en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王京彬,男,1961年生。博士,教授级高级工程师,长期从事矿产地质研究和找矿勘查工作。第二届黄汲清青年地质科学技术奖获奖者。E-mail:13701350195@139.com。

参考文献
Arehart G B, Ressel M, Carne R, Muntean J. 2013. A comparison of Carlin-type deposits in Nevada and Yukon. In: Colpron M, Bissig T, Rusk B G, Thompson J F H, eds. Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Special Publications of the Society of Economic Geologists, 389~401.
参考文献
Bakke A A. 1995. The Fort Knox “porphyry” gold deposit: Structurally controlled stockwork and shear quartz vein, sulfide- poor mineralization hosted by a Late Cretaceous pluton, east-central Alaska. Porphyry deposits of the northwestern Cordillera of North America. In: Schroeter T G, ed. Canadian Institute of Mining and Metallurgy, 46: 795~802.
参考文献
Bakker R J. 2003. Package Fluids 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1~3): 3~23.
参考文献
Bateman R, Ayer J A, Dube B. 2008. The Timmins-Porcupine gold camp, Ontario: Anatomy of an Archean greenstone belt and ontogeny of gold mineralization. Economic Geology, 103(6): 1285~1308.
参考文献
Boulter C A, Fotios M G, Phillips G N. 1987. The Golden Mile, Kalgoorlie: A giant gold deposit localized in ductile shear zones by structurally induced infiltration of an auriferous metamorphic fluid. Economic Geology, 82(7): 1661~1678.
参考文献
Chen Xifeng, Peng Runmin, Liu Jiajun, Wang Jianping, Wang Xiaolong. 2010. Geological characteristics of Kumtor super large gold deposit in Kyrgyzstan. Gold, 12: 15~19 (in Chinese with English abstract).
参考文献
Davis B K, Blewett R S, Squire R, Champion D C, Henson P A. 2010. Granite-cored domes and gold mineralisation: Architectural and geodynamic controls around the Archaean Scotia-Kanowna dome, Kalgoorlie terrane, western Australia. Precambrian Research, 183(2): 316~337.
参考文献
Deng Jun, Liu Xuefei, Wang Qingfei, Pan Ruiguang. 2015. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geology Reviews, 65: 674~686.
参考文献
Deng Jun, Wang Qingfei, Chen Fuchuan, Li Gongjian, Yang Liqiang, Wang Changming, Zhang Jing, Sun Xiang, Shu Qihai, Gao Xue, Gao Liang, Liu Xuefei, Zheng Yuanchuan, Qiu Kunfeng, Xue Shengchao, Xu Jiahao. 2020. Further discussion on the Sanjiang Tethyan composite metallogenic system. Earth Science Frontiers, 27(2): 106~136 (in Chinese with English abstract).
参考文献
Deng Teng, Ding Zhengpeng, Xu Deru. 2021. Review of origin and role of carbonaceous black shale in the formation of orogenic gold deposit. Advances in Earth Science, 36(10): 1077~1091 (in Chinese with English abstract).
参考文献
Dennes S. 2021. Deposit scale to micro-scale multi-disciplinary study of the Kanowna Belle deposit: A systematic review of an Archean orogenic gold deposit. Thesis for the degree of Doctor of Philosophy, The University of Western Australia.
参考文献
Fan Hongrui, Lan Tingguang, Li Xinghui, Santosh M, Yang Kuifeng, Hu Fangfang, Feng Kai, Hu Huanlong, Peng Hongwei, Zhang Yongwen. 2021. Conditions and processes leading to large-scale gold deposition in the Jiaodong Province, eastern China. Science China, Earth Sciences, 51(9): 1504~1523.
参考文献
Fernández-Catuxo J. 1998. The Salave gold prospect revisited: New ideas for an old deposit. In: Arias D, Martin-Izard A, Paniagua A, Eds. Gold Exploration and Mining in NW Spain, Facultad de Geologia, Universidad de Oviedo, Oviedo, 82~85.
参考文献
Frimmel H E. 2008. Earth's continental crustal gold endowment. Earth and Planetary Science Letters, 267(1~2): 45~55.
参考文献
Gapais D, Alimoenadi G, Balraadjsing N. 2021. The Rosebel gold mining district (Trasn-Amazonian belt, Suriname), a new structural framework. Earth Sceince Bulletin, 192: 32~40.
参考文献
Garofalo P S. 2004. Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit-Abitibi greenstone belt-Canada). Part I. Patterns of hydrothermal alteration haloes. European Journal of Mineralogy, 16(5): 753~760.
参考文献
Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18(1): 1~75.
参考文献
Goldfarb R J, Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geoscience Frontiers, 5(2): 139~153.
参考文献
Goldfarb R J, Groves D I. 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233: 2~26.
参考文献
Goldfarb R J, Pitcairn I. 2023. Orogenic gold: Is a genetic association with magmatism realistic? Mineralium Deposita, 58(1): 5~35.
参考文献
Groves D I. 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn block, western Australia. Mineralium Deposita, 28(6): 366~374.
参考文献
Groves D I. 2003. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98(1): 1~29.
参考文献
Groves D I, Phillips G N, Ho S E. 1984. Controls on distribution of Archaean hydrothermal gold deposits in Western Australia. In: Foster RP, ed. Gold 82: The Geology, Geochemistry and Genesis of Gold Deposits. A. A. Balkema, Rotterdam, 689~712.
参考文献
Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1): 7~27.
参考文献
Groves D I, Santosh M. 2016. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geoscience Frontiers, 7(3): 409~417.
参考文献
Groves D I, Santosh M, Deng Jun, Wang Qingfei, Yang Liqiang, Zhang Liang. 2020. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55(2): 275~292.
参考文献
Hart C J R. 2005. Classifying, distinguishing and exploring for intrusion-related gold systems. The Gangue MDD Newsletter, 87(1): 4~9.
参考文献
Hart C J R, Baker T, Burke M. 2000. New exploration concepts for country-rock-hosted, intrusion-related gold systems: Tintina gold belt in Yukon. In: Tucker T L, Smith M T, eds. The Tintina gold belt: Concepts, exploration and discoveries. British Columbia and Yukon Chamber of Mines Special Volume, 2: 145~172.
参考文献
He Shengfei, Sun Kai, Liu Xiaoyang, Wang Jie, Ren Junping. 2015. Gold mineralization types and resources potential of the Archaean granitiod-greenstone belts in Zimbabwe. Contributions to Geology and Mineral Resources Research, 30(S1): 82~92 (in Chinese with English abstract).
参考文献
Helt K M, Williams-Jones A E, Clark J R, Wing B A, Wares R P. 2014. Constraints on the genesis of the Archean oxidized, intrusion-related Canadian Malartic gold deposit, Quebec, Canada. Economic Geology, 109(3): 713~735.
参考文献
Henry C D, John D A, Leonardson R W, McIntosh W C, Heizler M T, Colgan J P, Watts K E. 2023. Timing of rhyolite intrusion and carlin-type gold mineralization at the Cortez Hills carlin-type deposit, Nevada, USA. Economic Geology, 118(1): 57~91.
参考文献
Hu Ruizhong, Fu Shanling, Huang Yong, Zhou Meifu, Fu Shaohong, Zhao Chenghai, Wang Yuejun, Bi Xianwu, Xiao Jiafei. 2017. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. Journal of Asian Earth Sciences, 137: 9~34.
参考文献
Hu Ruizhong, Chen Wei, Bi Xianwu, Fu Shanling, Yin Runsheng, Xiao Jiafei. 2020. Control of the Precambrian basement on the formation of the Mesozoic large scale low-temperature mineralization in the Yangtze Craton. Earth Scicence Frontiers, 27(2): 137~150 (in Chinese with English abstract).
参考文献
Jia Shanshi, Wang Ende, Fu Jianfei, Men Yekai, Wu Minggang. 2014. Geology, geochemistry and metallogenic mechanism of Yuerya gold deposit in the eastern Hebei Province. Journal of Jilin University: Earth Science Edition, 44(3): 774~785 (in Chinese with English abstract).
参考文献
Jiang Fengxian. 2006. Metallogenic geological characteristics and genesis of Dongyaozhuang gold deposit in Wutai, Shanxi. Geology and Prospecting, 42(3): 24~29 (in Chinese with English abstract).
参考文献
Kempe U, Belyatsky B, Krymsky R, Kremenetsky A, Ivanov P. 2001. Sm-Nd and Sr isotope systematics of scheelite from the giant Au (-W) deposit Muruntau (Uzbekistan): Implications for the age and sources of Au mineralization. Mineralium Deposita, 36(5): 379~392.
参考文献
Lang J R, Baker T, Hart C J R, Mortensen J K. 2000. An exploration model for intrusion related gold systems. Society of Economic Geology Newsletter, 40(1): 6~15.
参考文献
Lang J R, Baker T. 2001. Intrusion-related gold systems: The present level of understanding. Mineralium Deposita, 36(6): 477~489.
参考文献
Large R R, Bull S W, Maslennikov V V. 2011. A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Economic Geology, 106(3): 331~358.
参考文献
Li Bin, Xu Deru, Bai Daoyuan, Chen Xu, Zou Shaohao, Dai Junfeng, Ma Wen, Zeng Guangqian. 2024. Episodic mineralization at Yanshannian in the Woxi Au-Sb-W deposit, western Hunan, South China: Constraints from in-situ scheelite LA-ICP-MS U-Pb geochronology and element-isotope of pryrite. Acta Petrologica Sinica, 40(1): 215~240 (in Chinese with English abstract).
参考文献
Liu Guixiang. 2012. Geology and metallogenesis of the Nanlongwangmiao gold deposit in Qingyuan, Liaoning Province. Geology and Resources, 21(5): 425~431 (in Chinese with English abstract).
参考文献
Liu Jiajun, Liu Chonghao, Wang Jianping, Zhu Laimin, Zhang Jing, Zhai Degao, Wang Yinhong, Liu Zhenjiang, Zhang Fangfang. 2019. Classification and mineralization of the gold deposits in the western Qinling region, China. Earth Science Frontiers, 26(5): 1~16 (in Chinese with English abstract).
参考文献
Liu Jianzhong, Deng Yiming, Liu Chuanqin, Zhang Xingchun, Xia Yong. 2006. Metallogenic conditions and model of the super-large Shuiyingdong stratabound gold deposit in Zhenfeng County, Guizhou Province. Geology in China, 33(1): 169~177 (in Chinese with English abstract).
参考文献
Lobato L M, Santos J O S, McNaughton N J, Fletcher I R, Noce C M. 2007. U-Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geology Reviews, 32(3~4): 674~680.
参考文献
Luo Dike, Chen Jing, Yao Zhongyou, Kuang Fuxiang, Yao Chunyan. 2017. Geological features of greenstone belt, typical gold deposits and gold mineralization in northern Guiana shield, South America. Geological Bulletin of China, 36(12): 2197~2207 (in Chinese with English abstract).
参考文献
Lv Guxian, Guo Tao, Shu Bin, Shen Yuke, Liu Dujuan, Zhou Guofa. 2006. Geological characteristics of rock-controlling and ore-controlling structures in the Jiaodong gold ore concentration area. Acta Geoscientica Sinica, 27(5): 471~478 (in Chinese with English abstract).
参考文献
Mao Jingwen, Konopelko D, Seltmann R, Lehmann B, Chen Wen, Wang Yitian, Eklund O, Usubaliev T. 2004. Post collisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Economic Geology, 99(8): 1771~1780.
参考文献
Masurel Q, The baud N, Miller J, Ulrich S, Hein K A A, Cameron G, Béziat D, Bruguier O, Davis J A. 2017. Sadiola Hill: A world-class carbonate-hosted gold deposit in Mali, West Africa. Economic Geology, 112(1): 23~47.
参考文献
McCuaig T C, Kerrich R, Groves D I, Archer N. 1993. The nature and dimensions of regional and local gold-related hydrothermal alteration in tholeiitic metabasalts in the Norseman goldfields: The missing link in a crustal continuum of gold deposits? Mineralium Deposita, 28(6): 420~435.
参考文献
Mehrabi B, Yardley B W D, Cann J R. 1999. Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran. Mineralium Deposita, 34(7): 673~696.
参考文献
Moravek P. 1995. The Mokrsko gold deposit. In: Moravek P, ed. Gold Deposits of the Central and SW Part of the Bohemian Massif. 3rd Biennial SGA Meeting, Prague, Excursion Guide, 33~61.
参考文献
Morelli R M, Bell C C, Creaser R A, Simonetti A. 2010. Constraints on the genesis of gold mineralization at the Homestake gold deposit, Black Hills, South Dakota from rhenium-osmium sulfide geochronology. Mineralium Deposita, 45(5): 461~480.
参考文献
Mueller A G. 1992. Petrogenesis of amphibole-biotite-calcite-plagioclase alteration and laminated gold-silver quartz veins in four Archean shear zones of the Norseman district, western Australia. Canadian Journal of Earth Sciences, 29(3): 388~417.
参考文献
Nesbitt B E. 1991. Phanerozoic gold deposits in tectonically active continental margins. In: Gold Metallogeny and Exploration. Boston: Springer, 104~132.
参考文献
Neumayr P, Walshe J, Hagemann S, Petersen K, Roache A, Frikken P, Horn L, Halley S. 2008. Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, western Australia: Vectors to high-grade ore bodies in Archaean gold deposits? Mineralium Deposita, 43(3): 363~371.
参考文献
Newberry R J. 2000. Mineral deposits and associated Mesozoic and Tertiary igneous rocks within the Interior Alaska and adjacent Yukon portions of the ‘Tintina gold belt’: A progress report. In: Tucker T L, Smith M T, eds. The Tintina Gold Belt: Concepts, Exploration and Discoveries. British Columbia and Yukon Chamber of Mines Special Volume, 2: 59~88.
参考文献
Newberry R J, McCoy D T, Brew D A. 1995. Plutonic-hosted gold ores in Alaska: Igneous vs. metamorphic origins. Resource Geology Special Issue, 18: 57~100.
参考文献
Pan Yuanming, Fleet M E. 1995. The late Archean Hemlo gold deposit, Ontario, Canada: A review and synthesis. Ore Geology Reviews, 9(6): 455~488.
参考文献
Peck D L. 1991. The Homestake gold mine, an Early Proterozoic iron-formation-hosted gold deposit, Lawrence County, South Dakota. US. Geological Survey Bulletin, 1~76.
参考文献
Phillips G N, Powell R. 2010. Formation of gold deposits: A metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6): 689~718.
参考文献
Pitcairn I K, Leventis N, Beaudoin G, Faure S, Guilmette C, Dubé. 2021. A metasedimentary source of gold in Archean orogenic gold deposits. Geology, 49: 862~866.
参考文献
Qiu Xiaoping, Liu Shichuan, Wei Mi. 2021. Fluid explosion breccia pipe and gold supernormal enrichment in Shuiyindong gold ore deposit, Southwest Guizhou Province. Acta Geoscientica Sinica, 42(6): 849~858 (in Chinese with English abstract).
参考文献
Radtke A S, Rye R O, Dickson F W. 1980. Geology and stable isotope studies of the Carlin gold deposit, Nevada. Economic Geology, 75(5): 641~672.
参考文献
Robert F. 2004. Geologic footprints of gold systems. In: Muhling J, ed. SEG 2004: Predictive Mineral Discovery Under Cover, Extended Abstracts: Centre for Global Metallogeny. The University of Western Australia Publication, 33: 97~101.
参考文献
Robert F, Brown A C. 1986. Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec; Part I, Geologic relations and formation of the vein system. Economic Geology, 81(3): 578~592.
参考文献
Robert F, Sheahan P A, Green S B. 1991. Greenstone gold and crustal evolution. Geol. Assoc. Canada, NUNA Conference Volume, 13~31.
参考文献
Robert F, Poulsen H K, Cassidy K F, Hodgson J C. 2005. Gold metallogeny of the superior and Yilgarn cratons. In: Economic Geology 100th Anniversary, 1001~1033.
参考文献
Robert F, Brommecker R, Bourne B T, Dobak P J, McEwan C J, Rowe R R, Zhou X. 2007. Models and exploration methods for major gold deposit types. In: Milkereit B, ed. Proceedings of Exploration 2007: 5th Decennial International Conference on Mineral Exploration. Toronto, Canada: DMEC, 691~711.
参考文献
Rowins S M. 2000. Reduced porphyry copper-gold deposits: A new variation on an old theme. Geology, 28(6): 491.
参考文献
Sanislav I V, Brayshaw M, Kolling S L, Dirks P H G M, Cook Y A, Blenkinsop T G. 2017. The structural history and mineralization controls of the world-class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania. Mineralium Deposita, 52(2): 257~279.
参考文献
Shen Baofeng, Li Shangshen, Luo Hui. 1988. Mineralization of gold in Precambrian strip iron formation (BIF). Precambrian Geology Abroad, 1: 1~34 (in Chinese).
参考文献
Shi Chenglong, Ding Xiaozhong, Liu Yanxue, Hu Jianzhong, Song Yang. 2019. Geological significance of new zircon U-Pb geochronology and geochemistry: Niuxinshan intrusive complex, northern North China Craton. PLOS ONE, 14(3): e0213156.
参考文献
Sillitoe R H. 2020. Gold deposit types: An overview. Society of Economic Geologists, Inc. SEG Special Publications, (23): 1~28.
参考文献
Sillitoe R H, Bonham H F. 1990. Sediment-hosted gold deposits: Distal products of magmatic-hydrothermal systems. Geology, 18: 157~161.
参考文献
Song Mingchun, Yang Liqiang, Fan Hongrui, Yu Xuefeng, Ding Zhengjiang, Zhang Yongwen, Qiu Kunfeng, Li Jie, Zhang Liang, Wang Bin, Li Shiyong. 2022. Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for Exploration Breakthrough Strategic Action. Geological Bulletin of China, 41(6): 903~935 (in Chinese with English abstract).
参考文献
Southam G, SaundersJ A. 2005. The geomicrobiology of ore deposits. Economic Geology, 100(6): 1067~1084.
参考文献
Spiridinov E M. 1996. Granitic rocks and gold mineralization of North Kazakhstan. In: Shatov V, Seltmann R, Kremenetsky A, Lehmann B, Popov V, Ermolov P, eds. Granite-related Ore Deposits of Central Kazakhstan and Adjacent Areas. St Petersburg: Glagol Publishing House, 197~217.
参考文献
Steadman J A, Large R R, Meffre S, Olin P H, Danyushevsky L V, Gregory D D, Belousov I, Lounejeva E, Ireland T R, Holden P. 2015. Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile deposit, Kalgoorlie, western Australia. Economic Geology, 110(5): 1157~1191.
参考文献
Stromberg J M, Barr E, Van Loon L L, Gordon R A, Banerjee N R. 2019. Fingerprinting multiple gold mineralization events at the Dome Mine in Timmins, Ontario, Canada: Trace element and gold content of pyrite. Ore Geology Reviews, 104: 603~619.
参考文献
Tang Li, Santosh M. 2018. Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: An overview from the central segment of the Trans-North China Orogen. Earth-Science Reviews, 182: 1~27.
参考文献
Thomas H V, Large R R, Bull S W, Maslennikov V, Berry R F, Fraser R, Froud S, Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Economic Geology, 106(1): 1~31.
参考文献
Thompson J F H, Newberry R J. 2000. Gold deposits related to reduced granitic intrusions. In Society of Economic Geologists Reviews in Economic Geology, 13: 377~400.
参考文献
Tomkins A G. 2010. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochimica et Cosmochimica Acta, 74(11): 3246~3259.
参考文献
Tomkins A G, Grundy C. 2009. Upper temperature limits of orogenic gold deposit formation: Constraints from the granulite-hosted Griffin's Find deposit, Yilgarn craton. Economic Geology, 104(5): 669~685.
参考文献
Turner S J, Flindell P A, Hendri D, Hardjana I, Lauricella P F, Lindsay R P, Marpaung B, White G P. 1994. Sediment-hosted gold mineralisation in the Ratatotok district, North Sulawesi, Indonesia. Journal of Geochemical Exploration, 50(1~3): 317~336.
参考文献
Voicu G, Bardoux M, Jébrak M, Crépeau R. 1999. Structural, mineralogical and geochemical studies of the Paleoproterozoic Omai gold deposit, Guyana. Economic Geology, 94(8): 1277~1303.
参考文献
Wall V J. 2004. Muruntau, Uzbekistan. Preliminary Report on CERCAMS Research Project, Spring Hill, Australia, 69.
参考文献
Wall V J, Graupner T, Yantsen V, Seltmann R, Hall G C. 2004. Muruntau, Uzbekistan: A giant thermal aureole gold (TAG) system. In: Muhling et al. , eds. SEG 2004 Predictive Mineral Discovery Under Cover Extended Abstracts, 199~203.
参考文献
Wang Cheng, Shao Yongjun, Huang Kuanxin, Zhou Haodi, Zhang Jianguo, Liu Zhongfa, Liu Qingquan. 2018. Ore-forming processes at the Xiajinbao gold deposit in eastern Hebei Province: Constraints from EPMA and LA-ICPMS analysis. Minerals, 8(9): 388.
参考文献
Wang Jingbin, Wang Lijuan, Wang Yuwang, Zhu Heping. 2006. Yemaquan gold deposit: A structurally-controlled-altered-dyke type in eastern Junggar, Xinjiang. Acta Petrologica Sinica, 22(9): 2349~2359 (in Chinese with English abstract).
参考文献
Wang Jingbin, Xu Xin. 2006. Post-collisional tectonic evolution and metallogenesis in northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23~31 (in Chinese with English abstract).
参考文献
Wang Qingfei, Deng Jun, Zhao Hesen, Yang Lin, Ma Qiyi, Li Huajian. 2019. Reiew on orogenic gold deposits. Earth Science, 44(6): 2155~2186 (in Chinese with English abstract).
参考文献
Wang Yuwang, Xie Hongjing, Li Dedong, Shi Yu, Liu Fuxing, Sun Guoqiang, Sun Qiming, Zhou Guochao. 2017. Prospecting prediction of ore concentration area exemplified by Qingchengzi Pb-Zn-Au-Ag ore concentration area, eastern Liaoning Province. Mineral Deposits, 36(1): 1~24 (in Chinese with English abstract).
参考文献
Wang Zili, Niu Shuyin, Chen Chao, Sun Aiqun, Wang Baode, Xu Chuanshi. 2008. Discussion on ore-forming material sources of Yuerya gold deposit in the East Hebei Province. Contributions to Geology and Mineral Resources Research, 23(1): 36~42 (in Chinese with English abstract).
参考文献
Wilde A R, Layer P, Mernagh T, Foster J. 2001. The giant Muruntau gold deposit: Geologic, geochronologic, and fluid inclusion constraints on ore genesis. Economic Geology, 96(3): 633~644.
参考文献
Wu Yafei, Evans K, Fisher L A, Zhou Meifu, Hu Siyu, Fougerouse D, Large R R, Li Jianwei. 2020. Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system. Geochimica et Cosmochimica Acta, 276: 345~362.
参考文献
Xing Shuwen. 1992. The metallogenic model of the Jinchangyu gold deposit East Hebei. Jilin Geology, 3: 29~38 (in Chinese with English abstract).
参考文献
Xu Jiuhua, He Zhili, Shen Shiliang, Yang Zhenlin, Du Jiafeng. 1993. Stable isotope geology of the Dongchuang and the Wenyu gold deposits and the source of ore-forming fluid and materials. Contributions to Geology and Mineral Resources Research, 8(2): 87~100 (in Chinese with English abstract).
参考文献
Xue Chunji, Zhao Xiaobo, Mo Xuanxue, Dong Lianhui, Gu Xuexiang, Nurtaev B, Pak N, Zhang Zhaochong, Wang Xinli, Zu Bo, Zhang Guozhen, Feng Bo, Liu Jiaying. 2014. Asian Gold Belt in western Tianshan and its dynamic setting, metallogenic control and exploration. Earth Science Frontiers, 21(5): 128~155 (in Chinese with English abstract).
参考文献
Xue Chunji, Zhao Xiaobo, Zhang Guozhen, Mo Xuanxue, Gu Xuexiang, Dong Lianhui, Zhao Shuming, Mi Dengjiang, Bakhtiar N, Nikolay P, Li Zhidan, Wang Xinli, Zu Bo, Yaxiaer Y, Feng Bo. 2015. Metallogenic environments, ore-forming types and prospecting potential of Au-Cu-Zn-Pb resources in western Tianshan Mountains. Geology in China, 42 (3): 381~410 (in Chinese with English abstract).
参考文献
Yakubchuk A. 2002. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific orogenic collages: Similarities and diversity of structural patterns and metallogenic zoning. Geological Society of London Special Publication, 206: 273~297.
参考文献
Yang Dongchao, Bai Desheng, Cao Qiong. 2013. The BIF gold mine exploration criteria in greenstone belt of Archaean, Tazania: Taking Maheiga gold mine for example. Gold Science and Technology, 21(4): 1~8 (in Chinese with English abstract).
参考文献
Yang Fuquan, Mao Jingwen, Wang Yitian, Zhao Caisheng, Ye Huishou, Chen Wen. 2006. Chronology and geochemical characteristics of helium, argon, carbon and oxygen isotope in fluid inclusion of the Sawayaerdun gold deposit, Xinjiang, northwestern China and their significance. Geological Review, 52(3): 341~351 (in Chinese with English abstract).
参考文献
Yang Fuquan, Mao Jingwen, Wang Yitian, Zhao Caisheng, Zhang Yan, Liu Yaling. 2007. Major types, characteristics and metallogenesis of gold deposits in southwest Tianshan Mountains, Xinjiang. Mineral Deposits, 26(4): 361~379 (in Chinese with English abstract).
参考文献
Yang Liqiang, Deng Jun, Wang Zhongliang, Zhang Liang, Guo Linnan, Song Mingchun, Zheng Xiaoli. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447~2467 (in Chinese with English abstract).
参考文献
Yang Yuqing, Qi Yuhai. 2008. Discussion on geological characteristics and ore prospecting direction of deposit concentrated region in Jiapigou gold mine. Gold, 29(2): 14~18 (in Chinese with English abstract).
参考文献
Zeng Qingdong, Chen Renyi, Yang Jinhui, Sun Guotao, Yu Bing, Wang Yongbin, Chen Peiwen. 2019. The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province. Acta Petrologica Sinica, 35(7): 1939~1963 (in Chinese with English abstract).
参考文献
Zhai Mingguo, Yang Jinhui, Liu Wenjun. 2001. Jiaodong large gold deposits concentration area and large-scale mineralization. Science in China (Series D), 31(7): 545~553 (in Chinese).
参考文献
Zhang Guozhen, Xue Chunji, Chi Guoxiang, Liu Jiaying, Zhao Xiaobo, Zu Bo, Zhao Yun. 2017. Multiple-stage mineralization in the Sawayaerdun orogenic gold deposit, western Tianshan, Xinjiang: Constraints from paragenesis, EMPA analyses, Re-Os dating of pyrite (arsenopyrite) and U-Pb dating of zircon from the host rocks. Ore Geology Reviews, 81: 326~341.
参考文献
Zhang Jianguo, Shao Yongjun, Wang Cheng, Liu Zhongfa, Xiong Yiqu. 2018. Characteristics of gold-bearing minerals in Xiajinbao gold deposit of Hebei and their metallogenic indicating significance. Journal of Central South University (Science and Technology), 49(4): 901~909 (in Chinese with English abstract).
参考文献
Zhang Qi, Xue Chunji, Zhao Xiaobo, Feng Bo, Xing Hao, Mo Xuanxue, Zhao Shuming, Yang Weizhong, Xing Ling. 2015. Geology, geochemistry and metallogenic epoch of the Katebasu large-sized gold deposit, western Tianshan Mountains, Xinjiang. Geology in China, 42(3): 411~437 (in Chinese with English abstract).
参考文献
Zhang Xiaotian. 2018. Research on geology, geochemistry and metallogenesis of the gold deposits of the Jiapigou ore field in the continental margin of Northeast China. Doctoral dissertation of Jilin University (in Chinese with English abstract).
参考文献
Zheng Minghua, Zhang Shouting. 2001. Geological Background and Metallogenic Prediction of Muruntau-Type Gold Deposits in Southwest Tianshan Mountains. Beijing: Geological Publishing House (in Chinese).
参考文献
Zhu Rixiang, Fan Hongrui, Li Jianwei, Meng Qingren, Li Shengrong, Zeng Qingdong. 2015. Decratonic gold deposits. Science China: Earth Sciences, 45(8): 1153~1168 (in Chinese).
参考文献
Zou Jixing, Li Fuping, Zhang Shuanghe, Zhao Zhenchun, Chen Shuqiang. 1999. Geologcial characteristics and gold deposits in Niuxinshan granite, Kuancheng, Hebei Province. Geological Review, 45(S): 528~533 (in Chinese with English abstract).
参考文献
陈喜峰, 彭润民, 刘家军, 王建平, 王小龙. 2010. 吉尔吉斯斯坦库姆托尔超大型金矿床地质特征. 黄金, (12): 15~19.
参考文献
邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 2020. 再论三江特提斯复合成矿系统. 地学前缘, 27(2): 106~136.
参考文献
邓腾, 丁正鹏, 许德如. 2021. 浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用. 地球科学进展, 36(10): 1077~1091.
参考文献
范宏瑞, 蓝廷广, 李兴辉, Santosh M, 杨奎锋, 胡芳芳, 冯凯, 胡换龙, 彭红卫, 张永文. 2021. 胶东金成矿系统的末端效应. 中国科学: 地球科学, 51(9): 1504~1523.
参考文献
何胜飞, 孙凯, 刘晓阳, 王杰, 任军平. 2015. 津巴布韦太古宙花岗-绿岩型金矿类型与资源潜力. 地质找矿论丛, 30(增刊): 82~92.
参考文献
胡瑞忠, 陈伟, 毕献武, 付山岭, 尹润生, 肖加飞. 2020. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约. 地学前缘, 27(2): 137~150.
参考文献
贾三石, 王恩德, 付建飞, 门业凯, 吴明刚. 2014. 冀东峪耳崖金矿床成矿地质特征、矿床地球化学及其成因机制探析. 吉林大学学报(地球科学版), 44(3): 774~785.
参考文献
姜峰贤. 2006. 山西五台县东腰庄金矿成矿地质特征及矿床成因. 地质与勘探, 42(3): 24~29.
参考文献
李彬, 许德如, 柏道远, 陈旭, 邹少浩, 代俊峰, 马文, 曾广乾. 2024. 湘西沃溪金锑钨矿床燕山期幕式成矿作用: 来自原位白钨矿U-Pb定年与黄铁矿元素-同位素的约束. 岩石学报, 40(1): 215~240.
参考文献
刘桂香. 2012. 辽宁省清原县南龙王庙金矿地质特征与成矿. 地质与资源, 21(5): 425~431.
参考文献
刘家军, 刘冲昊, 王建平, 朱赖民, 张静, 翟德高, 王银宏, 柳振江, 张方方. 2019. 西秦岭地区金矿类型及其成矿作用. 地学前缘, 26(5): 1~16.
参考文献
刘建中, 邓一明, 刘川勤, 张兴春, 夏勇. 2006. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式. 中国地质, 33(1): 169~177.
参考文献
罗迪柯, 陈靖, 姚仲友, 匡福祥, 姚春彦. 2017. 南美洲圭亚那地盾北部绿岩带地质特征、典型金矿床及金成矿作用. 地质通报, 36(12): 2197~2207.
参考文献
吕古贤, 郭涛, 舒斌, 申玉科, 刘杜鹃, 周国发. 2006. 胶东金矿集中区构造控岩控矿地质特征研究. 地球学报, 27(5): 471~478.
参考文献
邱小平, 刘世川, 魏密. 2021. 黔西南水银洞爆破角砾岩筒与金元素超常富集. 地球学报, 42(6): 849~858.
参考文献
沈保丰, 李上森, 骆辉. 1988. 前寒武纪条带状铁建造(BIF)中金的成矿作用. 国外前寒武纪地质, 1: 1~34.
参考文献
宋明春, 杨立强, 范宏瑞, 于学峰, 丁正江, 张永文, 邱昆峰, 李杰, 张良, 王斌, 李世勇. 2022. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展. 地质通报, 41(6): 903~935.
参考文献
王京彬, 王莉娟, 王玉往, 朱和平. 2006. 新疆东准噶尔野马泉构造蚀变脉岩型金矿床. 岩石学报, 22(9): 2349~2359.
参考文献
王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23~31.
参考文献
王庆飞, 邓军, 赵鹤森, 杨林, 马麒镒, 李华健. 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155~2186.
参考文献
王玉往, 解洪晶, 李德东, 石煜, 刘福兴, 孙国强, 孙启明, 周国超. 2017. 矿集区找矿预测研究——以辽东青城子铅锌-金-银矿集区为例. 矿床地质, 36(1): 1~24.
参考文献
王自力, 牛树银, 陈超, 孙爱群, 王宝德, 许传诗. 2008. 冀东峪耳崖金矿成矿物质来源探讨. 地质找矿论丛: 23(1): 36~42.
参考文献
邢树文. 1992. 冀东金厂峪金矿成矿模式. 吉林地质, 3: 29~38.
参考文献
徐九华, 何知礼, 申世亮, 杨振林, 杜加锋. 1993. 小秦岭文峪-东闯金矿床稳定同位素地球化学及矿液矿质来源. 地质找矿论丛, 8(2): 87~100.
参考文献
薛春纪, 赵晓波, 莫宣学, 董连慧, 顾雪祥, Bakhtiar N, Nikolay P, 张招崇, 王新利, 俎波, 张国震, 冯博, 刘家瑛.2014. 西天山“亚洲金腰带”及其动力学背景和成矿控制与找矿.地学前缘, 21(5): 129~155.
参考文献
薛春纪, 赵晓波, 张国震, 莫宣学, 顾雪祥, 董连慧, 赵树铭, 米登江, Bakhtiar N, Nikolay P, 李志丹, 王新利, 俎波, 亚夏尔亚力坤, 冯博. 2015. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力. 中国地质, 42(3): 381~410.
参考文献
杨东潮, 白德胜, 曹琼. 2013. 坦桑尼亚太古宙绿岩带中BIF型金矿床的勘查标志——以Maheiga金矿床为例. 黄金科学技术, 21(4): 1~8.
参考文献
杨富全, 毛景文, 王义天, 赵财胜, 叶会寿, 陈文. 2006. 新疆萨瓦亚尔顿金矿床年代学、氦氩碳氧同位素特征及其地质意义. 地质论评, 52(3): 341~351.
参考文献
杨富全, 毛景文, 王义天, 赵财胜, 张岩, 刘亚玲. 2007. 新疆西南天山金矿床主要类型、特征及成矿作用. 矿床地质, 26(4): 361~379.
参考文献
杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447~2467.
参考文献
杨玉清, 祁玉海. 2008. 夹皮沟金矿集中区矿床地质特征及找矿方向探讨. 黄金, 29(2): 14~18.
参考文献
曾庆栋, 陈仁义, 杨进辉, 孙国涛, 俞炳, 王永彬, 陈沛文. 2019. 辽东地区金矿床类型、成矿特征及找矿潜力. 岩石学报, 35(7): 1939~1963.
参考文献
翟明国, 杨进辉, 刘文军. 2001. 胶东大型黄金矿集区及大规模成矿作用. 中国科学(D辑), 31(7): 545~553.
参考文献
张建国, 邵拥军, 汪程, 刘忠法, 熊伊曲. 2018. 河北平泉下金宝金矿床载金矿物特征及其成矿指示意义. 中南大学学报(自然科学版), 49(4): 901~909.
参考文献
张祺, 薛春纪, 赵晓波, 冯博, 邢浩, 莫宣学, 赵树铭, 杨维忠, 邢令.2015. 新疆西天山卡特巴阿苏大型金矿床地质地球化学和成岩成矿年代.中国地质, 42(3): 411~437.
参考文献
张笑天. 2018. 中国东北部陆缘夹皮沟矿田金矿床地质、地球化学特征与成矿作用研究. 吉林大学博士论文.
参考文献
郑明华, 张寿庭. 2001. 西南天山穆龙套型金矿床产出地质背景与成矿预测. 北京: 地质出版社, 131P.
参考文献
朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学(地球科学), 45(8): 1153~1168.
参考文献
邹继兴, 李富平, 张双河, 赵振春, 陈树强. 1999. 牛心山花岗岩岩体特征及其与成矿的关系. 地质论评, 45(增刊): 528~533.
目录contents

    摘要

    造山型金矿床指造山过程中形成的后生脉状金矿床,受构造、建造双重控制,是全球最重要的金矿勘查类型。按容矿岩石建造的不同,造山型金矿可分为绿岩带型(包括绿片岩型、BIF型和花岗-片麻岩型3个亚类型)、浊积岩型、碳酸盐岩型和浅成侵入岩型,构成了造山型金矿床完整的成矿谱系。不同类型之间具有紧密的时空和成因联系,可互为找矿标志。绿岩组合和浊积岩系具有高的金丰度,既是容矿岩系,也是重要的矿源层,多类型造山作用驱动大规模区域性流体活动,造就了造山型金矿省/巨型成矿带,岩浆流体叠加和“热机效应”是形成超大型金矿床的重要因素。构建了多源区域性流体+岩浆流体叠加的地壳连续成矿模型和造山型金矿区域成矿模式,强调了多旋回造山作用对造山型金矿的成矿意义。“富金矿源层+剪切变形带+浅成侵入岩”组合是大型金矿系统的勘查选区标志,靶区优选的目标是获取找矿潜力大的优质矿权;矿权区勘查的优先目标是发现可规模化露天开采的矿床(体),通过化探异常评价和浅钻追索次生富集带,可快速发现主矿体;矿区深部找矿(深度>300 m)潜力巨大,主攻目标是资源量大、品位高的热液通道相的厚板状或筒状矿体。

    Abstract

    The term “orogenic gold deposits” refers to epigenetic gold-vein systems that are formed during orogeny and are controlled by both structural features and rock composition. These deposits are considered the most significant type of gold exploration globally. Based on the different types of host rocks, orogenic gold deposits can be classified into four main types: greenstone-hosted (including greenschist, BIF, and granite-gneiss subtypes), turbidite-hosted, carbonate rock-hosted, and hypabyssal intrusion types. Together, they constitute the clan of orogenic gold deposits. Among these different types, there are close temporal-spatial associations and genetic relations,making them potential indicators for mutual prospecting. The greenstone assemblage and turbidite sequenceare particularly noteworthy due to their high gold abundance. They not only serve as host rock series but also act as important source beds. The occurrence of multiple types of orogeny initiates and drives extensive regional fluid activities, leading to the formation of orogenic gold provinces or giant metallogenic belts. The superposition of magmatic fluids and the “heat engine effect” play crucial roles in the formation of super-large gold deposits. Acrustal continuous metallogenic model can be constructed by combining regional fluids from multiple sources with magmatic fluid. This model emphasizes the significance of multi-cycle orogenic processes in the formation of orogenic gold deposits. The combination of “fertile source rock, shear deformation zone, and hypabyssal intrusion” serves as the selection criterion for targeting large-scale gold systems. This approach is beneficial for acquiring exploration licenses with significant prospecting potential. Geochemical anomaly assessment and drill-tracing laterite supergene enrichment are effective methods for discovering the main ore bodies. These methods are particularly suitable for large-scale open-pit mining.The orogenic gold mining area exhibits significant potential for deep prospecting (depth>300 m). The main targets for such exploration are large tonnage and high-grade ore shoots with extensive down-plunge extents formed during the hydrothermal channel phase.

  • 具有全球意义的金矿床类型,包括造山型金矿、与还原性侵入岩有关的金矿床、卡林型金矿、与氧化性侵入岩有关的金矿床(斑岩-矽卡岩-浅成低温热液型)、富金火山成因块状硫化物型和砂金型(含南非兰德型古砂金矿)等6个重要类型(Robert et al.,2007Sillitoe,2020)。造山型金矿是由Groves et al.(1998)提出的,以强调产于区域变质地体中的脉状成矿系统与造山作用独特的时空联系。起初造山型金矿仅指产于中地壳、挤压或转换挤压环境的同造山脉状金矿床,后来逐步扩展到包括后造山环境和地壳连续成矿模式(Robert et al.,2007)。总结前人研究成果(Robert et al.,1991Groves,1993Groves et al.,199820032020Goldfarb et al.,20012023Goldfarb and Groves,2015),造山型金矿床主要特征如下:① 产于变质地体中受构造控制的后生热液脉状金矿床;② 与造山作用有紧密的时空联系,发育在汇聚板块边缘的挤压或转换挤压环境,在造山作用的晚阶段成矿,金沉淀与构造变形同步进行;③ 地壳连续成矿,成矿深度从15~20 km到近地表环境,并按成矿深度分为浅成带(epizonal,<6 km)、中成带(mesozonal,6~12 km)和深成带(hypozonal,>12 km),从麻粒岩相到绿片岩相的变质岩中均可成矿,但多数产于绿片岩相环境中;④ 矿石由黄铁矿-毒砂为主的低硫化物组成,成矿流体为低盐度的H2O-CO2-CH4流体。

  • 造山型金矿床是除南非兰德型金矿外最重要的金矿类型,它提供了世界上47%的金储量,在全球储量>100 t的149个超大型金矿床中,造山型就有63个,占42%(薛春纪等,2015),是全球重要的金矿勘查类型(Goldfarb and Groves,2015; 王庆飞等,2019),找矿潜力巨大(图1),也是中国企业在海外最重要的金矿投资目标,并在全球重要金矿带上控制了一批此类超大型金矿床,如紫金矿业集团股份有限公司在西澳伊尔岗(Yilgarn)克拉通的诺顿金田、南美圭亚那地盾的苏里南罗斯贝尔和圭亚那奥罗拉金矿,以及中亚天山金矿带的吉尔吉斯斯坦左岸金矿等,均属典型的造山型金矿床。因此,从全球视角揭示造山型金矿成矿规律和找矿预测标志,对促进金矿找矿突破和境外投资并购具有重要意义。

  • 图1 全球主要造山型金矿有利地体分布略图(据Syarif et al.,2022

  • Fig.1 Map of favorable orogenic gold terranes in the world (after Syarif et al., 2022)

  • 造山型金矿的形成受构造、建造的双重控制。前人多侧重从构造和成矿流体的研究,来揭示造山型金矿的成因和构造控矿规律。本文从容矿岩性建造的角度,提出了造山型金矿的建造分类,揭示了各(亚)类型之间紧密的成因联系,构建、总结了成矿模式和大型金矿系统的找矿预测标志,以期应用构造-建造综合分析的方法,更好地理解造山型金矿床成矿规律,提高找矿成功率。

  • 1 造山型金矿容矿建造分类

  • 本文将造山型金矿理解为造山过程中形成的后生脉状金矿床,是产于造山带中、受构造控制、以脉状为主的金成矿系统。基于地壳连续成矿模式和找矿实践,在Robert et al.(2007)分类的基础上,按主要容矿岩性建造的不同,作者将造山型金矿床分为:绿岩带型(包括绿片岩型、BIF型和花岗-片麻岩型3个亚类型)、浊积岩型、浅成侵入岩型和碳酸盐岩型等4个矿床类型,它们共同构成了造山型金矿床的成矿谱系(图2,表1),并强调了多旋回造山作用对金矿床形成的重要意义。现将各类型的成矿特征简要描述如下。

  • 1.1 绿岩带型金矿床

  • 绿岩带又称花岗-绿岩带,主要由中—低级变质镁铁质火山岩为主的变火山-沉积岩系组成,大多数绿岩带发育有片麻岩、片麻状花岗岩基底。绿岩带地层通常分为上、下两部分,下部以基性—超基性火山岩为主(简称绿岩组合),上部以浊流相沉积的细碎屑岩或火山碎屑沉积岩为主。部分绿岩带中产有透镜状和层状变质条带状含铁建造(BIF)。绿岩带型金矿主要产于前寒武纪地盾区或造山带残留地体中,是在绿岩带发展、演化,以及后期构造活化过程中形成的金矿。典型的绿岩带型金矿省包括澳大利亚伊尔岗克拉通、加拿大苏必利尔(Superior)克拉通、西非绿岩带、圭亚那地盾绿岩带等。

  • 图2 造山型金矿容矿建造类型示意图

  • Fig.2 Schematic map of host rock formation types of orogenic gold deposits

  • 表1 造山型金矿床容矿建造类型主要特征表

  • Table1 Main characteristics of host rock formation types of orogenic gold deposits

  • 绿岩带型金矿包括产于狭义的绿片岩建造、BIF建造、细碎屑岩(浊积岩)建造、角闪岩-片麻岩-花岗岩等建造中的金矿化亚类型,是在绿岩带造山环境下形成的一组矿床类型组合。矿床主要由各种复杂的石英-碳酸盐脉组成,此外还发育有构造蚀变岩(韧性剪切带型)、石英网脉型等矿化类型。围岩蚀变分带依不同围岩类型而异,以侧向分带为主,矿体两侧发育不同宽度的碳酸盐-绢云母-黄铁矿蚀变晕,垂向上可连续超过1 km而没有明显的垂直分带。矿石中主要硫化物为黄铁矿±毒砂,角闪岩相变质岩中则为磁黄铁矿±斜方砷铁矿,矿石Au:Ag一般>5,富集Ag-As±W,其他常见富集元素有Sb、Bi、Mo、B、Te等。

  • 1.1.1 绿片岩建造中的金矿床

  • 绿片岩建造(狭义绿岩带)中的金矿床,产于绿片岩相变质镁铁—超镁铁质火山岩、火山碎屑岩中,成矿时代为太古宙—古元古代,金矿化是由绿片岩相到角闪岩相的进变质作用释放的富金流体所致(Boulter et al.,1987Pan Yuanming and Fleet,1995Masurel et al.,2017)。如西澳大利亚伊尔冈绿岩带中Kalgoorlie地区金矿的容矿围岩就有超镁铁质火山岩、镁铁质火山岩、辉长岩-辉绿岩、沉积-火山碎屑岩等,其中以辉长岩-辉绿岩和镁铁质火山岩中的金矿床分布最广,约占70%(Groves et al.,1984);津巴布韦绿岩带中绿片岩建造中金矿占80%,其他为BIF建造、火山碎屑岩建造容矿(何胜飞等,2015)。这类矿床含矿的剪切带可以穿切绿岩带的任何层序,但通常在岩性界面附近更容易成矿,如产于玄武岩-碎屑岩界面(澳大利亚Kundana矿床)、玄武岩-辉长岩界面(如澳大利亚Kalgoolie的Enterprise)、块状玄武岩-枕状玄武岩界面(如苏里南Saramacca),以及火山岩的不整合界面(如印度Chigargunta矿床)等等。矿化类型为构造蚀变岩型、含硫化物的石英-碳酸盐脉型。目前我国尚未发现中大型前寒武纪绿片岩型金矿。

  • 1.1.2 花岗-片麻岩建造中的金矿床

  • 该类型金矿化主要产于西澳大利亚、加拿大苏必利尔和Slave省、印度、巴西地盾的角闪岩相、个别产于麻粒岩相中,其成矿温度多为450~600℃,压力0.3~0.5 GPa,具有低盐度、富CO2和δ18O的流体特征,可发育类似矽卡岩的钙硅酸盐矿物蚀变晕(McCuaig et al.,1993Groves et al.,1998),部分金矿脉也产于中粗粒花岗岩类围岩中,如诺顿金田的Golden Cities金矿床。

  • 中国华北地块周缘(胶东、小秦岭、冀北—辽南)的许多金矿床也产于古老花岗-绿岩带中,与前寒武纪造山型金矿类似,发育构造蚀变岩和石英-碳酸盐脉2种主要矿化类型。但与传统的绿岩带型金矿又有明显不同:① 容矿围岩多以片麻岩(TTG)为主,如胶东地区焦家、三山岛、海域等金矿床和华北地块北缘的哈达门沟金矿等,次为角闪岩(如河北金厂峪,邢树文,1992;吉林夹皮沟矿床,杨玉清和祁玉海,2008)、混合岩(如东闯金矿床;徐九华等,1993)、花岗岩类(如吉林夹皮沟矿床;张笑天,2018),以及浅粒岩-变粒岩、片岩(如辽宁白云金矿床;王玉往等,2017曾庆栋等,2019)等,即赋围岩为花岗-片麻岩建造;② 蚀变矿物组合为硅化、黄铁绢英岩化,并常发育钾长石化;③ 花岗-绿岩带的区域变质作用发生在前寒武纪,而金矿床形成于白垩纪(120~110 Ma),与区域变质作用有约2.0 Ga的时差(Goldfarb and Santosh,2014; Deng Jun et al.,2015Groves et al.,2020),为“克拉通破坏型金矿床”(朱日祥等,2015)或“胶东型”金矿床(翟明国等,2001杨立强等,2014Deng Jun et al.,2015);④ 据同位素示踪研究,矿床的流体组分表现出明显的幔源特征,印证以成矿期煌斑岩脉的广泛发育,被认为是古太平洋板块俯冲后撤,造成地幔楔脱气形成(Goldfarb and Santosh,2014Goldfarb and Groves,2015Groves and Santosh,2016)。因此,我国华北克拉通的这类金矿床,是古老花岗岩-绿岩带再活化成矿,可称之为活化造山型金矿床,是多旋回造山作用的产物。

  • 1.1.3 BIF相关的金矿

  • 条带状硅铁建造(BIF)是绿岩带中特殊的岩性建造,常见于镁铁质火山岩与上覆火山-沉积岩的过渡层位,包括沉积岩建造为主的Superior型和火山建造为主的Algoma型。金成矿主要与Algoma型BIF关系密切,少数也与Superior型有关(如巴西Morro Velho)。国外BIF型金矿占绿岩带金矿非常重要的地位,仅次于绿片岩建造中的金矿,如西澳伊尔岗克拉通有15%金矿采自BIF矿床,津巴布韦约13%的金矿与BIF有关(沈保丰等,1988),坦桑尼亚环维多利亚湖太古宙绿岩带中与BIF有关的金矿占90%(杨东潮等,2013)。该类金矿规模大,如美国Homestake(Morelli et al.,2010)、坦桑尼亚Geita(Sanislav et al.,2017)、巴西Morro Velho(Lobato et al.,2007)等矿床均超过10 Moz(合283.5 t)(Robert et al.,2007)。我国这类矿床较少发育,在山西五台地区(如东腰庄;姜峰贤,2006)、辽南清源地区(如南龙王庙;刘桂香,2012)等曾有报道,但规模较小。

  • 该类金矿的层控特征明显,受区域性剪切带与褶皱双重控制(如Geita金矿,Peck,1991;Homestake金矿,Sanislav et al.,2017),矿体多产于断裂交切的褶皱枢纽、背斜或向斜层间滑动带。如北美最大的Homestake金矿,含金硫化物主要产于Homestake组(125 m厚)的富铁层层间,矿体与围岩界线模糊,同围岩一起褶皱变形。然而,大多数该类矿床后生特征明显,含金石英脉、细脉、网脉发育(如巴西Morro Velho)。BIF是有利金沉淀的地球化学障,含金的还原性流体与BIF反应导致金和黄铁矿沉淀,相关的蚀变主要表现为黄铁矿化、绿泥石-碳酸盐化或角闪石化。

  • 1.1.4 其他建造中的金矿床

  • 除上述三类金矿外,还有产于绿岩带上部细碎屑岩建造中的矿床,如苏里南Rosebel超大型金矿床(Gapais et al.,2021),以及产于碳酸盐岩层(如马里Sadiola Hill金矿;Masurel et al.,2017)、深成侵入体(如我国胶东的玲珑金矿;吕古贤等,2006)中的矿床等。

  • 1.2 浊积岩型金矿床

  • 浊积岩型(变质碎屑岩型)金矿泛指产于一套浅变质碎屑沉积岩中的金矿床,容矿岩系为板岩、变粉砂岩、千枚岩等低级变质岩系,以发育条带状的浊积岩为特征,含有较高的碳质,如乌兹别克斯坦Muruntau矿区别萨潘组粉砂岩-页岩中有机碳含量达2%~7%(郑明华和张寿庭,2001杨富全等,20062007),吉尔吉斯斯坦文德系浊积岩有机碳含量高达5%~10%(陈喜峰等,2010)。以往的文献中也称为碳质岩系型、穆龙套型金矿床等。

  • 该类矿床多产于显生宙碰撞造山带中,围岩时代主要是新元古代和古生代的浅海相浊积岩系,与绿岩带型金矿容矿围岩的差别是火山岩不发育、变质程度低。重要成矿带包括中亚西南天山金矿带的乌兹别克斯坦Muruntau、Kumotor金矿,东澳大利亚拉克兰造山带西缘的Bendigo金矿,加拿大育空地区的Tiger金矿等。中国这类矿床分布也较广,除西南天山成矿带延入我国的萨瓦亚尔顿金矿外,还包括额尔齐斯金矿带的托库孜巴依金矿和西秦岭造山带的阳山、李坝、大场等金矿,以及哀牢山造山带的大坪、长安金矿,西藏的马攸木、商旭金矿,柴达木盆地北缘的金龙沟、青龙沟金矿等矿床。

  • 矿体产出特征与绿岩带型矿床相似,多为受区域性剪切带控制的构造蚀变岩型、石英碳酸盐脉型、细脉-网脉型等。矿石矿物以黄铁矿、毒砂、辉锑矿较为常见,并常含方铅矿、闪锌矿、黄铜矿、磁黄铁矿、白钨矿、辉铋矿等。与成矿密切的蚀变主要黄铁矿化、绢云母化、碳酸盐化和黑云母化,Au>Ag,高As,富集W、Sb、Bi和Mo(Wall,2004),可形成Au-Sb共生矿床(如湘西沃溪Au-Sb-W矿、大滩Au-Sb矿等),Sb矿化主要为含辉锑矿的石英网脉、石英脉产出,一般晚于Au矿化(李彬等,2024)。该类矿床中毒砂是最常见的硫化物矿物,而绿岩带型矿床则多为黄铁矿和磁黄铁矿。

  • 1.3 碳酸盐岩型

  • 碳酸盐岩型金矿产于碳酸盐岩夹细碎屑岩建造中,又称为类卡林型或卡林型,主要产于北美克拉通边缘的美国内华达地区(如美国Carlin碳酸盐岩型金矿;Radtke et al.,1980)、中国扬子地台西南缘的滇黔桂地区(如水银洞碳酸盐岩型金矿;刘建中等,2006)和西秦岭金矿带中(如金龙山、马脑壳碳酸盐岩型金矿;刘家军等,2019),另外在印度尼西亚(Turner et al.,1994)、伊朗西北部(Mehrabi et al.,1999)、加拿大Yukon地区(Arehart et al.,2013)等也有报道。与浊积岩型金矿相比,这类矿床的赋矿围岩时代较新、区域变质微弱。矿石矿物主要为含砷黄铁矿、毒砂、辉锑矿、雄黄和雌黄,金主要呈微细粒不可见金形式分布在含砷黄铁矿中,故又称之为微细浸染型金矿。除Au外通常富集As、Sb、Hg、Tl等,还伴生有独立Hg矿、Tl矿;围岩蚀变以硅化、去碳酸盐化、泥化、白云石化等低温热液蚀变为特色。矿床主要受高角度断层和背斜或穹隆的控制,层控和断控均为重要,并可发育角砾岩筒(如水银洞矿床,邱小平等,2021;美国Cortez Hills矿床,Henry et al.,2023),具有“层-脉-筒”三位一体矿化结构特征。

  • 卡林型、类卡林型金矿床是一类独特的矿床工业类型,能否作为独立的矿床成因类型尚有不同认识,有的研究者将其归为与氧化性侵入岩有关成矿系统的远端产物(Sillitoe and Bonham,1990Sillitoe,2020)。本文按主要容矿岩性以碳酸盐岩型替代“卡林型、类卡林型”术语,从以下几点考虑暂归为造山型金矿谱系中,作为地壳连续成矿模式的浅部成矿产物:① 碳酸盐岩型金矿也是造山过程中形成的脉状后生矿床,其构造控矿特征、成矿元素组合和成矿流体特征等,与造山型金矿床有类似之处;② 碳酸盐岩型和浊积岩型金矿床可在同一造山带中毗邻产出。如我国西秦岭金矿带造山型(浊积岩型)金矿床、卡林型、类卡林型(与同期岩浆活动有关)三类金矿床均较发育,成矿流体特征类似、成矿时代相近(集中在晚三叠世),是同一碰撞造山运动的产物(刘家军等,2019),三类金矿之间具有明显的过渡特征。扬子克拉通西南缘金矿带,由新元古界冷家溪群、板溪群和震旦系组成的浅变质基底浊积岩系中,发育沃溪Au(-Sb-W)、龙山Au-Sb和万古Au矿床等浊积岩型矿床,构成湘中Au-Sb矿集区;同一矿带的滇黔桂寒武纪—三叠纪海相碳酸盐岩夹细碎屑岩的沉积盖层区,则发育了水银洞、泥堡、戈塘等碳酸盐岩型金矿床,构成右江Au-As-Sb-Hg矿集区,二者经历相同的构造-成矿事件(胡瑞忠等,2020);③ 多种证据表明,右江碳酸盐岩型Au(-As-Sb-Hg)矿集区的成矿元素主要来自富金的基底浊积岩系,在印支期(230~200 Ma)碰撞造山过程中发生含金流体的大规模析出-成矿,是Au的主成矿期,Sb、Hg矿化可能形成于燕山期(150~130 Ma),部分矿床如水银洞金矿有叠加成矿现象(Hu Ruizhong et al.,2017)。

  • 可见,富金的基底浊积岩系,是邻近或上覆盖层中碳酸盐岩型金矿床发育的基础。换言之,若无富金的浊积岩系,则难以形成大规模的碳酸盐岩型金矿化(如华北克拉通)。因此,碳酸盐岩型金矿与浊积岩系有亲缘关系,亦可归属造山型金矿,只是其赋矿围岩以碳酸盐岩为主,矿床形成于地壳更浅部,相当于Grove et al.(1998)地壳连续成矿模式浅部带中的Au-Hg矿化带。由于浅部环境的快速沉淀,导致金以微细浸染状态赋存于含砷黄铁矿中。在经历多旋回造山事件的复杂造山带中,先期形成的碳酸盐岩建造,可作为后期造山型金矿的围岩,形成碳酸盐岩型矿床。

  • 1.4 浅成侵入岩型

  • 人们很早就识别出了一类产于中酸性侵入体中的脉状金矿,早期称为“斑岩型”,如美国阿拉斯加地区的Fort Knox(Bakke,1995)、加拿大育空地区的Tintina(Newberry et al.,1995Newberry,2000)、西班牙伊比利亚的Salave(Fernandez-Catuxo,1998)。后来发现这类矿床与富金斑岩矿床具有不同的构造背景、成矿特征,分属不同的成矿系统,从而提出“还原性斑岩”、“侵入岩体型”金矿概念(Rowins,2000Thompson and Newberry,2000),并被广泛引用和完善(如Lang et al.,2000Hart et al.,2000Yakubchuk,2002Bakker,2003Wall,2004Robert,2004Robert et al.,20052007Hart,2005),属独立于“造山型”金矿之外的金矿类型(Lang and Baker,2001Robert et al.,2007)。然而,我们在最近研究中发现,在典型造山型(如绿岩带型)金矿带中,同样发育“侵入岩体型”金矿,包括南美北部圭亚那地区的RK(Aurora)(罗迪柯等,2017)、Omai(Voicu et al.,1999)、澳大利亚西部Kalgoolie地区的Binduli长石斑岩型和Kanowna Bell岩筒型(Davis et al.,2010; Dennis,2021)、加拿大Abitibi绿岩带中的Dome(Bateman et al.,2008; Stromberg et al.,2019)、Sigma Mineracao(Robert and Brown,1986; Garofalo,2004),以及中国华北地块北缘承德地区的峪耳崖(王自力等,2008贾三石等,2014)、牛心山(邹继兴等,1999Shi Chenglong et al.,2019)、下金宝(张建国等,2018Wang Cheng et al.,2018)等矿床。该类矿床既发育在绿岩带中,也发育在显生宙造山带中,矿体基本受岩体控制,离开岩体则矿化迅速减弱(图3a、b)。成矿岩体一般为小型岩株、岩脉,既有“还原性”岩体,也有“氧化性”岩体,以发育似斑状、斑状或细粒结构为特征,反映其定位深度较浅(图3c),有些岩体含有石英眼、石英壳等流体出熔结构,意味着含金流体可以大规模从这类岩浆中出溶。因此,本文将其称之为“浅成侵入岩型”,归入造山型金矿谱系。其不同于斑岩-浅成低温热液型金(铜)矿床之处,是不发育大规模的热液蚀变分带。

  • 图3 浅成侵入岩型金矿相关照片和图件

  • Fig.3 Photos and exploration section of hypabyssal intrusion type gold deposits

  • (a)—澳大利亚诺顿金田Janet Ivy金矿剖面图(长石斑岩全岩矿化);(b)—圭亚那Aurora矿区MK金矿体照片,含矿石英脉主要发育在石英斑岩体内;(c)—圭亚那Aurora矿区RK金矿岩芯照片,含金石英脉主要赋存于含蚀变长石斑晶的闪长岩中;(d)—澳大利亚诺顿金田Janet Ivy金矿矿石照片,含金石英脉具赤铁矿化晕,围岩红长石化

  • (a) —cross-section of the Janet Ivy gold deposit (seeing the whole rock mineralization of feldspar porphyry) , Norton Goldfields, Australia; (b) —a picture of the MK gold mine in Aurora, Guyana, shows that ore-bearing veins are mainly developed in quartz porphyry; (c) —a core photograph of the RK gold deposit in Aurora, Guyana, showing gold-bearing quartz veins occurring mainly in diorite containing altered feldspar porphyry; (d) —photograph of Janet Ivy gold ore in Norton Goldfields, Australia, with gold bearing quartz veins with hematitization halo and wall rock erythrofeldspathization

  • 与成矿有关的浅成侵入岩体常为小型复式岩体,如Aurora的RK岩体早期为闪长岩,晚期为长石斑岩,发育不规则状石英-硫化物网脉和浸染状黄铁矿。成矿蚀变以出现钾长石化、钠长石化为特征,发育硅化、绢云母化、碳酸盐化、绿泥石化等蚀变(图3d),富集As、Sb、W、Mo、Te、Bi、Pb、Ag等元素。成矿流体主要为岩浆热液,但变质流体和大气流体也发挥了重要作用(Moravek,1995Spiridinov,1996)。

  • 浅成侵入岩型金矿在绿岩带成矿省中最发育,可形成大型—超大型矿床;在浊积岩型成矿带相对较弱,主要是中酸性脉岩类和小侵入体成矿,并具全岩矿化特征(王京彬等,2006),如新疆野马泉金矿、西秦岭李子园金矿、李坝金矿、枣子沟金矿等中酸性小岩体/岩脉型矿化;在碳酸盐岩型矿集区则不发育或隐伏在深部,可能与金成矿的深度层次有关。

  • 2 造山型金矿成矿模式

  • 2.1 多矿化类型紧密共生

  • 同一金矿床或矿田中可以多种矿化亚类共存,不同矿化类型之间存在紧密的时空和成因联系,实为同一成矿系统,可互为找矿标志,例如南美圭亚那地盾绿岩带型金矿省的几个金矿田。

  • (1)圭亚那Omai金矿床。Omai金矿床产于圭亚那地盾古元古代绿岩地体中,矿区查明资源量约140 t,已累计产金108 t,平均金品位1.6 g/t。矿区现有已停采的Fennell和Wenot两个采坑(图4a)。Fennell采坑半径300~350 m,矿体为产于细粒闪长岩小岩株中的筒状矿,全岩矿化,离开岩体矿化尖灭,其辉绿岩席上部的矿体已采完(图4c),矿体向深部开放,仍有较大增储潜力;Wenot矿体产于沿玄武岩与变浊积岩系界面发育的剪切带中,为受剪切带控制的石英碳酸盐脉型金矿(图4b)。剪切带型矿体与侵入岩型矿体相伴产出,属同一成矿系统的2种矿化类型,互为找矿标志。

  • (2)圭亚那Aurora金矿床。Aurora金矿床由RK(Rory Knoll)筒状主矿体和WH(Walcott Hill)、MK(Mad Kiss)、WMK(West Mad Kiss)、SMK(South Mad Kiss)、AH(Aleck Hill)、NAH(North Aleck Hill)等6个卫星矿体组成(图5),其中MK为产于石英长石斑岩中的不规则石英脉型,全岩矿化。RK含矿闪长岩沿北西向区域性剪切带与北东向基底断裂交汇部位侵入,岩体本身发生强片理化和铁碳酸盐化蚀变,形成低品位矿化,并被长石斑岩侵入,高品位金矿化主要发育在长石斑岩及其接触带附近,呈不规则石英网脉状矿化,为典型的筒状矿化,可看成是深部岩浆流体的通道相。岩体变形表明岩浆侵入和金矿化是同造山期的产物。南西侧剪切带型金矿体赋存于变基性火山岩或火山岩与沉积岩界面的韧脆性变形带中,为石英-碳酸盐脉型,发育线性的绢云母化和碳酸盐化蚀变。浅成侵入岩型和剪切带型矿化为同一成矿系统的2种矿化类型。

  • 图4 圭亚那Omai金矿床图件(据Omai Gold Mines Corp,2022

  • Fig.4 Map of Omai gold deposit, Guyana (after Omai Gold Mines Corp, 2022)

  • (a)—苏里南Omai金矿床卫星影像图;(b)—Fennell采坑剖面图;(c)—Wenot采坑剖面图; 1—完成编录、采样和呈报; 2—在Avanvero台阶上部分完成编录、采样和呈报; 3—未编录和采样

  • (a) —satellite image of the Omai gold deposit, Suriname; (b) —Fennell mine profile; (c) —Wenot mine profile; 1—completed, sampled and submitted; 2—above Avanvero dyke partially logged, sampled and submitted; 3—unlogged and unsampled

  • (3)法属圭亚那Yaou金矿床。Yaou金矿位于法属圭亚那中西部,金资源量45 t,平均金品位2.1 g/t,也发育剪切带型和浅成侵入岩体型2种矿化类型(图6)。剪切带走向NEE,与矿化石英闪长岩长轴方向基本一致,剪切变形与岩体侵位同步,浅成侵入岩型和剪切带型矿化互为找矿标志。

  • (4)苏里南罗斯贝尔金矿田。拥有金资源量187 t,是一个典型的太古宙绿岩带型金矿田(图7),在南部的花岗-绿片岩区段,发现了产于枕状玄武岩与块状玄武岩界面(剪切带)的超大型Saramacca金矿床,在北部火山-沉积岩区段,查明了产于绿岩与浊积岩系界面附近的Koolh oven-Pay Caro、Mayo、Royal Hill等大型—超大型矿床,在变质碎屑岩系中发现了浊积岩型Rosebell超大型矿床。绿岩带型和浊积岩型矿床为同一成矿事件的产物,不同矿化类型互为找矿标志。预测在南部花岗-绿片岩区段,有可能发现浅成侵入岩型金矿床。

  • 2.2 造山型金矿成矿系统

  • 2.2.1 富金矿源层

  • 大规模成矿的首要条件是要有丰富的成矿物质来源。已有研究表明,巨厚的绿岩组合和浊积岩系均为富金的沉积建造,其本身既是容矿建造,也是金等成矿元素的矿源层。

  • 镁铁质较之长英质岩石更富含金。前寒武纪造山型金矿的源区主要为变质火山岩,以镁铁质为主(Goldfarb et al.,2001Tang Li and Santosh,2018)。Pitcairn et al.(2021)对加拿大阿比提比(Abitibi)绿岩带(Au资源量>9000 t)和庞蒂亚克亚省绿岩带不同变质相的火山-沉积岩研究表明,在变质过程中金发生了显著的活化运移,是该区太古宙造山型金矿主要的金来源。

  • 显生宙造山型金矿带,金则主要来自浅变质的浊积岩系或黑色页岩(Steadman et al.,2015邓腾等,2021)。Large et al.(2011)对世界各地造山型金矿中碳质页岩的主微量元素和硫同位素研究表明,成矿热液中的金主要来自以碳质黑色页岩为主的浊积岩系。Wu Yafei et al.(2020)通过对西秦岭大桥金矿矿石和黑色页岩中不同期次黄铁矿的原位分析,也得出相似的结论。中亚西南天山金矿带,不同时代的黑色岩系显示较高的金背景值,被认为是重要的初始矿源层(郑明华和张寿庭,2001杨富全等,20062007Large et al.,2011薛春纪等,2014),这些高金丰度的赋矿岩系普遍具有较高的有机碳含量,碳质可广泛吸附表生条件下的金(Southam and Saunders,2005),并在黄铁矿转变为磁黄铁矿的区域变质过程中释放金等成矿元素(Tomkins,2010Thomas et al.,2011)。另一方面,碳质黑色页岩(板岩)也可作为还原剂导致金的沉淀,可作为有用的找矿标志(邓腾等,2021)。

  • 图5 圭亚那Aurora金矿床图件(Aurora Gold Mine In,2021

  • Fig.5 Map of the Aurora gold deposit, Guyana (Aurora Gold Mine In, 2021)

  • (a)—圭亚那Aurora金矿床地质简图;(b)—RK矿床矿体三维模型图

  • (a) —geologic map of the Aurora gold deposit, Guyana; (b) —3D model of RK ore body

  • 图6 法属圭亚那Yaou金矿两类矿化类型空间关系剖面图(据Combes et al.,2023)

  • Fig.6 Spatial relationship profile of two mineralization types at the Yaou gold deposit, French Guiana (after Combes et al., 2023)

  • 2.2.2 区域性流体活动

  • 造山作用为区域规模的成矿流体活动创造了有利的变形、变质和岩浆作用条件,不同的造山环境有不同的流体产生-运移的驱动机制,控制了金成矿省/巨型成矿带。造山型金矿主要形成于4种大地构造环境(图8)。

  • (1)俯冲造山环境(Goldfarb and Pitcairn,2023)。这是绿岩带型金矿床产出的主要大地构造背景,成矿发生在太古宙陆缘增生带,火山-沉积岩系在绿片岩相变质作用下释放大量含金流体,挤压或转换挤压变形驱动流体长距离的运移-汇聚-沉淀,形成造山型金矿成矿省(图8a),如西非-圭亚那金矿省、伊尔岗金矿省、苏必利尔金矿省等。

  • 图7 苏里南Rosebel矿田金矿床分布图(据IAMGOLD Corporation,2022

  • Fig.7 Deposit distribution map of Rosebel ore field, Suriname (after IAMGOLD Corporation, 2022)

  • (2)碰撞造山环境。为显生宙浊积岩型金矿床主要构造环境,如著名的中亚西南天山金矿带、新疆额尔齐斯金矿带、西秦岭金矿带、哀牢山金矿带等。区域性剪切变形带继承了碰撞期的主构造线方向,沿两个板块(块体)拼贴的缝合带发育成穿透性大型缝合-剪切变形带(王京彬和徐新,2006),金矿床主要形成于陆块拼贴(挤压)和陆内走滑阶段(图8b),挤压-走滑转变期是大规模成矿的高峰期。

  • (3)克拉通破坏(活化)环境。金成矿明显晚于区域变形变质作用,属两个不同的造山事件(图8c)。如胶东金矿集中区,区域高级变质及相应的变质脱水作用发生在 2000 Ma 之前,金成矿在~120 Ma(Goldfarb et al.,2001Deng Jun et al.,2015;Grove et al.,2020),古太平洋板块的俯冲后撤导致了古老花岗-绿岩带再活化成矿,金主要来自古老花岗-绿岩变质基底,成矿流体主要来自壳下地幔流体(宋明春等,2022)和岩浆流体。这较好地解释了为什么中国东部相同的构造环境下,只在古老花岗-绿岩带基底发育区形成大规模的金矿床。

  • (4)陆内造山环境。扬子克拉通东南部右江碳酸盐岩型矿集区是陆内造山环境下形成造山型金矿的典型案例(图8),金等成矿元素主要来自下伏新元古界浅变质浊积岩系基底(含寒武纪黑色岩系),在印支期—燕山期的碰撞-陆内造山过程中再活化、运移到上部碳酸盐岩盖层中沉淀成矿,形成碳酸盐岩型(类卡林型)Au、As、Sb、Hg矿集区(胡瑞忠等,2020)。

  • 2.2.3 局部岩浆流体叠加

  • 花岗岩类是造山带的重要组成部分,也是造山型金矿床的重要容矿围岩和成矿岩体。浅成侵入岩型金矿化在绿岩带型金矿省和浊积岩型金矿带的广泛发育,以及与剪切带脉状金矿体紧密的时空和成因联系,无疑表明岩浆成矿流体的叠加对成矿具有重要意义。

  • 另一方面,岩浆侵入“热机效应”,增加了周围岩石的渗透性和温度梯度,促进热变质围岩中金的活化再富集。穆龙套(Kempe et al.,2001Wilde et al.,2001)、库姆托尔(Mao Jingwen,2004陈喜峰等,2010)、萨瓦亚尔顿(Zhang Guozhen et al.,2017)、卡特巴阿苏(薛春纪等,2014张祺等,2015)等多个重要金矿床均揭示出金成矿过程中岩浆流体的贡献。胶东金矿除受花岗-绿岩地体和区域性断裂控制外,金矿床也明显受郭家岭似斑状花岗闪长岩控制(图9),产于郭家岭岩体及相应的小岩体附近(吕古贤等,2006)。有证据表明,右江矿集区深部也可能存在隐伏花岗岩体并对金成矿有重要贡献(胡瑞忠等,2020)。

  • 图8 造山型金矿主要构造环境类型

  • Fig.8 Main tectonic setting types of orogenic gold deposits

  • (a)—俯冲造山环境(据Goldfarb et al.,2001);(b)—碰撞造山环境(修改自邓军等,2020);(c)—克拉通破坏环境;(d)—陆内造山环境

  • (a) —subduction zone type (after Goldfarb et al., 2001) ; (b) —collisional orogenic type (revised after Deng Jun et al., 2020) ; (c) —craton destruction type; (d) —intracontinental orogenic type

  • 2.3 造山型金矿成矿模式

  • 造山型金矿大规模流体的成因一直是一个争议的问题,提出了多种成因模式,主要有大陆地壳绿片岩相-角闪岩相进变质流体成因(Tomkins and Grundy,2009;Phillips and Powell,2010Groves et al.,2020)、幔源流体包括俯冲洋壳脱水或壳下富集地幔脱气成因(Goldfarb and Santosh,2014Deng Jun et al.,2015Goldfarb and Groves,2015)、岩浆流体(Mueller,1992Neumayr et al.,2008Helt et al.,2014)、深循环大气降水成因(Nesbitt,1991胡瑞忠等,2020)等假说。事实上,造山型金矿区域规模的成矿流体可能是多来源的。根据造山型金矿床的地壳连续成矿模式(Grove,1993;Grove et al.,1998),在地壳由上向下不同深度层次内,可有不同的流体形成的主导机制(图10):① 在浅成带以深循环的大气降水为主,形成碳酸盐岩型金矿;② 在浅成—中成过渡带,以低绿片岩相的变质流体为主,形成以浊积岩型金矿为代表的金矿床;③ 在中成带,以绿片岩相变质流体为主,形成绿岩带型金矿床;④ 在深成带,角闪岩相-麻粒岩相变质过程含水的角闪石-黑云母脱水变质流体,形成花岗-片麻岩容矿的金矿床;⑤ 岩浆出溶流体,形成浅成侵入岩型金矿;⑥ 壳下幔源流体补给,促进矿源岩中金的活化-迁移。上述多源流体在地壳尺度的穿透性断裂带中汇聚-运移-沉淀成矿,形成不同深度层次、不同容矿建造的金矿类型,浅层次的矿化必然含有深部层次的流体贡献,构成地壳连续成矿的多种矿化样式。

  • 图9 胶东金矿床区域成矿模型(据范宏瑞等,2021

  • Fig.9 Regional metallogenic model of Jiaodong gold deposits (after Fan Hongrui et al., 2021)

  • 1 —混合岩化片麻岩;2—片麻岩;3—玲珑花岗岩;4—滦家河花岗岩;5—郭家岭花岗闪长岩;6—第四系沉积物;7—断裂;8—蚀变岩矿体;9—石英脉矿体;10—流体

  • 1 —migmatized gneiss; 2—gneiss; 3—Linglong granite; 4—Luanjiahe granite; 5—Guojialing granodiorite; 6—Quaternary sediments; 7—fault; 8—altered-rock type orebody; 9—quartz-vein type orebody; 10—fluid

  • 图10 造山型金矿多源流体成矿示意图(修改自Groves et al.,2020

  • Fig.10 Schematic multi-ore-fluid sources model for orogenic gold deposits (after Groves et al., 2020)

  • 同一成矿省/矿集区,造山型金矿床可产于不同的岩性建造中,并具有相似的矿化和成矿流体特征,说明含矿流体是一种区域规模的流体,其流经不同的岩石建造,在有利的构造-岩性部位均可沉淀成矿。岩浆热液的叠加或深部侵入岩浆的“热机效应”是许多超大型矿床形成的有利因素(图11)。

  • 综上所述,造山型金成矿系统,大致经历了富金矿源层(绿岩组合、浊积岩系)形成、造山过程中变形变质-流体活动,以及同造山期岩浆热液叠加的复合地质作用。巨量的矿源层和区域规模的流体活动造就了造山型金矿成矿省/巨型成矿带,局部有利构造部位±岩浆流体叠加控制了大型—超大型矿床或矿田的定位。与之对应,花岗-绿岩组合/浊积岩系(碳质细碎屑岩)+脆韧性变形带+浅成侵入岩体是世界级大型—超大型金矿床的“三位一体”找矿预测标志。

  • 3 造山型金矿床勘查

  • 造山型金矿容矿岩性建造分类,旨在更好地指导找矿勘查。容矿岩性建造的多样性,揭示了造山型金矿床工业类型的多样性,不同的岩性建造发育不同的矿化(亚)类型,有不同的矿物组合和蚀变特征,相应的勘查技术方法也有差异。矿业公司应用造山型金矿成矿模式和找矿标志指导找矿,通常按三个层次部署地勘工作,即勘查选区、矿权区勘查和深部找矿。

  • 3.1 勘查选区

  • 造山型金矿床与区域规模的流体活动有关,具有成群成带产出的特征。勘查选区的目的是优选出有巨大潜力的找矿靶区,并通过申请或并购获取相应的矿权。

  • 勘查选区要聚焦大型金矿成矿系统。巨大体量的矿源层意味着有巨量成矿物质供应,厚度大、分布广的绿岩组合/浊积岩系在变形变质过程中可释放出巨量成矿流体,是形成大型—超大型矿床的前提条件,即所谓的“大木桶装大鱼”。如穆龙套(Muruntau)金矿,Au资源储量 6137 t,平均金品位为3.5 g/t,矿区附近奥陶纪—志留纪浊积岩系厚度4800 m(Frimmel,2008),该矿带东延至我国西南天山萨瓦雅尔顿(Au资源量120 t)一带,浊积岩系的厚度仅400~500 m,向东延浊积岩型厚度进一步变薄,金矿床规模也相应地变小。

  • 区域性剪切带为含矿流体上升和运移提供了通道,是能量会聚带、高渗透区和成矿流体汇集区,是选区的首要标志,大型—超大型矿床(Au>28 t)多位于区域主剪切带附近3 km范围内的主断裂及其次级断裂中,具有近等距离分布规律,如澳大利亚著名的卡尔古利矿田,受Boulder-Lefroy断裂带控制的Golden Mile(1984 t)、Paddington、HBJ、St Ives四个金矿床几乎等距(40 km)产出(图12)。

  • 图11 造山型金矿区域成矿模型

  • Fig.11 Regional metallogenic model of orogenic gold deposits

  • 1 —绿岩带型(绿片岩建造);2—绿岩带型(BIF建造);3—绿岩带型(花岗-片麻岩岩建造);4—浊积岩型;5—碳酸盐岩型;6—浅成侵入岩型

  • 1 —greenstone-hosted type (greenschist formation) ; 2—greenstone-hosted type (BIF construction) ; 3—greenstone-hosted type (granite-gneiss formation) ; 4—turbidit-hosted type; 5—carbonate rock-hosted type; 6—hypabyssal intrusion type

  • 图12 西澳伊尔岗克拉通卡尔古利矿田矿床分布图(Norton Gold Fields Pty Ltd,2022

  • Fig.12 Deposit distribution of the Kalgoorlie area of the Yilgarn craton, Western Australia (Norton Gold Fields Pty Ltd, 2022)

  • 底图为区域航磁图;Moz为矿床的金资源量,1 Moz≈28.3459 t

  • The base map is a regional aeromagnetic map; Moz is the gold resources of the deposit, 1 Moz ≈ 28.3459 t

  • 矿床(体)的定位、产状、形态和规模大小等受造山过程中构造变形系统控制,并呈现出多尺度控制特征(图13)。① 矿床主要产于主剪切带旁侧的次级剪切带中,特别是有弯曲、交切的剪切带;② 褶皱构造特别是牵引背斜控矿作用明显,褶皱转折端和层间滑脱带是矿体赋存的有利部位,如苏里南Rosebel地区、澳大利亚Kalgoolie、津巴布韦Mvuma地区、水银洞金矿床等,矿体可以产于褶皱轴部、鞍部、两翼等部位;③ 岩石建造的能干性、反应性是重要的控矿因素。能干性差异性明显的岩性界面,如火山岩与沉积岩界面、枕状玄武岩和块状玄武岩界面、页岩(板岩)与能干性强的岩性界面及岩体接触带等界面,控制着矿体的定位。

  • 大型变形带中花岗岩类的出露代表该区构造-岩浆活动更为强烈,并可能有岩浆热液成矿作用叠加,是有利的找矿标志。

  • 综上所述,矿源层规模越大、构造-岩浆活动越强烈,成矿的规模越大。主剪切带的交切部位+厚大的绿岩组合/浊积岩系+花岗闪长岩/中酸性斑岩类为最有利成矿组合和勘查选区标志。砂金/民采活动+金综合化探异常是直接选区依据。

  • 3.2 矿权区勘查

  • 矿权区勘查的目标是优先发现可大规模露天开采(以下简称露采)的金矿床,对有地形和露头条件的矿权区,化探方法和对金异常的快速评价是最有效的找矿方法,大比例尺地质填图是一项基础性工作。

  • 图13 造山型金矿控矿构造组合

  • Fig.13 Favorable ore-controlling structural assembly of orogenic gold deposits

  • (a)—近平行剪切构造组合,金矿床/矿体受构造膨-缩部位控制;(b)—主-次级构造组合,金矿床/矿体产于主剪切带旁侧(小于3~5 km)的次级剪切带及交汇部;(c)—交叉构造组合,金矿床/矿体产于张性与压剪性2组构造交汇部;(d)—褶皱-断裂构造组合,金矿床/矿体受背斜轴+断裂构造控制

  • (a) —parallel shearing structure assembly, while the gold deposit/ore body occurrence is controlled by expansion-contraction location; (b) —main-sub structural assembly, with gold deposits/ore bodies occurring in the secondary shear zone and the intersection closed the major shear zone (less than 3~5 km) ; (c) —cross structural assembly, where gold deposits/ore bodies occur at the intersection of two groups of structures: extensional and compressive-shear; (d) —fold-fault structure assembly, gold deposit/ore body is controlled by anticline axis+fault structure

  • 境外绿岩带型金矿常产于地盾区,基岩风化强烈(热带雨林区的强风化层深度多30~80 m)或被后期的运积物覆盖,需用改进的地球化学取样技术,如AC钻探取样、Auger取样和MMI及深穿透地球化学方法等,来获取金的综合化探异常。地球物理勘查技术如航空磁法、重力和EM等可识别断裂构造、岩性建造和隐伏岩体,有利于快速筛选重点勘查区。造山型金矿脉常被包裹在黄铁矿化晕内,因此IP(激发极化法)测量是定位预测金矿体的有效手段,人工地震技术也是揭示覆盖区控矿构造-岩性界面的有效方法。但IP和EM技术对于含碳质较高的浊积岩型金矿效果不佳。

  • 对异常的钻探验证和评价在干旱的地盾区(如澳大利亚西部、西方国家等),多以低成本的RC(空气反循环)钻探为主,在雨林地区RC和金刚石岩芯钻探(DD)共同使用,钻探系统控制深度一般为300 m以浅,部分高品位矿体向深部做探索性控制。地盾区的造山型金矿,浅表常发育范围较大的金次生富集层(图14),通过RC/DD钻探,追索次生富集层层,是发现原生金矿体的有效手段。

  • 3.3 深部找矿

  • 深部找矿是一个相对概念。境外矿业公司通常把可规模化露采的矿床作为第一找矿空间,而把需要地下开采(以下简称地采)的矿床作为第二找矿空间,一般将勘查深度300 m作为第一和第二找矿空间的概略分界线。埋深300 m以下的矿体,其开发方式、勘查技术组合和勘查成本都有明显不同:① 除个别巨型矿床外,多数金矿床可规模化露采的深度为300 m以浅,更深则需转为地下开采;② 300 m以浅,可大量使用低成本的RC钻探技术(其成本仅是金刚石岩芯钻探的1/4~1/3),更深的钻探则需要金刚石岩芯钻探技术,勘查成本也将随之大幅上升。我国由于相关勘查规范要求岩芯采取率等原因,RC钻探使用很少;③ 勘查技术方法有别。对于埋深>300 m的隐伏矿体常用的地球化学方法很难发现异常,有效的IP技术探测深度也多<300 m。

  • 造山型金矿脉系统的延深可超过 2 km,深部找矿潜力巨大。由于第二找矿空间的勘查和开发成本急剧上升,要求勘查高品位(>2 g/t)金矿床(体)。高品金矿体通常产于热液通道相和岩筒状斑岩体(可看成是岩浆热液的通道相)中,其品位高、规模大,可规模化地采(图15),是深部找矿的主攻目标。通道相矿体常呈筒状或厚板状,如奥罗拉金矿床RK筒状矿体地表出露面积长仅120 m、宽80 m,但其倾向延深>2000 m,控制的金资源量155.5 t,平均品位2.46 g/t,矿体向深部仍未封闭。找到一个筒状矿体就能大幅增加资源储量,形成主力采区。通过寻找断裂的交汇部位、研究主矿体的侧伏规律、追索岩体中的高品位矿体等,可以有效地发现通道相矿体。

  • 图14 浅部次生富集带与原生矿体的关系

  • Fig.14 Relationship between Supergene zone and deep primary ore body

  • (a)—苏里南Saramacca绿岩型金矿床(IAMGOLD Corporation,2022);(b)—澳大利亚诺顿金田Ben Hur矿床(Norton Gold Fields Pty Ltd,2022

  • (a) —Saramacca greenstone type gold deposit, Suriname (IAMGOLD Corporation, 2022) ; (b) —Ben Hur deposit, Norton Goldfields, Australia (Norton Gold Fields Pty Ltd, 2022)

  • 4 结语

  • 造山型金矿是一类复杂的矿床组合,其含矿建造、成矿作用及矿床元素组合既具多样性,又显统一性,不同类型的金矿床之间存在紧密的时空和成因联系,以及类型之间的过渡特征,是同一造山体制下形成的复合成矿系统。

  • 造山型金矿作为全球最重要的金矿勘查目标,加强构造-建造的综合研究,深化对造山型金矿成因和成矿规律认识,并据此制定有效的勘查战略和找矿技术方法组合,对实现国内金矿找矿突破、更好支撑中资企业境外勘查和资源控制,具有重要的意义。

  • 境外一些较成熟的金矿勘查区(如西澳大利亚、加拿大苏必利尔、西非克拉通等)正处于露采转地采阶段,一些国外公司在这一阶段往往会低价出售该类金矿项目。造山型金矿矿化深度大,常发育高品位、大规模的通道相矿体,找矿增储目标相对明确,为擅长地采的中资企业并购和深部找矿留下了广阔空间。

  • 图15 造山型金矿热液通道相筒状矿体(a、b、c)与脉状矿体(d)模型图

  • Fig.15 Ore shoots (a, b, c) and vein-type (d) formed in hydrothermal channel phase of orogenic gold deposits

  • (a)—澳大利亚Waroonga矿床筒状矿体(Gold Fields Ltd,2023);(b)—澳大利亚Gwalia矿床筒状矿体(St Barbara Limited,2017);(c)—澳大利亚Kanowna Belle矿床筒状矿体(Nothern Star Resources Limited,2023);(d)—苏里南Saramacca矿床多热液通道相矿化(IAMGOLD Corporation,2022

  • (a) —tubular ore body, Waroonga deposit, Australia (Gold Fields Ltd, 2023) ; (b) —barrel orebody of the Gwalia deposit, Australia (St Barbara Limited, 2017) ; (c) —barrel orebody, Kanowna Belle deposit, Australia (Nothern Star Resources Limited, 2023) ; (d) —multi-hydrothermal channel phase mineralization in Saramacca deposit, Suriname (IAMGOLD Corporation, 2022)

  • 注释

  • ❶ Syarif H P, Yunus R K, Muh Chaidir W.2022. Orogenic Gold Deposits, Hasanuddin.

  • ❷ Omai Gold Mines Corp.2022.Updated NI 43-101 Wenot and Gilt Creek Mineral Resource Estimates.

  • ❸ Aurora Gold Mine Inc.2021.Technical Report on the Aurora Gold Mine, Guyana Report for NI 43-101, 233.03331.R0000.

  • ❹ IAMGOLD Corporation.2022. Technical report on the rosebel gold mine, Suriname.

  • ❺ Norton Gold Fields Pty Ltd.2022. Competent Person's Report of Norton's Refractory Gold Projects in Northwest of Kalgoorlie, Western Australia, Australia.

  • ❻ Gold Fields Ltd.2023. https://www.goldfields.com.

  • ❼ St Barbara Limited.2017. https://stbarbara.com.

  • ❽ Nothern Star Resources Limited.2023. https://www.nsrltd.com.

  • 参考文献

    • Arehart G B, Ressel M, Carne R, Muntean J. 2013. A comparison of Carlin-type deposits in Nevada and Yukon. In: Colpron M, Bissig T, Rusk B G, Thompson J F H, eds. Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Special Publications of the Society of Economic Geologists, 389~401.

    • Bakke A A. 1995. The Fort Knox “porphyry” gold deposit: Structurally controlled stockwork and shear quartz vein, sulfide- poor mineralization hosted by a Late Cretaceous pluton, east-central Alaska. Porphyry deposits of the northwestern Cordillera of North America. In: Schroeter T G, ed. Canadian Institute of Mining and Metallurgy, 46: 795~802.

    • Bakker R J. 2003. Package Fluids 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1~3): 3~23.

    • Bateman R, Ayer J A, Dube B. 2008. The Timmins-Porcupine gold camp, Ontario: Anatomy of an Archean greenstone belt and ontogeny of gold mineralization. Economic Geology, 103(6): 1285~1308.

    • Boulter C A, Fotios M G, Phillips G N. 1987. The Golden Mile, Kalgoorlie: A giant gold deposit localized in ductile shear zones by structurally induced infiltration of an auriferous metamorphic fluid. Economic Geology, 82(7): 1661~1678.

    • Chen Xifeng, Peng Runmin, Liu Jiajun, Wang Jianping, Wang Xiaolong. 2010. Geological characteristics of Kumtor super large gold deposit in Kyrgyzstan. Gold, 12: 15~19 (in Chinese with English abstract).

    • Davis B K, Blewett R S, Squire R, Champion D C, Henson P A. 2010. Granite-cored domes and gold mineralisation: Architectural and geodynamic controls around the Archaean Scotia-Kanowna dome, Kalgoorlie terrane, western Australia. Precambrian Research, 183(2): 316~337.

    • Deng Jun, Liu Xuefei, Wang Qingfei, Pan Ruiguang. 2015. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geology Reviews, 65: 674~686.

    • Deng Jun, Wang Qingfei, Chen Fuchuan, Li Gongjian, Yang Liqiang, Wang Changming, Zhang Jing, Sun Xiang, Shu Qihai, Gao Xue, Gao Liang, Liu Xuefei, Zheng Yuanchuan, Qiu Kunfeng, Xue Shengchao, Xu Jiahao. 2020. Further discussion on the Sanjiang Tethyan composite metallogenic system. Earth Science Frontiers, 27(2): 106~136 (in Chinese with English abstract).

    • Deng Teng, Ding Zhengpeng, Xu Deru. 2021. Review of origin and role of carbonaceous black shale in the formation of orogenic gold deposit. Advances in Earth Science, 36(10): 1077~1091 (in Chinese with English abstract).

    • Dennes S. 2021. Deposit scale to micro-scale multi-disciplinary study of the Kanowna Belle deposit: A systematic review of an Archean orogenic gold deposit. Thesis for the degree of Doctor of Philosophy, The University of Western Australia.

    • Fan Hongrui, Lan Tingguang, Li Xinghui, Santosh M, Yang Kuifeng, Hu Fangfang, Feng Kai, Hu Huanlong, Peng Hongwei, Zhang Yongwen. 2021. Conditions and processes leading to large-scale gold deposition in the Jiaodong Province, eastern China. Science China, Earth Sciences, 51(9): 1504~1523.

    • Fernández-Catuxo J. 1998. The Salave gold prospect revisited: New ideas for an old deposit. In: Arias D, Martin-Izard A, Paniagua A, Eds. Gold Exploration and Mining in NW Spain, Facultad de Geologia, Universidad de Oviedo, Oviedo, 82~85.

    • Frimmel H E. 2008. Earth's continental crustal gold endowment. Earth and Planetary Science Letters, 267(1~2): 45~55.

    • Gapais D, Alimoenadi G, Balraadjsing N. 2021. The Rosebel gold mining district (Trasn-Amazonian belt, Suriname), a new structural framework. Earth Sceince Bulletin, 192: 32~40.

    • Garofalo P S. 2004. Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit-Abitibi greenstone belt-Canada). Part I. Patterns of hydrothermal alteration haloes. European Journal of Mineralogy, 16(5): 753~760.

    • Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18(1): 1~75.

    • Goldfarb R J, Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geoscience Frontiers, 5(2): 139~153.

    • Goldfarb R J, Groves D I. 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233: 2~26.

    • Goldfarb R J, Pitcairn I. 2023. Orogenic gold: Is a genetic association with magmatism realistic? Mineralium Deposita, 58(1): 5~35.

    • Groves D I. 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn block, western Australia. Mineralium Deposita, 28(6): 366~374.

    • Groves D I. 2003. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98(1): 1~29.

    • Groves D I, Phillips G N, Ho S E. 1984. Controls on distribution of Archaean hydrothermal gold deposits in Western Australia. In: Foster RP, ed. Gold 82: The Geology, Geochemistry and Genesis of Gold Deposits. A. A. Balkema, Rotterdam, 689~712.

    • Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1): 7~27.

    • Groves D I, Santosh M. 2016. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geoscience Frontiers, 7(3): 409~417.

    • Groves D I, Santosh M, Deng Jun, Wang Qingfei, Yang Liqiang, Zhang Liang. 2020. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55(2): 275~292.

    • Hart C J R. 2005. Classifying, distinguishing and exploring for intrusion-related gold systems. The Gangue MDD Newsletter, 87(1): 4~9.

    • Hart C J R, Baker T, Burke M. 2000. New exploration concepts for country-rock-hosted, intrusion-related gold systems: Tintina gold belt in Yukon. In: Tucker T L, Smith M T, eds. The Tintina gold belt: Concepts, exploration and discoveries. British Columbia and Yukon Chamber of Mines Special Volume, 2: 145~172.

    • He Shengfei, Sun Kai, Liu Xiaoyang, Wang Jie, Ren Junping. 2015. Gold mineralization types and resources potential of the Archaean granitiod-greenstone belts in Zimbabwe. Contributions to Geology and Mineral Resources Research, 30(S1): 82~92 (in Chinese with English abstract).

    • Helt K M, Williams-Jones A E, Clark J R, Wing B A, Wares R P. 2014. Constraints on the genesis of the Archean oxidized, intrusion-related Canadian Malartic gold deposit, Quebec, Canada. Economic Geology, 109(3): 713~735.

    • Henry C D, John D A, Leonardson R W, McIntosh W C, Heizler M T, Colgan J P, Watts K E. 2023. Timing of rhyolite intrusion and carlin-type gold mineralization at the Cortez Hills carlin-type deposit, Nevada, USA. Economic Geology, 118(1): 57~91.

    • Hu Ruizhong, Fu Shanling, Huang Yong, Zhou Meifu, Fu Shaohong, Zhao Chenghai, Wang Yuejun, Bi Xianwu, Xiao Jiafei. 2017. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. Journal of Asian Earth Sciences, 137: 9~34.

    • Hu Ruizhong, Chen Wei, Bi Xianwu, Fu Shanling, Yin Runsheng, Xiao Jiafei. 2020. Control of the Precambrian basement on the formation of the Mesozoic large scale low-temperature mineralization in the Yangtze Craton. Earth Scicence Frontiers, 27(2): 137~150 (in Chinese with English abstract).

    • Jia Shanshi, Wang Ende, Fu Jianfei, Men Yekai, Wu Minggang. 2014. Geology, geochemistry and metallogenic mechanism of Yuerya gold deposit in the eastern Hebei Province. Journal of Jilin University: Earth Science Edition, 44(3): 774~785 (in Chinese with English abstract).

    • Jiang Fengxian. 2006. Metallogenic geological characteristics and genesis of Dongyaozhuang gold deposit in Wutai, Shanxi. Geology and Prospecting, 42(3): 24~29 (in Chinese with English abstract).

    • Kempe U, Belyatsky B, Krymsky R, Kremenetsky A, Ivanov P. 2001. Sm-Nd and Sr isotope systematics of scheelite from the giant Au (-W) deposit Muruntau (Uzbekistan): Implications for the age and sources of Au mineralization. Mineralium Deposita, 36(5): 379~392.

    • Lang J R, Baker T, Hart C J R, Mortensen J K. 2000. An exploration model for intrusion related gold systems. Society of Economic Geology Newsletter, 40(1): 6~15.

    • Lang J R, Baker T. 2001. Intrusion-related gold systems: The present level of understanding. Mineralium Deposita, 36(6): 477~489.

    • Large R R, Bull S W, Maslennikov V V. 2011. A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Economic Geology, 106(3): 331~358.

    • Li Bin, Xu Deru, Bai Daoyuan, Chen Xu, Zou Shaohao, Dai Junfeng, Ma Wen, Zeng Guangqian. 2024. Episodic mineralization at Yanshannian in the Woxi Au-Sb-W deposit, western Hunan, South China: Constraints from in-situ scheelite LA-ICP-MS U-Pb geochronology and element-isotope of pryrite. Acta Petrologica Sinica, 40(1): 215~240 (in Chinese with English abstract).

    • Liu Guixiang. 2012. Geology and metallogenesis of the Nanlongwangmiao gold deposit in Qingyuan, Liaoning Province. Geology and Resources, 21(5): 425~431 (in Chinese with English abstract).

    • Liu Jiajun, Liu Chonghao, Wang Jianping, Zhu Laimin, Zhang Jing, Zhai Degao, Wang Yinhong, Liu Zhenjiang, Zhang Fangfang. 2019. Classification and mineralization of the gold deposits in the western Qinling region, China. Earth Science Frontiers, 26(5): 1~16 (in Chinese with English abstract).

    • Liu Jianzhong, Deng Yiming, Liu Chuanqin, Zhang Xingchun, Xia Yong. 2006. Metallogenic conditions and model of the super-large Shuiyingdong stratabound gold deposit in Zhenfeng County, Guizhou Province. Geology in China, 33(1): 169~177 (in Chinese with English abstract).

    • Lobato L M, Santos J O S, McNaughton N J, Fletcher I R, Noce C M. 2007. U-Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geology Reviews, 32(3~4): 674~680.

    • Luo Dike, Chen Jing, Yao Zhongyou, Kuang Fuxiang, Yao Chunyan. 2017. Geological features of greenstone belt, typical gold deposits and gold mineralization in northern Guiana shield, South America. Geological Bulletin of China, 36(12): 2197~2207 (in Chinese with English abstract).

    • Lv Guxian, Guo Tao, Shu Bin, Shen Yuke, Liu Dujuan, Zhou Guofa. 2006. Geological characteristics of rock-controlling and ore-controlling structures in the Jiaodong gold ore concentration area. Acta Geoscientica Sinica, 27(5): 471~478 (in Chinese with English abstract).

    • Mao Jingwen, Konopelko D, Seltmann R, Lehmann B, Chen Wen, Wang Yitian, Eklund O, Usubaliev T. 2004. Post collisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Economic Geology, 99(8): 1771~1780.

    • Masurel Q, The baud N, Miller J, Ulrich S, Hein K A A, Cameron G, Béziat D, Bruguier O, Davis J A. 2017. Sadiola Hill: A world-class carbonate-hosted gold deposit in Mali, West Africa. Economic Geology, 112(1): 23~47.

    • McCuaig T C, Kerrich R, Groves D I, Archer N. 1993. The nature and dimensions of regional and local gold-related hydrothermal alteration in tholeiitic metabasalts in the Norseman goldfields: The missing link in a crustal continuum of gold deposits? Mineralium Deposita, 28(6): 420~435.

    • Mehrabi B, Yardley B W D, Cann J R. 1999. Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran. Mineralium Deposita, 34(7): 673~696.

    • Moravek P. 1995. The Mokrsko gold deposit. In: Moravek P, ed. Gold Deposits of the Central and SW Part of the Bohemian Massif. 3rd Biennial SGA Meeting, Prague, Excursion Guide, 33~61.

    • Morelli R M, Bell C C, Creaser R A, Simonetti A. 2010. Constraints on the genesis of gold mineralization at the Homestake gold deposit, Black Hills, South Dakota from rhenium-osmium sulfide geochronology. Mineralium Deposita, 45(5): 461~480.

    • Mueller A G. 1992. Petrogenesis of amphibole-biotite-calcite-plagioclase alteration and laminated gold-silver quartz veins in four Archean shear zones of the Norseman district, western Australia. Canadian Journal of Earth Sciences, 29(3): 388~417.

    • Nesbitt B E. 1991. Phanerozoic gold deposits in tectonically active continental margins. In: Gold Metallogeny and Exploration. Boston: Springer, 104~132.

    • Neumayr P, Walshe J, Hagemann S, Petersen K, Roache A, Frikken P, Horn L, Halley S. 2008. Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, western Australia: Vectors to high-grade ore bodies in Archaean gold deposits? Mineralium Deposita, 43(3): 363~371.

    • Newberry R J. 2000. Mineral deposits and associated Mesozoic and Tertiary igneous rocks within the Interior Alaska and adjacent Yukon portions of the ‘Tintina gold belt’: A progress report. In: Tucker T L, Smith M T, eds. The Tintina Gold Belt: Concepts, Exploration and Discoveries. British Columbia and Yukon Chamber of Mines Special Volume, 2: 59~88.

    • Newberry R J, McCoy D T, Brew D A. 1995. Plutonic-hosted gold ores in Alaska: Igneous vs. metamorphic origins. Resource Geology Special Issue, 18: 57~100.

    • Pan Yuanming, Fleet M E. 1995. The late Archean Hemlo gold deposit, Ontario, Canada: A review and synthesis. Ore Geology Reviews, 9(6): 455~488.

    • Peck D L. 1991. The Homestake gold mine, an Early Proterozoic iron-formation-hosted gold deposit, Lawrence County, South Dakota. US. Geological Survey Bulletin, 1~76.

    • Phillips G N, Powell R. 2010. Formation of gold deposits: A metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6): 689~718.

    • Pitcairn I K, Leventis N, Beaudoin G, Faure S, Guilmette C, Dubé. 2021. A metasedimentary source of gold in Archean orogenic gold deposits. Geology, 49: 862~866.

    • Qiu Xiaoping, Liu Shichuan, Wei Mi. 2021. Fluid explosion breccia pipe and gold supernormal enrichment in Shuiyindong gold ore deposit, Southwest Guizhou Province. Acta Geoscientica Sinica, 42(6): 849~858 (in Chinese with English abstract).

    • Radtke A S, Rye R O, Dickson F W. 1980. Geology and stable isotope studies of the Carlin gold deposit, Nevada. Economic Geology, 75(5): 641~672.

    • Robert F. 2004. Geologic footprints of gold systems. In: Muhling J, ed. SEG 2004: Predictive Mineral Discovery Under Cover, Extended Abstracts: Centre for Global Metallogeny. The University of Western Australia Publication, 33: 97~101.

    • Robert F, Brown A C. 1986. Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec; Part I, Geologic relations and formation of the vein system. Economic Geology, 81(3): 578~592.

    • Robert F, Sheahan P A, Green S B. 1991. Greenstone gold and crustal evolution. Geol. Assoc. Canada, NUNA Conference Volume, 13~31.

    • Robert F, Poulsen H K, Cassidy K F, Hodgson J C. 2005. Gold metallogeny of the superior and Yilgarn cratons. In: Economic Geology 100th Anniversary, 1001~1033.

    • Robert F, Brommecker R, Bourne B T, Dobak P J, McEwan C J, Rowe R R, Zhou X. 2007. Models and exploration methods for major gold deposit types. In: Milkereit B, ed. Proceedings of Exploration 2007: 5th Decennial International Conference on Mineral Exploration. Toronto, Canada: DMEC, 691~711.

    • Rowins S M. 2000. Reduced porphyry copper-gold deposits: A new variation on an old theme. Geology, 28(6): 491.

    • Sanislav I V, Brayshaw M, Kolling S L, Dirks P H G M, Cook Y A, Blenkinsop T G. 2017. The structural history and mineralization controls of the world-class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania. Mineralium Deposita, 52(2): 257~279.

    • Shen Baofeng, Li Shangshen, Luo Hui. 1988. Mineralization of gold in Precambrian strip iron formation (BIF). Precambrian Geology Abroad, 1: 1~34 (in Chinese).

    • Shi Chenglong, Ding Xiaozhong, Liu Yanxue, Hu Jianzhong, Song Yang. 2019. Geological significance of new zircon U-Pb geochronology and geochemistry: Niuxinshan intrusive complex, northern North China Craton. PLOS ONE, 14(3): e0213156.

    • Sillitoe R H. 2020. Gold deposit types: An overview. Society of Economic Geologists, Inc. SEG Special Publications, (23): 1~28.

    • Sillitoe R H, Bonham H F. 1990. Sediment-hosted gold deposits: Distal products of magmatic-hydrothermal systems. Geology, 18: 157~161.

    • Song Mingchun, Yang Liqiang, Fan Hongrui, Yu Xuefeng, Ding Zhengjiang, Zhang Yongwen, Qiu Kunfeng, Li Jie, Zhang Liang, Wang Bin, Li Shiyong. 2022. Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for Exploration Breakthrough Strategic Action. Geological Bulletin of China, 41(6): 903~935 (in Chinese with English abstract).

    • Southam G, SaundersJ A. 2005. The geomicrobiology of ore deposits. Economic Geology, 100(6): 1067~1084.

    • Spiridinov E M. 1996. Granitic rocks and gold mineralization of North Kazakhstan. In: Shatov V, Seltmann R, Kremenetsky A, Lehmann B, Popov V, Ermolov P, eds. Granite-related Ore Deposits of Central Kazakhstan and Adjacent Areas. St Petersburg: Glagol Publishing House, 197~217.

    • Steadman J A, Large R R, Meffre S, Olin P H, Danyushevsky L V, Gregory D D, Belousov I, Lounejeva E, Ireland T R, Holden P. 2015. Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile deposit, Kalgoorlie, western Australia. Economic Geology, 110(5): 1157~1191.

    • Stromberg J M, Barr E, Van Loon L L, Gordon R A, Banerjee N R. 2019. Fingerprinting multiple gold mineralization events at the Dome Mine in Timmins, Ontario, Canada: Trace element and gold content of pyrite. Ore Geology Reviews, 104: 603~619.

    • Tang Li, Santosh M. 2018. Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: An overview from the central segment of the Trans-North China Orogen. Earth-Science Reviews, 182: 1~27.

    • Thomas H V, Large R R, Bull S W, Maslennikov V, Berry R F, Fraser R, Froud S, Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Economic Geology, 106(1): 1~31.

    • Thompson J F H, Newberry R J. 2000. Gold deposits related to reduced granitic intrusions. In Society of Economic Geologists Reviews in Economic Geology, 13: 377~400.

    • Tomkins A G. 2010. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochimica et Cosmochimica Acta, 74(11): 3246~3259.

    • Tomkins A G, Grundy C. 2009. Upper temperature limits of orogenic gold deposit formation: Constraints from the granulite-hosted Griffin's Find deposit, Yilgarn craton. Economic Geology, 104(5): 669~685.

    • Turner S J, Flindell P A, Hendri D, Hardjana I, Lauricella P F, Lindsay R P, Marpaung B, White G P. 1994. Sediment-hosted gold mineralisation in the Ratatotok district, North Sulawesi, Indonesia. Journal of Geochemical Exploration, 50(1~3): 317~336.

    • Voicu G, Bardoux M, Jébrak M, Crépeau R. 1999. Structural, mineralogical and geochemical studies of the Paleoproterozoic Omai gold deposit, Guyana. Economic Geology, 94(8): 1277~1303.

    • Wall V J. 2004. Muruntau, Uzbekistan. Preliminary Report on CERCAMS Research Project, Spring Hill, Australia, 69.

    • Wall V J, Graupner T, Yantsen V, Seltmann R, Hall G C. 2004. Muruntau, Uzbekistan: A giant thermal aureole gold (TAG) system. In: Muhling et al. , eds. SEG 2004 Predictive Mineral Discovery Under Cover Extended Abstracts, 199~203.

    • Wang Cheng, Shao Yongjun, Huang Kuanxin, Zhou Haodi, Zhang Jianguo, Liu Zhongfa, Liu Qingquan. 2018. Ore-forming processes at the Xiajinbao gold deposit in eastern Hebei Province: Constraints from EPMA and LA-ICPMS analysis. Minerals, 8(9): 388.

    • Wang Jingbin, Wang Lijuan, Wang Yuwang, Zhu Heping. 2006. Yemaquan gold deposit: A structurally-controlled-altered-dyke type in eastern Junggar, Xinjiang. Acta Petrologica Sinica, 22(9): 2349~2359 (in Chinese with English abstract).

    • Wang Jingbin, Xu Xin. 2006. Post-collisional tectonic evolution and metallogenesis in northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23~31 (in Chinese with English abstract).

    • Wang Qingfei, Deng Jun, Zhao Hesen, Yang Lin, Ma Qiyi, Li Huajian. 2019. Reiew on orogenic gold deposits. Earth Science, 44(6): 2155~2186 (in Chinese with English abstract).

    • Wang Yuwang, Xie Hongjing, Li Dedong, Shi Yu, Liu Fuxing, Sun Guoqiang, Sun Qiming, Zhou Guochao. 2017. Prospecting prediction of ore concentration area exemplified by Qingchengzi Pb-Zn-Au-Ag ore concentration area, eastern Liaoning Province. Mineral Deposits, 36(1): 1~24 (in Chinese with English abstract).

    • Wang Zili, Niu Shuyin, Chen Chao, Sun Aiqun, Wang Baode, Xu Chuanshi. 2008. Discussion on ore-forming material sources of Yuerya gold deposit in the East Hebei Province. Contributions to Geology and Mineral Resources Research, 23(1): 36~42 (in Chinese with English abstract).

    • Wilde A R, Layer P, Mernagh T, Foster J. 2001. The giant Muruntau gold deposit: Geologic, geochronologic, and fluid inclusion constraints on ore genesis. Economic Geology, 96(3): 633~644.

    • Wu Yafei, Evans K, Fisher L A, Zhou Meifu, Hu Siyu, Fougerouse D, Large R R, Li Jianwei. 2020. Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system. Geochimica et Cosmochimica Acta, 276: 345~362.

    • Xing Shuwen. 1992. The metallogenic model of the Jinchangyu gold deposit East Hebei. Jilin Geology, 3: 29~38 (in Chinese with English abstract).

    • Xu Jiuhua, He Zhili, Shen Shiliang, Yang Zhenlin, Du Jiafeng. 1993. Stable isotope geology of the Dongchuang and the Wenyu gold deposits and the source of ore-forming fluid and materials. Contributions to Geology and Mineral Resources Research, 8(2): 87~100 (in Chinese with English abstract).

    • Xue Chunji, Zhao Xiaobo, Mo Xuanxue, Dong Lianhui, Gu Xuexiang, Nurtaev B, Pak N, Zhang Zhaochong, Wang Xinli, Zu Bo, Zhang Guozhen, Feng Bo, Liu Jiaying. 2014. Asian Gold Belt in western Tianshan and its dynamic setting, metallogenic control and exploration. Earth Science Frontiers, 21(5): 128~155 (in Chinese with English abstract).

    • Xue Chunji, Zhao Xiaobo, Zhang Guozhen, Mo Xuanxue, Gu Xuexiang, Dong Lianhui, Zhao Shuming, Mi Dengjiang, Bakhtiar N, Nikolay P, Li Zhidan, Wang Xinli, Zu Bo, Yaxiaer Y, Feng Bo. 2015. Metallogenic environments, ore-forming types and prospecting potential of Au-Cu-Zn-Pb resources in western Tianshan Mountains. Geology in China, 42 (3): 381~410 (in Chinese with English abstract).

    • Yakubchuk A. 2002. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific orogenic collages: Similarities and diversity of structural patterns and metallogenic zoning. Geological Society of London Special Publication, 206: 273~297.

    • Yang Dongchao, Bai Desheng, Cao Qiong. 2013. The BIF gold mine exploration criteria in greenstone belt of Archaean, Tazania: Taking Maheiga gold mine for example. Gold Science and Technology, 21(4): 1~8 (in Chinese with English abstract).

    • Yang Fuquan, Mao Jingwen, Wang Yitian, Zhao Caisheng, Ye Huishou, Chen Wen. 2006. Chronology and geochemical characteristics of helium, argon, carbon and oxygen isotope in fluid inclusion of the Sawayaerdun gold deposit, Xinjiang, northwestern China and their significance. Geological Review, 52(3): 341~351 (in Chinese with English abstract).

    • Yang Fuquan, Mao Jingwen, Wang Yitian, Zhao Caisheng, Zhang Yan, Liu Yaling. 2007. Major types, characteristics and metallogenesis of gold deposits in southwest Tianshan Mountains, Xinjiang. Mineral Deposits, 26(4): 361~379 (in Chinese with English abstract).

    • Yang Liqiang, Deng Jun, Wang Zhongliang, Zhang Liang, Guo Linnan, Song Mingchun, Zheng Xiaoli. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447~2467 (in Chinese with English abstract).

    • Yang Yuqing, Qi Yuhai. 2008. Discussion on geological characteristics and ore prospecting direction of deposit concentrated region in Jiapigou gold mine. Gold, 29(2): 14~18 (in Chinese with English abstract).

    • Zeng Qingdong, Chen Renyi, Yang Jinhui, Sun Guotao, Yu Bing, Wang Yongbin, Chen Peiwen. 2019. The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province. Acta Petrologica Sinica, 35(7): 1939~1963 (in Chinese with English abstract).

    • Zhai Mingguo, Yang Jinhui, Liu Wenjun. 2001. Jiaodong large gold deposits concentration area and large-scale mineralization. Science in China (Series D), 31(7): 545~553 (in Chinese).

    • Zhang Guozhen, Xue Chunji, Chi Guoxiang, Liu Jiaying, Zhao Xiaobo, Zu Bo, Zhao Yun. 2017. Multiple-stage mineralization in the Sawayaerdun orogenic gold deposit, western Tianshan, Xinjiang: Constraints from paragenesis, EMPA analyses, Re-Os dating of pyrite (arsenopyrite) and U-Pb dating of zircon from the host rocks. Ore Geology Reviews, 81: 326~341.

    • Zhang Jianguo, Shao Yongjun, Wang Cheng, Liu Zhongfa, Xiong Yiqu. 2018. Characteristics of gold-bearing minerals in Xiajinbao gold deposit of Hebei and their metallogenic indicating significance. Journal of Central South University (Science and Technology), 49(4): 901~909 (in Chinese with English abstract).

    • Zhang Qi, Xue Chunji, Zhao Xiaobo, Feng Bo, Xing Hao, Mo Xuanxue, Zhao Shuming, Yang Weizhong, Xing Ling. 2015. Geology, geochemistry and metallogenic epoch of the Katebasu large-sized gold deposit, western Tianshan Mountains, Xinjiang. Geology in China, 42(3): 411~437 (in Chinese with English abstract).

    • Zhang Xiaotian. 2018. Research on geology, geochemistry and metallogenesis of the gold deposits of the Jiapigou ore field in the continental margin of Northeast China. Doctoral dissertation of Jilin University (in Chinese with English abstract).

    • Zheng Minghua, Zhang Shouting. 2001. Geological Background and Metallogenic Prediction of Muruntau-Type Gold Deposits in Southwest Tianshan Mountains. Beijing: Geological Publishing House (in Chinese).

    • Zhu Rixiang, Fan Hongrui, Li Jianwei, Meng Qingren, Li Shengrong, Zeng Qingdong. 2015. Decratonic gold deposits. Science China: Earth Sciences, 45(8): 1153~1168 (in Chinese).

    • Zou Jixing, Li Fuping, Zhang Shuanghe, Zhao Zhenchun, Chen Shuqiang. 1999. Geologcial characteristics and gold deposits in Niuxinshan granite, Kuancheng, Hebei Province. Geological Review, 45(S): 528~533 (in Chinese with English abstract).

    • 陈喜峰, 彭润民, 刘家军, 王建平, 王小龙. 2010. 吉尔吉斯斯坦库姆托尔超大型金矿床地质特征. 黄金, (12): 15~19.

    • 邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 2020. 再论三江特提斯复合成矿系统. 地学前缘, 27(2): 106~136.

    • 邓腾, 丁正鹏, 许德如. 2021. 浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用. 地球科学进展, 36(10): 1077~1091.

    • 范宏瑞, 蓝廷广, 李兴辉, Santosh M, 杨奎锋, 胡芳芳, 冯凯, 胡换龙, 彭红卫, 张永文. 2021. 胶东金成矿系统的末端效应. 中国科学: 地球科学, 51(9): 1504~1523.

    • 何胜飞, 孙凯, 刘晓阳, 王杰, 任军平. 2015. 津巴布韦太古宙花岗-绿岩型金矿类型与资源潜力. 地质找矿论丛, 30(增刊): 82~92.

    • 胡瑞忠, 陈伟, 毕献武, 付山岭, 尹润生, 肖加飞. 2020. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约. 地学前缘, 27(2): 137~150.

    • 贾三石, 王恩德, 付建飞, 门业凯, 吴明刚. 2014. 冀东峪耳崖金矿床成矿地质特征、矿床地球化学及其成因机制探析. 吉林大学学报(地球科学版), 44(3): 774~785.

    • 姜峰贤. 2006. 山西五台县东腰庄金矿成矿地质特征及矿床成因. 地质与勘探, 42(3): 24~29.

    • 李彬, 许德如, 柏道远, 陈旭, 邹少浩, 代俊峰, 马文, 曾广乾. 2024. 湘西沃溪金锑钨矿床燕山期幕式成矿作用: 来自原位白钨矿U-Pb定年与黄铁矿元素-同位素的约束. 岩石学报, 40(1): 215~240.

    • 刘桂香. 2012. 辽宁省清原县南龙王庙金矿地质特征与成矿. 地质与资源, 21(5): 425~431.

    • 刘家军, 刘冲昊, 王建平, 朱赖民, 张静, 翟德高, 王银宏, 柳振江, 张方方. 2019. 西秦岭地区金矿类型及其成矿作用. 地学前缘, 26(5): 1~16.

    • 刘建中, 邓一明, 刘川勤, 张兴春, 夏勇. 2006. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式. 中国地质, 33(1): 169~177.

    • 罗迪柯, 陈靖, 姚仲友, 匡福祥, 姚春彦. 2017. 南美洲圭亚那地盾北部绿岩带地质特征、典型金矿床及金成矿作用. 地质通报, 36(12): 2197~2207.

    • 吕古贤, 郭涛, 舒斌, 申玉科, 刘杜鹃, 周国发. 2006. 胶东金矿集中区构造控岩控矿地质特征研究. 地球学报, 27(5): 471~478.

    • 邱小平, 刘世川, 魏密. 2021. 黔西南水银洞爆破角砾岩筒与金元素超常富集. 地球学报, 42(6): 849~858.

    • 沈保丰, 李上森, 骆辉. 1988. 前寒武纪条带状铁建造(BIF)中金的成矿作用. 国外前寒武纪地质, 1: 1~34.

    • 宋明春, 杨立强, 范宏瑞, 于学峰, 丁正江, 张永文, 邱昆峰, 李杰, 张良, 王斌, 李世勇. 2022. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展. 地质通报, 41(6): 903~935.

    • 王京彬, 王莉娟, 王玉往, 朱和平. 2006. 新疆东准噶尔野马泉构造蚀变脉岩型金矿床. 岩石学报, 22(9): 2349~2359.

    • 王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23~31.

    • 王庆飞, 邓军, 赵鹤森, 杨林, 马麒镒, 李华健. 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155~2186.

    • 王玉往, 解洪晶, 李德东, 石煜, 刘福兴, 孙国强, 孙启明, 周国超. 2017. 矿集区找矿预测研究——以辽东青城子铅锌-金-银矿集区为例. 矿床地质, 36(1): 1~24.

    • 王自力, 牛树银, 陈超, 孙爱群, 王宝德, 许传诗. 2008. 冀东峪耳崖金矿成矿物质来源探讨. 地质找矿论丛: 23(1): 36~42.

    • 邢树文. 1992. 冀东金厂峪金矿成矿模式. 吉林地质, 3: 29~38.

    • 徐九华, 何知礼, 申世亮, 杨振林, 杜加锋. 1993. 小秦岭文峪-东闯金矿床稳定同位素地球化学及矿液矿质来源. 地质找矿论丛, 8(2): 87~100.

    • 薛春纪, 赵晓波, 莫宣学, 董连慧, 顾雪祥, Bakhtiar N, Nikolay P, 张招崇, 王新利, 俎波, 张国震, 冯博, 刘家瑛.2014. 西天山“亚洲金腰带”及其动力学背景和成矿控制与找矿.地学前缘, 21(5): 129~155.

    • 薛春纪, 赵晓波, 张国震, 莫宣学, 顾雪祥, 董连慧, 赵树铭, 米登江, Bakhtiar N, Nikolay P, 李志丹, 王新利, 俎波, 亚夏尔亚力坤, 冯博. 2015. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力. 中国地质, 42(3): 381~410.

    • 杨东潮, 白德胜, 曹琼. 2013. 坦桑尼亚太古宙绿岩带中BIF型金矿床的勘查标志——以Maheiga金矿床为例. 黄金科学技术, 21(4): 1~8.

    • 杨富全, 毛景文, 王义天, 赵财胜, 叶会寿, 陈文. 2006. 新疆萨瓦亚尔顿金矿床年代学、氦氩碳氧同位素特征及其地质意义. 地质论评, 52(3): 341~351.

    • 杨富全, 毛景文, 王义天, 赵财胜, 张岩, 刘亚玲. 2007. 新疆西南天山金矿床主要类型、特征及成矿作用. 矿床地质, 26(4): 361~379.

    • 杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447~2467.

    • 杨玉清, 祁玉海. 2008. 夹皮沟金矿集中区矿床地质特征及找矿方向探讨. 黄金, 29(2): 14~18.

    • 曾庆栋, 陈仁义, 杨进辉, 孙国涛, 俞炳, 王永彬, 陈沛文. 2019. 辽东地区金矿床类型、成矿特征及找矿潜力. 岩石学报, 35(7): 1939~1963.

    • 翟明国, 杨进辉, 刘文军. 2001. 胶东大型黄金矿集区及大规模成矿作用. 中国科学(D辑), 31(7): 545~553.

    • 张建国, 邵拥军, 汪程, 刘忠法, 熊伊曲. 2018. 河北平泉下金宝金矿床载金矿物特征及其成矿指示意义. 中南大学学报(自然科学版), 49(4): 901~909.

    • 张祺, 薛春纪, 赵晓波, 冯博, 邢浩, 莫宣学, 赵树铭, 杨维忠, 邢令.2015. 新疆西天山卡特巴阿苏大型金矿床地质地球化学和成岩成矿年代.中国地质, 42(3): 411~437.

    • 张笑天. 2018. 中国东北部陆缘夹皮沟矿田金矿床地质、地球化学特征与成矿作用研究. 吉林大学博士论文.

    • 郑明华, 张寿庭. 2001. 西南天山穆龙套型金矿床产出地质背景与成矿预测. 北京: 地质出版社, 131P.

    • 朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学(地球科学), 45(8): 1153~1168.

    • 邹继兴, 李富平, 张双河, 赵振春, 陈树强. 1999. 牛心山花岗岩岩体特征及其与成矿的关系. 地质论评, 45(增刊): 528~533.

  • 参考文献

    • Arehart G B, Ressel M, Carne R, Muntean J. 2013. A comparison of Carlin-type deposits in Nevada and Yukon. In: Colpron M, Bissig T, Rusk B G, Thompson J F H, eds. Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Special Publications of the Society of Economic Geologists, 389~401.

    • Bakke A A. 1995. The Fort Knox “porphyry” gold deposit: Structurally controlled stockwork and shear quartz vein, sulfide- poor mineralization hosted by a Late Cretaceous pluton, east-central Alaska. Porphyry deposits of the northwestern Cordillera of North America. In: Schroeter T G, ed. Canadian Institute of Mining and Metallurgy, 46: 795~802.

    • Bakker R J. 2003. Package Fluids 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1~3): 3~23.

    • Bateman R, Ayer J A, Dube B. 2008. The Timmins-Porcupine gold camp, Ontario: Anatomy of an Archean greenstone belt and ontogeny of gold mineralization. Economic Geology, 103(6): 1285~1308.

    • Boulter C A, Fotios M G, Phillips G N. 1987. The Golden Mile, Kalgoorlie: A giant gold deposit localized in ductile shear zones by structurally induced infiltration of an auriferous metamorphic fluid. Economic Geology, 82(7): 1661~1678.

    • Chen Xifeng, Peng Runmin, Liu Jiajun, Wang Jianping, Wang Xiaolong. 2010. Geological characteristics of Kumtor super large gold deposit in Kyrgyzstan. Gold, 12: 15~19 (in Chinese with English abstract).

    • Davis B K, Blewett R S, Squire R, Champion D C, Henson P A. 2010. Granite-cored domes and gold mineralisation: Architectural and geodynamic controls around the Archaean Scotia-Kanowna dome, Kalgoorlie terrane, western Australia. Precambrian Research, 183(2): 316~337.

    • Deng Jun, Liu Xuefei, Wang Qingfei, Pan Ruiguang. 2015. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geology Reviews, 65: 674~686.

    • Deng Jun, Wang Qingfei, Chen Fuchuan, Li Gongjian, Yang Liqiang, Wang Changming, Zhang Jing, Sun Xiang, Shu Qihai, Gao Xue, Gao Liang, Liu Xuefei, Zheng Yuanchuan, Qiu Kunfeng, Xue Shengchao, Xu Jiahao. 2020. Further discussion on the Sanjiang Tethyan composite metallogenic system. Earth Science Frontiers, 27(2): 106~136 (in Chinese with English abstract).

    • Deng Teng, Ding Zhengpeng, Xu Deru. 2021. Review of origin and role of carbonaceous black shale in the formation of orogenic gold deposit. Advances in Earth Science, 36(10): 1077~1091 (in Chinese with English abstract).

    • Dennes S. 2021. Deposit scale to micro-scale multi-disciplinary study of the Kanowna Belle deposit: A systematic review of an Archean orogenic gold deposit. Thesis for the degree of Doctor of Philosophy, The University of Western Australia.

    • Fan Hongrui, Lan Tingguang, Li Xinghui, Santosh M, Yang Kuifeng, Hu Fangfang, Feng Kai, Hu Huanlong, Peng Hongwei, Zhang Yongwen. 2021. Conditions and processes leading to large-scale gold deposition in the Jiaodong Province, eastern China. Science China, Earth Sciences, 51(9): 1504~1523.

    • Fernández-Catuxo J. 1998. The Salave gold prospect revisited: New ideas for an old deposit. In: Arias D, Martin-Izard A, Paniagua A, Eds. Gold Exploration and Mining in NW Spain, Facultad de Geologia, Universidad de Oviedo, Oviedo, 82~85.

    • Frimmel H E. 2008. Earth's continental crustal gold endowment. Earth and Planetary Science Letters, 267(1~2): 45~55.

    • Gapais D, Alimoenadi G, Balraadjsing N. 2021. The Rosebel gold mining district (Trasn-Amazonian belt, Suriname), a new structural framework. Earth Sceince Bulletin, 192: 32~40.

    • Garofalo P S. 2004. Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit-Abitibi greenstone belt-Canada). Part I. Patterns of hydrothermal alteration haloes. European Journal of Mineralogy, 16(5): 753~760.

    • Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18(1): 1~75.

    • Goldfarb R J, Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geoscience Frontiers, 5(2): 139~153.

    • Goldfarb R J, Groves D I. 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233: 2~26.

    • Goldfarb R J, Pitcairn I. 2023. Orogenic gold: Is a genetic association with magmatism realistic? Mineralium Deposita, 58(1): 5~35.

    • Groves D I. 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn block, western Australia. Mineralium Deposita, 28(6): 366~374.

    • Groves D I. 2003. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98(1): 1~29.

    • Groves D I, Phillips G N, Ho S E. 1984. Controls on distribution of Archaean hydrothermal gold deposits in Western Australia. In: Foster RP, ed. Gold 82: The Geology, Geochemistry and Genesis of Gold Deposits. A. A. Balkema, Rotterdam, 689~712.

    • Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1): 7~27.

    • Groves D I, Santosh M. 2016. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geoscience Frontiers, 7(3): 409~417.

    • Groves D I, Santosh M, Deng Jun, Wang Qingfei, Yang Liqiang, Zhang Liang. 2020. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55(2): 275~292.

    • Hart C J R. 2005. Classifying, distinguishing and exploring for intrusion-related gold systems. The Gangue MDD Newsletter, 87(1): 4~9.

    • Hart C J R, Baker T, Burke M. 2000. New exploration concepts for country-rock-hosted, intrusion-related gold systems: Tintina gold belt in Yukon. In: Tucker T L, Smith M T, eds. The Tintina gold belt: Concepts, exploration and discoveries. British Columbia and Yukon Chamber of Mines Special Volume, 2: 145~172.

    • He Shengfei, Sun Kai, Liu Xiaoyang, Wang Jie, Ren Junping. 2015. Gold mineralization types and resources potential of the Archaean granitiod-greenstone belts in Zimbabwe. Contributions to Geology and Mineral Resources Research, 30(S1): 82~92 (in Chinese with English abstract).

    • Helt K M, Williams-Jones A E, Clark J R, Wing B A, Wares R P. 2014. Constraints on the genesis of the Archean oxidized, intrusion-related Canadian Malartic gold deposit, Quebec, Canada. Economic Geology, 109(3): 713~735.

    • Henry C D, John D A, Leonardson R W, McIntosh W C, Heizler M T, Colgan J P, Watts K E. 2023. Timing of rhyolite intrusion and carlin-type gold mineralization at the Cortez Hills carlin-type deposit, Nevada, USA. Economic Geology, 118(1): 57~91.

    • Hu Ruizhong, Fu Shanling, Huang Yong, Zhou Meifu, Fu Shaohong, Zhao Chenghai, Wang Yuejun, Bi Xianwu, Xiao Jiafei. 2017. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. Journal of Asian Earth Sciences, 137: 9~34.

    • Hu Ruizhong, Chen Wei, Bi Xianwu, Fu Shanling, Yin Runsheng, Xiao Jiafei. 2020. Control of the Precambrian basement on the formation of the Mesozoic large scale low-temperature mineralization in the Yangtze Craton. Earth Scicence Frontiers, 27(2): 137~150 (in Chinese with English abstract).

    • Jia Shanshi, Wang Ende, Fu Jianfei, Men Yekai, Wu Minggang. 2014. Geology, geochemistry and metallogenic mechanism of Yuerya gold deposit in the eastern Hebei Province. Journal of Jilin University: Earth Science Edition, 44(3): 774~785 (in Chinese with English abstract).

    • Jiang Fengxian. 2006. Metallogenic geological characteristics and genesis of Dongyaozhuang gold deposit in Wutai, Shanxi. Geology and Prospecting, 42(3): 24~29 (in Chinese with English abstract).

    • Kempe U, Belyatsky B, Krymsky R, Kremenetsky A, Ivanov P. 2001. Sm-Nd and Sr isotope systematics of scheelite from the giant Au (-W) deposit Muruntau (Uzbekistan): Implications for the age and sources of Au mineralization. Mineralium Deposita, 36(5): 379~392.

    • Lang J R, Baker T, Hart C J R, Mortensen J K. 2000. An exploration model for intrusion related gold systems. Society of Economic Geology Newsletter, 40(1): 6~15.

    • Lang J R, Baker T. 2001. Intrusion-related gold systems: The present level of understanding. Mineralium Deposita, 36(6): 477~489.

    • Large R R, Bull S W, Maslennikov V V. 2011. A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Economic Geology, 106(3): 331~358.

    • Li Bin, Xu Deru, Bai Daoyuan, Chen Xu, Zou Shaohao, Dai Junfeng, Ma Wen, Zeng Guangqian. 2024. Episodic mineralization at Yanshannian in the Woxi Au-Sb-W deposit, western Hunan, South China: Constraints from in-situ scheelite LA-ICP-MS U-Pb geochronology and element-isotope of pryrite. Acta Petrologica Sinica, 40(1): 215~240 (in Chinese with English abstract).

    • Liu Guixiang. 2012. Geology and metallogenesis of the Nanlongwangmiao gold deposit in Qingyuan, Liaoning Province. Geology and Resources, 21(5): 425~431 (in Chinese with English abstract).

    • Liu Jiajun, Liu Chonghao, Wang Jianping, Zhu Laimin, Zhang Jing, Zhai Degao, Wang Yinhong, Liu Zhenjiang, Zhang Fangfang. 2019. Classification and mineralization of the gold deposits in the western Qinling region, China. Earth Science Frontiers, 26(5): 1~16 (in Chinese with English abstract).

    • Liu Jianzhong, Deng Yiming, Liu Chuanqin, Zhang Xingchun, Xia Yong. 2006. Metallogenic conditions and model of the super-large Shuiyingdong stratabound gold deposit in Zhenfeng County, Guizhou Province. Geology in China, 33(1): 169~177 (in Chinese with English abstract).

    • Lobato L M, Santos J O S, McNaughton N J, Fletcher I R, Noce C M. 2007. U-Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geology Reviews, 32(3~4): 674~680.

    • Luo Dike, Chen Jing, Yao Zhongyou, Kuang Fuxiang, Yao Chunyan. 2017. Geological features of greenstone belt, typical gold deposits and gold mineralization in northern Guiana shield, South America. Geological Bulletin of China, 36(12): 2197~2207 (in Chinese with English abstract).

    • Lv Guxian, Guo Tao, Shu Bin, Shen Yuke, Liu Dujuan, Zhou Guofa. 2006. Geological characteristics of rock-controlling and ore-controlling structures in the Jiaodong gold ore concentration area. Acta Geoscientica Sinica, 27(5): 471~478 (in Chinese with English abstract).

    • Mao Jingwen, Konopelko D, Seltmann R, Lehmann B, Chen Wen, Wang Yitian, Eklund O, Usubaliev T. 2004. Post collisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Economic Geology, 99(8): 1771~1780.

    • Masurel Q, The baud N, Miller J, Ulrich S, Hein K A A, Cameron G, Béziat D, Bruguier O, Davis J A. 2017. Sadiola Hill: A world-class carbonate-hosted gold deposit in Mali, West Africa. Economic Geology, 112(1): 23~47.

    • McCuaig T C, Kerrich R, Groves D I, Archer N. 1993. The nature and dimensions of regional and local gold-related hydrothermal alteration in tholeiitic metabasalts in the Norseman goldfields: The missing link in a crustal continuum of gold deposits? Mineralium Deposita, 28(6): 420~435.

    • Mehrabi B, Yardley B W D, Cann J R. 1999. Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran. Mineralium Deposita, 34(7): 673~696.

    • Moravek P. 1995. The Mokrsko gold deposit. In: Moravek P, ed. Gold Deposits of the Central and SW Part of the Bohemian Massif. 3rd Biennial SGA Meeting, Prague, Excursion Guide, 33~61.

    • Morelli R M, Bell C C, Creaser R A, Simonetti A. 2010. Constraints on the genesis of gold mineralization at the Homestake gold deposit, Black Hills, South Dakota from rhenium-osmium sulfide geochronology. Mineralium Deposita, 45(5): 461~480.

    • Mueller A G. 1992. Petrogenesis of amphibole-biotite-calcite-plagioclase alteration and laminated gold-silver quartz veins in four Archean shear zones of the Norseman district, western Australia. Canadian Journal of Earth Sciences, 29(3): 388~417.

    • Nesbitt B E. 1991. Phanerozoic gold deposits in tectonically active continental margins. In: Gold Metallogeny and Exploration. Boston: Springer, 104~132.

    • Neumayr P, Walshe J, Hagemann S, Petersen K, Roache A, Frikken P, Horn L, Halley S. 2008. Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, western Australia: Vectors to high-grade ore bodies in Archaean gold deposits? Mineralium Deposita, 43(3): 363~371.

    • Newberry R J. 2000. Mineral deposits and associated Mesozoic and Tertiary igneous rocks within the Interior Alaska and adjacent Yukon portions of the ‘Tintina gold belt’: A progress report. In: Tucker T L, Smith M T, eds. The Tintina Gold Belt: Concepts, Exploration and Discoveries. British Columbia and Yukon Chamber of Mines Special Volume, 2: 59~88.

    • Newberry R J, McCoy D T, Brew D A. 1995. Plutonic-hosted gold ores in Alaska: Igneous vs. metamorphic origins. Resource Geology Special Issue, 18: 57~100.

    • Pan Yuanming, Fleet M E. 1995. The late Archean Hemlo gold deposit, Ontario, Canada: A review and synthesis. Ore Geology Reviews, 9(6): 455~488.

    • Peck D L. 1991. The Homestake gold mine, an Early Proterozoic iron-formation-hosted gold deposit, Lawrence County, South Dakota. US. Geological Survey Bulletin, 1~76.

    • Phillips G N, Powell R. 2010. Formation of gold deposits: A metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6): 689~718.

    • Pitcairn I K, Leventis N, Beaudoin G, Faure S, Guilmette C, Dubé. 2021. A metasedimentary source of gold in Archean orogenic gold deposits. Geology, 49: 862~866.

    • Qiu Xiaoping, Liu Shichuan, Wei Mi. 2021. Fluid explosion breccia pipe and gold supernormal enrichment in Shuiyindong gold ore deposit, Southwest Guizhou Province. Acta Geoscientica Sinica, 42(6): 849~858 (in Chinese with English abstract).

    • Radtke A S, Rye R O, Dickson F W. 1980. Geology and stable isotope studies of the Carlin gold deposit, Nevada. Economic Geology, 75(5): 641~672.

    • Robert F. 2004. Geologic footprints of gold systems. In: Muhling J, ed. SEG 2004: Predictive Mineral Discovery Under Cover, Extended Abstracts: Centre for Global Metallogeny. The University of Western Australia Publication, 33: 97~101.

    • Robert F, Brown A C. 1986. Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec; Part I, Geologic relations and formation of the vein system. Economic Geology, 81(3): 578~592.

    • Robert F, Sheahan P A, Green S B. 1991. Greenstone gold and crustal evolution. Geol. Assoc. Canada, NUNA Conference Volume, 13~31.

    • Robert F, Poulsen H K, Cassidy K F, Hodgson J C. 2005. Gold metallogeny of the superior and Yilgarn cratons. In: Economic Geology 100th Anniversary, 1001~1033.

    • Robert F, Brommecker R, Bourne B T, Dobak P J, McEwan C J, Rowe R R, Zhou X. 2007. Models and exploration methods for major gold deposit types. In: Milkereit B, ed. Proceedings of Exploration 2007: 5th Decennial International Conference on Mineral Exploration. Toronto, Canada: DMEC, 691~711.

    • Rowins S M. 2000. Reduced porphyry copper-gold deposits: A new variation on an old theme. Geology, 28(6): 491.

    • Sanislav I V, Brayshaw M, Kolling S L, Dirks P H G M, Cook Y A, Blenkinsop T G. 2017. The structural history and mineralization controls of the world-class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania. Mineralium Deposita, 52(2): 257~279.

    • Shen Baofeng, Li Shangshen, Luo Hui. 1988. Mineralization of gold in Precambrian strip iron formation (BIF). Precambrian Geology Abroad, 1: 1~34 (in Chinese).

    • Shi Chenglong, Ding Xiaozhong, Liu Yanxue, Hu Jianzhong, Song Yang. 2019. Geological significance of new zircon U-Pb geochronology and geochemistry: Niuxinshan intrusive complex, northern North China Craton. PLOS ONE, 14(3): e0213156.

    • Sillitoe R H. 2020. Gold deposit types: An overview. Society of Economic Geologists, Inc. SEG Special Publications, (23): 1~28.

    • Sillitoe R H, Bonham H F. 1990. Sediment-hosted gold deposits: Distal products of magmatic-hydrothermal systems. Geology, 18: 157~161.

    • Song Mingchun, Yang Liqiang, Fan Hongrui, Yu Xuefeng, Ding Zhengjiang, Zhang Yongwen, Qiu Kunfeng, Li Jie, Zhang Liang, Wang Bin, Li Shiyong. 2022. Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for Exploration Breakthrough Strategic Action. Geological Bulletin of China, 41(6): 903~935 (in Chinese with English abstract).

    • Southam G, SaundersJ A. 2005. The geomicrobiology of ore deposits. Economic Geology, 100(6): 1067~1084.

    • Spiridinov E M. 1996. Granitic rocks and gold mineralization of North Kazakhstan. In: Shatov V, Seltmann R, Kremenetsky A, Lehmann B, Popov V, Ermolov P, eds. Granite-related Ore Deposits of Central Kazakhstan and Adjacent Areas. St Petersburg: Glagol Publishing House, 197~217.

    • Steadman J A, Large R R, Meffre S, Olin P H, Danyushevsky L V, Gregory D D, Belousov I, Lounejeva E, Ireland T R, Holden P. 2015. Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile deposit, Kalgoorlie, western Australia. Economic Geology, 110(5): 1157~1191.

    • Stromberg J M, Barr E, Van Loon L L, Gordon R A, Banerjee N R. 2019. Fingerprinting multiple gold mineralization events at the Dome Mine in Timmins, Ontario, Canada: Trace element and gold content of pyrite. Ore Geology Reviews, 104: 603~619.

    • Tang Li, Santosh M. 2018. Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: An overview from the central segment of the Trans-North China Orogen. Earth-Science Reviews, 182: 1~27.

    • Thomas H V, Large R R, Bull S W, Maslennikov V, Berry R F, Fraser R, Froud S, Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Economic Geology, 106(1): 1~31.

    • Thompson J F H, Newberry R J. 2000. Gold deposits related to reduced granitic intrusions. In Society of Economic Geologists Reviews in Economic Geology, 13: 377~400.

    • Tomkins A G. 2010. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochimica et Cosmochimica Acta, 74(11): 3246~3259.

    • Tomkins A G, Grundy C. 2009. Upper temperature limits of orogenic gold deposit formation: Constraints from the granulite-hosted Griffin's Find deposit, Yilgarn craton. Economic Geology, 104(5): 669~685.

    • Turner S J, Flindell P A, Hendri D, Hardjana I, Lauricella P F, Lindsay R P, Marpaung B, White G P. 1994. Sediment-hosted gold mineralisation in the Ratatotok district, North Sulawesi, Indonesia. Journal of Geochemical Exploration, 50(1~3): 317~336.

    • Voicu G, Bardoux M, Jébrak M, Crépeau R. 1999. Structural, mineralogical and geochemical studies of the Paleoproterozoic Omai gold deposit, Guyana. Economic Geology, 94(8): 1277~1303.

    • Wall V J. 2004. Muruntau, Uzbekistan. Preliminary Report on CERCAMS Research Project, Spring Hill, Australia, 69.

    • Wall V J, Graupner T, Yantsen V, Seltmann R, Hall G C. 2004. Muruntau, Uzbekistan: A giant thermal aureole gold (TAG) system. In: Muhling et al. , eds. SEG 2004 Predictive Mineral Discovery Under Cover Extended Abstracts, 199~203.

    • Wang Cheng, Shao Yongjun, Huang Kuanxin, Zhou Haodi, Zhang Jianguo, Liu Zhongfa, Liu Qingquan. 2018. Ore-forming processes at the Xiajinbao gold deposit in eastern Hebei Province: Constraints from EPMA and LA-ICPMS analysis. Minerals, 8(9): 388.

    • Wang Jingbin, Wang Lijuan, Wang Yuwang, Zhu Heping. 2006. Yemaquan gold deposit: A structurally-controlled-altered-dyke type in eastern Junggar, Xinjiang. Acta Petrologica Sinica, 22(9): 2349~2359 (in Chinese with English abstract).

    • Wang Jingbin, Xu Xin. 2006. Post-collisional tectonic evolution and metallogenesis in northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23~31 (in Chinese with English abstract).

    • Wang Qingfei, Deng Jun, Zhao Hesen, Yang Lin, Ma Qiyi, Li Huajian. 2019. Reiew on orogenic gold deposits. Earth Science, 44(6): 2155~2186 (in Chinese with English abstract).

    • Wang Yuwang, Xie Hongjing, Li Dedong, Shi Yu, Liu Fuxing, Sun Guoqiang, Sun Qiming, Zhou Guochao. 2017. Prospecting prediction of ore concentration area exemplified by Qingchengzi Pb-Zn-Au-Ag ore concentration area, eastern Liaoning Province. Mineral Deposits, 36(1): 1~24 (in Chinese with English abstract).

    • Wang Zili, Niu Shuyin, Chen Chao, Sun Aiqun, Wang Baode, Xu Chuanshi. 2008. Discussion on ore-forming material sources of Yuerya gold deposit in the East Hebei Province. Contributions to Geology and Mineral Resources Research, 23(1): 36~42 (in Chinese with English abstract).

    • Wilde A R, Layer P, Mernagh T, Foster J. 2001. The giant Muruntau gold deposit: Geologic, geochronologic, and fluid inclusion constraints on ore genesis. Economic Geology, 96(3): 633~644.

    • Wu Yafei, Evans K, Fisher L A, Zhou Meifu, Hu Siyu, Fougerouse D, Large R R, Li Jianwei. 2020. Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system. Geochimica et Cosmochimica Acta, 276: 345~362.

    • Xing Shuwen. 1992. The metallogenic model of the Jinchangyu gold deposit East Hebei. Jilin Geology, 3: 29~38 (in Chinese with English abstract).

    • Xu Jiuhua, He Zhili, Shen Shiliang, Yang Zhenlin, Du Jiafeng. 1993. Stable isotope geology of the Dongchuang and the Wenyu gold deposits and the source of ore-forming fluid and materials. Contributions to Geology and Mineral Resources Research, 8(2): 87~100 (in Chinese with English abstract).

    • Xue Chunji, Zhao Xiaobo, Mo Xuanxue, Dong Lianhui, Gu Xuexiang, Nurtaev B, Pak N, Zhang Zhaochong, Wang Xinli, Zu Bo, Zhang Guozhen, Feng Bo, Liu Jiaying. 2014. Asian Gold Belt in western Tianshan and its dynamic setting, metallogenic control and exploration. Earth Science Frontiers, 21(5): 128~155 (in Chinese with English abstract).

    • Xue Chunji, Zhao Xiaobo, Zhang Guozhen, Mo Xuanxue, Gu Xuexiang, Dong Lianhui, Zhao Shuming, Mi Dengjiang, Bakhtiar N, Nikolay P, Li Zhidan, Wang Xinli, Zu Bo, Yaxiaer Y, Feng Bo. 2015. Metallogenic environments, ore-forming types and prospecting potential of Au-Cu-Zn-Pb resources in western Tianshan Mountains. Geology in China, 42 (3): 381~410 (in Chinese with English abstract).

    • Yakubchuk A. 2002. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific orogenic collages: Similarities and diversity of structural patterns and metallogenic zoning. Geological Society of London Special Publication, 206: 273~297.

    • Yang Dongchao, Bai Desheng, Cao Qiong. 2013. The BIF gold mine exploration criteria in greenstone belt of Archaean, Tazania: Taking Maheiga gold mine for example. Gold Science and Technology, 21(4): 1~8 (in Chinese with English abstract).

    • Yang Fuquan, Mao Jingwen, Wang Yitian, Zhao Caisheng, Ye Huishou, Chen Wen. 2006. Chronology and geochemical characteristics of helium, argon, carbon and oxygen isotope in fluid inclusion of the Sawayaerdun gold deposit, Xinjiang, northwestern China and their significance. Geological Review, 52(3): 341~351 (in Chinese with English abstract).

    • Yang Fuquan, Mao Jingwen, Wang Yitian, Zhao Caisheng, Zhang Yan, Liu Yaling. 2007. Major types, characteristics and metallogenesis of gold deposits in southwest Tianshan Mountains, Xinjiang. Mineral Deposits, 26(4): 361~379 (in Chinese with English abstract).

    • Yang Liqiang, Deng Jun, Wang Zhongliang, Zhang Liang, Guo Linnan, Song Mingchun, Zheng Xiaoli. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447~2467 (in Chinese with English abstract).

    • Yang Yuqing, Qi Yuhai. 2008. Discussion on geological characteristics and ore prospecting direction of deposit concentrated region in Jiapigou gold mine. Gold, 29(2): 14~18 (in Chinese with English abstract).

    • Zeng Qingdong, Chen Renyi, Yang Jinhui, Sun Guotao, Yu Bing, Wang Yongbin, Chen Peiwen. 2019. The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province. Acta Petrologica Sinica, 35(7): 1939~1963 (in Chinese with English abstract).

    • Zhai Mingguo, Yang Jinhui, Liu Wenjun. 2001. Jiaodong large gold deposits concentration area and large-scale mineralization. Science in China (Series D), 31(7): 545~553 (in Chinese).

    • Zhang Guozhen, Xue Chunji, Chi Guoxiang, Liu Jiaying, Zhao Xiaobo, Zu Bo, Zhao Yun. 2017. Multiple-stage mineralization in the Sawayaerdun orogenic gold deposit, western Tianshan, Xinjiang: Constraints from paragenesis, EMPA analyses, Re-Os dating of pyrite (arsenopyrite) and U-Pb dating of zircon from the host rocks. Ore Geology Reviews, 81: 326~341.

    • Zhang Jianguo, Shao Yongjun, Wang Cheng, Liu Zhongfa, Xiong Yiqu. 2018. Characteristics of gold-bearing minerals in Xiajinbao gold deposit of Hebei and their metallogenic indicating significance. Journal of Central South University (Science and Technology), 49(4): 901~909 (in Chinese with English abstract).

    • Zhang Qi, Xue Chunji, Zhao Xiaobo, Feng Bo, Xing Hao, Mo Xuanxue, Zhao Shuming, Yang Weizhong, Xing Ling. 2015. Geology, geochemistry and metallogenic epoch of the Katebasu large-sized gold deposit, western Tianshan Mountains, Xinjiang. Geology in China, 42(3): 411~437 (in Chinese with English abstract).

    • Zhang Xiaotian. 2018. Research on geology, geochemistry and metallogenesis of the gold deposits of the Jiapigou ore field in the continental margin of Northeast China. Doctoral dissertation of Jilin University (in Chinese with English abstract).

    • Zheng Minghua, Zhang Shouting. 2001. Geological Background and Metallogenic Prediction of Muruntau-Type Gold Deposits in Southwest Tianshan Mountains. Beijing: Geological Publishing House (in Chinese).

    • Zhu Rixiang, Fan Hongrui, Li Jianwei, Meng Qingren, Li Shengrong, Zeng Qingdong. 2015. Decratonic gold deposits. Science China: Earth Sciences, 45(8): 1153~1168 (in Chinese).

    • Zou Jixing, Li Fuping, Zhang Shuanghe, Zhao Zhenchun, Chen Shuqiang. 1999. Geologcial characteristics and gold deposits in Niuxinshan granite, Kuancheng, Hebei Province. Geological Review, 45(S): 528~533 (in Chinese with English abstract).

    • 陈喜峰, 彭润民, 刘家军, 王建平, 王小龙. 2010. 吉尔吉斯斯坦库姆托尔超大型金矿床地质特征. 黄金, (12): 15~19.

    • 邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 2020. 再论三江特提斯复合成矿系统. 地学前缘, 27(2): 106~136.

    • 邓腾, 丁正鹏, 许德如. 2021. 浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用. 地球科学进展, 36(10): 1077~1091.

    • 范宏瑞, 蓝廷广, 李兴辉, Santosh M, 杨奎锋, 胡芳芳, 冯凯, 胡换龙, 彭红卫, 张永文. 2021. 胶东金成矿系统的末端效应. 中国科学: 地球科学, 51(9): 1504~1523.

    • 何胜飞, 孙凯, 刘晓阳, 王杰, 任军平. 2015. 津巴布韦太古宙花岗-绿岩型金矿类型与资源潜力. 地质找矿论丛, 30(增刊): 82~92.

    • 胡瑞忠, 陈伟, 毕献武, 付山岭, 尹润生, 肖加飞. 2020. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约. 地学前缘, 27(2): 137~150.

    • 贾三石, 王恩德, 付建飞, 门业凯, 吴明刚. 2014. 冀东峪耳崖金矿床成矿地质特征、矿床地球化学及其成因机制探析. 吉林大学学报(地球科学版), 44(3): 774~785.

    • 姜峰贤. 2006. 山西五台县东腰庄金矿成矿地质特征及矿床成因. 地质与勘探, 42(3): 24~29.

    • 李彬, 许德如, 柏道远, 陈旭, 邹少浩, 代俊峰, 马文, 曾广乾. 2024. 湘西沃溪金锑钨矿床燕山期幕式成矿作用: 来自原位白钨矿U-Pb定年与黄铁矿元素-同位素的约束. 岩石学报, 40(1): 215~240.

    • 刘桂香. 2012. 辽宁省清原县南龙王庙金矿地质特征与成矿. 地质与资源, 21(5): 425~431.

    • 刘家军, 刘冲昊, 王建平, 朱赖民, 张静, 翟德高, 王银宏, 柳振江, 张方方. 2019. 西秦岭地区金矿类型及其成矿作用. 地学前缘, 26(5): 1~16.

    • 刘建中, 邓一明, 刘川勤, 张兴春, 夏勇. 2006. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式. 中国地质, 33(1): 169~177.

    • 罗迪柯, 陈靖, 姚仲友, 匡福祥, 姚春彦. 2017. 南美洲圭亚那地盾北部绿岩带地质特征、典型金矿床及金成矿作用. 地质通报, 36(12): 2197~2207.

    • 吕古贤, 郭涛, 舒斌, 申玉科, 刘杜鹃, 周国发. 2006. 胶东金矿集中区构造控岩控矿地质特征研究. 地球学报, 27(5): 471~478.

    • 邱小平, 刘世川, 魏密. 2021. 黔西南水银洞爆破角砾岩筒与金元素超常富集. 地球学报, 42(6): 849~858.

    • 沈保丰, 李上森, 骆辉. 1988. 前寒武纪条带状铁建造(BIF)中金的成矿作用. 国外前寒武纪地质, 1: 1~34.

    • 宋明春, 杨立强, 范宏瑞, 于学峰, 丁正江, 张永文, 邱昆峰, 李杰, 张良, 王斌, 李世勇. 2022. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展. 地质通报, 41(6): 903~935.

    • 王京彬, 王莉娟, 王玉往, 朱和平. 2006. 新疆东准噶尔野马泉构造蚀变脉岩型金矿床. 岩石学报, 22(9): 2349~2359.

    • 王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23~31.

    • 王庆飞, 邓军, 赵鹤森, 杨林, 马麒镒, 李华健. 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155~2186.

    • 王玉往, 解洪晶, 李德东, 石煜, 刘福兴, 孙国强, 孙启明, 周国超. 2017. 矿集区找矿预测研究——以辽东青城子铅锌-金-银矿集区为例. 矿床地质, 36(1): 1~24.

    • 王自力, 牛树银, 陈超, 孙爱群, 王宝德, 许传诗. 2008. 冀东峪耳崖金矿成矿物质来源探讨. 地质找矿论丛: 23(1): 36~42.

    • 邢树文. 1992. 冀东金厂峪金矿成矿模式. 吉林地质, 3: 29~38.

    • 徐九华, 何知礼, 申世亮, 杨振林, 杜加锋. 1993. 小秦岭文峪-东闯金矿床稳定同位素地球化学及矿液矿质来源. 地质找矿论丛, 8(2): 87~100.

    • 薛春纪, 赵晓波, 莫宣学, 董连慧, 顾雪祥, Bakhtiar N, Nikolay P, 张招崇, 王新利, 俎波, 张国震, 冯博, 刘家瑛.2014. 西天山“亚洲金腰带”及其动力学背景和成矿控制与找矿.地学前缘, 21(5): 129~155.

    • 薛春纪, 赵晓波, 张国震, 莫宣学, 顾雪祥, 董连慧, 赵树铭, 米登江, Bakhtiar N, Nikolay P, 李志丹, 王新利, 俎波, 亚夏尔亚力坤, 冯博. 2015. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力. 中国地质, 42(3): 381~410.

    • 杨东潮, 白德胜, 曹琼. 2013. 坦桑尼亚太古宙绿岩带中BIF型金矿床的勘查标志——以Maheiga金矿床为例. 黄金科学技术, 21(4): 1~8.

    • 杨富全, 毛景文, 王义天, 赵财胜, 叶会寿, 陈文. 2006. 新疆萨瓦亚尔顿金矿床年代学、氦氩碳氧同位素特征及其地质意义. 地质论评, 52(3): 341~351.

    • 杨富全, 毛景文, 王义天, 赵财胜, 张岩, 刘亚玲. 2007. 新疆西南天山金矿床主要类型、特征及成矿作用. 矿床地质, 26(4): 361~379.

    • 杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447~2467.

    • 杨玉清, 祁玉海. 2008. 夹皮沟金矿集中区矿床地质特征及找矿方向探讨. 黄金, 29(2): 14~18.

    • 曾庆栋, 陈仁义, 杨进辉, 孙国涛, 俞炳, 王永彬, 陈沛文. 2019. 辽东地区金矿床类型、成矿特征及找矿潜力. 岩石学报, 35(7): 1939~1963.

    • 翟明国, 杨进辉, 刘文军. 2001. 胶东大型黄金矿集区及大规模成矿作用. 中国科学(D辑), 31(7): 545~553.

    • 张建国, 邵拥军, 汪程, 刘忠法, 熊伊曲. 2018. 河北平泉下金宝金矿床载金矿物特征及其成矿指示意义. 中南大学学报(自然科学版), 49(4): 901~909.

    • 张祺, 薛春纪, 赵晓波, 冯博, 邢浩, 莫宣学, 赵树铭, 杨维忠, 邢令.2015. 新疆西天山卡特巴阿苏大型金矿床地质地球化学和成岩成矿年代.中国地质, 42(3): 411~437.

    • 张笑天. 2018. 中国东北部陆缘夹皮沟矿田金矿床地质、地球化学特征与成矿作用研究. 吉林大学博士论文.

    • 郑明华, 张寿庭. 2001. 西南天山穆龙套型金矿床产出地质背景与成矿预测. 北京: 地质出版社, 131P.

    • 朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学(地球科学), 45(8): 1153~1168.

    • 邹继兴, 李富平, 张双河, 赵振春, 陈树强. 1999. 牛心山花岗岩岩体特征及其与成矿的关系. 地质论评, 45(增刊): 528~533.