en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王登红,男,1967年生。博士,研究员,主要从事矿产资源研究。第五届黄汲清青年地质科学技术奖获奖者。E-mail:wangdenghong@vip.sina.com。

通讯作者:

代鸿章,男,1985年生。博士,副研究员,主要从事矿产资源研究。E-mail:Daihz_cags@163.com。

参考文献
Bonewitz R L, Carruthers M, Efthim R. 2005. Rock and Gem. London: Dorling Kindersley, 1~360.
参考文献
Černý P. 1991. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatitic deposits; Part II: Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 49~67; 68~81.
参考文献
Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. Canadian Mineralogist, 43(6): 2005~2006.
参考文献
Dai Hongzhang, Wang Denghong, Liu Lijun, Yu Yang, Dai Jingjing, Fu Xiaofang. 2018. Geochronology, geochemistry and their geological significances of No. 308 pegmatite vein in the Jiajika deposit, western Sichuan, China. Earth Science, 43(10): 3664~3681 (in Chinese with English abstract).
参考文献
Editorial Board of the Discovery History of Mineral Deposits of China: Jiangxi Volume. 1996. The Discovery History of Mineral Deposits of China. Beijing: Geological Publishing House.
参考文献
Editorial Board of the Geology of Mineral Resources in China: Jiangxi Volume. 2015. Geology of Mineral Resources in China: Jiangxi Volume. Beijing: Geological Publishing House.
参考文献
Gao Shan, Luo Tingchuan, Zhang Benren, Zhang Hongfei, Han Yinwen, Zhao Zhidan, Hu Yukun. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959~1975.
参考文献
Gou Shulin, Yu Jinhai, Cai Yuanfeng, Jiang Wei, Mao Zhiqi. 2023. Distribution and enrichment mechanism of lithium in meta-sedimentary rocks in the Jiangnan orogen and implications for lithium mineralization. Acta Geologica Sinica, 97(11): 3696~3724 (in Chinese with English abstract).
参考文献
Hao Xuefeng, Fu Xiaofang, Liang Bin, Yuan Linping, Pan Meng, Tang Yi. 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance. Mineral Deposits, 34(6): 1199~1208 (in Chinese with English abstract).
参考文献
He Lei, Gao Jinggang, Wang Denghong, Liang Ting, Feng Yonggang, Huang Fan, Tan Xijuan, Cen Jubiao. 2022. Discussion on genetic relationship between granite and pegmatite in Dahongliutan rare metal ore field, Xinjiang. Mineral Deposits, 42(4): 693~712.
参考文献
Hu Fangyang, Wu Fuyuan, Chen Guohui, Yang Lei. 2022. The critical factors of lithium enrichment in the metasedimentary wall rocks of granitic pegmatite-type lithium deposit: Insights from the Ke'eryin area in the eastern Songpan-Ganzi belt. Acta Petrologica Sinica, 38(7): 2017~2051 (in Chinese with English abstract).
参考文献
Huang Jiqing. 1954. On Major Tectonic Forms of China. Beijing: Geological Publishing House, 1~162 (in Chinese).
参考文献
Huang Jiqing, Jiang Chunfa. 1962. Preliminary investigation on the evolution of the earth's crust from the point of view of polycyclic tectonic movements. Acta Geologica Sinica, 42(2): 105~152 (in Chinese with English abstract).
参考文献
Huang Jiqing, Chen Tingyu. 1986. On the problem of polycyclic mineralization of tungsten and tad deposits in South China. Geological Review, 32(2): 138~143 (in Chinese with English abstract).
参考文献
Li Guangming, Fu Jiangang, Gui Weikang, Zhang Hai, Zhang Linkui, Dong Suiliang, Li Yingxu, Wu Jianyang, Jiao Yanjie, Jin Canhai, Huang Chunmei. 2022. Discovery of the Gabo granitic pegmatite-type lithium deposit in the Kulagangri dome, eastern Himalayan metallogenic belt, and its prospecting implication. Acta Petrologica et Mineralogica, 41(6): 1109~1119 (in Chinese with English abstract).
参考文献
Li Jiankang, Li Peng, Yan Qinggao, Liu Qiang, Xiong Xin. 2021. History of granitic pegmatite research in China. Acta Geologica Sinica, 95(10): 2996~3016 (in Chinese with English abstract).
参考文献
Li Yonglong, Miao Weiliang, He Maoyong, Li Changzhong, Gu Huanen, Zhang Xiying. 2023. Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Tibetan Plateau: Evidence from hydrogeochemistry and lithium isotopes. Ore Geology Reviews, 105356.
参考文献
Liu Lijun. 2019. Rare metal metallogenic features and prospecting prediction of No. X03 vein in Jiajika, Sichuan. Doctoral dissertation of China University of Geosciences (Beijing).
参考文献
Liu Lijun, Wang Denghong, Dai Hongzhang, Hou Jianglong. 2017. Geochemical characteristics of REE and its implications to X03 super-large lithium pegmatite vein, Jiajika, Sichuan. Earth Science, 42(10): 1673~1683 (in Chinese with English abstract).
参考文献
London D. 2008. Pegmatites. Mineralogical Association of Canada, Quebec. Canada Pension Plan. 1~347.
参考文献
London D. 2016. Rare-element granitic pegmatites. In: Verplanck P L, Hitzman M W, eds. Rare Earth and Critical Elementsin Major Deposit Types, Reviews in Economic Geology. 18. Society of Economic Geologists, Inc, Littleton, CO, 165~193.
参考文献
London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.
参考文献
Luan Shiwei, Mao Yuyuan, Fan Liangming, Wu Xiaobing, Lin Jinhui. 1996. Metallogenic and prospecting of rare metals in Keketuohai area. Chengdu: Chengdu University of Science and Technology Press, 1~295 (in Chinese with English abstract).
参考文献
Ma Zhanlong, Xu Yusheng, Tang Yong, Zhang Hui, Lü Minghang. 2022. Geochemical characteristics of metamorphic rocks and metallogenic potential of rare metals in the Habahe Group of the Qinghe area in the Altai orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1224~1240 (in Chinese with English abstract).
参考文献
Ren Jishun, Wang Zzuoxun, Chen Bingwei. 1999. Tectonics of China from a Global Perspective: A Brief Description of Tectonics Maps of China and Adjacent Areas. Beijing: Geological Publishing House, 1~50 (in Chinese).
参考文献
Schwartz G. 1928. The Black Hills mineral region. American Mineralogist, 13: 56~63.
参考文献
Shaw R A, Goodenough K M, Roberts N M W, Horstwood M S A, Chenery S R, Gunn A G. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian gneiss complex of north-west Scotland. Precambrian Research, 281: 338~362.
参考文献
Simmons W B, Webber K L. 2008. Pegmatite genesis: State of the art. European Journal of Mineralogy, 20: 421~438.
参考文献
Simmons W B, Falster A U, Webber K L, Roda-Robles E, Boudreaux A P, Grassi L R, Freeman G. 2016. Bulk composition of Mt. Mica Pegmatite, Maine, USA: Implications for the origin of an LCT type pegmatite by anatexis. Canadian Mineralogist, 54: 1053~1070.
参考文献
Sirbescu M L C, Nabelek P I. 2003. Crustal melts below 400℃. Geology, 31: 685~688.
参考文献
Stepanov A A, Mavrogenes J, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167: 1~8.
参考文献
Sun Yan, Wang Denghong, Gao Yun, Han Jingyi, Ma Shengchao, Fan Xingtao, Gu Wenshuai, Zhang Lihong. 2018. Geochemical characteristics of lithium-rich mung bean rocks in Tongliang County, Chongqing. Acta Petrologica et Mineralogica, 37(3): 445~453 (in Chinese with English abstract).
参考文献
Thomas R, Webster J D. 2000. Strong tin enrichment in a pegmatite-forming melt. Mineralium Deposita, 35: 570~582.
参考文献
Wang Denghong. 2001. Basic concept, classification, evolution of mantle plume and large scale mineralization—probe into southwestern China. Earth Science Frontiers, 8(3): 67~72 (inChinese with English abstract).
参考文献
Wang Denghong. 2014. National Genealogy of Diagenetic and Metallogenic Ages. Beijing: Geological Publishing House, 1~438 (in Chinese).
参考文献
Wang Denghong, Li Peigang, Qu Wenjun, Lei Zhiyuan, Liao Youchang. 2013. Discovery and comprehensive evaluation of tungsten and lithium in Dazhuyuan bauxite, Guizhou Province. Scientia Sinica (Terrae), 43(1): 44~51 (in Chinese with English abstract).
参考文献
Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey of China. Geological Survey of China, 4(5): 1~8 (in Chinese with English abstract).
参考文献
Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5): 743~764 (in Chinese with English abstract).
参考文献
Wang Xueqiu, Liu Hanliang, Wang Wei, Zhou Jian, Zhang Bimin, Xu Shanfa. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects. Acta Geoscientica Sinica, 41(6): 797~806 (in Chinese with English abstract).
参考文献
Webber K L, Simmons W B, Falster A U, Hanson S L. 2019. Anatectic Pegmatites of the Oxford County Pegmatite Field, Maine, USA. Canadian Mineralogist, 57(5): 811~815.
参考文献
Yang Yueqing, Liu Shanbao, Wang Denghong, Dai Hongzhang, Li Xin. 2023. Discussion on the difference of metallogenic characteristics and genesis of the Jiajika and Keeryin rare metals ore fields in western Sichuan. Acta Geoscientica Sinica, 44(3): 419~433 (in Chinese with English abstract).
参考文献
Zhai Mingguo. 2013. The main old lands in China and assembly of Chinese Unified Continent. Science China Earth Sciences, 56: 1829~1852 (in Chinese with English abstract).
参考文献
Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth Science Reviews, 186: 262~286 (in Chinese with English abstract).
参考文献
Zheng Mianping, Xing Enyuan, Zhang Xuefei, Li Mingming, Che Dong, Bu Lingzhong, Han Jiahuan, Ye Chuanyong. 2023. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits. Geology in China, 50(6): 1599~1620 (in Chinese with English abstract).
参考文献
Zou Ttianren, Li Qingchang. 2006. Rare and rare earth metal deposits in Xinjiang, China. Beijing: Geological Publishing House, 1~314(in Chinese).
参考文献
代鸿章, 王登红, 刘丽君, 于扬, 代晶晶, 付小方. 2018. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义. 地球科学, 43(10): 3664~3681.
参考文献
苟树林, 于津海, 蔡元峰, 蒋威, 毛志奇. 2023. 江南造山带基底变质沉积岩中锂元素分布和富集机制及对锂成矿的制约. 地质学报, 97(11): 3696~3724.
参考文献
郝雪峰, 付小方, 梁斌, 袁蔺平, 潘蒙, 唐屹. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义. 矿床地质, 34(6): 1199~1208.
参考文献
何蕾, 高景刚, 王登红, 梁婷, 凤永刚, 黄凡, 谭细娟, 岑炬标. 2022. 新疆大红柳滩稀有金属矿田花岗岩与伟晶岩成因关系探讨. 矿床地质, 42(4): 693~712.
参考文献
胡方泱, 吴福元, 陈国辉, 杨雷. 2022. 花岗-伟晶岩型锂矿床围岩变质沉积岩中锂富集的关键因素: 以松潘-甘孜构造带东部可尔因地区为例. 岩石学报, 38(7): 2017~2051.
参考文献
黄汲清. 1954. 中国主要地质构造单位. 北京: 地质出版社, 1~162.
参考文献
黄汲清, 姜春发. 1962. 从多旋回构造运动观点初步探讨地壳运动发展规律. 地质学报, 42(2): 105~152.
参考文献
黄汲清, 陈廷愚. 1986. 华南钨、锡矿之多旋回成矿问题. 地质论评, 32(2): 138~143.
参考文献
李光明, 付建刚, 郭伟康, 张海, 张林奎, 董随亮, 李应栩, 吴建阳, 焦彦杰, 金灿海, 黄春梅. 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义. 岩石矿物学杂志, 41(6): 1109~1119.
参考文献
李建康, 李鹏, 严清高, 刘强, 熊欣. 2021. 中国花岗伟晶岩的研究历程及发展态势. 地质学报, 95(10): 2996~3016.
参考文献
刘丽君. 2019. 四川甲基卡新三号脉稀有金属成矿特征与找矿预测. 中国地质大学(北京)博士学位论文.
参考文献
刘丽君, 王登红, 代鸿章, 侯江龙. 2017. 四川甲基卡新三号超大型锂矿脉稀土元素地球化学. 地球科学, 42(10): 1673~1683.
参考文献
栾世伟, 毛玉元, 范良明, 巫晓兵, 林金辉. 1996. 可可托海地区稀有金属成矿与找矿. 成都: 成都科技大学出版社, 1~295.
参考文献
马占龙, 徐雨生, 唐勇, 张辉, 吕正航. 2022. 阿尔泰造山带青河地区哈巴河群变质岩地球化学特征及稀有金属背景值研究. 矿物岩石地球化学通报, 41(6): 1224~1240.
参考文献
任纪舜, 王作勋, 陈炳蔚. 1999. 从全球看中国大地构造: 中国及邻区大地构造图简要说明书. 北京: 地质出版社, 1~50.
参考文献
孙艳, 王登红, 高允, 韩景仪, 马圣钞, 樊兴涛, 顾文帅, 张丽红. 2018. 重庆铜梁地区富锂绿豆岩地球化学特征. 岩石矿物学杂志, 37(3): 445~453.
参考文献
王登红. 2001. 地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨. 地学前缘, 8(3): 67~72.
参考文献
王登红. 2014. 全国成岩成矿年代谱系. 北京: 地质出版社, 1~438.
参考文献
王登红, 李沛刚, 屈文俊, 雷志远, 廖友常. 2013. 贵州大竹园铝土矿中钨和锂的发现与综合评价. 中国科学: 地球科学, 43(1): 44~51.
参考文献
王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述. 中国地质调查, 4(5): 1~8.
参考文献
王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.
参考文献
王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化学背景与空间分布: 远景区预测. 地球学报, 41(6): 797~806.
参考文献
杨岳清, 刘善宝, 王登红, 代鸿章, 刘丽君, 李鑫. 2023. 川西甲基卡和可尔因矿田稀有金属成矿特征差异性及成因探讨. 地球学报, 44(3): 419~433.
参考文献
郑绵平, 邢恩袁, 张雪飞, 黎明明, 车东, 卜令忠, 韩佳欢, 叶传永. 2023. 全球锂矿床的分类、外生锂矿成矿作用与提取技术. 中国地质, 50(6): 1599~1620.
参考文献
《中国矿产地质志·江西卷》编委会. 2015. 中国矿产地质志·江西卷. 北京: 地质出版社.
参考文献
《中国矿床发现史·江西卷》编委会. 1996. 中国矿床发现史. 北京: 地质出版社.
参考文献
邹天人, 李庆昌. 2006. 中国新疆稀有稀土金属矿床. 北京: 地质出版社, 1~314.
目录contents

    摘要

    中国锂资源的分布具有卤水型与硬岩型相伴相随、若即若离的特点。“多旋回深循环内外生一体化”成锂理论,在多年三稀金属矿产找矿实践和理论研究的基础上不断丰富完善。中国锂矿的形成与“多旋回”构造运动密切相关,从前寒武纪到新生代均有成矿潜力,可构成一个完整的多旋回成矿谱系。锂的“深循环”,一是锂深度参与成岩成矿的物质循环;二是需要一个“圈闭”的构造背景将锂“捕获”以避免其过度分散,锂从开始加入到岩浆与最终定位的深度之差,是硬岩型锂矿成矿的关键之一,压差越大越有利于伟晶岩型锂矿的形成。大量锂矿实例显示锂的物质循环是“内外生一体化”的统一过程,高海拔地区(山上)的含锂地质体(花岗岩类甚至直接就是含锂矿床)经风化剥蚀之后,可能成为沉积型锂矿的物质来源之一;而富含锂的沉积岩经过埋藏、变质、深熔也可以形成含锂的岩浆岩、伟晶岩。我国西部塔里木盆地、四川盆地、扎布耶盆地及东部的江汉盆地、吉泰盆地、周田盆地等大小不一的盆地均含锂,而其周边造山带中也不同程度发育硬岩型锂矿,这就为区域找矿指明了方向。“多旋回深循环内外生一体化”成锂理论是三稀矿产成矿理论的重要组成部分,为我国锂矿找矿工作提供了指导和借鉴,在甲基卡、可尔因、阿尔金、幕阜山等锂矿矿集区的找矿实践中发挥了积极作用。

    Abstract

    The distribution of lithium resources in China is characterized by the conjunction and proximity of brine-type and hard-rock-type resources. Over the years, the “multi-cycle, deep circulation, integration of internal and external” theory of lithium has evolved and improved through extensive prospecting practice and theoretical research on rare metal minerals.China's lithium deposits have formed in relation to “multi-cyclic” tectonic movements, spanning from the Precambrian to the Cenozoic era, resulting in a comprehensive range of ore-forming cycles. The “deep circulation” of lithium involves two key aspects: firstly, lithium's extensive participation in the material cycle of sedimentary and mineralization processes; secondly, the need for a “trap” tectonic setting to capture lithium to prevent excessive dispersion.The depth difference, from initial addition to the magma to final positioning, plays a crucial role in the formation of hard-rock lithium deposits, with greater pressure differentials being more conducive to the formation of pegmatite lithium deposits. Numerous examples of lithium deposits demonstrate that the material cycle of lithium is an “integration of internal and external genesis” process.Lithium-bearing geological bodies in mountains (even directly as lithium deposits) can serve as a source of material for sedimentary lithium deposits after undergoing weathering and erosion. Rich lithium-bearing sedimentary rocks, upon burial, metamorphism, and remelting, can also form lithium-bearing magmatic and pegmatitic rocks.Various basins in western China, such as the Tarim basin, Sichuan basin, and Zhabuye basin, as well as the basins in eastern China, including the Jianghan basin, Jitai basin, and Zhoutian basin, are known to possess significant lithium resources.Additionally, the surrounding orogenic belts in these basins also contain varying degrees of hard rock lithium deposits, providing guidance for regional prospecting. The “multi-cycle, deep circulation, integration of internal and external” theory of lithium formation represents a significant component of the rare metal mineralization theory, offering guidance and reference for lithium prospecting in China. This theory has played a positive role in the prospecting practice of lithium ore concentration areas such as Jiajika, Ke'eryin, A'erjin, and Mufushan.

  • 迄今,国内外对于锂等稀有金属成矿机制的研究尚待深入且存在争论(Černý and Ercit,2005London,20162018Shaw et al.,2016Simmons et al.,2016Webber et al.,2019)。针对我国“多旋回构造运动”的特点(黄汲清,1954黄汲清和姜春发,1962;王登红等,2004;Zhai Mingguo,2013Zhao Guochun et al.,2018),在多年三稀金属矿产找矿实践的基础上,笔者正式提出了“多旋回深循环内外生一体化”成锂理论(王登红等,2017),并对一些关键性问题进行了探讨。该理论指出锂的成矿作用具有循环性,既可以“内生外成”,也可以“外生内成”,即卤水中的锂可由深部热卤水补充,也可以是地表花岗岩风化后被沉积盆地中的黏土矿物吸附而富集;而富含锂的沉积岩经过深埋、重熔、花岗岩化以及结晶分异可以形成内生成因锂矿床。该理论的提出,为我国开展以锂为代表的三稀金属找矿工作提供了指导和借鉴。七年来,经过两轮国家重点研发项目与多个地质调查项目以及企业出资的成果转化项目的支持,项目组在四川可尔因矿集区、新疆阿尔金矿集区等地,在该理论指导下进一步取得找矿突破,所发现的加达与砂锂沟(瓦石峡南)两个矿权成功实现了招拍挂出让,为新一轮锂矿找矿突破战略行动的实施提供了示范。

  • 1 中国锂矿资源格局——内外生兼而有之

  • 锂与铍、铌、钽均属于稀有金属,但锂在自然界中的富集规律与铍、铌、钽并不相同,其中最大的特点是锂既可以在特定的沉积环境中富集成矿,尤其是卤水型锂矿和现今难以开发利用但今后可能具有潜在价值的黏土型锂矿,也可以在花岗伟晶岩甚至某些特定的花岗岩类岩浆岩中富集成矿,而铍、铌、钽则难以在卤水、黏土中富集成矿。这与中国锂资源的分布格局(图1)是一致的。按照探明的、公开的资源储量,中国的大型超大型锂矿既出现在盆地中(如柴达木盆地中的察尔汗盐湖、东-西台吉乃尔盐湖、一里坪盐湖及别勒滩盐湖等),也分布在造山带(如松潘-甘孜造山带的甲基卡、李家沟、党坝、木绒、扎乌龙等,西昆仑造山带的大红柳滩等,新疆阿尔泰造山带的可可托海、柯鲁木特,阿尔金造山带的砂锂沟-瓦石峡南、塔木切-稀长沟等)。类似的锂资源分布格局在国外并不多见,如澳大利亚只有硬岩型锂矿而未见卤水型锂矿,南美的卤水型锂矿资源丰富但其周边尚未发现伟晶岩型锂矿。因此,中国的锂资源开发格局也与国外不同,我国既有青海盐湖股份下属的蓝科锂业、宝武集团下属的西藏矿业扎布耶矿区等以开发卤水锂为主的骨干矿山企业,也有众多以开采伟晶岩型锂矿甚至开采花岗岩型、云英岩型、角砾岩型等以锂云母为主要锂矿物的企业。这些企业不但掌握了卤水提锂的先进技术,也拥有多种多样的矿物提锂技术,如盐梯度太阳池法、膜法以及高温氯化、盐焙烧等提锂工艺(郑绵平等,2023)。而这些技术及其技术体系,对于中国锂业的高质量发展至关重要,即便是中国锂资源还不能满足战略性新兴产业快速发展之急需,锂矿石乃至含锂卤水都还需要大量进口,但技术的先进性与完整性,有助于中国锂业在世界上占有引导地位,同时也引导中国锂矿的找矿方向——既要寻找卤水型锂矿更要寻找硬岩型锂矿。

  • 图1 中国锂矿区域分布特征简图(据王登红等,2022修改;锂地球化学图据王学求等,2020修改)

  • Fig.1 Simplified map of the distribution characteristics of lithium deposits in China (modified from Wang Denghong et al., 2022; lithium geochemical map modified from Wang Xueqiu et al., 2020)

  • Li1—阿尔泰成锂带;Li2—大-小兴安岭成锂带(?);Li3—西天山成锂带;Li4—东天山成锂带;Li5—西昆仑成锂带;Li6—藏北成锂带;Li7—柴达木成锂带;Li8—松潘-甘孜成锂带;Li9—四川盆地成锂带;Li10—秦岭成锂带;Li11—潜江凹陷成锂带;Li12—华南成锂带;Li13—阿尔金成锂带;Li14—冈底斯成锂带;Li15—喜马拉雅成锂带,Li16—大兴安岭西坡成锂带

  • Li1—Altay lithium metallogenic belt; Li2—Daxing'an Mountains and Xiaoxing'an Mountains lithium metallogenic belt (?) ; Li3—West Tianshan lithium metallogenic belt; Li4—East Tianshan lithium metallogenic belt; Li5—West Kunlun lithium metallogenic belt; Li6—Northern Xizang (Tibet) lithium metallogenic belt; Li7—Qaidam lithium metallogenic belt; Li8—Songpan-Garze lithium metallogenic belt; Li9—Sichuan basin lithium metallogenic belt; Li10—Qinling lithium metallogenic belt; Li11—Qianjiang sag lithium metallogenic belt; Li12—South China lithium metallogenic belt; Li13—Altyn-Tagh lithium metallogenic belt; Li14—Gangdise lithium metallogenic belt; Li15—Himalaya lithium metallogenic belt; Li16—western slope of the Daxing'an Mountains lithium metallogenic belt

  • 有趣的是,中国锂资源的分布具有卤水型与硬岩型相伴相随、若即若离的特点。例如,在青海柴达木盆地的周边、西藏扎布耶盐湖的周边、四川盆地的周边、江汉盆地的周边乃至于江西吉泰盆地、周田盆地的周边,都有一系列硬岩型锂矿的存在,而盆地中则富集卤水锂。二者之间是否存在内在联系,尤其是成矿物质迁移、富集之间的成因联系,是笔者最初提出“内外生一体化”锂矿成矿的初衷动因。笔者2004年与许建祥、刘善宝等在跨江西与福建两省的武夷山区野外调研时,了解到江西会昌县境内周田盐矿中伴生有锂,而盐矿的发现曾经引起了毛泽东主席的高度重视,批示“江西找到大盐矿,这是一件大好事”(《中国矿床发现史·江西卷》编委会,1996)!周田盐矿也是小盆地找到大矿(中型盐矿)的实例之一,盆地中的钾、锂从何而来?因为位于武夷山西侧的周田盆地属于陆相盆地,与海隔离,不可能由海水蒸发浓缩形成,那么,有没有可能由周边大量的变质岩、花岗岩风化剥蚀提供呢?而武夷山西侧正好还有不少伟晶岩型的锂矿,如江西广昌的西港锂钽矿床以及赣闽两省交界处的海罗岭稀有金属矿床(《中国矿床发现史·江西卷》编委会,1996《中国矿产地质志·江西卷》编委会,2015)。推而广之,在江汉盆地的东南缘正好有湖北与湖南两省交界区的断峰山稀有金属矿床、在四川盆地则有广泛分布的本身就富含锂、钾的“绿豆岩”(孙艳等,2018),在豫西的石炭纪铝土矿区普遍富集锂(即现今广义的沉积型锂矿)而其南侧造山带中正好存在灰池子岩体及其周边的稀有金属矿床(如南阳山锂矿床,蔡家沟锂铍矿床等)。因此,山上的含锂地质体(花岗岩类甚至直接就是含锂矿床)经风化剥蚀之后,锂进入沉积盆地,可以成为沉积型锂矿的物质来源(当然不排除同时还有其他来源的可能性);而富含锂的沉积岩经过埋藏、变质、重熔再形成含锂的岩浆岩、伟晶岩,也是合乎逻辑的。在承担全国重要矿产潜力评价项目之成矿规律研究任务期间(2007~2013年),王登红等(2013)还在贵州大竹园铝土矿区发现了异常高的锂、钨(由此拉开了调研沉积型、黏土型锂矿的序幕),而其东侧梵净山一带也恰好存在加里东期乃至更早的稀有金属矿床,完全有可能成为务正道地区铝土矿中锂、钨超常富集的物质来源。这就是从成矿物质——锂的物质循环的角度,提出“内外生一体化”成矿的初衷。根据上述思路,笔者团队自2012年起即在江西周田盆地东侧、吉泰盆地的南侧、樟树盆地的西北侧、江汉盆地的东南侧等中东部地区开展了寻找硬岩型锂矿的调查工作,在河南、山西、贵州、重庆、四川等地则开展了寻找沉积型锂矿的工作,取得了一批新发现。

  • 2 中国锂矿的构造背景——深循环

  • 物质的循环是地球演化的自然过程,元素迁移、富集过程与成矿作用是对应的。物质不灭是客观规律,自然界的物质只能从一种状态向另外一种状态转变,或者从某个空间向另外一个空间转移,而不可能凭空消失也不可能无缘无故地出现。但成矿物质的迁移、富集乃至于聚集到一定程度形成工业矿体,则是离不开构造背景的。对于锂矿而言,锂本身就是一个异常“活泼”的元素——是位于元素周期表最前列的第一个金属元素,与“惰性”的重稀有金属元素(如铌、钽)具有截然不同的地球化学行为特征。在地球演化过程中要聚集起来(而不是分散到各种地质体中),并非易事。大量的调查研究工作也表明,含锂伟晶岩矿脉的围岩中往往富集锂,如新疆可可托海三号脉围岩(辉长岩)中的锂可以达到边界品位(栾世伟等,1996邹天人和李庆昌,2006),其中的锂是辉长岩本身就含有的,还是从含锂伟晶岩中扩散进入到辉长岩中的?曾经争论不休。在四川甲基卡新三号脉,也发现其围岩中富集锂(刘丽君等,2017代鸿章等,2018)。鉴于甲基卡新三号脉围岩中的锂自伟晶岩与围岩的接触带向远离接触带的方向逐渐降低,推测围岩中的锂是从伟晶岩脉向外侧扩散出去的(刘丽君,2019)。因此,对于异常活跃的锂元素来说,需要一个“圈闭”的构造背景将锂“捕获”以避免其过度分散,这是硬岩型锂矿成矿的关键因素之一。

  • 锂元素的另外一个特点是“低熔点”。在铝等相关金属冶金过程中加入锂或含锂物质(包括矿物质),有助于降低熔点,有助于降低能耗,也就有助于降低排放,有助于双碳目标的实现。因此,在早期的冶金工业尤其是高耗能的铝冶金过程中往往在铝土矿矿石中配入一定比例的锂辉石,通过降低熔点,达到降低能耗的目的。那么,在自然过程中,尤其是地层埋藏到一定深度(此处深度下限限定至上地壳深度,对应花岗岩层或硅铝层),当其围压及温度达到熔融条件,如果其本身富含锂或者有外来锂的加入,则这部分富含锂的地质体在低程度部分熔融(5%~20%)过程中先于不含锂的地质体变成“熔浆”而脱离源岩,又因为锂的存在有助于降低岩浆的黏度,导致富含锂的“岩浆”(通常为S型花岗岩)可能呈“熔-流体”状态相对快速地“上浮侵入”到温度、压力快速降低的相对自由的空间,快速结晶而形成矿物晶体粗大的伟晶岩型锂矿。另一方面,由地层物质经中—高程度部分熔融(20%~50%)而形成的花岗质熔体,由于锂的存在,其黏度、固相线温度显著低于一般花岗质熔体(Thomas and Webster,2000; Sirbescu and Nabelek,2003),能够允许分离结晶作用充分地进行,这种极端的分离结晶作用可能是高分异花岗质熔体形成与锂富集的关键控制因素。

  • 此处,“深循环”至少有两重含义,一是锂本身“深度参与”成岩成矿的物质循环。至于锂循环的深度是否达到地幔甚至地核,尚未有确切依据,不似碳可以以金刚石的状态从地幔直接快速进入到近地表环境。虽然在2018年12月8日下午的双清论坛上,本文第一作者以《关键矿产资源的成矿规律、找矿勘查与物质循环》为题对锂的深部循环问题进行了口头报告,随后也一直在探索,但一直没有找到锂参与到深达地幔的物质循环(地幔的锂进入地表,地壳的锂进入地幔)的依据,因此暂不作本文话题,仍有待于深入研究。二是锂从开始加入到岩浆与最终定位的深度之差,与压力之差有关,压差越大越有利于伟晶岩锂矿的形成。对于前者,锂本身兼具有成岩物质和成矿物质的双重属性,不仅是导致岩浆形成而脱离母体(即深熔熔体从源区中抽离)的关键元素,也能在上述有利条件下聚集成矿,而这是铍、铌、钽所不具备的。也就是说,锂“深度”参与到成岩成矿的全过程,在伟晶岩型乃至于其他类型内生锂矿(包括云英岩型、角砾岩型、淡色花岗岩型)形成过程中,起到了积极主动作用而不是被动“富集”。对于后者,锂的“活泼”性质决定了其只有在封闭的条件下或者在压差大的情况下才不容易被分散。高温高压实验证明,一定条件下锂辉石可以优先结晶出来(李建康等,2021)。而自然界中,伟晶岩中矿物晶体最大者也是锂辉石而不是电气石、绿柱石,更不是铌钽矿物。据报道(Schwartz,1928Bonewitz et al.,2005),在美国南科罗拉多州黑山(又名布莱克山,Black Hills)曾发现长达14.3 m的锂辉石单晶体。

  • 一定的埋藏深度以及从岩浆出熔时所在的深度与岩浆结晶时的深度之间的压力差,可能对锂最终结晶出什么样的矿物晶体具有重要影响。岩浆缓慢、稳步结晶可能形成“低品位、大吨位”的花岗岩型锂矿,锂在岩体中均匀分布(如江西宜春同安一带),而沿着构造通道快速进入到张性空间中的富锂熔体则可形成经典的充填成因为主的伟晶岩型锂矿(如新疆可可托海、大红柳滩一带)。当容矿空间较为封闭,成矿物质较为充分且不断补给时,还可以形成早期早阶段的锂辉石被交代、锂甚至扩散到围岩中、矿体本身伟晶状矿物不占绝对优势即细粒锂矿物较多的现象(如四川甲基卡的新三号脉)。因此,锂深度参与成岩成矿的物质循环,与更有利于锂聚集的压力和压差相对较大的成矿条件同样重要。新疆可可托海三号脉中铍(BeO)的储量达到6.5万t(超大型),而锂(Li2O)的储量只有15.5万t(仅为大型,远没有四川甲基卡等的规模大、富集程度高)。四川甲基卡等地的围岩以红柱石堇青石矽线石片岩等泥质变质岩为主,在伟晶岩脉的周边形成宽度不大的角岩化带,虽然角岩中含锂偏高,但因其渗透性差而阻止了锂的进一步扩散,以至于形成的是大量的细粒锂辉石而不是伟晶状的锂辉石(杨岳清等,2023)。细粒锂辉石的出现虽然交代了部分粗粒的锂辉石,改变了伟晶岩的“外貌”,但也阻止了锂的分散,有利于超大型矿床的形成。这就不难理解新疆可可托海三号脉铍的富集程度远远大于锂(铍为超大型,锂为大型),而四川甲基卡新三号脉锂远远大于铍(锂为超大型,铍仅伴生)的原因(图2)。

  • 3 中国锂矿的成矿期——多旋回

  • 黄汲清先生早在1945年就明确提出了地壳运动的多旋回发展问题(黄汲清,1954),指出中国的造山运动具有“多旋回”特点(黄汲清和姜春发,1962任纪舜等,1999),在多旋回的造山运动中必然伴随多旋回的岩浆活动和多旋回的成矿作用(黄汲清和陈廷愚,1986),中国锂矿的形成同样与“多旋回”构造运动密切相关。根据中国锂矿已有的成岩成矿年龄数据,印支旋回和燕山旋回仍然是与中国硬岩型锂矿成矿关系最为密切的构造旋回,尤其是印支晚期至燕山早期的构造转折期,是中国西部花岗伟晶岩型锂矿的成矿高峰期,从新疆阿尔泰至西昆仑再到四川,新疆可可托海、卡鲁安(-库卡拉盖)、大红柳滩,四川甲基卡、可尓因、扎乌龙等一系列大型—超大型伟晶岩型锂矿床都形成于这一阶段,也构成了中国西部硬岩型锂矿的“锂三角”(王登红等,2022)。在中国南方和北方地区,包括江西宜春414、湖南道县正冲、尖峰岭等矿床,广西栗木钽铌铷锂矿床和新发现的内蒙古维拉斯托锂云母矿床等一批大型—超大型矿床均形成于印支—燕山旋回,属燕山期成矿事件的重要组成部分。而西藏境内喜马拉雅成锂带内新发现的嘎波锂辉石矿床形成于喜马拉雅旋回(李光明等,2022)。需要指出的是,虽然沉积过程与岩浆过程分别对应于沉积旋回与岩浆旋回,属于不同的构造背景,但内动力地质过程与外动力地质过程也是不断转化的。例如,河南与陕西交界地区的秦岭造山带,以灰池子岩体为核心的周边地区不但存在硬岩型锂矿,在其北侧的含铝土矿地层中也存在锂的区域性富集。显然,多旋回的构造运动为锂的物质循环提供了动力条件,使得加里东旋回形成的伟晶岩型锂矿及含锂的花岗岩经过风化剥蚀,其中的锂可能为华力西旋回的沉积型锂矿提供物质来源;而石炭纪—二叠纪沉积岩中富集的锂又可能随着地层的深埋、或者俯冲到地壳深部,为印支—燕山旋回重熔花岗岩型和伟晶岩型锂矿的形成提供物质来源。可以预见,中国境内的锂矿可能形成于各个大地构造旋回,从前寒武纪到新生代均有成矿潜力,可构成一个完整的多旋回成矿谱系(王登红等,2022)。

  • 图2 中国部分典型成锂带内地层含锂特征

  • Fig.2 Lithium-bearing characteristics of formations in some typical lithium-forming belts in China

  • 阿尔金岩群、巴什库尔干岩群、西康群新都桥组及部分侏倭组数据来自本项目团队;西康群杂谷脑组及部分侏倭组数据来自胡方泱等,2022;巴颜喀拉山群数据来自何蕾等,2022;哈巴河群数据来自马占龙等,2022;UCC、LCC数据来自Gao Shan et al.,1998

  • Altun Group, Bashkorgan Group, Xikang Group Xinduqiao Formation and part of Zhuwo Formation data from this study; Xikang Group Zagunao Formation and part of Zhuwo Formation data from Hu Fangyang et al., 2022; Bayankalashan Group data from He Lei et al., 2022; Habahe Group data from Ma Zhanlong et al., 2022; UCC and LCC data after Gao Shan et al., 1998

  • 4 多旋回深循环内外生一体化成矿的内涵

  • 世界上一些大型、超大型锂辉石矿床往往出现在页岩或者泥质沉积岩占比较大的沉积岩分布区(Černý,1991),而在碳酸盐岩分布区则少见,如中国新疆的可可托海、四川的甲基卡和可尔因,以及美国的金斯山等。黏土矿物是泥岩、页岩的主要成分(Stepanov et al.,2014),相对于碳酸盐矿物,锂在沉积过程中更容易被黏土类矿物吸附(London,2008),使得泥质岩类变质过程尤其是深埋、重熔、花岗岩化并在花岗岩化产生岩浆、岩浆又结晶分异的过程更有利促进锂发生再度富集(Shaw et al.,2016),即:沉积过程首次富集、花岗岩化再次富集、伟晶岩化又一次富集,从而形成多期次成矿;而这3个期次的成矿作用并非在相同的、单一的构造背景下完成的,而是多旋回构造事件的产物,因此称为“多旋回深循环内外生一体化”成锂机制(王登红等,2017)。

  • 以松潘-甘孜成锂带内硬岩型锂矿为例。在早三叠世之前,扬子地台西缘古特提斯开启了向西(向羌塘-昌都地块)和向北(向华北板块)的双向俯冲,来自于华北(柴达木-东昆仑-西秦岭)的陆源碎屑物质在扬子地台西缘沉积,形成西康群复理石建造。这些陆源碎屑多为相对成熟的地壳物质,裹挟着含稀有元素矿物(细小云母等)以及富稀有金属元素崩解产物(黏土质)的物质沉积于扬子地台西缘。在俯冲未完全结束、碰撞刚开始之际,包括复理石沉积在内的扬子西缘地壳已经发生了剧烈的增厚与缩短,使西康群复理石建造发生广泛的区域变质作用,形成巨量的云母矿物,稀有金属组分在这些变质新生矿物形成之际发生初始富集。后碰撞阶段,下地壳由于榴辉岩相变质作用发生失稳拆沉,来自地幔的热量到达上地壳后使西康群变质复理石沉积岩熔融形成花岗质岩浆,稀有金属组分进入岩浆后作为不相容元素在长时间的分离结晶过程中二次富集,在花岗质岩浆演化的最后阶段形成伟晶质岩浆并最终成矿。需要强调的是,不排除康滇古陆及其周边的与二叠纪峨嵋地幔柱活动有关的各类岩浆岩也提供了西康群沉积物质来源的可能性,这可能为川西锂矿多旋回成矿的理论研究打开新的窗口。

  • 5 多旋回深循环内外生一体化成矿理论的应用

  • 在中国西南部扬子地台的西侧,随着古生代与中生代全球性构造转换时期峨嵋地幔柱的强烈活动(王登红,2001),在二叠纪末—三叠纪初地壳被破坏的过程中,来自地幔和从地壳中转移出来的稀有、稀土和稀散金属在三叠系沉积岩中被吸附;在印支期末—燕山期初的转换阶段,三叠系物质重熔形成含稀有金属的岩浆,岩浆进一步结晶分异形成含稀有金属的花岗岩和花岗伟晶岩,导致了锂等稀有金属的大规模聚集成矿,形成了川西九龙、甲基卡、可尔因、扎乌龙乃至于新疆大红柳滩等硬岩型锂矿矿集区。这就是青藏高原东部、北部印支造山运动“多旋回深循环内外生一体化”大型锂矿的区域动力学成矿机制。这一机制既是造就川西甲基卡、可尔因等锂矿富集区的根本原因,也是进一步取得找矿突破的理论基础。

  • 基于上述理性认识,国家重点研发计划“锂能源金属矿产基地深部探测技术示范”项目和“我国西部伟晶岩型锂等稀有金属成矿规律与勘查技术”项目,及中国地质调查局矿产资源研究所牵头组织实施的“川西甲基卡大型锂矿资源基地综合调查评价”二级项目(2016~2018年),均围绕国家大型锂资源基地规划、部署、建设的战略需求,开展了以锂为主的硬岩型稀有金属地质找矿工作。在“多旋回深循环内外生一体化”成锂理论指导下,取得了一系列找矿突破或新进展。其中,2016~2018年间经钻探验证,新增氧化锂(含其他稀有金属当量换算)潜在矿产资源31.74万t。结合前期“我国三稀资源战略调查”(2012~2015年)计划项目成果,累计在甲基卡矿田及外围探获氧化锂资源量相当于10余个大型硬岩型锂矿床,为国家提交了一处值得深入勘查的以锂为主的综合性稀有金属矿产资源基地。2019~2023年在川西马尔康和新疆阿尔金等地区取得找矿新突破(加达、马纳、砂锂沟、塔木切、稀长沟等),新的矿床、矿田、矿集区乃至于成矿带正在形成,我国锂资源格局正在发生重大变化。另外,该理论还进一步拓展了“五层楼+地下室”的勘查模型,进而指导湘鄂赣交界地区的幕阜山-九岭矿集区、中央造山带的秦巴山区等地,在寻找伟晶岩型锂辉石矿床、花岗岩体型锂铍铌钽矿床及层控热液型铍矿床等方面取得新进展。

  • 6 结语

  • 中国的地壳演化具有多旋回特点,以往只对钨锡等矿产与多旋回构造演化之间的关系加以探究,对锂矿的成矿构造背景研究还处于探索阶段。中国的锂矿不但类型多,分布广,而且成矿期次多,不同的构造单元中形成的锂矿有的具有多旋回特点,有的又具有“异地同期爆发式成矿”的特点(如阿尔泰的卡鲁安、西昆仑的大红柳滩及川西的甲基卡,几乎同期形成),显示了中国锂矿成矿的复杂性和规律性,而锂矿的“多旋回深循环内外生一体化”成矿理论也是众多成矿理论中的一家之说,需要不断地接受实践的检验。从成矿物质循环的角度,卤水型锂矿可以是含矿花岗岩风化剥蚀的产物,即“内生外成”(e.g.,Li Yonglong et al.,2023);而硬岩型锂矿也可以是黏土岩重熔变质的产物,即“外生内成”(e.g.,Simmons and Webber,2008)。无疑,“多旋回深循环内外生一体化”成锂理论,这一将锂的多旋回循环富集机制加以整体考虑的理论,虽然正式提出的时间不到10年,但已经在指导找矿的实践中得到了验证,进一步深化了三稀矿产成矿理论研究,指导找矿成效显著,助推形成以川西、阿尔金为主的新的锂资源基地,为我国矿产资源安全提供了新的资源保障。

  • 致谢:本文第一作者作为第五届黄汲清青年地质科学技术奖获得者(2010年),深感黄汲清先生对祖国地质矿产事业贡献之巨大和学问之渊博,一直追随其科学报国思想,努力在大地构造背景与区域成矿规律方面探索,并付诸于锂矿等找矿实践,特以本文感之念之。任纪舜院士邀请第一作者撰写此文,在审阅送审稿之后认为“很有创意”,给予笔者更大的勇气去继承与发扬黄汲清先生的理论,在此对前辈专家们的支持与鼓励深表感谢。对其他审稿人及给予过团队帮助的专家、领导也一并致谢。

  • 参考文献

    • Bonewitz R L, Carruthers M, Efthim R. 2005. Rock and Gem. London: Dorling Kindersley, 1~360.

    • Černý P. 1991. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatitic deposits; Part II: Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 49~67; 68~81.

    • Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. Canadian Mineralogist, 43(6): 2005~2006.

    • Dai Hongzhang, Wang Denghong, Liu Lijun, Yu Yang, Dai Jingjing, Fu Xiaofang. 2018. Geochronology, geochemistry and their geological significances of No. 308 pegmatite vein in the Jiajika deposit, western Sichuan, China. Earth Science, 43(10): 3664~3681 (in Chinese with English abstract).

    • Editorial Board of the Discovery History of Mineral Deposits of China: Jiangxi Volume. 1996. The Discovery History of Mineral Deposits of China. Beijing: Geological Publishing House.

    • Editorial Board of the Geology of Mineral Resources in China: Jiangxi Volume. 2015. Geology of Mineral Resources in China: Jiangxi Volume. Beijing: Geological Publishing House.

    • Gao Shan, Luo Tingchuan, Zhang Benren, Zhang Hongfei, Han Yinwen, Zhao Zhidan, Hu Yukun. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959~1975.

    • Gou Shulin, Yu Jinhai, Cai Yuanfeng, Jiang Wei, Mao Zhiqi. 2023. Distribution and enrichment mechanism of lithium in meta-sedimentary rocks in the Jiangnan orogen and implications for lithium mineralization. Acta Geologica Sinica, 97(11): 3696~3724 (in Chinese with English abstract).

    • Hao Xuefeng, Fu Xiaofang, Liang Bin, Yuan Linping, Pan Meng, Tang Yi. 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance. Mineral Deposits, 34(6): 1199~1208 (in Chinese with English abstract).

    • He Lei, Gao Jinggang, Wang Denghong, Liang Ting, Feng Yonggang, Huang Fan, Tan Xijuan, Cen Jubiao. 2022. Discussion on genetic relationship between granite and pegmatite in Dahongliutan rare metal ore field, Xinjiang. Mineral Deposits, 42(4): 693~712.

    • Hu Fangyang, Wu Fuyuan, Chen Guohui, Yang Lei. 2022. The critical factors of lithium enrichment in the metasedimentary wall rocks of granitic pegmatite-type lithium deposit: Insights from the Ke'eryin area in the eastern Songpan-Ganzi belt. Acta Petrologica Sinica, 38(7): 2017~2051 (in Chinese with English abstract).

    • Huang Jiqing. 1954. On Major Tectonic Forms of China. Beijing: Geological Publishing House, 1~162 (in Chinese).

    • Huang Jiqing, Jiang Chunfa. 1962. Preliminary investigation on the evolution of the earth's crust from the point of view of polycyclic tectonic movements. Acta Geologica Sinica, 42(2): 105~152 (in Chinese with English abstract).

    • Huang Jiqing, Chen Tingyu. 1986. On the problem of polycyclic mineralization of tungsten and tad deposits in South China. Geological Review, 32(2): 138~143 (in Chinese with English abstract).

    • Li Guangming, Fu Jiangang, Gui Weikang, Zhang Hai, Zhang Linkui, Dong Suiliang, Li Yingxu, Wu Jianyang, Jiao Yanjie, Jin Canhai, Huang Chunmei. 2022. Discovery of the Gabo granitic pegmatite-type lithium deposit in the Kulagangri dome, eastern Himalayan metallogenic belt, and its prospecting implication. Acta Petrologica et Mineralogica, 41(6): 1109~1119 (in Chinese with English abstract).

    • Li Jiankang, Li Peng, Yan Qinggao, Liu Qiang, Xiong Xin. 2021. History of granitic pegmatite research in China. Acta Geologica Sinica, 95(10): 2996~3016 (in Chinese with English abstract).

    • Li Yonglong, Miao Weiliang, He Maoyong, Li Changzhong, Gu Huanen, Zhang Xiying. 2023. Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Tibetan Plateau: Evidence from hydrogeochemistry and lithium isotopes. Ore Geology Reviews, 105356.

    • Liu Lijun. 2019. Rare metal metallogenic features and prospecting prediction of No. X03 vein in Jiajika, Sichuan. Doctoral dissertation of China University of Geosciences (Beijing).

    • Liu Lijun, Wang Denghong, Dai Hongzhang, Hou Jianglong. 2017. Geochemical characteristics of REE and its implications to X03 super-large lithium pegmatite vein, Jiajika, Sichuan. Earth Science, 42(10): 1673~1683 (in Chinese with English abstract).

    • London D. 2008. Pegmatites. Mineralogical Association of Canada, Quebec. Canada Pension Plan. 1~347.

    • London D. 2016. Rare-element granitic pegmatites. In: Verplanck P L, Hitzman M W, eds. Rare Earth and Critical Elementsin Major Deposit Types, Reviews in Economic Geology. 18. Society of Economic Geologists, Inc, Littleton, CO, 165~193.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • Luan Shiwei, Mao Yuyuan, Fan Liangming, Wu Xiaobing, Lin Jinhui. 1996. Metallogenic and prospecting of rare metals in Keketuohai area. Chengdu: Chengdu University of Science and Technology Press, 1~295 (in Chinese with English abstract).

    • Ma Zhanlong, Xu Yusheng, Tang Yong, Zhang Hui, Lü Minghang. 2022. Geochemical characteristics of metamorphic rocks and metallogenic potential of rare metals in the Habahe Group of the Qinghe area in the Altai orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1224~1240 (in Chinese with English abstract).

    • Ren Jishun, Wang Zzuoxun, Chen Bingwei. 1999. Tectonics of China from a Global Perspective: A Brief Description of Tectonics Maps of China and Adjacent Areas. Beijing: Geological Publishing House, 1~50 (in Chinese).

    • Schwartz G. 1928. The Black Hills mineral region. American Mineralogist, 13: 56~63.

    • Shaw R A, Goodenough K M, Roberts N M W, Horstwood M S A, Chenery S R, Gunn A G. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian gneiss complex of north-west Scotland. Precambrian Research, 281: 338~362.

    • Simmons W B, Webber K L. 2008. Pegmatite genesis: State of the art. European Journal of Mineralogy, 20: 421~438.

    • Simmons W B, Falster A U, Webber K L, Roda-Robles E, Boudreaux A P, Grassi L R, Freeman G. 2016. Bulk composition of Mt. Mica Pegmatite, Maine, USA: Implications for the origin of an LCT type pegmatite by anatexis. Canadian Mineralogist, 54: 1053~1070.

    • Sirbescu M L C, Nabelek P I. 2003. Crustal melts below 400℃. Geology, 31: 685~688.

    • Stepanov A A, Mavrogenes J, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167: 1~8.

    • Sun Yan, Wang Denghong, Gao Yun, Han Jingyi, Ma Shengchao, Fan Xingtao, Gu Wenshuai, Zhang Lihong. 2018. Geochemical characteristics of lithium-rich mung bean rocks in Tongliang County, Chongqing. Acta Petrologica et Mineralogica, 37(3): 445~453 (in Chinese with English abstract).

    • Thomas R, Webster J D. 2000. Strong tin enrichment in a pegmatite-forming melt. Mineralium Deposita, 35: 570~582.

    • Wang Denghong. 2001. Basic concept, classification, evolution of mantle plume and large scale mineralization—probe into southwestern China. Earth Science Frontiers, 8(3): 67~72 (inChinese with English abstract).

    • Wang Denghong. 2014. National Genealogy of Diagenetic and Metallogenic Ages. Beijing: Geological Publishing House, 1~438 (in Chinese).

    • Wang Denghong, Li Peigang, Qu Wenjun, Lei Zhiyuan, Liao Youchang. 2013. Discovery and comprehensive evaluation of tungsten and lithium in Dazhuyuan bauxite, Guizhou Province. Scientia Sinica (Terrae), 43(1): 44~51 (in Chinese with English abstract).

    • Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey of China. Geological Survey of China, 4(5): 1~8 (in Chinese with English abstract).

    • Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5): 743~764 (in Chinese with English abstract).

    • Wang Xueqiu, Liu Hanliang, Wang Wei, Zhou Jian, Zhang Bimin, Xu Shanfa. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects. Acta Geoscientica Sinica, 41(6): 797~806 (in Chinese with English abstract).

    • Webber K L, Simmons W B, Falster A U, Hanson S L. 2019. Anatectic Pegmatites of the Oxford County Pegmatite Field, Maine, USA. Canadian Mineralogist, 57(5): 811~815.

    • Yang Yueqing, Liu Shanbao, Wang Denghong, Dai Hongzhang, Li Xin. 2023. Discussion on the difference of metallogenic characteristics and genesis of the Jiajika and Keeryin rare metals ore fields in western Sichuan. Acta Geoscientica Sinica, 44(3): 419~433 (in Chinese with English abstract).

    • Zhai Mingguo. 2013. The main old lands in China and assembly of Chinese Unified Continent. Science China Earth Sciences, 56: 1829~1852 (in Chinese with English abstract).

    • Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth Science Reviews, 186: 262~286 (in Chinese with English abstract).

    • Zheng Mianping, Xing Enyuan, Zhang Xuefei, Li Mingming, Che Dong, Bu Lingzhong, Han Jiahuan, Ye Chuanyong. 2023. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits. Geology in China, 50(6): 1599~1620 (in Chinese with English abstract).

    • Zou Ttianren, Li Qingchang. 2006. Rare and rare earth metal deposits in Xinjiang, China. Beijing: Geological Publishing House, 1~314(in Chinese).

    • 代鸿章, 王登红, 刘丽君, 于扬, 代晶晶, 付小方. 2018. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义. 地球科学, 43(10): 3664~3681.

    • 苟树林, 于津海, 蔡元峰, 蒋威, 毛志奇. 2023. 江南造山带基底变质沉积岩中锂元素分布和富集机制及对锂成矿的制约. 地质学报, 97(11): 3696~3724.

    • 郝雪峰, 付小方, 梁斌, 袁蔺平, 潘蒙, 唐屹. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义. 矿床地质, 34(6): 1199~1208.

    • 何蕾, 高景刚, 王登红, 梁婷, 凤永刚, 黄凡, 谭细娟, 岑炬标. 2022. 新疆大红柳滩稀有金属矿田花岗岩与伟晶岩成因关系探讨. 矿床地质, 42(4): 693~712.

    • 胡方泱, 吴福元, 陈国辉, 杨雷. 2022. 花岗-伟晶岩型锂矿床围岩变质沉积岩中锂富集的关键因素: 以松潘-甘孜构造带东部可尔因地区为例. 岩石学报, 38(7): 2017~2051.

    • 黄汲清. 1954. 中国主要地质构造单位. 北京: 地质出版社, 1~162.

    • 黄汲清, 姜春发. 1962. 从多旋回构造运动观点初步探讨地壳运动发展规律. 地质学报, 42(2): 105~152.

    • 黄汲清, 陈廷愚. 1986. 华南钨、锡矿之多旋回成矿问题. 地质论评, 32(2): 138~143.

    • 李光明, 付建刚, 郭伟康, 张海, 张林奎, 董随亮, 李应栩, 吴建阳, 焦彦杰, 金灿海, 黄春梅. 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义. 岩石矿物学杂志, 41(6): 1109~1119.

    • 李建康, 李鹏, 严清高, 刘强, 熊欣. 2021. 中国花岗伟晶岩的研究历程及发展态势. 地质学报, 95(10): 2996~3016.

    • 刘丽君. 2019. 四川甲基卡新三号脉稀有金属成矿特征与找矿预测. 中国地质大学(北京)博士学位论文.

    • 刘丽君, 王登红, 代鸿章, 侯江龙. 2017. 四川甲基卡新三号超大型锂矿脉稀土元素地球化学. 地球科学, 42(10): 1673~1683.

    • 栾世伟, 毛玉元, 范良明, 巫晓兵, 林金辉. 1996. 可可托海地区稀有金属成矿与找矿. 成都: 成都科技大学出版社, 1~295.

    • 马占龙, 徐雨生, 唐勇, 张辉, 吕正航. 2022. 阿尔泰造山带青河地区哈巴河群变质岩地球化学特征及稀有金属背景值研究. 矿物岩石地球化学通报, 41(6): 1224~1240.

    • 任纪舜, 王作勋, 陈炳蔚. 1999. 从全球看中国大地构造: 中国及邻区大地构造图简要说明书. 北京: 地质出版社, 1~50.

    • 孙艳, 王登红, 高允, 韩景仪, 马圣钞, 樊兴涛, 顾文帅, 张丽红. 2018. 重庆铜梁地区富锂绿豆岩地球化学特征. 岩石矿物学杂志, 37(3): 445~453.

    • 王登红. 2001. 地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨. 地学前缘, 8(3): 67~72.

    • 王登红. 2014. 全国成岩成矿年代谱系. 北京: 地质出版社, 1~438.

    • 王登红, 李沛刚, 屈文俊, 雷志远, 廖友常. 2013. 贵州大竹园铝土矿中钨和锂的发现与综合评价. 中国科学: 地球科学, 43(1): 44~51.

    • 王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述. 中国地质调查, 4(5): 1~8.

    • 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.

    • 王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化学背景与空间分布: 远景区预测. 地球学报, 41(6): 797~806.

    • 杨岳清, 刘善宝, 王登红, 代鸿章, 刘丽君, 李鑫. 2023. 川西甲基卡和可尔因矿田稀有金属成矿特征差异性及成因探讨. 地球学报, 44(3): 419~433.

    • 郑绵平, 邢恩袁, 张雪飞, 黎明明, 车东, 卜令忠, 韩佳欢, 叶传永. 2023. 全球锂矿床的分类、外生锂矿成矿作用与提取技术. 中国地质, 50(6): 1599~1620.

    • 《中国矿产地质志·江西卷》编委会. 2015. 中国矿产地质志·江西卷. 北京: 地质出版社.

    • 《中国矿床发现史·江西卷》编委会. 1996. 中国矿床发现史. 北京: 地质出版社.

    • 邹天人, 李庆昌. 2006. 中国新疆稀有稀土金属矿床. 北京: 地质出版社, 1~314.

  • 参考文献

    • Bonewitz R L, Carruthers M, Efthim R. 2005. Rock and Gem. London: Dorling Kindersley, 1~360.

    • Černý P. 1991. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatitic deposits; Part II: Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 49~67; 68~81.

    • Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. Canadian Mineralogist, 43(6): 2005~2006.

    • Dai Hongzhang, Wang Denghong, Liu Lijun, Yu Yang, Dai Jingjing, Fu Xiaofang. 2018. Geochronology, geochemistry and their geological significances of No. 308 pegmatite vein in the Jiajika deposit, western Sichuan, China. Earth Science, 43(10): 3664~3681 (in Chinese with English abstract).

    • Editorial Board of the Discovery History of Mineral Deposits of China: Jiangxi Volume. 1996. The Discovery History of Mineral Deposits of China. Beijing: Geological Publishing House.

    • Editorial Board of the Geology of Mineral Resources in China: Jiangxi Volume. 2015. Geology of Mineral Resources in China: Jiangxi Volume. Beijing: Geological Publishing House.

    • Gao Shan, Luo Tingchuan, Zhang Benren, Zhang Hongfei, Han Yinwen, Zhao Zhidan, Hu Yukun. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959~1975.

    • Gou Shulin, Yu Jinhai, Cai Yuanfeng, Jiang Wei, Mao Zhiqi. 2023. Distribution and enrichment mechanism of lithium in meta-sedimentary rocks in the Jiangnan orogen and implications for lithium mineralization. Acta Geologica Sinica, 97(11): 3696~3724 (in Chinese with English abstract).

    • Hao Xuefeng, Fu Xiaofang, Liang Bin, Yuan Linping, Pan Meng, Tang Yi. 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance. Mineral Deposits, 34(6): 1199~1208 (in Chinese with English abstract).

    • He Lei, Gao Jinggang, Wang Denghong, Liang Ting, Feng Yonggang, Huang Fan, Tan Xijuan, Cen Jubiao. 2022. Discussion on genetic relationship between granite and pegmatite in Dahongliutan rare metal ore field, Xinjiang. Mineral Deposits, 42(4): 693~712.

    • Hu Fangyang, Wu Fuyuan, Chen Guohui, Yang Lei. 2022. The critical factors of lithium enrichment in the metasedimentary wall rocks of granitic pegmatite-type lithium deposit: Insights from the Ke'eryin area in the eastern Songpan-Ganzi belt. Acta Petrologica Sinica, 38(7): 2017~2051 (in Chinese with English abstract).

    • Huang Jiqing. 1954. On Major Tectonic Forms of China. Beijing: Geological Publishing House, 1~162 (in Chinese).

    • Huang Jiqing, Jiang Chunfa. 1962. Preliminary investigation on the evolution of the earth's crust from the point of view of polycyclic tectonic movements. Acta Geologica Sinica, 42(2): 105~152 (in Chinese with English abstract).

    • Huang Jiqing, Chen Tingyu. 1986. On the problem of polycyclic mineralization of tungsten and tad deposits in South China. Geological Review, 32(2): 138~143 (in Chinese with English abstract).

    • Li Guangming, Fu Jiangang, Gui Weikang, Zhang Hai, Zhang Linkui, Dong Suiliang, Li Yingxu, Wu Jianyang, Jiao Yanjie, Jin Canhai, Huang Chunmei. 2022. Discovery of the Gabo granitic pegmatite-type lithium deposit in the Kulagangri dome, eastern Himalayan metallogenic belt, and its prospecting implication. Acta Petrologica et Mineralogica, 41(6): 1109~1119 (in Chinese with English abstract).

    • Li Jiankang, Li Peng, Yan Qinggao, Liu Qiang, Xiong Xin. 2021. History of granitic pegmatite research in China. Acta Geologica Sinica, 95(10): 2996~3016 (in Chinese with English abstract).

    • Li Yonglong, Miao Weiliang, He Maoyong, Li Changzhong, Gu Huanen, Zhang Xiying. 2023. Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Tibetan Plateau: Evidence from hydrogeochemistry and lithium isotopes. Ore Geology Reviews, 105356.

    • Liu Lijun. 2019. Rare metal metallogenic features and prospecting prediction of No. X03 vein in Jiajika, Sichuan. Doctoral dissertation of China University of Geosciences (Beijing).

    • Liu Lijun, Wang Denghong, Dai Hongzhang, Hou Jianglong. 2017. Geochemical characteristics of REE and its implications to X03 super-large lithium pegmatite vein, Jiajika, Sichuan. Earth Science, 42(10): 1673~1683 (in Chinese with English abstract).

    • London D. 2008. Pegmatites. Mineralogical Association of Canada, Quebec. Canada Pension Plan. 1~347.

    • London D. 2016. Rare-element granitic pegmatites. In: Verplanck P L, Hitzman M W, eds. Rare Earth and Critical Elementsin Major Deposit Types, Reviews in Economic Geology. 18. Society of Economic Geologists, Inc, Littleton, CO, 165~193.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • Luan Shiwei, Mao Yuyuan, Fan Liangming, Wu Xiaobing, Lin Jinhui. 1996. Metallogenic and prospecting of rare metals in Keketuohai area. Chengdu: Chengdu University of Science and Technology Press, 1~295 (in Chinese with English abstract).

    • Ma Zhanlong, Xu Yusheng, Tang Yong, Zhang Hui, Lü Minghang. 2022. Geochemical characteristics of metamorphic rocks and metallogenic potential of rare metals in the Habahe Group of the Qinghe area in the Altai orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1224~1240 (in Chinese with English abstract).

    • Ren Jishun, Wang Zzuoxun, Chen Bingwei. 1999. Tectonics of China from a Global Perspective: A Brief Description of Tectonics Maps of China and Adjacent Areas. Beijing: Geological Publishing House, 1~50 (in Chinese).

    • Schwartz G. 1928. The Black Hills mineral region. American Mineralogist, 13: 56~63.

    • Shaw R A, Goodenough K M, Roberts N M W, Horstwood M S A, Chenery S R, Gunn A G. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian gneiss complex of north-west Scotland. Precambrian Research, 281: 338~362.

    • Simmons W B, Webber K L. 2008. Pegmatite genesis: State of the art. European Journal of Mineralogy, 20: 421~438.

    • Simmons W B, Falster A U, Webber K L, Roda-Robles E, Boudreaux A P, Grassi L R, Freeman G. 2016. Bulk composition of Mt. Mica Pegmatite, Maine, USA: Implications for the origin of an LCT type pegmatite by anatexis. Canadian Mineralogist, 54: 1053~1070.

    • Sirbescu M L C, Nabelek P I. 2003. Crustal melts below 400℃. Geology, 31: 685~688.

    • Stepanov A A, Mavrogenes J, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167: 1~8.

    • Sun Yan, Wang Denghong, Gao Yun, Han Jingyi, Ma Shengchao, Fan Xingtao, Gu Wenshuai, Zhang Lihong. 2018. Geochemical characteristics of lithium-rich mung bean rocks in Tongliang County, Chongqing. Acta Petrologica et Mineralogica, 37(3): 445~453 (in Chinese with English abstract).

    • Thomas R, Webster J D. 2000. Strong tin enrichment in a pegmatite-forming melt. Mineralium Deposita, 35: 570~582.

    • Wang Denghong. 2001. Basic concept, classification, evolution of mantle plume and large scale mineralization—probe into southwestern China. Earth Science Frontiers, 8(3): 67~72 (inChinese with English abstract).

    • Wang Denghong. 2014. National Genealogy of Diagenetic and Metallogenic Ages. Beijing: Geological Publishing House, 1~438 (in Chinese).

    • Wang Denghong, Li Peigang, Qu Wenjun, Lei Zhiyuan, Liao Youchang. 2013. Discovery and comprehensive evaluation of tungsten and lithium in Dazhuyuan bauxite, Guizhou Province. Scientia Sinica (Terrae), 43(1): 44~51 (in Chinese with English abstract).

    • Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey of China. Geological Survey of China, 4(5): 1~8 (in Chinese with English abstract).

    • Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5): 743~764 (in Chinese with English abstract).

    • Wang Xueqiu, Liu Hanliang, Wang Wei, Zhou Jian, Zhang Bimin, Xu Shanfa. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects. Acta Geoscientica Sinica, 41(6): 797~806 (in Chinese with English abstract).

    • Webber K L, Simmons W B, Falster A U, Hanson S L. 2019. Anatectic Pegmatites of the Oxford County Pegmatite Field, Maine, USA. Canadian Mineralogist, 57(5): 811~815.

    • Yang Yueqing, Liu Shanbao, Wang Denghong, Dai Hongzhang, Li Xin. 2023. Discussion on the difference of metallogenic characteristics and genesis of the Jiajika and Keeryin rare metals ore fields in western Sichuan. Acta Geoscientica Sinica, 44(3): 419~433 (in Chinese with English abstract).

    • Zhai Mingguo. 2013. The main old lands in China and assembly of Chinese Unified Continent. Science China Earth Sciences, 56: 1829~1852 (in Chinese with English abstract).

    • Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth Science Reviews, 186: 262~286 (in Chinese with English abstract).

    • Zheng Mianping, Xing Enyuan, Zhang Xuefei, Li Mingming, Che Dong, Bu Lingzhong, Han Jiahuan, Ye Chuanyong. 2023. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits. Geology in China, 50(6): 1599~1620 (in Chinese with English abstract).

    • Zou Ttianren, Li Qingchang. 2006. Rare and rare earth metal deposits in Xinjiang, China. Beijing: Geological Publishing House, 1~314(in Chinese).

    • 代鸿章, 王登红, 刘丽君, 于扬, 代晶晶, 付小方. 2018. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义. 地球科学, 43(10): 3664~3681.

    • 苟树林, 于津海, 蔡元峰, 蒋威, 毛志奇. 2023. 江南造山带基底变质沉积岩中锂元素分布和富集机制及对锂成矿的制约. 地质学报, 97(11): 3696~3724.

    • 郝雪峰, 付小方, 梁斌, 袁蔺平, 潘蒙, 唐屹. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义. 矿床地质, 34(6): 1199~1208.

    • 何蕾, 高景刚, 王登红, 梁婷, 凤永刚, 黄凡, 谭细娟, 岑炬标. 2022. 新疆大红柳滩稀有金属矿田花岗岩与伟晶岩成因关系探讨. 矿床地质, 42(4): 693~712.

    • 胡方泱, 吴福元, 陈国辉, 杨雷. 2022. 花岗-伟晶岩型锂矿床围岩变质沉积岩中锂富集的关键因素: 以松潘-甘孜构造带东部可尔因地区为例. 岩石学报, 38(7): 2017~2051.

    • 黄汲清. 1954. 中国主要地质构造单位. 北京: 地质出版社, 1~162.

    • 黄汲清, 姜春发. 1962. 从多旋回构造运动观点初步探讨地壳运动发展规律. 地质学报, 42(2): 105~152.

    • 黄汲清, 陈廷愚. 1986. 华南钨、锡矿之多旋回成矿问题. 地质论评, 32(2): 138~143.

    • 李光明, 付建刚, 郭伟康, 张海, 张林奎, 董随亮, 李应栩, 吴建阳, 焦彦杰, 金灿海, 黄春梅. 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义. 岩石矿物学杂志, 41(6): 1109~1119.

    • 李建康, 李鹏, 严清高, 刘强, 熊欣. 2021. 中国花岗伟晶岩的研究历程及发展态势. 地质学报, 95(10): 2996~3016.

    • 刘丽君. 2019. 四川甲基卡新三号脉稀有金属成矿特征与找矿预测. 中国地质大学(北京)博士学位论文.

    • 刘丽君, 王登红, 代鸿章, 侯江龙. 2017. 四川甲基卡新三号超大型锂矿脉稀土元素地球化学. 地球科学, 42(10): 1673~1683.

    • 栾世伟, 毛玉元, 范良明, 巫晓兵, 林金辉. 1996. 可可托海地区稀有金属成矿与找矿. 成都: 成都科技大学出版社, 1~295.

    • 马占龙, 徐雨生, 唐勇, 张辉, 吕正航. 2022. 阿尔泰造山带青河地区哈巴河群变质岩地球化学特征及稀有金属背景值研究. 矿物岩石地球化学通报, 41(6): 1224~1240.

    • 任纪舜, 王作勋, 陈炳蔚. 1999. 从全球看中国大地构造: 中国及邻区大地构造图简要说明书. 北京: 地质出版社, 1~50.

    • 孙艳, 王登红, 高允, 韩景仪, 马圣钞, 樊兴涛, 顾文帅, 张丽红. 2018. 重庆铜梁地区富锂绿豆岩地球化学特征. 岩石矿物学杂志, 37(3): 445~453.

    • 王登红. 2001. 地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨. 地学前缘, 8(3): 67~72.

    • 王登红. 2014. 全国成岩成矿年代谱系. 北京: 地质出版社, 1~438.

    • 王登红, 李沛刚, 屈文俊, 雷志远, 廖友常. 2013. 贵州大竹园铝土矿中钨和锂的发现与综合评价. 中国科学: 地球科学, 43(1): 44~51.

    • 王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述. 中国地质调查, 4(5): 1~8.

    • 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.

    • 王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化学背景与空间分布: 远景区预测. 地球学报, 41(6): 797~806.

    • 杨岳清, 刘善宝, 王登红, 代鸿章, 刘丽君, 李鑫. 2023. 川西甲基卡和可尔因矿田稀有金属成矿特征差异性及成因探讨. 地球学报, 44(3): 419~433.

    • 郑绵平, 邢恩袁, 张雪飞, 黎明明, 车东, 卜令忠, 韩佳欢, 叶传永. 2023. 全球锂矿床的分类、外生锂矿成矿作用与提取技术. 中国地质, 50(6): 1599~1620.

    • 《中国矿产地质志·江西卷》编委会. 2015. 中国矿产地质志·江西卷. 北京: 地质出版社.

    • 《中国矿床发现史·江西卷》编委会. 1996. 中国矿床发现史. 北京: 地质出版社.

    • 邹天人, 李庆昌. 2006. 中国新疆稀有稀土金属矿床. 北京: 地质出版社, 1~314.