en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李扬,男,1988年生。研究员,主要从事地质年代学、矿床地球化学和微区分析等领域的教学和科研工作。E-mail:geoliy@outlook.com。

参考文献
Ague J J, Baxter E F. 2007. Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth and Planetary Science Letters, 261(3): 500~516.
参考文献
Arrhenius S. 1889. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Physikalische Chemie, 4(1): 96~116.
参考文献
Audétat A, Miyajima N, Wiesner D, Audinot J N. 2021. Confirmation of slow Ti diffusion in quartz by diffusion couple experiments and evidence from natural samples. Geology, 49(8): 963~967.
参考文献
Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101(11): 2377~2404.
参考文献
Barboni M, Boehnke P, Schmitt A K, Harrison T M, Shane P, Bouvier A S, Baumgartner L. 2016. Warm storage for arc magmas. Proceedings of the National Academy of Sciences, 113(49): 13959~13964.
参考文献
Bégué F, Baumgartner L P, Bouvier A S, Escrig S, Lafay R, Meibom A, Müller T. 2023. Diffusion timescale conundrum in contact metamorphism: Oxygen isotope and trace element profiles in dolomite. Geochimica et Cosmochimica Acta, 358: 93~107.
参考文献
Blereau E, Clark C, Kinny P D, Sansom E, Taylor R J M, Hand M. 2022. Probing the history of ultra-high temperature metamorphism through rare earth element diffusion in zircon. Journal of Metamorphic Geology, 40(3): 329~357.
参考文献
Bloch E M, Jollands M C, Gerstl S S A, Bouvier A S, Plane F, Baumgartner L P. 2019. Diffusion of calcium in forsterite and ultra-high resolution of experimental diffusion profiles in minerals using local electrode atom probe tomography. Geochimica et Cosmochimica Acta, 265: 85~95.
参考文献
Bradshaw R W, Kent A J R. 2017. The analytical limits of modeling short diffusion timescales. Chemical Geology, 466: 667~677.
参考文献
Brady J B, Cherniak D J. 2010. Diffusion inminerals: An overview of published experimental diffusion data. Reviews in Mineralogy and Geochemistry, 72(1): 899~920.
参考文献
Brown M, Johnson T, Spencer C J. 2022. Secular changes in metamorphism and metamorphic cooling rates track the evolving plate-tectonic regime on Earth. Journal of the Geological Society, 179(5): https: //doi. org/10. 1144/igs2022-050.
参考文献
Brückel K, Lundstrom C C, Ackerson M, Campe C. 2023. Testing the limits of Ti-in-quartz thermometry and diffusion modelling to determine the thermal history of the fish canyon tuff. Journal of Petrology, 64(12): egad082.
参考文献
Brugman K, Till C B, Bose M. 2022. Common assumptions and methods yield overestimated diffusive timescales, as exemplified in a yellowstone post-caldera lava. Contributions to Mineralogy and Petrology, 177(6): 63.
参考文献
Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331): eaag3055.
参考文献
Chakraborty S. 2008. Diffusion in solid silicates: A tool to track timescales of processes comes of age. Annual Review of Earth and Planetary Sciences, 36(1): 153~190.
参考文献
Cherniak D J, Watson E B. 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2): 5~24.
参考文献
Cherniak D J, Watson E B. 2003. Diffusion in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 113~143.
参考文献
Cherniak D J, Watson E B, Wark D A. 2007. Ti diffusion in quartz. Chemical Geology, 236(1): 65~74.
参考文献
Chu Xu, Ague J J. 2015. Analysis of experimental data on divalent cation diffusion kinetics in aluminosilicate garnets with application to timescales of peak Barrovian metamorphism, Scotland. Contributions to Mineralogy and Petrology, 170(2): 25.
参考文献
Condon D, Kuiper K, Morgan L, Renne P, Schmitz M, Schoene B, Singer B. 2017. EARTHTIME 2. 0, accelerating the development and application of integrated methodologies for the quantification of geological time. GSA Annual Meeting, Seattle, Washington, USA.
参考文献
Cooper K M, Kent A J R. 2014. Rapid remobilization of magmatic crystals kept in cold storage. Nature, 506(7489): 480~483.
参考文献
Costa F. 2021. Clocks in magmatic rocks. Annual Review of Earth and Planetary Sciences, 49(1): 231~252.
参考文献
Costa F, Dohmen R, Chakraborty S. 2008. Time scales of magmatic processes from modeling the zoning patterns of crystals. Reviews in Mineralogy and Geochemistry, 69(1): 545~594.
参考文献
Costa F, Morgan D. 2010. Time constraints from chemical equilibration in magmatic crystals. In: Dosseto A, Turner S P, Van Orman J A. Timescales of Magmatic Processes: From Core to Atmosphere. Chichester, West Sussex, UK: John Wiley & Sons, 125~159.
参考文献
Crank J. 1956. The Mathematics of Diffusion. London: Oxford University Press, 347.
参考文献
Crank J. 1975. The Mathematics of Diffusion. London: Oxford University Press, 421.
参考文献
Dodson M H. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3): 259~274.
参考文献
Drüppel K, Elsäer L, Brandt S, Gerdes A. 2013. Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS geochronology and pseudosections of sapphirine granulites and associated paragneisses. Journal of Petrology, 54(2): 305~350.
参考文献
England P C, Thompson A B. 1984. Pressure-temperature-time paths of regional metamorphism I. heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894~928.
参考文献
Fick A. 1855. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(63): 30~39.
参考文献
Ganguly J. 2002. Diffusion kinetics in minerals: Principles and applications to tectono-metamophic processes. Energy Modelling in Minerals. Gramaccioli C M. Budapest: Eötvös University Press, 4: 271~309.
参考文献
Ganguly J, Bhattacharya A, Chakraborty S. 1988. Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. American Mineralogist, 73: 901~909.
参考文献
Gao Shen, Zou Xinyu, Hofstra A H, Qin Kezhang, Marsh E E, Bennett M M, Li Guangming, Jiang Jilian, Su Shiqiang, Zhao Junxing, Li Zhenzhen. 2022. Trace elements in quartz: Insights into source and fluid evolution in magmatic-hydrothermal systems. Economic Geology, 117(6): 1415~1428.
参考文献
Goldstein J I, Short J M. 1967. Cooling rates of 27 iron and stony-iron meteorites. Geochimica et Cosmochimica Acta, 31(6): 1001~1023.
参考文献
Harley S L. 2016. A matter of time: The importance of the duration of UHT metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2): 50~72.
参考文献
Hawkesworth C J, Kemp A I S. 2006. Evolution of the continental crust. Nature, 443: 811~817.
参考文献
Huber C, Bachmann O, Manga M. 2010. Two competing effects of volatiles on heat transfer in crystal-rich magmas: Thermal insulation vs defrosting. Journal of Petrology, 51(4): 847~867.
参考文献
Huber C, Bachmann O, Dufek J. 2011. Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal fracturing and assimilation processes in magmas. Earth and Planetary Science Letters, 304(3): 443~454.
参考文献
Iovine R S, Fedele L, Mazzeo F C, Arienzo I, Cavallo A, Wörner G, Orsi G, Civetta L, D'Antonio M. 2017. Timescales of magmatic processes prior to the ~4. 7 ka Agnano-Monte Spina eruption (Campi Flegrei caldera, Southern Italy) based on diffusion chronometry from sanidine phenocrysts. Bulletin of Volcanology, 79(2): 18.
参考文献
Jollands M C. 2020. Assessing analytical convolution effects in diffusion studies: Applications to experimental and natural diffusion profiles. PLOS ONE, 15(11): e0241788.
参考文献
Jollands M C, Bloch E, Müntener O. 2020. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs. Geology, 48(7): 654~657.
参考文献
Kelsey D E, Hand M. 2015. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6(3): 311~356.
参考文献
Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, 402-403: 105756.
参考文献
Li Yang, Selby D, Condon D, Tapster S. 2017. Cyclic magmatic-hydrothermal evolution in porphyry systems: High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit. Economic Geology, 112(6): 1419~1440.
参考文献
Li Yang, Li Xianhua, Selby D, Li Jianwei. 2018. Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology, 46(1): 7~10.
参考文献
Li Yang, Allen M B, Li Xianhua. 2022. Millennial pulses of ore formation and an extra-high Tibetan Plateau. Geology, 50(6): 665~669.
参考文献
Li Yang, Pan Junyi, Wu Liguang, He Sheng, Bachmann O, Li Xianhua. 2023. Transient tin mineralization from cooling of magmatic fluids in a long-lived system. Geology, 51(3): 305~309.
参考文献
Li Zhengxiang, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 323: 1~5.
参考文献
Martin V M, Morgan D J, Jerram D A, Caddick M J, Prior D J, Davidson J P. 2008. Bang! month-scale eruption triggering at Santorini Volcano. Science, 321(5893): 1178~1178.
参考文献
Mercer C N, Reed M H, Mercer C M. 2015. Time scales of porphyry Cu deposit formation: Insights from titanium diffusion in quartz. Economic Geology, 110(3): 587~602.
参考文献
Müller T, Massonne H J, Willner A P. 2015. Special collection: Mechanisms, rates, and timescales of geochemical transport processes in the crust and mantle. Timescales of exhumation and cooling inferred by kinetic modeling: An example using a lamellar garnet pyroxenite from the Variscan Granulitgebirge, Germany. American Mineralogist, 100(4): 747~759.
参考文献
Mutch E J F, Maclennan J, Shorttle O, Rudge J F, Neave D A. 2021. DFENS: Diffusion chronometry using finite elements and nested sampling. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009303.
参考文献
National Academies of Sciences E, and Medicine. 2020. A Vision for NSF Earth Sciences 2020-2030: Earth in Time. Washington, DC: The National Academies Press, 144.
参考文献
Petrone C M, Bugatti G, Braschi E, Tommasini S. 2016. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics. Nature Communications, 7(1): 12946.
参考文献
Reiners P W, Carlson R W, Renne P R, Cooper K M, Granger D E, McLean N M, Schoene B. 2017. Geochronology and thermochronology. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK, John Wiley & Sons Ltd.
参考文献
Rubatto D, Burger M, Lanari P, Hattendorf B, Schwarz G, Neff C, Keresztes Schmidt P, Hermann J, Vho A, Günther D. 2020. Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS. Contributions to Mineralogy and Petrology, 175(7): 61.
参考文献
Rubin A E, Cooper K M, Till C B, Kent A J R, Costa F, Bose M, Gravley D, Deering C, Cole J. 2017. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science, 356(6343): 1154~1156.
参考文献
Rudnick R L. 1995. Making continental crust. Nature, 378(6557): 571~578.
参考文献
Schaltegger U, Ovtcharova M, Gaynor S P, Schoene B, Wotzlaw J F, Davies J F, Farina F, Greber N D, Szymanowski D, Chelle-Michou C. 2021. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology. Journal of Analytical Atomic Spectrometry, 36(7): 1466~1477.
参考文献
Schoene B, Condon D J, Morgan L, McLean N. 2013. Precision and accuracy in geochronology. Elements, 9(1): 19~24.
参考文献
Shea T, Costa F, Krimer D, Hammer J E. 2015a. Accuracy of timescales retrieved from diffusion modeling in olivine: A 3D perspective. American Mineralogist, 100(10): 2026~2042.
参考文献
Shea T, Lynn K J, Garcia M O. 2015b. Cracking the olivine zoning code: Distinguishing between crystal growth and diffusion. Geology, 43(10): 935~938.
参考文献
Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3~41.
参考文献
Sillitoe R H, Mortensen J K. 2010. Longevity of porphyry copper formation at Quellaveco, Peru. Economic Geology, 105(6): 1157~1162.
参考文献
Simmons S F, Brown K L. 2006. Gold inmagmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science, 314(5797): 288~291.
参考文献
Spear F S. 2014. The duration of near-peak metamorphism from diffusion modelling of garnet zoning. Journal of Metamorphic Geology, 32(8): 903~914.
参考文献
Tang Ming, Rudnick R L, McDonough W F, Bose M, Goreva Y. 2017. Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries. Earth and Planetary Science Letters, 474: 110~119.
参考文献
Tavazzani L, Peres S, Sinigoi S, Demarchi G, Economos R C, Quick J E. 2020. Timescales and mechanisms of crystal-mush rejuvenation and melt extraction recorded in Permian plutonic and volcanic rocks of the sesia magmatic system (Southern Alps, Italy). Journal of Petrology, 61(5): egaa049.
参考文献
Till C B, Vazquez J A, Boyce J W. 2015. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology, 43(8): 695~698.
参考文献
Viete D R, Hermann J, Lister G S, Stenhouse I R. 2011. The nature and origin of the Barrovian metamorphism, Scotland: Diffusion length scales in garnet and inferred thermal time scales. Journal of the Geological Society, 168(1): 115~132.
参考文献
Viete D R, Lister G S. 2017. On the significance of short-duration regional metamorphism. Journal of the Geological Society, 174(3): 377~392.
参考文献
Weis P, Driesner T, Heinrich C A. 2012. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, 338(6114): 1613~1616.
参考文献
Wood J A. 1964. The cooling rates and parent planets of several iron meteorites. Icarus, 3(5): 429~459.
参考文献
Wu Liguang, Li Yang, Jollands M C, Vermeesch P, Li Xianhua. 2022. Diffuser: A user-friendly program for diffusion chronometry with robust uncertainty estimation. Computers & Geosciences, 163: 105108.
参考文献
Zhang Youxue. 2010. Diffusion in minerals and melts: Theoretical background. Reviews in Mineralogy and Geochemistry, 72(1): 5~59.
参考文献
Zou Yi, Chu Xu, Li Qiuli, Mitchell R N, Zhai Mingguo, Zou Xinyu, Zhao Lei, Wang Yuquan, Liu Bo. 2020. Local rapid exhumation and fast cooling in a long-lived paleoproterozoic orogeny. Journal of Petrology, 61(10): egaa091.
参考文献
Zou Yi, Li Qiuli, Chu Xu, Zhai Mingguo, Mitchell R N, Zhao Lei, Zhou Ligang, Wang Yuquan, Liu Bo. 2021. Older orogens cooled slower: New constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton. Contributions to Mineralogy and Petrology, 176(11): 91.
参考文献
李献华, 李扬, 李秋立, 吴黎光, 王浩, 杨传, 韦刚健, 张万峰. 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104~122.
目录contents

    摘要

    地质年代学为地球与行星科学研究提供时间坐标,以定量解析地质过程先后关系和时间尺度。历经百余年发展,定年技术在研究对象、测试效率、空间分辨率和时间分辨率等维度均得到大幅度提高,地质年代学研究已从仅提供时代约束过渡到更加强调对地质过程时间尺度与节律的研究,进而约束地质事件的驱动机制和互馈机理。然而,基于放射性同位素衰变的绝对定年技术精度存在物理极限,不能无限提高,且其时间分辨率一般随年龄增加而变差,难以满足深时地质研究的高时间分辨率需求,发展时间分辨率不受绝对年龄约束的相对定年技术是地质年代学的重要发展方向。本文围绕扩散年代学这一具有重要发展前景的相对定年技术,在系统回顾其理论模型和测量技术的基础上,重点对制约扩散年代学准确性和精确性的问题,如扩散系数的不确定性、扩散初始条件假设、浓度曲线的测试质量以及误差评估等进行了探讨。本文还对扩散年代学近年来在岩浆储存与运移、成矿时间尺度与节律和变质过程等领域取得的部分重要进展予以评述。精确的扩散系数是开展扩散年代学研究的前提,以石英中的Ti为例,不同实验给出的扩散系数差异超过3个数量级,据此计算的花岗岩岩浆在固相线上的储存时间从几十年变化到百万年尺度,显著影响我们对岩浆储存状态的理解。高质量的元素浓度剖面测量是扩散年代学的关键,因石英Ti含量的高空间分辨率精准测量较为困难,CL灰度常被作为Ti含量的替代指标,但这需要考虑Al等元素对CL灰度的影响,并严格评估Ti含量校正曲线和扩散剖面空间尺度不匹配对定年结果的影响。高温变质过程U-Pb定年通常给出较为离散的表观年龄,并被解释为变质过程具有较长的持续时间,这一定程度上可以通过高温下同位素体系因扩散引起的不封闭予以解释。展望未来,进一步完善扩散年代学在高温体系中的研究,拓展在中低温条件下的应用,并与绝对定年深度结合,是扩散年代学的重要发展方向,也是实现深时地质研究高时间分辨率解析的必由之路。

    Abstract

    Geochronology provides temporal coordinates for Earth and planetary sciences, enabling the quantitative analysis of the sequence and timescales of geological processes. After over a century of development, dating techniques have greatly improved in terms of research targets,analytical efficiency, spatial and temporal resolution. Geochronology research has transitioned from merely providing chronological constraints to emphasizing the timescales and rhythms of geological processes, thereby constraining the driving mechanisms of, and feedbacks/interplay between geological events. However, absolute dating techniques based on the decay of radioactive isotopes have a physical limitation to their precision and cannot be infinitely improved. Additionally, their temporal resolution generally deteriorates with increasing age, making it difficult to meet the high temporal resolution requirements of deep time research. Developing relative dating techniques whose temporal resolutions are not constrained by absolute age is an important direction for the development of geochronology. This paper focuses on diffusion chronology, a relative dating technique with significant potential which remains to be fully explored. Building upon a systematic review of its theoretical foundations and analytical techniques, the paper discusses key issues that limit the accuracy and precision of diffusion chronology, such as the uncertainty of diffusion coefficients, assumptions about initial boundary conditions, and the quality of measuring concentration profiles. The paper also reviews some recent important advances in diffusion chronology in areas such as magma storage and migration, timescales and rhythms of ore-forming, and metamorphic processes. Accurate diffusion coefficients are essential for conducting diffusion chronology research. For example, the differences in diffusion coefficients of Ti in quartz obtained from three experiments can exceed three orders of magnitude. Consequently, the calculated storage time of felsic magma above the solidus can vary from decades to millions of years, significantly affecting our understanding of magma storage conditions. High-quality measurements of elemental concentration profiles are critical for diffusion chronology. Due to the challenges in accurate measurement of titanium content in quartz with high spatial resolution, CL grayscale is often used as a proxy for titanium content. However, this requires consideration of the effects of elements such as aluminum on CL grayscale, and a rigorous evaluation is warranted for the impact of spatial mismatch between titanium content calibration curves (measured by EPMA or LA-ICPMS) and diffusion profiles (derived from CL grayscale). U-Pb dating of high-temperature metamorphic processes typically yields relatively dispersed apparent ages, which are interpreted as a long duration of metamorphic processes. This can be partly explained by the open isotopic system behaviour due to diffusion at high temperatures. Looking into the future, to meet the high demand of high temporal chronological data in deep time research, further advancing diffusion chronology in high-temperature systems, and expanding its application under medium to low-temperature conditions, and integrating it with absolute dating are important avenues.

  • 年龄是建立地质事件先后关系和因果联系的重要依据,包括基于放射性同位素衰变获得的绝对年龄,如U-Th-Pb年龄,Ar-Ar年龄和Re-Os年龄等,以及依据地质体叠覆-穿切关系、地层磁极性序列、矿物生长环带、生命演化规律等先后关系、天文旋回周期和扩散作用等建立起来的相对年龄(李献华等,2022)。绝对定年和相对定年相得益彰,共同构成现代地质年代学,已经渗透到地球与行星科学研究的每一个领域(National Academies of Sciences,Engineering,and Medicine,2020)。历经百余年发展,定年对象和技术手段不断丰富,分析效率、空间分辨率和时间分辨率也逐渐提高,地球与行星科学的年代学研究也已逐渐从单纯的厘定地质事件发生的时间,过渡到更加关注地质事件发生的时间尺度与节律(图1),进而厘定地质过程的速率与效率,并解析其运行机制和控制机理(Reiners et al.,2017)。年龄和时间尺度是不同的地质年代学参数,前者代表某地质事件何时发生,后者则强调某地质过程从开始到结束历时多久完成。显然,在高时间分辨率视角下,地质事件的发生时间难以用单一时间点完整刻画,精细研究工作应致力于刻画该事件的起始、峰期和结束等关键锚点。

  • 在满足准确性的前提下,精确度,即时间分辨率是地质年龄的重要衡量指标(Schoene et al.,2013)。以绝对定年为例,其精确度通常以误差相对于年龄的百分比表示。例如,某年龄为100 Ma的花岗岩,若定年精度为1%,则对应的时间分辨率为1百万年(1 myr)。根据地质过程持续时间尺度的不同,解析其速率与节律需要的时间分辨率不同,这需要根据研究对象和研究目标,采用适宜的定年体系和分析技术。例如,若超大陆旋回的周期约为700百万年(Li Zhengxiang et al.,2019),定年精度约5%即满足研究需求。如需区分具有节律性的斑岩成矿作用,若三次脉冲成矿事件的时间分别是16.13~16.05 Ma,16.04~15.98 Ma,15.98~15.86 Ma(Li Yang et al.,2017),即单次脉冲事件的持续时间为6~12万年(60~120 kyr),考虑到完整刻画单次脉冲事件需要多个锚点,则定年技术的时间分辨率需要达到或优于万年级(~10 kyr)。若定年技术的时间分辨率仅为10万年(~100 kyr),则所获得的年龄数据将难以揭示成矿作用的脉动特征,据此得出成矿作用为连续过程的判断显然是不恰当的。

  • 图1 地质事件的时间尺度

  • Fig.1 Timescales of geological processes

  • 数据来源:岩浆作用时间尺度来自Costa,2021;变质作用时间尺度来自Brown et al.,2022;热液过程时间尺度来自Mercer et al.,2015Li Yang et al.,201820222023

  • Data sources: magmatic process (Costa, 2021) ; metamorphic process (Brown et al., 2022) ; hydrothermal process (Mercer et al., 2015; Li Yang et al., 2018, 2022, 2023)

  • 在给定定年技术分辨率的情况下,绝对定年时间分辨率与年龄正相关,即年龄越老,时间分辨率越低(图2)。在国际地时计划的推动下,锆石CA-ID-TIMS U-Pb已经发展为当前最为精准的绝对定年技术之一(Condon et al.,2017),一流实验室的精度可达到或优于0.1%(Schaltegger et al.,2021)。如需解析结晶持续时间约0.1 myr的花岗岩结晶历史,则该技术能对年龄<100 Ma的样品开展精细研究。当拟研究花岗岩的年龄为1000 Ma时,0.1%分析精度能实现的时间分辨率仅为1 myr。因此,即使是迄今精度最高的CA-ID-TIMS U-Pb定年技术,也难以对占地球演化历史98%的地质事件实现超高时间分辨率解析(图2)。

  • 大幅度提高定年技术的精度是高时间分辨率解析深时地质过程的前提,遗憾的是,绝对定年技术的精度受放射性母体同位素和衰变子体含量、衰变常数的不确定性、同位素体系封闭性和赋存矿物性质等因素控制,存在物理极限,不能无限提高。发展时间分辨率不受年龄约束的定年工具成为深时地质研究的必然选择,扩散年代学因其应用对象广泛、时间分辨率极高且不受绝对年龄控制而成为重要发展方向。

  • 扩散是一种普遍存在于固体、液体和气体中的物理现象。扩散年代学基于矿物中某元素或同位素在一定温度条件下从高浓度向低浓度扩散,根据现在观察到的扩散剖面形态,并推测初始剖面形态,进而计算该元素或同位素在给定热历史等条件下扩散的时间尺度。扩散年代学的理论研究最早可以追溯到19世纪50年代,Fick(1855)首先提出了菲克第一、第二定律来描述扩散现象,Arrhenius(1889)提出了扩散系数方程来描述扩散系数与温度的关系,Crank(19561975)提出了菲克定律的解法,Dodson(1973)根据扩散提出了矿物封闭温度的概念。放射性同位素年代学要求矿物中的核素保持封闭,即时钟启动后扩散作用在分析尺度可被忽略。与之相反,当扩散作用在分析尺度可以被忽视时,扩散年代学则停止计时。因此,放射性同位素年代学厘定的是样品降温至封闭温度之下的时间,而扩散年代学则刻画样品温度降低到封闭温度之前的时间。扩散年代学在20世纪60年代已经被用来研究陨石的冷却速率(Wood,1964; Goldstein and Short,1967),基于扩散的热年代学也已经发展成为地质年代学最为重要的领域之一。21世纪以来,由于分析技术的快速发展,尤其是以激光剥蚀-电感耦合等离子体质谱和离子探针为代表的微区分析技术迅速发展并得到普及,扩散尺度的分辨率可达微米甚至纳米级别,高空间分辨率准确测量扩散剖面的瓶颈问题显著缓解,这极大促进了扩散年代学的发展。在此基础上,综合运用扩散速度不同的多种元素或矿物,可获得相关地质过程不同时间分辨率的时间约束。

  • 图2 时间分辨率和绝对时间的关系

  • Fig.2 Temporal resolution of radiometric dating as a function of absolute age

  • 针对地球与行星科学的发展趋势和对高时间分辨率定年技术日益增长的需求,本文将在简要回顾扩散年代学基本理论和分析技术的基础上,对近年来依托扩散年代学取得重要进展的部分领域予以总结与评述,如岩浆储存状态、成矿作用时间尺度、变质过程时间尺度等,并探讨学科未来发展方向。

  • 1 扩散年代学理论基础

  • 矿物内的元素扩散过程一般用菲克第二定律来表达:

  • Ct=xDCx
    (1)
  • 其中,C为元素浓度,t为时间(s),x为距离(m),D为扩散系数(m2/s)。

  • DxC没有函数关系的情况下,上述方程可以简化为:

  • Ct=D2Cx2
    (2)
  • Dt有函数关系时(比如温度随时间变化),上述方程可以转化成:

  • Cξ=2Cx2
    (3)
  • 其中,

  • ξ(t)=0t D(t)dt
    (4)
  • 上述方程有解析解和数值解两种解法。解析解一般需要满足一些基本假设条件,比如初始浓度剖面是阶梯函数(step function,图3),DxC不存在函数关系。不同形态的扩散剖面对应了不同的解析解,比如Crank(1975)给出了一些扩散剖面的解析解。解析解的优势是计算速度快,对特定的扩散剖面可以直接根据公式得到结果,误差传递更为直观(Wu Liguang et al.,2022)。

  • 图3 矿物常见扩散剖面形态(据Wu Liguang et al.,2022

  • Fig.3 General diffusion profiles (after Wu Liguang et al., 2022)

  • (a~f)—矿物-熔体之间的扩散;(g~l)—矿物内部环带之间的扩散

  • (a~f) —diffusion between mineral and melt; (g~l) —diffusion in mineral zonation

  • 数值解则是根据初始浓度剖面的形态,通过有限差分或有限元法,模拟扩散剖面随时间的变化,从而得到某个时间条件下最接近我们所观察到的扩散剖面形态。数值解的优势是可以解决复杂的扩散剖面问题,比如初始浓度剖面是非阶梯函数,DxC存在函数关系等(Crank,1975)。

  • 2 浓度剖面的主要形态

  • Crank(1975)列举了一些基本的扩散剖面形态及其解析解,Wu Liguang et al.(2022)在此基础上补充完善了更多扩散剖面形态相关的解析解(图3),以涵盖地质研究中的常见情况。这些剖面和相应的解法均已集成到扩散模拟软件Diffuser中(www.geoapp.cn; Wu Liguang et al.,2022),用户输入数据后即可获得相应的扩散时间和准确的误差评估。其中图3a~f适用于元素在整个矿物晶体尺度发生扩散的情况(图4a~c),矿物边部以外是一个成分稳定的、体积相比矿物无限大的储库,比如岩浆房等。图3a~f的初始条件是矿物内部元素均一(图4a),由于矿物内外元素浓度的差异导致扩散并形成了最终的扩散剖面(图4b)。不难看出,图3a、b半个矿物剖面组合即为一个完整剖面(图3e),图3c、d半个矿物剖面组合即为一个完整剖面(图3f),所以实际研究过程中测量一个或半个矿物长度的剖面即可计算扩散时间,但完整扩散剖面能得到更加精确的拟合结果。需要注意的是,图3a~f的解析解方程只适用于矿物核部的元素未被完全改造的情况,即核部仍然保持初始的元素浓度,以出现平顶峰或谷为特征(图4b)。如果核部被扩散改造导致平顶峰/谷消失(图4c),则不能使用该解析解方程。

  • 图3g~l适用于单一矿物内部生长环带之间发生的扩散(图4d~f)。图3g、h是有截然边界的两个环带,适用于两个环带的宽度远大于扩散尺度的情况。图3i~l是一定宽度的环带在两侧分别发生扩散(图3i、j是两侧浓度对称的情况,图3k、l是两侧浓度不对称的情况),适用于环带两侧的长度远大于扩散尺度的情况。

  • 3 扩散系数

  • 方程(1)中的扩散系数D一般由实验测定,用Arrhenius方程表达:

  • D=D0e-ERT
    (5)
  • 方程(5)是扩散系数主要受控于温度情况下的简化表达,其中D0为指前系数,E为活化能(kJ/mol),R为理想气体常数,T为温度(单位K)。部分矿物的扩散系数还受压力、氧逸度、成分等因素影响(Ganguly,2002; Chakraborty,2008; Zhang Youxue,2010)。从方程(5)可以看出,ln(D)和1T呈线性关系,实验一般在不同温度条件下测定D,通过ln(D)和1T的线性拟合,得到D0E的值。实验温度越低,扩散越慢,同一扩散尺度需要的时间越长。因此,为了控制时间,扩散实验一般都在高温下进行,甚至远高于地质过程的实际温度。然而,将扩散系数应用到实际研究中时,研究者可能需要将测定扩散系数的实验温度外推至低温条件,这一过程可能会引入较大不确定性(Chu Xu and Ague,2015)。有的矿物甚至在高温和低温条件下表现出不同的扩散机制,无法用单一的方程(5)来表达DT的关系(Chakraborty,2008)。

  • 图4 矿物内元素扩散示意图

  • Fig.4 Cartoon showing the diffusion process within mineral

  • (a~c)—矿物-熔体之间的扩散;(d~f)—矿物内部环带之间的扩散

  • (a~c) —diffusion between mineral and melt; (d~f) —diffusion in mineral zonation

  • 目前,常见矿物的多种元素扩散系数均已有较好的约束,比如橄榄石(Fe-Mg、Ni、Mn、Ca、Al、P、REE、Ti、H、Li、Be),石榴子石(Fe-Mg-Mn-Ca、Hf、REE),石英(Ti、Al、Li、H),锆石(REE、Ti、Al、Li),斜方辉石(REE、Ti、Cr、H),单斜辉石(Ti、REE、H)和长石(Sr、Ba、Mg、REE、H)等。Brady and Cherniak(2010)总结了2010年之前实验测定的扩散系数,Chu Xu and Ague(2015)总结了石榴子石的扩散系数并考虑了实验测定的扩散系数误差,Mutch et al.(2021)总结了橄榄石和斜长石的扩散系数并开发了扩散模拟软件来传递实验测定的扩散系数误差,Wu Liguang et al.(2022)总结了常用扩散系数及其误差并集成到了扩散模拟软件Diffuser中(www.geoapp.cn)。

  • 4 测量技术

  • 在自然界岩浆、变质和热液过程相关的温度条件下,我们关注矿物的扩散尺度通常在nm到mm级别,且温度越低,扩散尺度越小。因此,准确测量扩散剖面上的元素浓度变化依赖高空间分辨率的微区分析技术。常用的分析技术包括:扫描电镜(SEM)、电子探针(EPMA)、激光剥蚀-电感耦合等离子体质谱(LA-ICPMS)、二次离子质谱(SIMS)、纳米离子探针(NanoSIMS)和原子探针断层扫描(APT)等(Tang Ming et al.,2017; Bloch et al.,2019; Rubatto et al.,2020; Audétat et al.,2021; Li Yang et al.,2022)。需要注意的是,以上分析技术受其固有的空间分辨率限制(图5)。例如:SIMS的横向空间分辨率一般>1 μm,NanoSIMS空间分辨率一般>50~100 nm。我们可以根据温度、时间和扩散系数估算出矿物内的扩散尺度(扩散距离L4Dt),并选择空间分辨率满足研究需求的分析技术开展研究。可以直接测量元素含量时,应尽量避免采用灰度等替代指标开展研究,以避免替代指标测量带来的不确定性(见展望部分)。

  • 图5 扩散年代学常用分析技术的空间分辨率对比(据https://www.atomprobe.com简化)

  • Fig.5 Spatial resolution of commonly used analytical techniques in diffusion chronometry (adaped and simplified from https://www.atomprobe.com)

  • 5 扩散定年的误差来源

  • 扩散年代学的误差来源可以分为两种类型,一是计算扩散时间相关的,比如扩散剖面的分析误差、初始温度的估算和扩散系数的不确定性等。二是模型假定引起的,比如温度随时间的变化、扩散的初始状态和边界条件等。多数情况下,模型假设引起的误差难以像前者一样定量评估。

  • 分析测量的误差主要体现在数据单点的精度(σ)和分析束斑引起的卷积效应。在拟合扩散剖面的时候,单点精度一般转化为权重来考虑(1σ2),单点误差越大,权重越小。卷积效应是当分析束斑的大小和扩散尺度接近的时候,测量的扩散剖面会比实际更平滑,扩散时间会被高估(Ganguly et al.,1988; Costa and Morgan,2010; Bradshaw and Kent,2017; Jollands,2020)。因此,扩散年代学的研究应该优先估算扩散尺度,选择分析束斑比其更小的测量技术,一般建议扩散距离和分析束斑大小之比>>2(Bradshaw and Kent,2017)。部分扩散软件也提供了去卷积效应的功能,方便用户评估其对扩散时间的影响(Jollands,2020; Wu Liguang et al.,2022)。

  • 扩散过程启动时的温度估算主要依赖于地质温度计,误差随体系不同变化较大。由于扩散系数D和温度T呈指数相关(方程5),温度的误差往往是扩散时间误差的主要来源(Costa and Morgan,2010)。此外,扩散过程中的温度变化也是影响扩散时间的重要因素,尤其是扩散时间尺度较长或存在脉冲式温度变化时,但通常难以准确约束。目前一般假定温度-时间模型来计算扩散时间,比如恒温、线性降温、变温模型等(Petrone et al.,2016; Li Yang et al.,2023)。如果扩散系数还受其他因素影响,比如压力、氧逸度等,那这些参数的估算也会影响时间的误差,但这些因素的影响一般远小于温度估算带来的误差(Costa et al.,2008)。

  • 特别地,实验测定的扩散系数本身具有误差(方程5中D0E的误差),但却经常被研究者们忽略。以Rubin et al.(2017)锆石Li扩散剖面为例,若不考虑扩散系数的误差,扩散时间为23+25-12年,传递扩散系数的误差后扩散时间为23+30-13年,扩散系数的误差占比~13%(Wu Liguang et al.,2022)。不同实验测定的扩散系数有时会存在较大差异,用其计算得到的扩散时间则会不一致,甚至会存在数量级的变化,具体详见后文扩散系数测量部分的讨论。因此,全面的误差传递是评估扩散时间准确性的一个重要因素,也是利用不同矿物或不同元素之间对比研究的一个重要前提。目前,已有扩散年代学软件综合考虑了实验测定扩散系数的误差(Mutch et al.,2021; Wu Liguang et al.,2022),建议后续的扩散年代学研究引起重视,对相关误差予以全面评估和讨论。

  • 扩散的初始状态和边界条件也是影响扩散时间的重要因素。以图3i为例,由于扩散导致中间环带的平顶峰消失,我们无法准确限定中间环带的初始元素浓度,但可以根据天然矿物的元素含量估算其上限,或是假定不同初始含量(如图6a),以厘定平顶峰含量的不确定性对最终扩散时间的影响(Wu Liguang et al.,2022)。比如Rubin et al.(2017)的锆石Li扩散剖面,由于中间环带的平顶峰难以约束,作者假定了中间环带的初始浓度为120×10-9,计算得到扩散时间为22 yr。如果假定初始浓度为120×10-9~600×10-9,分别去计算对应的扩散时间,结果显示扩散时间随着初始浓度的增加快速增加,并最终收敛稳定(图6b)。当初始浓度>300×10-9时,扩散时间基本不变(~47 yr),这显著大于Rubin et al.(2017)的假设(120×10-9)。因此,仅考虑初始条件的不确定性,扩散时间可能为22~47 yr。此外,二维矿物切面上测量的扩散剖面在三维空间上可能仍与矿物或环带边界斜交,使得我们高估扩散的时间尺度,这在未来的研究中应予以重视(见展望部分)。

  • 图6 初始条件的不确定性给扩散时间带来的误差(a); 以Rubin et al.(2017)为例(b)

  • Fig.6 Uncertainties arising from unconstrained initial boundary conditions (a) ; using the data from Rubin et al. (2017) as an example (b)

  • 不同于放射性同位素的定年精度,扩散年代学的相对误差可能>100%,但它仍然是我们理解各种地质过程的时间和速率的重要手段,比如它可以揭示地质过程持续时间的量级是小时还是万年级别。为尽量减少模型假定带来的误差,我们提倡用多个样品、多个矿物、多个元素和多个扩散剖面来开展扩散年代学研究,以便相互验证和降低研究结果的不确定性。

  • 6 重要应用进展

  • 6.1 岩浆储存问题

  • 中酸性岩浆结晶分异形成的花岗岩构成大陆上地壳的主体(Rudnick,1995; Hawkesworth and Kemp,2006),伴生的岩浆热液活动是铜钼和钨锡等矿产资源的重要来源(Sillitoe,2010; Lehmann,2021),而快速侵位喷发的火山则是显著威胁人类安全的灾害(Bachmann and Huber,2016; Cashman et al.,2017)。现代岩石学和火山学研究认为,中酸性岩浆侵位至上地壳尺度的浮力中性面时,会驻留形成大规模岩浆房。对中酸性岩浆,当温度>740~760℃时,长石和石英等造岩矿物尚未开始大规模结晶,岩浆主要呈液态,具有较低的黏度和较强的流动性,水等挥发分主要溶解在岩浆中,岩浆此时具有较强的喷发能力和潜力。当温度降低时,石英和长石等造岩矿物将逐渐开始结晶,岩浆呈现为含晶体的粥状,黏度升高,流动性减弱。溶解于岩浆的水、硫、氟、氯和二氧化碳等挥发分将逐渐达到饱和并出溶。一般将结晶度~50%定义为晶粥体的流变锁定阀值(rheological lock-up; Huber et al.,2011),当结晶度<50%时,低黏度的晶粥体仍然呈现出较强的流动性和较高的喷发潜力。当结晶度>50%时,晶粥体黏度上升,流动性迅速减弱,通常不具备喷发能力。此时,若源自深部的岩浆底侵和补给至岩浆房,可引起晶粥体结晶度大幅度降低并驱动喷发(Huber et al.,2010)。

  • 定量理解中酸性岩浆在上地壳岩浆房的储存状态,尤其是热历史,是岩石学、火山学和矿床学的前沿问题。对最终喷发或侵位至浅表的中酸性岩浆,通常认为其在岩浆房阶段主要以低结晶度、流动性强的高温晶粥状态储存,即warm storage(Barboni et al.,2016)。一系列锆石U-Pb高精度定年研究将晶粥体高温储存的时间约束为万年—百万年尺度,但最近的扩散年代学研究对这一认识提出挑战,认为岩浆主要以高结晶度的低温状态储存(cold storage; Cooper and Kent,2014)。

  • 晶粥体冷储存模型的重要证据源自对新西兰700年前的Kaharoa大喷发的研究(Rubin et al.,2017)。如图7所示,流纹岩中的锆石核部和边部年龄分别为51 ka和13 ka,即锆石核部和边部U-Th年龄相差38 ka。基于锆石核部的Li浓度剖面,假设温度为700℃,则获得的扩散时间为22 yr。因此,作者提出,形成富Li锆石核部后的38 ka,晶粥体主要以远低于固相线的温度(650~700℃)存在,超过700℃的时间不足整个历史的1%,即cold storage。

  • 然而,上述数据很难自洽地解释锆石核部生长之后、喷发前的历史。晶粥体最终喷发需要较低的结晶度,即温度较高,以满足较高流动性的要求。对图7中的锆石,核部在51 ka前形成,若之后一直保持在700℃直至喷发,则核部的Li浓度剖面给出的时间约束为22 yr,即Rubin et al.(2007)中的假设。但是,在上述温度条件下(700℃),这一Li浓度剖面将在2000年后完全消失。因此,保存核部的Li浓度剖面要求晶粥体长期存在于较低的温度,但温度过低将导致晶粥体高度结晶,并完全失去喷发潜力。当温度为620℃时,锆石核部的Li浓度剖面给出的时间约束为475 yr,并将在4.4 万年后完全消失。当温度为520℃时,锆石核部的Li浓度剖面给出的时间约束为54 kyr。因此,保存锆石核部的Li扩散浓度剖面要求晶粥体的长期储存温度不超过520℃,显著低于对应流纹岩的固相线温度(650~700℃)。若考虑喷发前的高温补给作用所引起的Li快速扩散,则长期储存温度将远低于520℃,在如此低的温度下,晶粥体显然基本完全固结,通过补给作用对完全固结的岩浆实现重融并喷发,将会形成大量的捕虏体,这缺乏地质观察的支持,事实上理论模型也不支持高度固结岩体的大规模重融与喷发。

  • 因此,上述锆石晶体中的Li浓度剖面更可能与岩浆降温晚期或完全固结之后的晚期过程有关。将这些Li浓度剖面解释为岩浆的高温储存时间缺乏依据,更不能证明晶粥体主要以低温状态储存,有关晶粥体的储存状态仍需进一步研究。

  • 图7 重新解译Rubin et al.(2017)的锆石Li扩散数据

  • Fig.7 Re-interpretation of the zircon Li diffusion data from Rubin et al. (2017)

  • (a、b)—锆石核部和边部的U-Th年龄及Li含量剖面;(c)—核部的Li扩散剖面在700℃,620℃和520℃的模拟结果

  • (a, b) —U-Th ages of zircon core and rim and Li content profile; (c) —timescales derived from Li profile of the zircon core at 700℃, 620℃ and 520℃

  • 6.2 成矿作用时间尺度

  • 岩浆热液体系是关键金属的重要来源,作为研究程度最高的成矿体系,岩浆热液体系的成矿模型已经基本建立,但成矿作用的持续时间和节律(不连续的幕式过程)等关键科学问题仍待明确。基于传统的低精度定年技术,以斑岩为代表的岩浆热液矿床成矿持续时间被认为长达好几个百万年(>106 yr),并被当做连续过程(Sillitoe and Mortensen,2010)。而现代热泉观测、数值模拟、岩石学和火山观测等研究则揭示,热液成矿过程的持续时间可能很短(<106 yr),并具有间歇性(Simmons and Brown,2006; Weis et al.,2012)。

  • 上述不同成矿模型给成矿速率和效率估算带来很大不确定性,直接制约了我们对巨量金属富集过程和控矿机制的理解,高时间分辨率解析成矿过程是推进对上述科学问题理解的关键。基于微区分析技术、通过“空间换取时间”的思路,即对矿物晶体由核到边开展氧同位素等分析,获得矿物生长过程中记录的地质过程信息,再通过扩散年代学约束时间尺度,是实现地质过程高时间分辨率解析的重要途径。以西藏知不拉矽卡岩铜钼矿为例(Li Yang et al.,2022),退蚀变阶段与铜钼矿密切共生的自形石英晶体与铜和钼矿化关系密切,在电子显微镜下表现出清晰的生长环带,具有连续的四阶段生长过程。从核到边的离子探针氧同位素分析显示出高达~15‰的剧烈变化。鉴于岩浆流体具有高的氧同位素(~8‰),而地下水具有低的氧同位素(<<0‰),石英氧同位素剧烈变化的最佳解释是岩浆流体和地下水动态注入到热液体系、并在不同阶段分别主导热液体系(Li Yang et al.,2018)。因此,结合矿床地质和流体包裹体测温研究,知不拉热液石英揭示出至少两次岩浆流体出溶和一次大规模地下水注入事件(Li Yang et al.,2022),这从相对定年的角度证明成矿作用具有“幕式”特征。石英Al扩散年代学进一步将上述过程的持续时间限定在千年尺度(Li Yang et al.,2022),这从扩散年代学角度为成矿作用的“瞬时”特征提供支持。

  • 传统的成矿持续时间研究一般用热液活动时间代表成矿作用的时间,但金属矿物仅在热液体系演化的特定阶段形成,用热液体系活动时长代表成矿时间会导致成矿时间被高估,据此得出的成矿速率和效率等参数将会被严重低估。以内蒙古维拉斯托脉状锡矿为研究对象,Li Yang et al.(2023)基于脉石矿物和矿石矿物的生长历史,并通过石英和锡石晶体由核到边的离子探针氧同位素分析完整恢复了成矿流体和不成矿流体的演化过程。结果显示,锡石与成矿前和成矿期石英均结晶于岩浆流体,不显示外来流体和水岩反应的贡献,低氧流体仅在成矿晚期进入热液系统。进一步的石英Al扩散年代学显示,整个热液系统的演化时间超过0.2 myr,而矿石沉淀时间约为5 kyr,不足热液体系寿命的5%(Li Yang et al.,2023)。成矿有效时间极短的新认识表明现有的成矿速率和效率等参数存在数量级的低估,亟待更新。锡石-石英氧同位素联用揭示,锡石沉淀过程中热液系统在5 kyr内经历了~110℃的降温,并驱动锡石高效沉淀,形成高品位的锡矿化,这与强调“流体混合驱动锡石沉淀”的国际学术界主流观点不同,有望推动对锡石沉淀机制的再评估。

  • 6.3 变质作用时间尺度

  • 变质过程的扩散年代学研究聚焦于岩石在升温过程、峰期温度和降温过程经历的时间(Ague and Baxter,2007; Viete et al.,2011; Spear,2014; Müller et al.,2015)。多数扩散年代学研究集中在显生宙变质作用,前寒武纪变质作用研究较少(Viete and Lister,2017; Zou Yi et al.,20202021)。扩散年代学的研究结果表明,变质过程的时间尺度一般<10 myr(图1; Viete and Lister,2017; Brown et al.,2022)。这么短的时间通常难以用地壳加厚的热松弛模型解释,因为放射性元素生热积累一般需要>50 myr(England and Thompson,1984),表明变质作用可能需要额外的热源,比如岩浆或构造生热(Viete and Lister,2017)。统计显示,用扩散年代学方法约束的变质时间尺度一般比用放射性同位素定年方法短(Viete and Lister,2017)。一种解释是:相比矿物结晶记录的整个P-T-t过程,扩散仅能记录高温持续时间(比如热脉冲型式;Ague and Baxter,2007)。

  • 特别地,部分超高温变质作用中的副矿物年龄跨度>50 myr(例如锆石、独居石;Kelsey and Hand,2015; Harley,2016),经常被解释为超高温变质作用连续生长,即超高温持续时间>50 myr,比如前人对挪威超高温麻粒岩中的锆石定年发现年龄从~1000 Ma变化到~910 Ma(Drüppel et al.,2013)。但这也可能是早期形成的矿物在短期超高温条件下发生扩散导致的。例如,在一个完整的造山P-T-t过程中,1000 Ma时一块岩石在进变质埋藏过程中生长了锆石,900 Ma时该岩石经历超高温变质作用(~1000℃)并持续10 myr后,原先的锆石发生不同程度的Pb扩散丢失(图8)。根据Pb扩散速率计算(Cherniak and Watson,2001),年龄可以从1000 Ma变化到900 Ma。同时,超高温条件下原先锆石的稀土元素也可以发生扩散,并表现出和超高温变质矿物(比如石榴子石)稀土元素平衡的特征(Blereau et al.,2022),可能导致研究者对锆石形成阶段的误判。

  • 图8 一个完整的造山作用P-T-t轨迹中锆石生长和超高温扩散过程示意

  • Fig.8 The growth and diffusion history of zircon along a entire P-T-t path of a orogenic belt

  • 7 展望

  • 7.1 扩散系数测量

  • 扩散系数是开展扩散年代学研究的基础,一般通过扩散实验进行测量。在测量矿物中某元素的扩散系数时,通常将杂质含量较低的天然或人工生长晶体定向切割抛光后,与含目标元素的粉末一同封装入铂金管中,加热一段时间后取出(Cherniak and Watson,2003)。加热过程中,粉末中的目标元素将扩散进入抛光的矿物,并形成扩散剖面。利用微区分析技术测量扩散剖面的形态后,在已知加热温度和时长的情况下,即可计算出扩散系数。为提高实验效率,扩散实验一般在较高的温度下进行,甚至远高于地质过程的实际温度;为降低扩散剖面精准测量的难度,粉末中的元素浓度通常显著高于自然界的实际情况。实验条件与自然过程的差异可能会影响扩散系数的适用性,但相关评估相对有限,需在未来研究中重视,下面以石英Ti为例进行阐述。

  • 石英是重要的造岩矿物和蚀变矿物,其Ti分布不仅是温度的函数,还被广泛用于岩浆和热液体系的时间尺度研究。应用最广泛的石英Ti扩散系数是Cherniak et al.(2007)报道的,但近年来Jollands et al.(2020)Audétat et al.(2021)等通过新的实验研究提出,石英Ti的扩散系数可能比Cherniak et al.(2007)低2~3数量级,与之对应的时间估计也相差3~4个数量级(图9)。例如,对Fish Canyon Tuff中的石英晶体,同一Ti扩散剖面在737℃的晶粥体储存温度下不同扩散系数给出的储存时间分别为~100 yr,~0.5 myr和~2 myr(Brückel et al.,2023),对应的岩浆热历史和岩石学模型也完全不同。导致上述差异的原因包括但不限于扩散实验的温压条件与天然样品的差异性、扩散剖面测量的准确性、以及扩散机制的复杂性等。在扩散系数准确性和适用条件评估缺席之前,应对不同扩散系数给出的结果进行综合分析,避免选择性使用某一扩散系数即得出结论。当务之急是重新设计扩散实验,以准确厘定扩散系数。

  • 7.2 微区分析技术问题

  • 由于SEM的普及和其超高空间分辨率的优势,很多学者用SEM图像的灰度(BSE或CL)来表征矿物内的元素含量和计算扩散时间,比如橄榄石Fe-Mg,石英Ti和长石Ba等(Martin et al.,2008; Iovine et al.,2017; Tavazzani et al.,2020)。这一替代指标的前提假设是灰度只受控于该元素,或其他元素对灰度的影响基本可以忽略不计。为了验证这一假设,部分研究通过EPMA或LA-ICPMS成分分析和灰度比较,但该验证过程本身存在三个值得商榷的问题:① EPMA主要适用于高含量元素的测量,对微量元素的测试精度通常较差,尤其是10-6级别的元素浓度测量。② LA-ICPMS的空间分辨率通常>5~10 μm,用来标定空间分辨率远优于1 μm的SEM分析结果,存在空间错配。③ 石英中的Ti含量远低于Al含量(Gao Shen et al.,2022),但缺乏Al含量和灰度关系的定量研究。因此,用SEM灰度来计算扩散时间需要非常谨慎。

  • 因其极高的空间分辨率(50~100 nm)和多元素快速测量等优势,纳米离子探针(NanoSIMS)是最适宜开展扩散年代学研究的分析技术之一,尤其是扩散速度较慢的元素或低温过程研究。此外,尽管APT的空间分辨率达到了nm级别,但成功用于扩散年代学研究的案例很少(Bloch et al.,2019)。一方面可能是APT不够普及,制样复杂,且测试分析效率极低;另一方面,受限于仪器的设计和激发原理,APT仅能够分析<μm级别的样品区域,这显著增加了制样难度,且极小的分析体积和时间飞行质谱半定量的特性限制了微量元素的测量精度。随着微区分析技术的进一步发展,扩散剖面测量精度和空间分辨率有望继续提高,未来将进一步深化我们对更短时间尺度的地质过程的认识。

  • 图9 三种石英Ti扩散系数给出的扩散时间差3~4个数量级

  • Fig.9 Diffusion timescales of quartz Ti vary by 3~4 orders of magnitude using the three reported diffusion coefficients

  • 7.3 模型假定优化

  • 扩散年代学研究通常假定初始浓度剖面为阶梯函数,如果该假设不成立(比如初始生长环带是曲线),扩散时间则会被高估。一种解决方法是测量扩散很慢的元素,用该元素来标定扩散快的元素的初始浓度剖面形态(Shea et al.,2015b),当然这种方法也暗含了一个假设,即不同元素的生长环带趋势是一致的,而不是由不同分配系数导致的差异。另一种解决方法是用多种矿物或者多种元素的扩散来共同约束时间,如果满足基本假设,不同方法计算的扩散时间应在误差范围内一致(Chakraborty,2008; Till et al.,2015; Brugman et al.,2022)。特别地,用同一个元素的不同同位素可以有类似的作用,比如原始同位素比值已知的情况下,其初始剖面可以被准确限定,两个同位素扩散剖面可分别反演并获得相同的时间估计。

  • 此外,虽然我们尽可能分析垂直于矿物边界或者环带边界的剖面,以避免分析剖面和扩散界面斜交使得扩散距离被拉长,但矿物切面可能和矿物边界或环带斜交(图10),扩散距离会被拉长,时间被高估,这种情况下测量距离最短的扩散剖面可能更接近真实情况(Costa and Morgan,2010; Begue et al.,2023)。为了获得更准确的扩散时间,则需要考虑矿物的二维和三维扩散模型(Shea et al.,2015a)。此外,多元素协同扩散也是重要的研究方向。

  • 图10 矿物切面和扩散环带斜交,测量的扩散剖面将会变长

  • Fig.10 The measured diffusion distance will be overestimated when the exposed section is not perpendicular to the diffusion interface

  • 致谢:扩散年代学近年来取得诸多重要进展,本文仅对部分进展进行了总结与点评。朱学麟协助绘制了部分图件。

  • 参考文献

    • Ague J J, Baxter E F. 2007. Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth and Planetary Science Letters, 261(3): 500~516.

    • Arrhenius S. 1889. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Physikalische Chemie, 4(1): 96~116.

    • Audétat A, Miyajima N, Wiesner D, Audinot J N. 2021. Confirmation of slow Ti diffusion in quartz by diffusion couple experiments and evidence from natural samples. Geology, 49(8): 963~967.

    • Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101(11): 2377~2404.

    • Barboni M, Boehnke P, Schmitt A K, Harrison T M, Shane P, Bouvier A S, Baumgartner L. 2016. Warm storage for arc magmas. Proceedings of the National Academy of Sciences, 113(49): 13959~13964.

    • Bégué F, Baumgartner L P, Bouvier A S, Escrig S, Lafay R, Meibom A, Müller T. 2023. Diffusion timescale conundrum in contact metamorphism: Oxygen isotope and trace element profiles in dolomite. Geochimica et Cosmochimica Acta, 358: 93~107.

    • Blereau E, Clark C, Kinny P D, Sansom E, Taylor R J M, Hand M. 2022. Probing the history of ultra-high temperature metamorphism through rare earth element diffusion in zircon. Journal of Metamorphic Geology, 40(3): 329~357.

    • Bloch E M, Jollands M C, Gerstl S S A, Bouvier A S, Plane F, Baumgartner L P. 2019. Diffusion of calcium in forsterite and ultra-high resolution of experimental diffusion profiles in minerals using local electrode atom probe tomography. Geochimica et Cosmochimica Acta, 265: 85~95.

    • Bradshaw R W, Kent A J R. 2017. The analytical limits of modeling short diffusion timescales. Chemical Geology, 466: 667~677.

    • Brady J B, Cherniak D J. 2010. Diffusion inminerals: An overview of published experimental diffusion data. Reviews in Mineralogy and Geochemistry, 72(1): 899~920.

    • Brown M, Johnson T, Spencer C J. 2022. Secular changes in metamorphism and metamorphic cooling rates track the evolving plate-tectonic regime on Earth. Journal of the Geological Society, 179(5): https: //doi. org/10. 1144/igs2022-050.

    • Brückel K, Lundstrom C C, Ackerson M, Campe C. 2023. Testing the limits of Ti-in-quartz thermometry and diffusion modelling to determine the thermal history of the fish canyon tuff. Journal of Petrology, 64(12): egad082.

    • Brugman K, Till C B, Bose M. 2022. Common assumptions and methods yield overestimated diffusive timescales, as exemplified in a yellowstone post-caldera lava. Contributions to Mineralogy and Petrology, 177(6): 63.

    • Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331): eaag3055.

    • Chakraborty S. 2008. Diffusion in solid silicates: A tool to track timescales of processes comes of age. Annual Review of Earth and Planetary Sciences, 36(1): 153~190.

    • Cherniak D J, Watson E B. 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2): 5~24.

    • Cherniak D J, Watson E B. 2003. Diffusion in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 113~143.

    • Cherniak D J, Watson E B, Wark D A. 2007. Ti diffusion in quartz. Chemical Geology, 236(1): 65~74.

    • Chu Xu, Ague J J. 2015. Analysis of experimental data on divalent cation diffusion kinetics in aluminosilicate garnets with application to timescales of peak Barrovian metamorphism, Scotland. Contributions to Mineralogy and Petrology, 170(2): 25.

    • Condon D, Kuiper K, Morgan L, Renne P, Schmitz M, Schoene B, Singer B. 2017. EARTHTIME 2. 0, accelerating the development and application of integrated methodologies for the quantification of geological time. GSA Annual Meeting, Seattle, Washington, USA.

    • Cooper K M, Kent A J R. 2014. Rapid remobilization of magmatic crystals kept in cold storage. Nature, 506(7489): 480~483.

    • Costa F. 2021. Clocks in magmatic rocks. Annual Review of Earth and Planetary Sciences, 49(1): 231~252.

    • Costa F, Dohmen R, Chakraborty S. 2008. Time scales of magmatic processes from modeling the zoning patterns of crystals. Reviews in Mineralogy and Geochemistry, 69(1): 545~594.

    • Costa F, Morgan D. 2010. Time constraints from chemical equilibration in magmatic crystals. In: Dosseto A, Turner S P, Van Orman J A. Timescales of Magmatic Processes: From Core to Atmosphere. Chichester, West Sussex, UK: John Wiley & Sons, 125~159.

    • Crank J. 1956. The Mathematics of Diffusion. London: Oxford University Press, 347.

    • Crank J. 1975. The Mathematics of Diffusion. London: Oxford University Press, 421.

    • Dodson M H. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3): 259~274.

    • Drüppel K, Elsäer L, Brandt S, Gerdes A. 2013. Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS geochronology and pseudosections of sapphirine granulites and associated paragneisses. Journal of Petrology, 54(2): 305~350.

    • England P C, Thompson A B. 1984. Pressure-temperature-time paths of regional metamorphism I. heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894~928.

    • Fick A. 1855. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(63): 30~39.

    • Ganguly J. 2002. Diffusion kinetics in minerals: Principles and applications to tectono-metamophic processes. Energy Modelling in Minerals. Gramaccioli C M. Budapest: Eötvös University Press, 4: 271~309.

    • Ganguly J, Bhattacharya A, Chakraborty S. 1988. Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. American Mineralogist, 73: 901~909.

    • Gao Shen, Zou Xinyu, Hofstra A H, Qin Kezhang, Marsh E E, Bennett M M, Li Guangming, Jiang Jilian, Su Shiqiang, Zhao Junxing, Li Zhenzhen. 2022. Trace elements in quartz: Insights into source and fluid evolution in magmatic-hydrothermal systems. Economic Geology, 117(6): 1415~1428.

    • Goldstein J I, Short J M. 1967. Cooling rates of 27 iron and stony-iron meteorites. Geochimica et Cosmochimica Acta, 31(6): 1001~1023.

    • Harley S L. 2016. A matter of time: The importance of the duration of UHT metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2): 50~72.

    • Hawkesworth C J, Kemp A I S. 2006. Evolution of the continental crust. Nature, 443: 811~817.

    • Huber C, Bachmann O, Manga M. 2010. Two competing effects of volatiles on heat transfer in crystal-rich magmas: Thermal insulation vs defrosting. Journal of Petrology, 51(4): 847~867.

    • Huber C, Bachmann O, Dufek J. 2011. Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal fracturing and assimilation processes in magmas. Earth and Planetary Science Letters, 304(3): 443~454.

    • Iovine R S, Fedele L, Mazzeo F C, Arienzo I, Cavallo A, Wörner G, Orsi G, Civetta L, D'Antonio M. 2017. Timescales of magmatic processes prior to the ~4. 7 ka Agnano-Monte Spina eruption (Campi Flegrei caldera, Southern Italy) based on diffusion chronometry from sanidine phenocrysts. Bulletin of Volcanology, 79(2): 18.

    • Jollands M C. 2020. Assessing analytical convolution effects in diffusion studies: Applications to experimental and natural diffusion profiles. PLOS ONE, 15(11): e0241788.

    • Jollands M C, Bloch E, Müntener O. 2020. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs. Geology, 48(7): 654~657.

    • Kelsey D E, Hand M. 2015. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6(3): 311~356.

    • Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, 402-403: 105756.

    • Li Yang, Selby D, Condon D, Tapster S. 2017. Cyclic magmatic-hydrothermal evolution in porphyry systems: High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit. Economic Geology, 112(6): 1419~1440.

    • Li Yang, Li Xianhua, Selby D, Li Jianwei. 2018. Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology, 46(1): 7~10.

    • Li Yang, Allen M B, Li Xianhua. 2022. Millennial pulses of ore formation and an extra-high Tibetan Plateau. Geology, 50(6): 665~669.

    • Li Yang, Pan Junyi, Wu Liguang, He Sheng, Bachmann O, Li Xianhua. 2023. Transient tin mineralization from cooling of magmatic fluids in a long-lived system. Geology, 51(3): 305~309.

    • Li Zhengxiang, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 323: 1~5.

    • Martin V M, Morgan D J, Jerram D A, Caddick M J, Prior D J, Davidson J P. 2008. Bang! month-scale eruption triggering at Santorini Volcano. Science, 321(5893): 1178~1178.

    • Mercer C N, Reed M H, Mercer C M. 2015. Time scales of porphyry Cu deposit formation: Insights from titanium diffusion in quartz. Economic Geology, 110(3): 587~602.

    • Müller T, Massonne H J, Willner A P. 2015. Special collection: Mechanisms, rates, and timescales of geochemical transport processes in the crust and mantle. Timescales of exhumation and cooling inferred by kinetic modeling: An example using a lamellar garnet pyroxenite from the Variscan Granulitgebirge, Germany. American Mineralogist, 100(4): 747~759.

    • Mutch E J F, Maclennan J, Shorttle O, Rudge J F, Neave D A. 2021. DFENS: Diffusion chronometry using finite elements and nested sampling. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009303.

    • National Academies of Sciences E, and Medicine. 2020. A Vision for NSF Earth Sciences 2020-2030: Earth in Time. Washington, DC: The National Academies Press, 144.

    • Petrone C M, Bugatti G, Braschi E, Tommasini S. 2016. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics. Nature Communications, 7(1): 12946.

    • Reiners P W, Carlson R W, Renne P R, Cooper K M, Granger D E, McLean N M, Schoene B. 2017. Geochronology and thermochronology. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK, John Wiley & Sons Ltd.

    • Rubatto D, Burger M, Lanari P, Hattendorf B, Schwarz G, Neff C, Keresztes Schmidt P, Hermann J, Vho A, Günther D. 2020. Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS. Contributions to Mineralogy and Petrology, 175(7): 61.

    • Rubin A E, Cooper K M, Till C B, Kent A J R, Costa F, Bose M, Gravley D, Deering C, Cole J. 2017. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science, 356(6343): 1154~1156.

    • Rudnick R L. 1995. Making continental crust. Nature, 378(6557): 571~578.

    • Schaltegger U, Ovtcharova M, Gaynor S P, Schoene B, Wotzlaw J F, Davies J F, Farina F, Greber N D, Szymanowski D, Chelle-Michou C. 2021. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology. Journal of Analytical Atomic Spectrometry, 36(7): 1466~1477.

    • Schoene B, Condon D J, Morgan L, McLean N. 2013. Precision and accuracy in geochronology. Elements, 9(1): 19~24.

    • Shea T, Costa F, Krimer D, Hammer J E. 2015a. Accuracy of timescales retrieved from diffusion modeling in olivine: A 3D perspective. American Mineralogist, 100(10): 2026~2042.

    • Shea T, Lynn K J, Garcia M O. 2015b. Cracking the olivine zoning code: Distinguishing between crystal growth and diffusion. Geology, 43(10): 935~938.

    • Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3~41.

    • Sillitoe R H, Mortensen J K. 2010. Longevity of porphyry copper formation at Quellaveco, Peru. Economic Geology, 105(6): 1157~1162.

    • Simmons S F, Brown K L. 2006. Gold inmagmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science, 314(5797): 288~291.

    • Spear F S. 2014. The duration of near-peak metamorphism from diffusion modelling of garnet zoning. Journal of Metamorphic Geology, 32(8): 903~914.

    • Tang Ming, Rudnick R L, McDonough W F, Bose M, Goreva Y. 2017. Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries. Earth and Planetary Science Letters, 474: 110~119.

    • Tavazzani L, Peres S, Sinigoi S, Demarchi G, Economos R C, Quick J E. 2020. Timescales and mechanisms of crystal-mush rejuvenation and melt extraction recorded in Permian plutonic and volcanic rocks of the sesia magmatic system (Southern Alps, Italy). Journal of Petrology, 61(5): egaa049.

    • Till C B, Vazquez J A, Boyce J W. 2015. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology, 43(8): 695~698.

    • Viete D R, Hermann J, Lister G S, Stenhouse I R. 2011. The nature and origin of the Barrovian metamorphism, Scotland: Diffusion length scales in garnet and inferred thermal time scales. Journal of the Geological Society, 168(1): 115~132.

    • Viete D R, Lister G S. 2017. On the significance of short-duration regional metamorphism. Journal of the Geological Society, 174(3): 377~392.

    • Weis P, Driesner T, Heinrich C A. 2012. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, 338(6114): 1613~1616.

    • Wood J A. 1964. The cooling rates and parent planets of several iron meteorites. Icarus, 3(5): 429~459.

    • Wu Liguang, Li Yang, Jollands M C, Vermeesch P, Li Xianhua. 2022. Diffuser: A user-friendly program for diffusion chronometry with robust uncertainty estimation. Computers & Geosciences, 163: 105108.

    • Zhang Youxue. 2010. Diffusion in minerals and melts: Theoretical background. Reviews in Mineralogy and Geochemistry, 72(1): 5~59.

    • Zou Yi, Chu Xu, Li Qiuli, Mitchell R N, Zhai Mingguo, Zou Xinyu, Zhao Lei, Wang Yuquan, Liu Bo. 2020. Local rapid exhumation and fast cooling in a long-lived paleoproterozoic orogeny. Journal of Petrology, 61(10): egaa091.

    • Zou Yi, Li Qiuli, Chu Xu, Zhai Mingguo, Mitchell R N, Zhao Lei, Zhou Ligang, Wang Yuquan, Liu Bo. 2021. Older orogens cooled slower: New constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton. Contributions to Mineralogy and Petrology, 176(11): 91.

    • 李献华, 李扬, 李秋立, 吴黎光, 王浩, 杨传, 韦刚健, 张万峰. 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104~122.

  • 参考文献

    • Ague J J, Baxter E F. 2007. Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth and Planetary Science Letters, 261(3): 500~516.

    • Arrhenius S. 1889. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Physikalische Chemie, 4(1): 96~116.

    • Audétat A, Miyajima N, Wiesner D, Audinot J N. 2021. Confirmation of slow Ti diffusion in quartz by diffusion couple experiments and evidence from natural samples. Geology, 49(8): 963~967.

    • Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101(11): 2377~2404.

    • Barboni M, Boehnke P, Schmitt A K, Harrison T M, Shane P, Bouvier A S, Baumgartner L. 2016. Warm storage for arc magmas. Proceedings of the National Academy of Sciences, 113(49): 13959~13964.

    • Bégué F, Baumgartner L P, Bouvier A S, Escrig S, Lafay R, Meibom A, Müller T. 2023. Diffusion timescale conundrum in contact metamorphism: Oxygen isotope and trace element profiles in dolomite. Geochimica et Cosmochimica Acta, 358: 93~107.

    • Blereau E, Clark C, Kinny P D, Sansom E, Taylor R J M, Hand M. 2022. Probing the history of ultra-high temperature metamorphism through rare earth element diffusion in zircon. Journal of Metamorphic Geology, 40(3): 329~357.

    • Bloch E M, Jollands M C, Gerstl S S A, Bouvier A S, Plane F, Baumgartner L P. 2019. Diffusion of calcium in forsterite and ultra-high resolution of experimental diffusion profiles in minerals using local electrode atom probe tomography. Geochimica et Cosmochimica Acta, 265: 85~95.

    • Bradshaw R W, Kent A J R. 2017. The analytical limits of modeling short diffusion timescales. Chemical Geology, 466: 667~677.

    • Brady J B, Cherniak D J. 2010. Diffusion inminerals: An overview of published experimental diffusion data. Reviews in Mineralogy and Geochemistry, 72(1): 899~920.

    • Brown M, Johnson T, Spencer C J. 2022. Secular changes in metamorphism and metamorphic cooling rates track the evolving plate-tectonic regime on Earth. Journal of the Geological Society, 179(5): https: //doi. org/10. 1144/igs2022-050.

    • Brückel K, Lundstrom C C, Ackerson M, Campe C. 2023. Testing the limits of Ti-in-quartz thermometry and diffusion modelling to determine the thermal history of the fish canyon tuff. Journal of Petrology, 64(12): egad082.

    • Brugman K, Till C B, Bose M. 2022. Common assumptions and methods yield overestimated diffusive timescales, as exemplified in a yellowstone post-caldera lava. Contributions to Mineralogy and Petrology, 177(6): 63.

    • Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331): eaag3055.

    • Chakraborty S. 2008. Diffusion in solid silicates: A tool to track timescales of processes comes of age. Annual Review of Earth and Planetary Sciences, 36(1): 153~190.

    • Cherniak D J, Watson E B. 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2): 5~24.

    • Cherniak D J, Watson E B. 2003. Diffusion in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 113~143.

    • Cherniak D J, Watson E B, Wark D A. 2007. Ti diffusion in quartz. Chemical Geology, 236(1): 65~74.

    • Chu Xu, Ague J J. 2015. Analysis of experimental data on divalent cation diffusion kinetics in aluminosilicate garnets with application to timescales of peak Barrovian metamorphism, Scotland. Contributions to Mineralogy and Petrology, 170(2): 25.

    • Condon D, Kuiper K, Morgan L, Renne P, Schmitz M, Schoene B, Singer B. 2017. EARTHTIME 2. 0, accelerating the development and application of integrated methodologies for the quantification of geological time. GSA Annual Meeting, Seattle, Washington, USA.

    • Cooper K M, Kent A J R. 2014. Rapid remobilization of magmatic crystals kept in cold storage. Nature, 506(7489): 480~483.

    • Costa F. 2021. Clocks in magmatic rocks. Annual Review of Earth and Planetary Sciences, 49(1): 231~252.

    • Costa F, Dohmen R, Chakraborty S. 2008. Time scales of magmatic processes from modeling the zoning patterns of crystals. Reviews in Mineralogy and Geochemistry, 69(1): 545~594.

    • Costa F, Morgan D. 2010. Time constraints from chemical equilibration in magmatic crystals. In: Dosseto A, Turner S P, Van Orman J A. Timescales of Magmatic Processes: From Core to Atmosphere. Chichester, West Sussex, UK: John Wiley & Sons, 125~159.

    • Crank J. 1956. The Mathematics of Diffusion. London: Oxford University Press, 347.

    • Crank J. 1975. The Mathematics of Diffusion. London: Oxford University Press, 421.

    • Dodson M H. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3): 259~274.

    • Drüppel K, Elsäer L, Brandt S, Gerdes A. 2013. Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS geochronology and pseudosections of sapphirine granulites and associated paragneisses. Journal of Petrology, 54(2): 305~350.

    • England P C, Thompson A B. 1984. Pressure-temperature-time paths of regional metamorphism I. heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894~928.

    • Fick A. 1855. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(63): 30~39.

    • Ganguly J. 2002. Diffusion kinetics in minerals: Principles and applications to tectono-metamophic processes. Energy Modelling in Minerals. Gramaccioli C M. Budapest: Eötvös University Press, 4: 271~309.

    • Ganguly J, Bhattacharya A, Chakraborty S. 1988. Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. American Mineralogist, 73: 901~909.

    • Gao Shen, Zou Xinyu, Hofstra A H, Qin Kezhang, Marsh E E, Bennett M M, Li Guangming, Jiang Jilian, Su Shiqiang, Zhao Junxing, Li Zhenzhen. 2022. Trace elements in quartz: Insights into source and fluid evolution in magmatic-hydrothermal systems. Economic Geology, 117(6): 1415~1428.

    • Goldstein J I, Short J M. 1967. Cooling rates of 27 iron and stony-iron meteorites. Geochimica et Cosmochimica Acta, 31(6): 1001~1023.

    • Harley S L. 2016. A matter of time: The importance of the duration of UHT metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2): 50~72.

    • Hawkesworth C J, Kemp A I S. 2006. Evolution of the continental crust. Nature, 443: 811~817.

    • Huber C, Bachmann O, Manga M. 2010. Two competing effects of volatiles on heat transfer in crystal-rich magmas: Thermal insulation vs defrosting. Journal of Petrology, 51(4): 847~867.

    • Huber C, Bachmann O, Dufek J. 2011. Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal fracturing and assimilation processes in magmas. Earth and Planetary Science Letters, 304(3): 443~454.

    • Iovine R S, Fedele L, Mazzeo F C, Arienzo I, Cavallo A, Wörner G, Orsi G, Civetta L, D'Antonio M. 2017. Timescales of magmatic processes prior to the ~4. 7 ka Agnano-Monte Spina eruption (Campi Flegrei caldera, Southern Italy) based on diffusion chronometry from sanidine phenocrysts. Bulletin of Volcanology, 79(2): 18.

    • Jollands M C. 2020. Assessing analytical convolution effects in diffusion studies: Applications to experimental and natural diffusion profiles. PLOS ONE, 15(11): e0241788.

    • Jollands M C, Bloch E, Müntener O. 2020. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs. Geology, 48(7): 654~657.

    • Kelsey D E, Hand M. 2015. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6(3): 311~356.

    • Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, 402-403: 105756.

    • Li Yang, Selby D, Condon D, Tapster S. 2017. Cyclic magmatic-hydrothermal evolution in porphyry systems: High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit. Economic Geology, 112(6): 1419~1440.

    • Li Yang, Li Xianhua, Selby D, Li Jianwei. 2018. Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology, 46(1): 7~10.

    • Li Yang, Allen M B, Li Xianhua. 2022. Millennial pulses of ore formation and an extra-high Tibetan Plateau. Geology, 50(6): 665~669.

    • Li Yang, Pan Junyi, Wu Liguang, He Sheng, Bachmann O, Li Xianhua. 2023. Transient tin mineralization from cooling of magmatic fluids in a long-lived system. Geology, 51(3): 305~309.

    • Li Zhengxiang, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 323: 1~5.

    • Martin V M, Morgan D J, Jerram D A, Caddick M J, Prior D J, Davidson J P. 2008. Bang! month-scale eruption triggering at Santorini Volcano. Science, 321(5893): 1178~1178.

    • Mercer C N, Reed M H, Mercer C M. 2015. Time scales of porphyry Cu deposit formation: Insights from titanium diffusion in quartz. Economic Geology, 110(3): 587~602.

    • Müller T, Massonne H J, Willner A P. 2015. Special collection: Mechanisms, rates, and timescales of geochemical transport processes in the crust and mantle. Timescales of exhumation and cooling inferred by kinetic modeling: An example using a lamellar garnet pyroxenite from the Variscan Granulitgebirge, Germany. American Mineralogist, 100(4): 747~759.

    • Mutch E J F, Maclennan J, Shorttle O, Rudge J F, Neave D A. 2021. DFENS: Diffusion chronometry using finite elements and nested sampling. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009303.

    • National Academies of Sciences E, and Medicine. 2020. A Vision for NSF Earth Sciences 2020-2030: Earth in Time. Washington, DC: The National Academies Press, 144.

    • Petrone C M, Bugatti G, Braschi E, Tommasini S. 2016. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics. Nature Communications, 7(1): 12946.

    • Reiners P W, Carlson R W, Renne P R, Cooper K M, Granger D E, McLean N M, Schoene B. 2017. Geochronology and thermochronology. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK, John Wiley & Sons Ltd.

    • Rubatto D, Burger M, Lanari P, Hattendorf B, Schwarz G, Neff C, Keresztes Schmidt P, Hermann J, Vho A, Günther D. 2020. Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS. Contributions to Mineralogy and Petrology, 175(7): 61.

    • Rubin A E, Cooper K M, Till C B, Kent A J R, Costa F, Bose M, Gravley D, Deering C, Cole J. 2017. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science, 356(6343): 1154~1156.

    • Rudnick R L. 1995. Making continental crust. Nature, 378(6557): 571~578.

    • Schaltegger U, Ovtcharova M, Gaynor S P, Schoene B, Wotzlaw J F, Davies J F, Farina F, Greber N D, Szymanowski D, Chelle-Michou C. 2021. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology. Journal of Analytical Atomic Spectrometry, 36(7): 1466~1477.

    • Schoene B, Condon D J, Morgan L, McLean N. 2013. Precision and accuracy in geochronology. Elements, 9(1): 19~24.

    • Shea T, Costa F, Krimer D, Hammer J E. 2015a. Accuracy of timescales retrieved from diffusion modeling in olivine: A 3D perspective. American Mineralogist, 100(10): 2026~2042.

    • Shea T, Lynn K J, Garcia M O. 2015b. Cracking the olivine zoning code: Distinguishing between crystal growth and diffusion. Geology, 43(10): 935~938.

    • Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3~41.

    • Sillitoe R H, Mortensen J K. 2010. Longevity of porphyry copper formation at Quellaveco, Peru. Economic Geology, 105(6): 1157~1162.

    • Simmons S F, Brown K L. 2006. Gold inmagmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science, 314(5797): 288~291.

    • Spear F S. 2014. The duration of near-peak metamorphism from diffusion modelling of garnet zoning. Journal of Metamorphic Geology, 32(8): 903~914.

    • Tang Ming, Rudnick R L, McDonough W F, Bose M, Goreva Y. 2017. Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries. Earth and Planetary Science Letters, 474: 110~119.

    • Tavazzani L, Peres S, Sinigoi S, Demarchi G, Economos R C, Quick J E. 2020. Timescales and mechanisms of crystal-mush rejuvenation and melt extraction recorded in Permian plutonic and volcanic rocks of the sesia magmatic system (Southern Alps, Italy). Journal of Petrology, 61(5): egaa049.

    • Till C B, Vazquez J A, Boyce J W. 2015. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology, 43(8): 695~698.

    • Viete D R, Hermann J, Lister G S, Stenhouse I R. 2011. The nature and origin of the Barrovian metamorphism, Scotland: Diffusion length scales in garnet and inferred thermal time scales. Journal of the Geological Society, 168(1): 115~132.

    • Viete D R, Lister G S. 2017. On the significance of short-duration regional metamorphism. Journal of the Geological Society, 174(3): 377~392.

    • Weis P, Driesner T, Heinrich C A. 2012. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, 338(6114): 1613~1616.

    • Wood J A. 1964. The cooling rates and parent planets of several iron meteorites. Icarus, 3(5): 429~459.

    • Wu Liguang, Li Yang, Jollands M C, Vermeesch P, Li Xianhua. 2022. Diffuser: A user-friendly program for diffusion chronometry with robust uncertainty estimation. Computers & Geosciences, 163: 105108.

    • Zhang Youxue. 2010. Diffusion in minerals and melts: Theoretical background. Reviews in Mineralogy and Geochemistry, 72(1): 5~59.

    • Zou Yi, Chu Xu, Li Qiuli, Mitchell R N, Zhai Mingguo, Zou Xinyu, Zhao Lei, Wang Yuquan, Liu Bo. 2020. Local rapid exhumation and fast cooling in a long-lived paleoproterozoic orogeny. Journal of Petrology, 61(10): egaa091.

    • Zou Yi, Li Qiuli, Chu Xu, Zhai Mingguo, Mitchell R N, Zhao Lei, Zhou Ligang, Wang Yuquan, Liu Bo. 2021. Older orogens cooled slower: New constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton. Contributions to Mineralogy and Petrology, 176(11): 91.

    • 李献华, 李扬, 李秋立, 吴黎光, 王浩, 杨传, 韦刚健, 张万峰. 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104~122.