-
板块构造驱动力与地球内部运行问题是21世纪重大科学问题之一(Kerr,2005)。美国地质学会定义俯冲(subduction)时,间接定义了板块构造起始于岩石圈(White et al.,1970)。Morgen(1971)依据地表热点,推测深地幔中存在20个地幔柱(mantle plumes)。地幔柱是地幔对流的动力,推动板块运动(Morgan,1971; Arnould et al.,2019)。随着地球探测水平的提高,人们通过地震方法发现地球内部仅存在两个超级地幔柱(super mantle plumes)(French et al.,2015)。Burke(2011)将这两个超级地幔柱分别命名为Tuzo超级地幔柱与Jason超级地幔柱,他认为下地幔主要表现为下沉(sinking)。Agrusta et al.(2014)、Goes et al.(2017)、Agrusta et al.(2017)等以全球地震层析成像成果为依据,使用横波高速异常体的形态,提出全球A型与B型俯冲模式。此外,南大西洋扩张的同时,该地区也表现为逆时针旋转(Rabinowitz et al.,1979; Szatmari et al.,1999,2016; Scotese,2001; Schobbenhaus et al.,2003; Tamrat et al.,2006; Koopmann et al.,2014,2016; Granot et al.,2015),说明地幔运动具有多样性。
-
本文将Tuzo与Jason超级地幔柱命名为超级地幔树(super mantle tree),以突出Jason与Tuzo超级地幔柱连接地核与地壳的纽带特征,强调它们在地球演化过程中对全球构造的作用。本文英文全文详见附件1,https://www.geojournals.cn/dzxb/dzxb/article/abstract/202403090?st=article_issue。
-
1 超级地幔树(super mantle tree)的命名
-
图1为根据全球层析成像SEMUCB-WM15数据(French et al.,2015)绘制的三维横波地震低速异常体。该图反映Jason超级地幔树与Tuzo超级地幔树“植根”于地球外核顶部,“生长”在地核-地幔边界上,逐渐延伸到地壳中,整体形态犹如主干旋转缠绕的榕树。本文将Jason超级地幔柱与Tuzo超级地幔柱命名为超级地幔树(super mantle tree),充分反映它们“生长”过程中的化学、物理学活动对地幔运动的影响,突出它们作为地核与地壳的纽带以及在全球构造演化过程中的作用,超级地幔柱仅仅是超级地幔树的局部。这种命名方法强调了Jason超级地幔树与Tuzo超级地幔树的整体性(附件2-1)。
-
2 超级地幔树物质来源
-
图1同时显示了2600~2890 km含Fe量分布范围(Mosca et al.,2012),Jason超级地幔树与Tuzo超级地幔树在地核-地幔边界上表现为相互干涉的同心圆。有限元数值模拟与光弹试验(附件2-2)证明,Jason超级地幔树与Tuzo超级地幔树可能是外核顶部物质的脉动作用,造成下地幔底部破裂,导致外核顶部物质挤入下地幔底部(Garnero et al.,2000; Garnero et al.,2016)。外核的主要成分是铁(Fe),下地幔底部主要以后钙钛矿(post-perovskite,pPv)为主(Khan et al.,2015)。Jason超级地幔树与Tuzo超级地幔树底部基本位于富Fe区域,说明超级地幔树植根于外核顶部,下地幔底部的铁与超级地幔树底部物质可能是外核顶部脉动作用的产物(Larson,1991)。这些现象意味着超低速带(ULVZ)物质可能是核幔混合物。随着地幔树的生长,部分Fe等重金属元素被带至地壳。
-
3 超级地幔树层状结构与地幔分隔面及地球化学过渡层
-
地球外核顶部的压力与温度高于下地幔底部,核幔混合物的超低速带发生膨胀密度降低(甚至相变),产生向上刺穿、侧向挤压运动,在 D″层内形成大型剪切波低速体(large low shear velocity provinces,LLSVP),逐渐下沉的后钙钛矿(pPv)部分区域及上部物质。LLSVP物质受降温减压作用,进一步膨胀,裹挟相邻物质继续向上运动。Jason超级地幔树与Tuzo超级地幔树自地核-地幔边界向上持续生长过程中,温度与压力逐渐降低,它们的物质处于逐渐降温降压的不断变化环境。我们更倾向于地球内部物质的相态变化是降温降压过程的结果。
-
图1 超级地幔树相关参数与下地幔深部含铁量分布
-
Fig.1 3D demonstration of the super mantle tree growth morphology and Fe content distribution in the mantle
-
黄色表示横波低速异常体(数据引自Morgan,1971的SEMUCB-WM1,深度为CMB~60 km);赤红色表示含铁量(限于图像表述,仅显示2600~2890 km含铁量分布,数据引自Larson,1991)
-
Yellow showing S-wave low velocity anomaly (data are from SEMUCB-WM1, depth at CMB~60 km; Morgan, 1971) ; dark red showing Fe content data are from Larson, 1991, and only the Fe content of 2600~2890 km is exhibited because of the limit of the image
-
Jason超级地幔树与Tuzo超级地幔树“树干”(1600~2890 km)中来自外核物质的化学成分流失相对较少。Jason超级地幔树与Tuzo超级地幔树“树冠”(110~1600 km)物质与围岩充分混合,使得“树冠”空间呈现出化学、物理等多种活动,这些活动能量叠加在重力能与热能中,导致地球物理与地球化学现象十分复杂,温度升高,物质相变与软化。密度分布极不均匀等是“树冠”空间最显著的特点。复杂的地球物理与地球化学活动使得110~1600 km深度的地幔体积膨胀。受超级地幔树“树冠”空间膨胀作用,岩石圈在110 km深度开始产生裂缝与孔洞,Jason超级地幔树与Tuzo超级地幔树物质挤入岩石圈裂缝与孔洞后,以力学作用为主,进一步加速裂缝与孔洞的发展。附件2-1说明,Tuzo超级地幔树不同深度“树干”椭圆中心变化较Jason超级地幔树剧烈,意味着Tuzo超级地幔树较Jason超级地幔树活跃。
-
从植物学角度来看,树与树之间只有保持一定距离,才能正常生长。由图1可见,Jason超级地幔树与Tuzo超级地幔树之间可能存在一个地球化学生长分隔面,简称地幔分隔面。图2中红线是110 km以上地幔分隔面地面投影,110 km以下地幔分隔面地面投影见图3。
-
依据地幔分隔面,我们将Tuzo超级地幔树生长空间命名为大西洋半球(Atlantic hemisphere),将Jason超级地幔树生长空间命名为太平洋半球(Pacific hemisphere)。地幔分隔面使得地幔对流主要限定在Jason超级地幔树与Tuzo超级地幔树各自生长空间内进行。地幔分隔面可能是大西洋半球与太平洋半球之间地球化学差异性的根源。
-
地球物理学家未发现地球内部1550~1600 km之间存在物理界面。考虑到地球的圈层结构特征以及超级地幔树物质主要来自地球深部,我们推测深度1550~1600 km之间可能存在一个地球化学过渡层,该过渡层的上部空间与下部空间的地球化学指标可能具有一定的差异性,该结论与Wu Zhongqing et al.(2019)利用第一性原理计算结果大致吻合。
-
横波低速体沿着110 km深度岩石圈裂缝与孔洞等薄弱部位进行底辟运动,使得超级地幔树分支在110 km处呈树枝状,表现为条带分布与东太平洋地区的横向连续片状结构(图2a、b)。60 km深度与110 km深度横波低速体分布大致相同(图2c、d)。Jason超级地幔树与Tuzo超级地幔树在110 km的平面分布形态与全球板块轮廓大致相似(图2e、f)(附件2-3)。大陆漂移是板块活动的表象,洋中脊与大火成岩省主要是110 km深度开始的裂缝与孔洞在地壳中的表现。这些现象意味着板块构造运动大致起始于110 km。
-
4 超级地幔树在地球演化中的作用——破坏与重构圈层结构
-
如果将超级地幔树“生长”产生的上浮运动与重力产生的下沉运动分别纳入到Wilson提出的“开合旋回”(Wilson,1969)内涵中,实际上,就是空间扩张与收缩。因此,核幔边界的打开(opening)是超级地幔树原动力。现今,太平洋的面积正以约0.6 km2/a的速度收缩,与此同时,大西洋和印度洋的面积正分别以约0.45 km2/a和0.15 km2/a的速度扩张(Pearce et al.,2001),说明太平洋处于闭合(closing)阶段,大西洋与印度洋处于打开(opening)阶段。大西洋半球与太平洋半球地球化学指标的差异性(Pearce et al.,2001)以及二者海水性质的差异性可能是地幔分隔面存在的证据(McLaughlin et al.,1996)。
-
地磁场是地核物质运动及性质的反映。图3是根据全球地磁参考场(12th international geomagnetic reference field,IGRF12)计算的地磁场东向分量(Y分量,左图)与地磁偏角(附件2-3)。将图2中地幔分隔面(图2中红线)投影到图3中,可以发现,地幔分隔面地面投影北端大致指向地磁北极,南端基本指向地磁南极,意味着外核顶部脉动作用可能是地幔运动的动因,地核运动控制地幔运动。同时隐含“地核为无极电容,内核控制地磁场强度,Tuzo与Jason超级地幔柱控制磁极漂移”的物理内涵(Amit et al.,2015)。
-
超级地幔树在不同深度空间、不同阶段的生长过程,其本质是Jason超级地幔树与Tuzo超级地幔树在不同空间、不同层次的底辟运动,结果就是破坏与重构地球圈层结构。
-
图2 地幔横波低速异常分布与全球板块构造对比图
-
Fig.2 Comparison of low shear velocity anomaly distribution and globe tectonics
-
(a)—以中国为中心展开的110 km深度地幔横波低速异常分布(红实线大致为太平洋半球西部边界);(b)—以美洲为中心展开的110 km深度地幔横波低速异常分布(红实线大致为太平洋半球东部边界);(c)—以中国为中心展开60 km深度横低速波低速异常分布图(红实线来自图3a);(d)—以美洲为中心展开60 km深度横波异常分布图(红实线来自图3b);(e)—以中国为中心展开的全球板块构造图;(f)—以美洲为中心展开的全球板块构造图;图中细虚线与所标数字是根据前人资料整理的地表热点玄武岩年龄分布(Morgan,1983; O'Connor et al.,1992; Müller et al.,1993; Richards et al.,2000)
-
(a) —low shear velocity anomaly distribution at the depth of 110 km, taking China as the center (the red solid line is approximately the western boundary of Pacific hemisphere) ; (b) —low shear velocity anomaly distribution at the depth of 110 km, taking America as the center (the red solid line is approximately the eastern boundary of Pacific hemisphere) ; (c) —low shear velocity anomaly distribution at the depth of 60 km, taking China as the center (the red solid line is from Fig.3a) ; (d) —low shear velocity anomaly distribution at the depth of 60 km, taking America as the center (the red solid line is from Fig.3b) ; (e) —global plate tectonics taking China as the center; (f) —global plate tectonics taking America as the center; the thin dotted line and the numbers show the distribution of basalt ages of the surface hotspots summarized by previous studies (Morgan, 1983; O'Connor et al., 1992; Müller et al., 1993; Richards et al., 2000)
-
5 超级地幔树的“树干”旋转生长控制全球构造基本格架
-
超级地幔树不同深度“树干”椭圆投影及全球大地构造略图(图4,附件2-4)揭示,Jason超级地幔树与Tuzo超级地幔树“树干”旋转生长控制全球构造宏观运动与基本构造格架。Tuzo超级地幔树的逆时针旋转控制了大西洋半球的旋转形态,Tuzo超级地幔树“细树干”伸向南大西洋,Tuzo超级地幔树“粗树干”伸向北大西洋,使得中大西洋脊减薄(Agius et al.,2021)。Jason超级地幔树顺时针旋转控制太平洋半球的旋转形态以及环太平洋地区地貌构造形态。
-
图3 地磁场东向分量(Y分量)与地磁场地磁偏角图
-
Fig.3 Y component of geomagnetic field and geomagnetic field and geomagnetic declination
-
(a)—地磁场东向分量(Y分量)(以西太平洋为中心);(b)—地磁场东向分量(Y分量)(以美洲为中心);(c)—地磁场地磁偏角图(以西太平洋为中心);(d)—地磁场地磁偏角图(以美洲为中心);图中红线为地幔分隔面;地幔分隔面北端大致指向地磁S极,地幔分隔面南端几乎指向地磁N极
-
(a) —Y component of geomagnetic field (the upper left taking its center in western Pacific and the upper right taking its center in America) ; (b) —Y component of geomagnetic field (taking its center in America) ; (c) —geomagnetic field and geomagnetic declination (the lower left taking its center in western Pacific) ; (d) —geomagnetic field and geomagnetic declination (taking its center in America) ; the red line in the figure is approximately the location of the separatrix; the northern end of the separatrix points approximately to the southern geomagnetic pole and its southern end, almost to the northern geomagnetic pole
-
图4 超级地幔树不同深度“树干”椭圆投影及全球大地构造略图
-
Fig.4 Ellipse projection of the “trunks” of the super mantle tree at different depths and sketch of the global tectonic structure
-
图5 青藏高原及邻区地质地球物理三维构造模型
-
Fig.5 Geological and geophysical three-dimensional structural model of the Qinghai-Tibet Plateau and adjacent areas
-
红色点划线上部(10~60 km)填充的是反映地下不同深度密度变化的不同阶数卫星重力异常数据体(10 km至地面未填充卫星重力异常数据),红色点划线下部(60~1600 km)横波速度异常相对变化率;根据我们20多年对青藏高原综合研究的地质认识,以及地面重力、航磁、反射地震等资料的约束,对不同阶数卫星重力异常进行地质解释,获得青藏高原及邻区三维构造模型,模型顶面(地面)为该区大地构造纲要图(具体见附件2-5),黄色虚线圆圈为60 km深度藏北、藏东Tuzo超级地幔树“树枝”的地面投影
-
The satellite gravity anomalies of different orders reflecting the density changes of different depths underground are filled above at the depth of 10~60 km (above the red dotted line) ; no satellite gravity anomaly data is filled above the depth of 10 km; the shear wave velocity anomaly is below the red dotted line (at the depth of 60~1600 km) ; based on our comprehensive research on the Qinghai-Tibet Plateau over the past 20 years, we have performed geological interpretation for the satellite gravity anomalies of different orders under the constrain of the ground gravity, aeromagnetic, and reflection seismic data, which aims to obtain the three-dimensional structural models of the Qinghai-Tibet Plateau and its adjacent areas; the top surface (ground surface) of the model is the structure outline (see Appendix 2-5 for details) ; the yellow dotted circle is the ground projection of Tuzo super mantle tree “branches” in northern Tibet and eastern Tibet at the depth of 60 km
-
6 超级地幔树“树冠”运动进一步细化和改造全球构造格架——以青藏高原为例
-
图5是青藏高原及邻区地质地球物理资料三维构造模型。来自深处的Tuzo超级地幔树“树枝”上升过程形成青藏高原西部地貌构造形态(附件2-5)。藏北与藏东底部深度大约为110~120 km,它们的物质来自印度洋深部的Tuzo超级地幔树“树枝”。在藏北与藏东的两只“树枝”上升过程中,前者西缘控制中昆仑山与东昆仑山的地貌构造形态及走向,后者东缘控制龙门山与横断山脉的地貌构造形态及走向。60 km以上,藏东横波低速异常体向SE方向呈台阶状展布,位置对应云贵高原,意味着藏东横波低速异常体的SE向运动可能影响云贵高原地貌构造形态。
-
藏南与藏北、藏东深部物质性质及运动特征差异较大,藏南主要为横波高速异常、高密度物质北向作用,藏北、藏东主要为横波低速异常、低密度物质呈火炬式上升,与藏南高热流、藏北低热流的地面现象基本一致(Turner et al.,1993; An et al.,2001; Spicer et al.,2003; Currie et al.,2005; Jiang et al.,2019)。因而,青藏高原总体呈“S”形逆时针旋转构造地貌形态,每个带地质特征不同,构造形态不一。此外,西向运动的Jason超级地幔树“树枝”改变了北向运动的Tuzo超级地幔树“树枝”的空间运动形态,使之变成向西弯曲的弧形运动形式,二者共同作用形成青藏高原东构造结(图6,附件2-5)。该实例将表层地质认识与深部地质地球物理研究有机结合起来,进一步说明表层地质现象是深部物质运动的结果,反映超级地幔树“树冠”运动进一步细化和改造全球构造格架,并在形成全球复杂而有规律的构造全景中发挥至关重要的作用。
-
7 总结
-
(1)将Jason超级地幔柱与Tuzo超级地幔柱命名为超级地幔树(super mantle tree),更能够体现地幔中横波低速体的整体性,突出Jason超级地幔树与Tuzo超级地幔树连接地核与地壳的纽带特征,强调它们在地质过程中对全球的作用,地幔柱是超级地幔树的局部“树枝”。
-
图6 青藏高原东构造结力学成因机理示意图
-
Fig.6 Schematic diagram of mechanical genesis mechanism of eastern tectonic knot of the Tibetan Plateau
-
(2)超级地幔树为四层结构,“植根”于外核顶部, 1600~2890 km为“树干”, 110~1600 km深度为“树冠”,110 km以上为条带状“树枝”与(东太平洋地区)横向连续片状分布的“树枝”。
-
(3)在1550~1600 km深度之间,地球可能存在一个地幔地球化学过渡层。此外,Jason超级地幔树与Tuzo超级地幔树之间可能存在一个地幔分隔面,地幔分隔面北端大致指向地磁北极,南端基本指向地磁南极。
-
(4)外核顶部的脉动作用可能是超级地幔树生长的动因,即地核运动控制地幔运动。大西洋半球表现为逆时针旋转,太平洋半球表现为顺时针旋转。Jason超级地幔树与Tuzo超级地幔树“树干”旋转运动控制全球构造基本格架,经过“树冠”运动进一步细化和改造,形成复杂而有规律的全球构造全景。
-
(5)Tuzo超级地幔树的逆时针旋转控制了大西洋半球的旋转形态,Tuzo超级地幔树“细树干”伸向南大西洋,Tuzo超级地幔树“粗树干”伸向北大西洋,使得中大西洋脊减薄。Jason超级地幔树顺时针旋转控制太平洋半球的旋转形态以及环太平洋地区地貌构造特征。
-
(6)来自深处的Tuzo超级地幔树“树枝”上升过程形成青藏高原西部地貌构造形态。藏南与藏北、藏东的深部物质性质及运动特征差异较大,藏南主要是横波高速异常体、高密度物质北向作用,藏北、藏东主要是横波低速异常体、低密度物质上升运动,与藏南高热流、藏北低热流的地面现象一致。60 km以上,藏东横波低速异常体向SE方向运动可能影响云贵高原地貌构造形态。
-
(7)青藏高原总体呈“S”形逆时针旋转构造地貌形态,每个带地质特征不同,构造形态不一。北向运动的Tuzo超级地幔树“树枝”被Jason超级地幔树“树枝”的西向运动改变,二者共同作用形成青藏高原东构造结,说明表层地质现象是深部物质运动的结果。
-
致谢:任纪舜院士、杨巍然教授参与了本文科学研究规划的讨论,提出了建设性意见,在此特别表示感谢。
-
附件:本文附件1(英文全文)详见https://www.geojournals.cn/dzxb/dzxb/article/abstract/202403090?st=article_issue;附件2(附件2-1~附件2-5)详见https://www.geojournals.cn/dzxb/dzxb/article/abstract/202403091?st=article_issue
-
参考文献
-
Agius M R, Rychert C A, Harmon N, Tharimena S, Kendall J M. 2021. A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge. Nature, 589: 562~566.
-
Agrusta R, van Hunen J, Goes S. 2014. The effect of metastable pyroxene on the slab dynamics. Geophysical Research Letters, 41(24): 8800~8808.
-
Agrusta R, Goes S, van Hunen J. 2017. Subducting-slab transition-zone interaction: Stagnation, penetration and mode switches. Earth and Planetary Science Letters, 464: 10~23.
-
Amit H, Olson P. 2015. Lower mantle super plume growth excites geomagnetic reversals. Earth and Planetary Science Letters, 414: 68~76.
-
An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian mon-soons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62~66.
-
Arnould M, Ganne J, Coltice N, Feng Xiaojun. 2019. Northward drift of the Azores plume in the Earth's mantle. Nature Communications, 10: 3235.
-
Burke K. 2011. Plate tectonics, the Wilsoncycle, and mantle plumes: Geodynamics from the top. Annual Review of Earth and Planetary Sciences, 39: 1~29.
-
Currie B S, Rowley D B, Tabor N J. 2005. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33: 181~184.
-
French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525: 95~99.
-
Garnero E J. 2000. Heterogeneity of the lowermost mantle. Annual Review of Earth and Planetary Sciences, 28: 509~537.
-
Garnero E J, McNamara A K, Shim S H. 2016. Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle. Nature Geoscience, 9: 481~489.
-
Goes S, Agrusta R, van Hunen J, Garel F. 2017. Subduction-transition zone interaction: A review. Geosphere, 13(3): 644~664.
-
Granot R, Dyment J. 2015. TheCretaceous opening of the South Atlantic Ocean. Earth and Planetary Science Letters, 414: 156~163.
-
Jiang Guangzheng, Hu Shengbiao, Shi Yizuo, Zhang Chao, Wang Zhuting, Hu Di. 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics, 753: 36~48.
-
Kerr R A. 2005. How does Earth's interior work? Science, 309(5731): 87.
-
Khan A, Deschamps F. 2015. The Earth's Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective. Berlin: Springer International Publishing.
-
Koopmann H, Franke D, Schreckenberger B, Schulz H, Hartwig A, Stollhofen H, Di Primio R. 2014. Segmentation and volcano-tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data. Marine and Petroleum Geology, 50: 22~39.
-
Koopmann H, Schreckenberger B, Franke D, Becker K, Schnabel M. 2016. The late rifting phase and continental break-up of the southern South Atlantic: The mode and timing of volcanic rifting and formation of earliest oceanic crust. Geological Society, London, Special Publications, 420(1): 315~340.
-
Larson R L. 1991. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 19(6): 547.
-
McLaughlin F A, Carmack E C, MacDonald R W, Bishop J K B. 1996. Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin. Journal of Geophysical Research, 101(C1): 1183~1197.
-
Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42~43.
-
Morgan W J. 1983. Hotspot tracks and the early rifting of the Atlantic. Tectonophysics, 94(1): 123~139.
-
Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J. 2012. Seismic and mineralogical structures of the lower mantle from probabilistic tomography. Journal of Geophysical Research(Solid Earth), 117(B6): B06304.
-
Müller R D, Royer J Y, Lawver L A. 1993. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology, 21(3): 275.
-
O'Connor J M, Le Roex A P. 1992. South Atlantic hot spot-plume systems: 1. Distribution of volcanism in time and space. Earth and Planetary Science Letters, 113(3): 343~364.
-
Pearce J A, Leat P T, Barker P F, Millar I L. 2001. Geochemical tracing of Pacific-to-Atlantic upper-mantle flow through the Drake passage. Nature, 410: 457~461.
-
Rabinowitz P D, La Brecque J. 1979. The Mesozoic South Atlantic Ocean and evolution of its continental margins. Journal of Geophysical Research: Solid Earth, 84(B11): 5973~6002.
-
Richards M A, Gordon R G, Van der Hilst R D. 2000. The History and Dynamics of Global Plate Motions. Washington, D. C. : American Geophysical Union.
-
Schobbenhaus C, Neves B B. 2003. A geologia do Brasil no contexto da plataforma Sul-Americana. Geologia, Tectônica e Recursos Minerais Do Brasil, 5~54.
-
Scotese C. 2001. Atlas of Earth History. Paleomap Project.
-
Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo Shuangxing, Valdes P J, Wolfe J A, S P. Kelley. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622~624.
-
Szatmari P, Milani E J. 1999. Microplate rotation in northeast Brazil during South Atlantic rifting: Analogies with the Sinai microplate. Geology, 27(12): 1115.
-
Szatmari P, Milani E J. 2016. Tectonic control of the oil-rich large igneous-carbonate-salt province of the South Atlanticrift. Marine and Petroleum Geology, 77: 567~596.
-
Tamrat E, Ernesto M. 2006. Paleomagnetic constraints on the age of the Botucatu formation in Rio Grande do Sul, southern Brazil. AnaisDa Academia Brasileira De Ciencias, 78(3): 591~605.
-
Turner S, Hawkesworth C, Liu Jiaqi, Rogers N, Kelley S, van Calsteren P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50~54.
-
White D A, Roeder D H, Nelson T H, Crowell J C. 1970. Subduction. Geological Society of America Bulletin, 81(11): 3431.
-
Wilson J T. 1969. Static or mobile earth: The current scientific revolution. Tectonophysics, 7(5): 600~601.
-
Wu Zhongqing, Wang Wenzhong, Xu Yinhan. 2019. Velocity and density characteristics ofsubducted oceanic crust and the origin of seismic heterogeneity in the lower mantle. Acta Geologica Sinica-English Edition, 93(S1): 178.
-
摘要
全球横波低速异常体成像发现: Jason超级地幔柱与Tuzo超级地幔柱彷佛植根于地球外核顶部、生长在核幔边界(core-mantle boundary, CMB)上的两株榕树,我们将其命名为超级地幔树(super mantle tree),以突出Jason超级地幔柱与Tuzo超级地幔柱连接地核与地壳的纽带特征,强调它们在地球演化过程中对全球构造的作用。地幔柱仅是超级地幔树的局部分支。我们定义超级地幔树为4层结构:① 植根于地球外核顶部;② 1600~2890 km为“树干”; ③ 110~1600 km为“树冠”;④ 110 km以上为“树枝”。“树枝”平面分布形态与全球板块轮廓大致相似,意味着板块构造可能起始于地球110 km处。推测地球深度1550~1600 km之间可能存在一个地球化学过渡层;Jason超级地幔树与Tuzo超级地幔树之间可能存在地球化学分隔面(简称地幔分隔面),地幔分隔面将地球划分为太平洋半球与大西洋半球;它的地面投影北端大致指向地磁北极,南端基本指向地磁南极。外核顶部脉动作用可能是地幔运动的动因,地核运动控制地幔运动。Tuzo超级地幔树逆时针旋转控制大西洋半球旋转形态,Tuzo超级地幔树的“细树干”伸向南大西洋, Tuzo超级地幔树“粗树干”伸向北大西洋,使得中大西洋脊减薄。Jason超级地幔树顺时针旋转控制太平洋半球旋转形态以及环太平洋地区地貌构造形态。青藏高原及邻区地质地球物理三维构造模型说明:向北运动的Tuzo超级地幔树“树枝”与向西运动的Jason超级地幔树“树枝”共同作用,形成青藏高原东构造结。
Abstract
Jason and Tuzo super mantle plumes together resemble a banyan tree growing on the core-mantle boundary (CMB) with a “root” on top of the Earth's outer core, “trunk” (1600~2890 km), “crown” (110~1600 km), and “branches” (above 110 km) and are thus termed “super mantle trees” to reflect the integrity of low-shear-wave-velocity anomalies in the mantle and highlight their role in the connect the core and crust and their effects of global tectonics during Earth's evolution. Here, we show that a mantle plume is a part or “branch” of a super mantle tree. The planar distribution resembles the global plate contour and basalt age distribution, i.e., plate tectonics may start at 110 km. A geochemical transition layer may lie at 1550 km to 1600 km, with different geochemical indexes for the upper and lower spaces. There may be geochemical (mantle) separation surfaces between Jason and Tuzo super mantle trees, with the northern and southern ends approximately pointing to the geomagnetic north and south poles, respectively, and current growth spaces in the Pacific and Atlantic hemispheres. A three-dimensional (3D) structural model of the Tibetan Plateau and surroundings shows that the rotation of Jason and Tuzo super mantle trees changes or destroys the basic global tectonic framework, which the canopy movement further refines and transforms into a complex and regular panorama.
关键词
超级地幔树 ; 全球构造 ; 地幔分隔面 ; 地幔运动 ; 青藏高原三维构造模型