simulation results (a~c) and seismic section interpretation (d, section location is shown in Fig.6)
-
(a)—挤压1500 m模拟结果;(b)—挤压3000 m模拟结果;(c)—挤压6500 m模拟结果;(d)—地震剖面解释
-
(a) —extrusion 1500 m simulation result; (b) —extrusion 3000 m simulation result; (c) —extrusion 6500 m simulation result; (d) —seismic profile interpretation
-
图9 勐野井钾盐区域地形地质图(据杨尖絮等,2013)
-
Fig.9 Topographic and geological map of Mengyejing potassium salt (after Yang Jianxu et al., 2013)
-
图10 勐野井钾盐矿床“二层楼”模式(据郑绵平等,2014)
-
Fig.10 “Two-storey” model of Mengyejing potassium salt deposit (after Zheng Mianping et al., 2014)
-
结合勐野井区域地质特征,参考剖面A—A′的剖面长度、地层厚度、地质单元尺度,利用离散元数值模拟软件(ZDEM)设计模型,模型长30 km、高3.3 km,其中盐层厚800 m,中部盐层顶部设置钾盐层,盐上地层厚1500 m。实验颗粒参数参考前人设置(Morgan,2015;李长圣,2019),颗粒泊松比为0.2,时间步长为50 ms,重力加速度9.8 m/s2,其他参数见表2,盐上层对应岩石黏聚力为19.9 MPa,内摩擦角为19.3°,盐层、断层、沉积层不设置黏结,同时减小盐层颗粒半径和杨氏模量使其更符合盐岩易变形的特征。在距离拉张端12 km处,设置一条倾角65°的薄弱带,用以模拟F3断层(图12)。
-
实验共分为三个阶段,第一阶段为左侧刚性挡板以0.5 m/s速度向左拉张,总拉张量为2 km,模拟走滑拉分阶段地壳的断裂;第二阶段为左侧刚性挡板以2 m/s的速度向右挤压,总挤压量为3.5 km,模拟喜马拉山运动期间勐野井地区遭受的东南向的挤压推覆作用;第三阶段为剥蚀沉积阶段。结合实验模拟结果,我们认为中侏罗世海退后思茅盆地内残留海在持续干旱的气候条件下于各次级盆地浓缩成盐聚钾,上覆沉积晚侏罗世和白垩纪地层。在走滑拉分背景下,上覆地层呈体膨胀状态,产生地堑和断裂,减薄和未减薄地层形成重力差异负载,断裂也为中侏罗统岩盐提供运移通道。断层底部以及断层两侧钾盐随岩盐在重力差异负载作用沿断裂(F3)向上运移,形成三角盐底辟。最终在地表汇聚形成被动盐底辟(图13a、b),并被勐野井组同构造沉积覆盖。盆地后续受到北向的挤压和拖曳发生顺时针旋转,断层性质转为压扭性,盐上层呈体收缩状态,正断层反转为逆断层(刘璎等,2017),盐岩整体向挤压方向流动,加剧了岩盐汇聚,断层西北侧钾盐随盐岩沿断层向上运移(图13c、d)。断层上盘的盐体被抬升剥蚀,而断层下盘的含钾盐体得以保存,被后续持续沉积的地层埋藏(图13e、f)。基于离散元数值模拟我们初步揭示了勐野井矿区盐体迁移聚集的过程及动力学机制,矿区北侧的F3断层(图9,图11,图13a、b)可能是勐野井矿区盐体从深部向浅层运移聚集的重要通道,我们认为这一高角度的逆断层有可能是早期正断层的反转,后续仍需开展更详细深入的分析和研究。
-
图11 勐野井剖面及矿区钾盐形态图(剖面位置见图9)
-
Fig.11 Mengyejing profile and potash salt morphology of mining area (see Fig.13 for profile location)
-
图12 实验初始模型设计
-
Fig.12 Initial model design of the experiment
-
图13 模拟结果及体积应变对比图
-
Fig.13 Comparison of simulation results and volumetric strain
-
(a)—拉张2 km模拟结果;(b)—拉张2 km体积应变;(c)—挤压2 km模拟结果;(d)—挤压2 km体积应变;(e)—剥蚀与沉积模拟结果;(f)—剥蚀与沉积体积应变
-
(a) —simulation result of stretching 2 km; (b) —volumetric strain of stretching 2 km; (c) —simulation result of extrusion 2 km; (d) —volumetric strain of extrusion 2 km; (e) —simulation results of denudation and deposition; (f) —volumetric strain of denudation and deposition
-
在“二层楼”成矿模式指导下,思茅盆地钾盐地质调查部署的两口基准井在勐野井钾盐矿外围深部侏罗系相继发现厚层含钾石盐层。多项证据表明目前正在开采的近地表小规模勐野井钾盐矿是深层钾盐迁移至浅层的残留底辟盐体,地表的矿体仅是冰山一角,深部侏罗纪海相层系源盐成矿潜力巨大。勐野井构造受把边江断裂带和营盘山-大过岭断裂带所控制,在喜山期强大挤压应力下,发生多期逆冲-逆掩断裂。盐体变形过程中断裂和塑性流动同时发生,盐体发生塑性变形沿断裂带向上刺穿至薄弱浅层,并被后期构造与沉积相掩盖。多期次的断裂活动背景下,在某些被后期构造掩盖的断裂带附近,即使只出露小范围的岩盐,其下部也可能存在隐伏钾盐矿床。
-
5 结论
-
岩盐特殊的物理性质使岩盐吸收大部分的构造应力,导致盐上层和盐下层发生不同的构造变形。岩盐的盐体迁移、聚集、保存是区域构造活动、地表过程(剥蚀与同构造沉积)等多种因素综合作用的结果,同时盐体的流动与分布对其上下围岩的变形有重要影响。克拉通稳定盆地在进积前缘形成盐刺穿构造,拉张背景下岩盐在浮力和重力作用下向断层处流动聚集,挤压背景下岩盐主要聚集在构造核部。库车坳陷在中段在库姆格列木组膏盐沉积时存在山前和秋里塔格构造带两个沉积中心,有利于岩盐浓缩析钾。岩盐在克拉苏构造带和秋里塔格构造带背斜核部大量汇聚,克拉苏构造带基底受构造作用强烈改造,南部秋里塔格构造带距离挤压端较远而基本保留原有形态。秋里塔格背斜上部逆冲断层附近已有富钾显示,可能为盐背斜内钾盐逆冲推覆至浅部,秋里塔格构造带为有利找钾区域。云南勐野井钾盐矿是深层钾盐迁移至浅层的残留底辟盐体。“二层楼”成矿模式合理解释了勐野井钾盐矿盐层强烈揉皱变形、矿体面积小厚度大、沉积相缺失、海源标志、成矿物质多源等现象,为云南钾盐勘探提供了新的思路和目标层系:特提斯域侏罗海相层系,思茅盆地深部侏罗海相层系源盐成矿潜力巨大。
-
致谢:感谢编辑及两位匿名评审专家对稿件认真、细致、专业的评审,专家的意见和建议大大提高了本文的质量。论文中的数值模拟采用离散元数值模拟软件VBOX(www.geovbox.com),感谢Rice大学Julia Morgan教授在离散元模拟及应力应变分析中提供的帮助。
-
参考文献
-
Chen Yuekun, Liao Zongting, Chen Jun. 2009. TSM Analysis of Lanping-Simao Basin in Western Yunnan. Wuhan: China University of Geosciences Press, 1~268 (in Chinese with English abstract).
-
Couzens-Schultz B A, Vendeville B C, Wiltschko D V. 2003. Duplex style and triangle zone formation: Insights from physical modeling. Journal of Structural Geology, 25(10): 1623~1644.
-
Davison I. 2009. Faulting and fluid flow through salt. Journal of the Geological Society, 166(2): 205~216.
-
Deng Xiaolin, Wei Zhao, Zhao Yuhai, Wang Jian. 2014. Formation mechanism of potash deposits in the Kuqa depression and their prediction. Acta Geologica Sinica-English Edition, 88(s1): 208~210.
-
Dooley T P, Jackson M P A, Hudec M R. 2007. Initiation and growth of salt-based thrust belts on passive margins: Results from physical models. Basin Research, 19(1): 165~177.
-
Duan Yunjiang, Luo Haoyu, Xie Huiwen, Xu Zhenping, Zhang Xueqi, Zhang Jingzhou, Shi Lei, Yuan Rui. 2021. Salt-related structural characteristics and deformation mechanism of the Zhongqiu Dongqiu section of the Qiulitag structural belt, Tarim basin. Natural Gas Geoscience, 32(7): 993~1008 (in Chinese with English abstract).
-
Duerto L, McClay K. 2009. The role of syntectonic sedimentation in the evolution of doubly vergent thrust wedges and foreland folds. Marine and Petroleum Geology, 26(7): 1051~1069.
-
Fiduk J C, Rowan M G. 2012. Analysis of folding and deformation within layered evaporites in blocks BM-S-8&-9, Santos basin, Brazil. Geological Society, London, Special Publications, 363: 471~487.
-
Fort X, Brun J P, Chauvel F. 2004. Salt tectonics on the Angolan margin, synsedimentary deformation processes. AAPG Bulletin, 88(11): 1523~1544.
-
Ge Hongxing, Jackson M P. 1996. Salt structures, hydrocarbon traps and mineral deposits. Journal of Nanjing University(Natural Science), 32(4): 640~649(in Chinese with English abstract).
-
Guo Kaiyuan. 2003. Study on creep characteristics of salt rock. Master's thesis of Chongqing University(in Chinese with English abstract).
-
Hassanpour J, Muñoz J A, Yassaghi A, Ferrer O, Jahani S, Santolaria P, SeyedAli S M. 2021. Impact of salt layers interaction on the salt flow kinematics and diapirism in the eastern Persian Gulf, Iran: Constraints from seismic interpretation, sequential restoration, and physical modelling. Tectonophysics, 811: 228887.
-
Hudec M R, Jackson M P A. 2007. Terra infirma: Understanding salt tectonics. Earth-Science Reviews, 82(1~2): 1~28.
-
Hudec M R, Jackson M P, Schultz-Ela D D. 2009. The paradox of mini basin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121: 201~221.
-
Hudec M R, Norton I O, Jackson M P A, Peel F J. 2013. Jurassic evolution of the Gulf of Mexico salt basin. AAPG Bulletin, 97(10): 1683~1710.
-
Neng Yuan, Huang Shaoying. 2018. Influence of overlapping décollements, syntectonic sedimentation, and structural inheritance in the evolution of a contractional system: The central Kuqa fold and thrust belt (Tianshan, NW China). Tectonics, 37: 2608~2632.
-
Jackson M P. 1997. Conceptual breakthroughs in salt tectonics. Historical Review, 1856~1993.
-
Jackson M P, Talbot C. 1991. A glossary of salt tectonics. University of Texas Journal (Natural Science Edition).
-
Jackson M P A, Vendeville B C, Schultz-Ela D D. 1994. Salt-related structures in the gulf of Mexico: A field guide for geophysicists. Leading Edge, 13(8): 837~842.
-
Jia Chengzao. 2004. Mesozoic and Cenozoic Structural Characteristics and Oil and Gas in Tarim Basin. Beijing: Petroleum Industry Press, 1~229 (in Chinese with English abstract).
-
Jia Chengzao, Chen Hanlin, Yang Shufeng, Lu Huafu, Zhou Yuzhang. 2003. Late Cretaceous uplifting process and its geological response in Kuqa depression. Acta Petrolei Sinica, 24(3): 1~5+15 (in Chinese with English abstract).
-
Jing Ziyan, Li Guobin, Zhang Yajun, Wang Ronghua, Xie Tianfeng, Cui Jian, Liu Wenqiang, Dai Hansong. 2021. Salt structure characteristics and deformation mechanism in the eastern margin of pre-caspian basin: The implication of physical simulation. Acta Geologica Sinica, 95(5): 1459~1468 (in Chinese with English abstract).
-
Letouzey J, Colletta B, Vially R, Chermette J. 1995. Evolution of salt-related structures in compressional settings. AAPG Memoir, 65(65): 41~60.
-
Li Changsheng. 2019. Quantitative analysis and simulation of structural deformation of fold-thrust belt based on discrete element. Doctoral dissertation of Nanjing University.
-
Li Jianghai, Wang Honghao, Zhou Xiaobei. 2015. Salt Tectonics. Beijing: Science Press, 1~264 (in Chinese with English abstract).
-
Li Shiqin. 2009. Study on squeezed salt structure and syntectonic sedimentary strata in the middle-west section of Kuqa foreland basin in southern Tianshan Mountains. Doctoral dissertation of Zhejiang University.
-
Li Shiqin, Wang Xin, Suppe J. 2012. Compressional salt tectonics and synkinematic strata of the western Kuqa foreland basin, southern Tian Shan, China. Basin Research, 24(4): 475~497.
-
Liu Chenglin. 2013. Characteristics and formation of potash deposits in continental rift basins: A review. Acta Geoscientica Sinica, 34(5): 515~527 (in Chinese with English abstract).
-
Liu Ying, Zheng Mianping, Zhang Zhen, Yu Changqing, Miao Zhongying, Zhang Kai, Gao Lei. 2017. Salt tectonic and prospecting potassium research in Simao basin. Geological Review, 63(3): 568~580 (in Chinese with English abstract).
-
Loncke L, Gaullier V, Mascle J, Vendeville B, Camera L. 2006. The Nile deep-sea fan: An example of interacting sedimentation, salt tectonics, and inherited subsalt paleotopographic features. Marine and Petroleum Geology, 23(3): 297~315.
-
Long Yi, Chen Hanlin, Cheng Xiaogan, Deng Hongdan, Lin Xiubin. 2021. Influence of paleo-uplift on structural deformation of salt-bearing fold-and-thrust belt: Insights from physical modeling. Journal of Structural Geology, 153: 104445.
-
Lou Pengcheng, Miao Zhongying, Zheng Mianping, Zhang Xuefei, Ruan Zhuang, Xu Qihui. 2021. Paleogeographic characteristics of the Mengyejing Formation in the Simao basin during its depositional period and its indication of potash mineralization: A case study of MZK-3 well. Minerals, 11(4): 338.
-
Lou Pengcheng, Miao Zhongying, Zheng Mianping, Ma Nina, Xu Qihui, Li Xinmin. 2022. Genetic model of mud-clast conglomerates in salt rocks and their significance for salt mineralization in Mohei area, Simao basin, China: A case study of well L-2. ACS Omega, 7(18): 15547~15560.
-
McQuarrie N. 2004. Crustal scale geometry of the Zagros fold-thrust belt, Iran. Journal of Structural Geology, 26(3): 519~535.
-
Miao Zhongying, Lü Yuanyuan, Gao Lei, Liu Song. 2017. Research status and issues of potash mineralization in Lanping-Simao basin. Resources & Industries, 19(3): 24~33 (in Chinese with English abstract).
-
Miao Zhongying, Zheng Mianping, Lou Pengcheng, Wang Dong, Xu Qihui, Xu Jianming. 2022. A tuff interlayer in deep potash-bearing salt rocks and its implication for potash mineralization in the Simao basin, southwestern China. Scientific Reports, 12(1): 16320.
-
Mitra S, Karam P. 2015. Controls of shapes and evolution of salt diapirs. Experimental Studies, 281~292.
-
Morgan J K. 2015. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete element simulations. Journal of Geophysical Research: Solid Earth, 120(5): 3870~3896.
-
Nelson T H, Fairchild L. 1989. Emplacement and evolution of salt sills in the northern Gulf of Mexico. Houston Geological Society Bulletin, 32: 6~7.
-
Neng Yuan, Xie Huiwen, Yin Hongwei, Li Yong, Wang Wei. 2018. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China. Tectonophysics, 730: 114~131.
-
Nie Zhen, Bu Lingzhong, Liu Jianhua, Wang Yunsheng, Zheng Mianping. 2010. Status of potash resources in salt lakes and progress in potash technologies in China. Acta Geoscientica Sinica, 31(6): 869~874 (in Chinese with English abstract).
-
Pichel L M, Finch E, Huuse M, Redfern J. 2017. The influence of shortening and sedimentation on rejuvenation of salt diapirs: A new discrete-element modelling approach. Journal of Structural Geology, 104: 61~79.
-
Pilcher R S, Kilsdonk B, Trude J. 2011. Primary basins and their boundaries in the deep-water northern gulf of Mexico: Origin, trap types, and petroleum system implications. AAPG Bulletin, 95(2): 219~240.
-
Pla O, Roca E, Xie Huiwen, Izquierdo-Llavall E, Muñoz J A, Rowan M G, Ferrer O, Gratacós Ò, Neng Yuan, Huang Shaoying. 2019. Influence of syntectonic sedimentation and décollement rheology on the geometry and evolution of orogenic wedges: Analog modeling of the Kuqa fold-and-thrust belt (NW China). Tectonics, 38(8): 2727~2755.
-
Quirk D G, Pilcher R S. 2012. Flip-flop salt tectonics. Geological Society London Special Publications, 363: 245~264.
-
Roca E, Sans M, Koyi H A. 2006. Polyphase deformation of diapiric areas in models and in the eastern Prebetics (Spain). AAPG Bulletin, 90(1): 115~136.
-
Rowan M G, Lawton T F, Giles K A, Ratliff R A. 2003. Near-salt deformation in Lapopa basin, Mexico, and the northern Gulf of Mexico: A general model for passive diapirism. AAPG Bulletin, 87: 733~756.
-
Rowan M G, Vendeville B C. 2006. Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the flinders ranges, Australia. Marine and Petroleum Geology, 23(9~10): 871~891.
-
Santolaria P, Ferrer O, Rowan M G, Snidero M, Carrera N, Granado P, Muñoz J A, Roca E, Schneider C L, Piña A, Zamora G. 2021. Influence of preexisting salt diapirs during thrust wedge evolution and secondary welding: Insights from analog modeling. Journal of Structural Geology, 149: 104374.
-
Schoenherr J, Urai J L, Littke R, Kukla P, Newall M, Alabry N, Larroque J M. 2005. Hydrocarbon bearing halite in the Ara Group. Abstract at General Assembly, European Geosciences Union, Vienna, 692.
-
Shan Junjie, Wang Mingxiang, Li Jiansen, Shan Fashou, Fan Qishun, Wei Haicheng, Qin Zhanjie, Yuan Qin, Zhang Xiangru, Li Qingkuan. 2019. Hydrochemical characteristics of potassium-rich saline spring and itsimplications for sylvine deposits in the Kuqa basin, Xinjiang. Acta Geologica Sinica, 93(5): 1180~1188 (in Chinese with English abstract).
-
Shao Chunjing, Hu Huan, Yin Hongwei, Miao Zhongying, Zhang Xuefei, Li Weiqiang, Xia Zhiguang. 2021. Characteristics of in situ elemental composition of rock salt from the Simao basin: New metallogenic insights. Earth Science Frontiers, 28(6): 66~78 (in Chinese with English abstract).
-
Snidero M, Carrera N, Mencos J, Butillé M, Granado P, Tavani S, Lopez-Mir B, Sàbat F, Muñoz J A. 2020. Diapir kinematics in a multi-layer salt system from the eastern Persian Gulf. Marine and Petroleum Geology, 117: 104402.
-
Vendeville B. 2007. Salt tectonics 101. A lecture for Tarim Oilfield.
-
Wang Fan, Deng Xiaolin, Zheng Mianping, Wei Zhao, Wang Shuli, Zhao Yuhai, Liu Xingwang, Wang Zhanwen. 2022. Sedimentary-geochemical characteristics and potash-prospecting potential of gypsum-salt layer in western Kuqa depression. Earth Science, 47(1): 56~71 (in Chinese).
-
Wang Wei, Yin Hongwei, Jia Dong, Li Changsheng. 2017. A sub-salt structural model of the Kelasu structure in the Kuqa foreland basin, Northwest China. Marine and Petroleum Geology, 88: 115~126.
-
Wang Xin, Wang Zhaoming, Xie Huiwen, Li Shiqin, Tang Pengcheng, Yin Hongwei, Li Yong, Huang Shaoying. 2010. Cenozoic salt structure analysis and deformation simulation in Kuqa depression, Tarim basin. Scientia Sinica (Terrae), 40(12): 1655~1668 (in Chinese).
-
Wang Zhechao. 2006. Study on nonlinear creep damage constitutive model of salt rock. Master's thesis of Institute of Rock and Soil Mechanics, Chinese Academy of Sciences(in Chinese with English abstract).
-
Warren J K. 2006. Evaporites: Sediments, Resources and Hydrocarbons. Berlin: Heidelberg Springer Berlin Heidelberg.
-
Warsitzka M, Kley J, Kukowski N. 2013. Salt diapirism driven by differential loading—Some insights from analogue modelling. Tectonophysics, 591: 83~97.
-
Weijermars R, Jackson M P A, Vendeville B. 1993. Rheological and tectonic modeling of salt provinces. Tectonophysics, 217(1~2): 143~174.
-
Wei Zhao, Deng Xiaolin, Zhao Yuhai, Wang Jian. 2014. Discovery of potassium-bearing cuttings from the well Yangta 4 the Kuqa depression and seam division. Acta Geologica Sinica-English Edition, 88(s1): 265~266.
-
Wu Zhenyun. 2014. Analysis and physical simulation of salt structure in salt-bearing sedimentary basins: Taking Kuqa depression, caspian basin and Sudan Red Sea basin as examples. Doctoral dissertation of Nanjing University(in Chinese with English abstract).
-
Wu Zhenyun, Yin Hongwei, Wang Xin, Zhao Bo, Jia Dong. 2014. Characteristics and deformation mechanism of salt-related structures in the western Kuqa depression, Tarim basin: Insights from scaled sandbox modeling. Tectonophysics, 612: 81~96.
-
Wu Zhenyun, Yin Hongwei, Wang Xin, Zhao Bo, Zheng Junzhang, Wang Xingyuan, Wang Wei. 2015. The structural styles and formation mechanism of salt structures in the southern Precaspian basin: Insights from seismic data and analog modeling. Marine and Petroleum Geology, 62: 58~76.
-
Xu Wenqiao, Wang Wei, Yin Hongwei, Jia Dong, Li Changsheng, Yang Gengxiong, Li Gang. 2020. Numerical simulation of different subsalt structural features and their evolution in the eastern and western segments of the Kuqa depression. Acta Geologica Sinica, 94(6): 1740~1751 (in Chinese with English abstract).
-
Xu Yang, Liu Chenglin, Jiao Pengcheng, Chen Yongzhi, Cao Yangtong. 2017. Geochemical characteristics and potash formation analysis of Paleocene-Eocene evaporites in Kuqa depression of Xinjiang: A case study of borehole KLA. Acta Petrologica et Mineralogica, 36(5): 755~764 (in Chinese with English abstract).
-
Yang Jianxu, Yin Hongwei, Zhang Zhen, Zheng Mianping. 2013. Geologic settings of the potassium formations in the Lanping-Simaobasin, Yunnan Province. Geotectonica et Metallogenia, 37(4): 633~640 (in Chinese with English abstract).
-
Yang Keji, Qi Jiafu, Ma Baojun, Sun Tong, Zhang Xichen, Zhang Shuai. 2018. Differential tectonic deformation of subsalt and suprasalt strata in Kuqa depression and their controlling factors. Geotectonica et Metallogenia, 42(2): 211~224 (in Chinese with English abstract).
-
Yang Keji, Qi Jiafu, Shen Fangle, Sun Tong, Duan Zhanzhan, Cui Meijuan, Li Peng, Lv Ji. 2024. Formation mechanism of salt piercement structures in a compressive environment: An example from the Kuqa depression, western China. Journal of Structural Geology, 178: 105005.
-
Yang Qinlin, Wang Yanchun, Zhang Jing, Liu Wenqing, Wang Zhen. 2013. The integratation for processing and interpretation of sub-salt structure in pre-caspian basin. Geophysical and Geochemical Exploration, 37(2): 323~327 (in Chinese with English abstract).
-
Yao Yuan, Ma Haizhou, Tan Hongbing, Dong Yaping, Ma Wandong. 2004. Potash deposit formation condition and Tarim basin potash deposit exploration reasearsh. Journal of Salt Lake Research, 12(2): 8~13 (in Chinese with English abstract).
-
Yin Hongwei, Wang Zhe, Wang Xin, Wu Zhenyun. 2011. Characteristics and mechanics of Cenozoic salt-related structures in Kuqa foreland basins: Insights from physical modeling and discussion. Geological Journal of China Universities, 17(2): 308~317 (in Chinese with English abstract).
-
Yu Haibo, Qi Jiafu, Yang Xianzhang, Sun Tong, Liu Qiyao, Cao Shujuan. 2016. Analysis of Mesozoic prototype basin in Kuqa depression, Tarim basin. Xinjiang Petroleum Geology, 37(6): 644~653+666 (in Chinese with English abstract).
-
Yu Yixin, Tang Liangjie, Yang Wenjing, Jin Wenzheng, Peng Gengxin, Lei Ganglin. 2008. Thick-skinned contractional salt structures in the Kuqa depression, the northern Tarim basin: Constraints from physical experiments. Acta Geologica Sinica-English Edition, 82(2): 327~333.
-
Yu Yixin, Zhou Xinhuai, Peng Wenxu, Wei Gang, Lv Dingyou. 2011. An overview on salt structures. Geotectonica et Metallogenia, 35(2): 169~182 (in Chinese with English abstract).
-
Yu Yixin, Tao Chongzhi, Shi Shuaiyu, Yin Jinyin, Wu Changwu, Liu Jingjing. 2021. Physical modeling of salt structures in the middle South Atlantic marginal basins and their controlling factors. Petroleum Exploration and Development, 48(1): 118~126 (in Chinese with English abstract).
-
Zheng Chunfang, Sun Xiongwei, Hou Guiting. 2020. Discrete-element numerical modeling of sub-salt structures in the Central Kelasu fold-thrust belt, Kuqa depression, northwestern China. Journal of Geodynamics, 134: 101687.
-
Zheng Mianping. 1989. Global salt lake geological research and prospects. Geology of foreign mineral deposits, 1~34(in Chinese).
-
Zheng Mianping, Qi Wen, Zhang Yongsheng. 2006. Present situation of potash resources and direction of potash search in China. Geological Bulletin of China, 25(11): 1239~1246 (in Chinese with English abstract).
-
Zheng Mianping, Yuan Heran, Zhang Yongsheng, Liu Xifang, Chen Wenxi, Li Jinsuo. 2010. Regional distribution and prospects of potash in China. Acta Geologica Sinica, 84(11): 1523~1553 (in Chinese with English abstract).
-
Zheng Mianping, Zhang Zhen, Zhang Yongsheng, Liu Xifang, Yin Hongwei. 2012. Potash exploration characteristics in China: New understanding and research progress. Acta Geoscientica Sinica, 33(3): 280~294 (in Chinese with English abstract).
-
Zheng Mianping, Zhang Zhen, Yin Hongwei, Tan Xiaohong, Yu Changqing, Shi Linfeng, Zhang Xuefei, Yang Jianxu, Jiao Jian, Wu Guopeng. 2014. A new viewpoint concerning the formation of the Mengyejing potash deposit in Jiangcheng, Yunnan. Acta Geoscientica Sinica, 35(1): 11~24 (in Chinese with English abstract).
-
Zheng Mianping, Zhang Zhen, Hou Xianhua, Lin Yongjie. 2015. The prospects and the mining development strategy of potassium resources in China. Land and Resources Information, (10): 3~9 (in Chinese with English abstract).
-
Zheng Zhijie, Yin Hongwei, Zhang Zhen, Zheng Mianping, Yang Jianxu. 2012. Strontium isotope characteristics and the origin of salt deposits in Mengyejing, Yunnan Province, SW China. Journal of Nanjing University (Natural Sciences), 48(6): 719~727 (in Chinese with English abstract).
-
陈跃昆, 廖宗廷, 陈军. 2009. 滇西兰坪-思茅盆地TSM分析. 武汉: 中国地质大学出版社, 1~268.
-
段云江, 罗浩渝, 谢会文, 徐振平, 章学岐, 张敬洲, 石磊, 袁瑞. 2021. 塔里木盆地库车坳陷秋里塔格构造带中秋—东秋段盐相关构造特征及变形机理. 天然气地球科学, 32(7): 993~1008.
-
戈红星, Jackson M P. 1996. 盐构造与油气圈闭及其综合利用. 南京大学学报(自然科学版), 32(4): 640~649.
-
郭开元. 2003. 盐岩蠕变特性研究. 重庆大学硕士学位论文.
-
贾承造. 2004. 塔里木盆地中新生代构造特征与油气. 北京: 石油工业出版社, 1~229.
-
贾承造, 陈汉林, 杨树锋, 卢华复, 周宇章. 2003. 库车坳陷晚白垩世隆升过程及其地质响应. 石油学报, 24(3): 1~5+15.
-
景紫岩, 李国斌, 张亚军, 王荣华, 谢天峰, 崔键, 刘文强, 代寒松. 2021. 滨里海盆地东缘盐构造及变形机制: 物理模拟的启示. 地质学报, 95(5): 1459~1468.
-
李长圣. 2019. 基于离散元的褶皱冲断带构造变形定量分析与模拟. 南京大学博士学位论文.
-
李江海, 王洪浩, 周肖贝. 2015. 盐构造. 北京: 科学出版社, 1~264.
-
李世琴. 2009. 南天山库车前陆盆地中—西段挤压盐构造及同构造沉积地层研究. 浙江大学博士学位论文.
-
刘成林. 2013. 大陆裂谷盆地钾盐矿床特征与成矿作用. 地球学报, 34(5): 515~527.
-
刘璎, 郑绵平, 张震, 于常青, 苗忠英, 张凯, 高磊. 2017. 滇西南思茅盆地盐构造研究及找钾初探. 地质论评, 63(3): 568~580.
-
苗忠英, 吕苑苑, 高磊, 刘松. 2017. 兰坪-思茅盆地钾盐成矿研究现状及存在的问题. 资源与产业, 19(3): 24~33.
-
乜贞, 卜令忠, 刘建华, 王云生, 郑绵平. 2010. 我国盐湖钾盐资源现状及提钾工艺技术进展. 地球学报, 31(6): 869~874.
-
山俊杰, 王明祥, 李建森, 山发寿, 樊启顺, 魏海成, 秦占杰, 袁秦, 张湘如, 李庆宽. 2019. 新疆库车盆地富钾盐泉水化学特征与成钾显示. 地质学报, 93(5): 1180~1188.
-
邵春景, 胡欢, 尹宏伟, 苗忠英, 张雪飞, 李伟强, 夏芝广. 2021. 思茅盆地石盐矿物的原位元素含量特征对成矿模式的启示. 地学前缘, 28(6): 66~78.
-
汪新, 王招明, 谢会文, 李世琴, 唐鹏程, 尹宏伟, 李勇, 黄少英. 2010. 塔里木库车坳陷新生代盐构造解析及其变形模拟. 中国科学: 地球科学, 40(12): 1655~1668.
-
王凡, 邓小林, 郑绵平, 韦钊, 王淑丽, 赵玉海, 刘星旺, 王占文. 2022. 新疆库车坳陷西段膏盐层沉积、地球化学特征及找钾方向. 地球科学, 47(1): 56~71.
-
王者超. 2006. 盐岩非线性蠕变损伤本构模型研究. 中国科学院研究生院(武汉岩土力学研究所)硕士学位论文.
-
吴珍云. 2014. 含盐沉积盆地盐构造分析和物理模拟: 以库车坳陷、滨里海盆地和苏丹红海盆地为例. 南京大学博士学位论文.
-
徐雯峤, 汪伟, 尹宏伟, 贾东, 李长圣, 杨庚兄, 李刚. 2020. 库车坳陷东西段盐下构造变形差异演化数值模拟分析. 地质学报, 94(6): 1740~1751.
-
徐洋, 刘成林, 焦鹏程, 陈永志, 曹养同. 2017. 塔里木盆地库车坳陷古新统—始新统蒸发岩地球化学特征及成钾分析: 以KL4井为例. 岩石矿物学杂志, 36(5): 755~764.
-
杨尖絮, 尹宏伟, 张震, 郑绵平. 2013. 滇西兰坪-思茅盆地成钾地质条件分析. 大地构造与成矿学, 37(4): 633~640.
-
杨克基, 漆家福, 马宝军, 孙统, 张希晨, 张帅. 2018. 库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析. 大地构造与成矿学, 42(2): 211~224.
-
杨勤林, 王彦春, 张静, 刘文卿, 王震. 2013. 滨里海盆地盐下构造处理解释一体化研究. 物探与化探, 37(2): 323~327.
-
姚远, 马海州, 谭红兵, 董亚萍, 马万栋. 2004. 古钾盐成矿条件和塔里木盆地找钾研究. 盐湖研究, 12(2): 8~13.
-
尹宏伟, 王哲, 汪新, 吴珍云. 2011. 库车前陆盆地新生代盐构造特征及形成机制: 物理模拟和讨论. 高校地质学报, 17(2): 308~317.
-
余海波, 漆家福, 杨宪彰, 孙统, 刘骐峣, 曹淑娟. 2016. 塔里木盆地库车坳陷中生代原型盆地分析. 新疆石油地质, 37(6): 644~653+666.
-
余一欣, 周心怀, 彭文绪, 魏刚, 吕丁友. 2011. 盐构造研究进展述评. 大地构造与成矿学, 35(2): 169~182.
-
余一欣, 陶崇智, 史帅雨, 殷进垠, 邬长武, 刘静静. 2021. 南大西洋中段盆地盐构造发育特征及其影响因素模拟. 石油勘探与开发, 48(1): 118~126.
-
郑绵平. 1989. 全球盐湖地质研究与展望. 国外矿床地质, 1~34.
-
郑绵平, 齐文, 张永生. 2006. 中国钾盐地质资源现状与找钾方向初步分析. 地质通报, 25(11): 1239~1246.
-
郑绵平, 袁鹤然, 张永生, 刘喜方, 陈文西, 李金锁. 2010. 中国钾盐区域分布与找钾远景. 地质学报, 84(11): 1523~1553.
-
郑绵平, 张震, 张永生, 刘喜方, 尹宏伟. 2012. 我国钾盐找矿规律新认识和进展. 地球学报, 33(3): 280~294.
-
郑绵平, 张震, 尹宏伟, 谭筱虹, 于常青, 施林峰, 张雪飞, 杨尖絮, 焦建, 武国朋. 2014. 云南江城勐野井钾盐成矿新认识. 地球学报, 35(1): 11~24.
-
郑绵平, 张震, 侯献华, 林勇杰. 2015. 中国钾资源远景与矿业发展战略. 国土资源情报, (10): 3~9.
-
郑智杰, 尹宏伟, 张震, 郑绵平, 杨尖絮. 2012. 云南江城勐野井盐类矿床Sr同位素特征及成盐物质来源分析. 南京大学学报(自然科学版), 48(6): 719~727.
-
摘要
钾盐是我国长期紧缺矿种之一,我国钾肥对外依存度约30%~45%。现代盐湖钾盐储量有限。随着多年开采,资源量锐减,亟需开展对古代深层含盐盆地的钾盐成矿研究。深入研究盐构造的变形机制与变形特征,揭示不同构造环境下盐构造变形及盐体迁移、聚集、保存规律,对我国钾盐勘探新区、新层位具有重要意义。本文综述了岩盐物理性质及盐构造驱动力,结合构造物理模拟和地震解释分析盐构造变形机制,揭示了复杂构造区岩盐迁移规律,最终以库车坳陷和勐野井地区为例,结合离散元数值模拟分析了复杂构造地区的钾盐有利成矿区。结果表明:① 克拉通盆地盐构造主要受重力负载作用控制,在进积前缘产生差异负载,有利于发育大型盐刺穿构造;② 拉张环境下上覆地层减薄和正断层的存在为盐底辟的上涌提供了空间,岩盐在断层处汇聚;③ 挤压环境下岩盐在背斜构造核部汇聚,同构造沉积、先存盐底辟、基底隆起会影响盐背斜的形成与演化;④ 库车坳陷岩盐在南部秋里塔格构造带和北部克拉苏构造带背斜核部汇聚增厚,北部克拉苏构造带受挤压变形强烈,南秋里塔格构造带已发现含钾显示,为钾盐有利勘探区;⑤ 勐野井钾盐为深部源盐、浅部聚集的“二层楼”模式,深部侏罗海相层系源盐成矿潜力巨大,地表浅层出露小范围岩盐的断裂带附近可能存在隐伏钾盐矿床。
Abstract
Potassium salt is one of the long-term scarce mineral resources in China, with an external dependency on potassium fertilizer ranging from 30% to 45%. Modern salt lakes have limited potassium salt reserves, and years of mining have led to a sharp decrease in resources. Therefore, exploring the mineralization of potassium salt in ancient deep salt basins is crucial. Understanding the deformation mechanism and characteristics of salt structures and revealing the deformation, migration, accumulation, and preservation laws of salt bodies under different tectonic environments is of great significance for discovering new potassium salt deposits in China. This article provides an overview of the physical properties of rock salt and the driving forces behind salt structure formation. By combining structural physics simulations and seismic interpretation, the deformation mechanisms of salt structures are analyzed, and the migration law of rock salt in complex structural areas is revealed. Taking the Kuqa depression and Mengyejing area as case studies, we employ discrete element numerical simulations to analyze favorable potash salt metallogenic areas in complex structural settings.The results indicate that: ① salt structures in craton basins are mainly controlled by gravity loads, which generate differential loads at the progradation front, which is conducive to the development of large-scale salt piercing structures; ② the thinning of overlying strata and the presence of normal faults in tensile environments provide space for the salt diapir upwelling, where rock salt converges at the fault zone; ③ under compressional environments, rock salt converges in the core of anticline structure, syntectonic sedimentation, pre-existing salt diapir, and basement uplift can affect the formation and evolution of salt anticlines; ④ rock salt in the Kuqa depression has thickened and converged in the southern Qiulitage structural belt and the northern Kelasu structural belt anticline core. The northern Kelasu structural belt exhibits strong compressional deformation, while the southern Qiulitage structural belt shows promising potassium indications, making it a favorable exploration target; ⑤ Mengyejing potassium salt deposit exhibits a two-story model: deep source salt and shallow accumulation. The deep Jurassic marine strata have great potential for source salt mineralization. Hidden potassium salt deposits may exist near fault zones where small-scale rock salt is exposed in the shallow subsurface.