en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郑建平,男,1964年生。教授,博士生导师,主要研究深源岩石与岩石圈演化。第五届黄汲清青年地质科学技术奖获奖者。E-mail:jpzheng@cug.edu.cn。

参考文献
Aki K, Christoffersson A, Husebye E S. 1977. Determination of the three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82: 277~296.
参考文献
Anderson D L. 1982. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297: 391~393.
参考文献
Ballmer M D, Schumacher L, Lekic V, Thomas C, Ito G. 2016. Compositional layering within the large low shear-wave velocity provinces in the lower mantle. Geochemistry, Geophysics, Geosystems, 17: 5056~5077.
参考文献
Barbara R, Gung Yuancheng. 2002. Superplumes from the core-mantle boundary to the lithosphere: Implications for heat flux. Science, 296(5568): 513~516.
参考文献
Barry T L, Davies J H, Wolstencroft M, Millar I L, Zhao Z, Jian P, Safonova I, Price M. 2017. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry. Scientific Reports, 7: 1870.
参考文献
Boyd F R. 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96: 15~26.
参考文献
Boyet M, Carlson R W. 2005. 142Nd evidence for early (>4. 53 Ga) global differentiation of the silicate Earth. Science, 309(5734): 576~581.
参考文献
Bozdağ E, Peter D, Lefebvre M, Komatitsch D, Tromp J, Hill J, Podhorszki N, Pugmire D. 2016. Global adjoint tomography: First-generation model. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(3): 1739~1766.
参考文献
Breger L, Romanowicz B. 1998. Three-dimensional structure at the base of the mantle beneath the Central Pacific. Science, 282: 718~720.
参考文献
Bull A L, McNamara A K, Ritsema J. 2009. Synthetic tomography of plume clusters and thermochemical piles. Earth and Planetary Science Letters, 278: 152~162.
参考文献
Bunge H P, Richards M A, Lithgow-Bertelloni C, Baumgardner J R, Grand S P, Romanowicz B A. 1998. Time scales and heterogeneous structure in geodynamic earth models. Science, 280: 91~95.
参考文献
Campbell I H. 2007. Testing the plume theory. Chemical Geology, 241(3): 153~176.
参考文献
Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99: 79~93.
参考文献
Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336: 667~670.
参考文献
Cawood P A. 2020. Earth matters: A tempo to our planet's evolution. Geology, 48(5): 525~526.
参考文献
Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449: 118~126.
参考文献
Chang Sungjoon, Ferreira A M G, Ritsema J, van Heijst H J, Woodhouse J H. 2015. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. Journal of Geophysical Research, 120: 4278~4300.
参考文献
Chauvel C, Hofmann A W, Vidal P. 1992. HIMU-EM: The French-Polynesian connection. Earth and Planetary Science Letters, 110(1~4): 99~119.
参考文献
Chen Shuo, Sun Pu, Niu Yaoling, Guo Pengyuan, El1iott T, Hin R C. 2022. Molybdenum isotope systematics of lavas from the East Pacific Rise: Constraints on the source of enriched mid-ocean ridge basalts. Earth and Planetary Science Letters, 117283.
参考文献
Christensen U R. 1996. The influence of trench migration on slab penetration into the lower mantle. Earth and Planetary Science Letters, 140(1-4): 27~39.
参考文献
Christensen U R, Yuen D A. 1985. Layered convection induced by phase transitions. Journal of Geophysical Research, 90(B12): 10291~10300.
参考文献
Christensen U R, Hofmann A W. 1994. Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research, 99: 19867~19884.
参考文献
Davies D R, Goes S, Davies J H, Schuberth B S A, Bunge H P, Ritsema J. 2012. Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity. Earth and Planetary Science Letters, 353-354: 253~269.
参考文献
Davies G F, Gurnis M. 1986. Interaction of mantle dregs with convection-lateral heterogeneity at the core mantle boundary. Geophysical Research Letters, 13: 1517~1520.
参考文献
Deng Zhengbin, Schiller M, Jackson M G, Millet M A, Lu Pan, Nikolajsen K, Saji N S, Huang Dongyang, Bizzarro M. 2023. Earth's evolving geodynamic regime recorded by titanium isotopes. Nature, 621: 100~104.
参考文献
Deschamps F, Cobden L, Tackley P J. 2012. The primitive nature of large low shear-wave velocity provinces. Earth and Planetary Science Letters, 349: 198~208.
参考文献
Doucet L S, Li Zhengxiang, Gamal El Dien H, Pourteau A, Murphy J B, Collins W J, Mattielli N, Olierook H K H, Spencer C J, Mitchell R N. 2020. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 13(7): 511~515.
参考文献
Doucet L S, Tetley M G, Li Zhengxiang, Liu Yebo, Gamaleldien H. 2022. Geochemical fingerprinting of continental and oceanic basalts: A machine learning approach. Earth-Science Reviews, 104~192.
参考文献
Dupré B, Allègre C J. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303: 142~146.
参考文献
Durand S, Debayle E, Ricard Y, Zaroli C, Lambotte S. 2017. Confirmation of a change in the global shear velocity pattern at around 1, 000 km depth. Geophysical Journal International, 211(3): 1628~1639.
参考文献
Dziewonski A M. 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research, 89: 5929~5952.
参考文献
Dziewonski A M, Hager B H, O'Connell R J. 1977. Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research, 82(2): 239~255.
参考文献
Ekström G. 2011. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25~250 s. Geophysical Journal International, 187: 1668~1686.
参考文献
Ekström G, Tromp J, Larson E W F. 1997. Measurements and global models of surface wave propagation. Journal of Geophysical Research, 102: 8137~8157.
参考文献
Eriksen Z T, Jacobsen S B. 2022. Calcium isotope constraints on OIB and MORB petrogenesis: The importance of melt mixing. Earth and Planetary Science Letters, 593: 117665.
参考文献
Ernst R E, Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2. 5 Ga to thepresent. Canadian Journal of Earth Sciences, 47(5): 695~739.
参考文献
Ernst R E, Hamilton M A, Soderlund U, Hanes J A, Gladkochub D P, Okrugin A V, Kolotilina T, Mekhonoshin A S, Bleeker W, LeCheminant A N, Buchan K L, Chamberlain K R, Didenko A N. 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 9(6): 464~469.
参考文献
Floyd P A. 2012. Oceanic Basalts. Springer Science and Business Media.
参考文献
Fukao Y, Obayashi M, Inoue H, Nenbai M. 1992. Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research, 97(B4): 4809~4822.
参考文献
Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39: 291~323.
参考文献
Gast P W, Tilton G R, Hedge C. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145(3637): 1181~1185.
参考文献
Gernon T M, Jones S M, Brune S, Hincks T K, Palmer M R, Schumacher J C, Primiceri R M, Field M, Griffin W L, O'Reilly S Y, Keir D, Spencer C J, Merdith A S, Glerum A. 2023. Rift-induced disruption of cratonic keels drives kimberlite volcanism. Nature, 620: 344~350.
参考文献
Goes S, Capitanio F, Morra G. 2008. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451: 981~984.
参考文献
Goes S, Agrusta R, van Hunen J, Garel F. 2017. Subduction-transition zone interaction: A review. Geosphere, 13(3): 644~664.
参考文献
Goes S, Yu Chunquan, Ballmer M D, Yan J, van der Hilst R D. 2022. Compositional heterogeneity in the mantle transition zone. Nature Reviews Earth and Environment, 3(8): 533~550.
参考文献
Goldstein S L, Soffer G, Langmuir C H. 2006. Isotope geochemistry of gakkel ridge basalts and origin of a “Dupal” signature. Ofioliti, 31(1): 59~60.
参考文献
Goldstein S L, Soffer G, Langmuir C H, Lehnert K A, Graham D W, Michael P J. 2008. Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature, 453(7191): 89~93.
参考文献
Gonnermann H M, Mukhopadhyay S. 2009. Preserving noble gases in a convecting mantle. Nature, 459(7246): 560~563.
参考文献
Grand S P. 2002. Mantle shearwave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society A, 360: 2475~2491.
参考文献
Grand S P, van der Hilst R D, Widiyantoro S. 1997. Global seismic tomography: A snapshot of convection in the Earth. Geological Society of America Today, 7: 1~7.
参考文献
Griffin W L, Ryan C G, Kaminsky F V, O'Reilly S Y, Natapov L M, Win T T, Kinny P D, Ilupin I P. 1999. The Siberian lithosphere traverse: Mantle terranes and the assembly of the Siberian craton. Tectonophysics, 310: 1~35.
参考文献
Guo Pengyuan, Niu Yaoling, Chen Shuo, Duan Meng, Sun Pu, Chen Yanhong, Gong Hongmei, Wang Xiaohong. 2023. Low-degree melt metasomatic origin of heavy Fe isotope enrichment in the MORB mantle. Earth Planetary Science Letters, 601: 117892.
参考文献
Gurnis M. 1986. The effects of chemical density differences on convective mixing in the Earth's mantle. Journal of Geophysical Research, 91(B11): 11407~11419.
参考文献
Haned A, Stutzmann E, Schimmel M, Kiselev S, Davaille A, Yelles-Chaouche A. 2016. Global tomography using seismic hum. Geophysical Journal International, 204(2): 1222~1236.
参考文献
Hanyu T, Tatsumi Y, Senda R, Miyazaki T, Chang Q, Hirahara Y, Nakai S I. 2011. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochemistry, Geophysics, Geosystems, 12(2): 1~30.
参考文献
Hart S R. 1971. K, Rb, Cs, Sr, Ba contents and Sr isotope ratios of ocean floor basalts. Philosophical Transactions of the Royal Society Series A, 268: 573~587.
参考文献
Hart S R. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309: 753~757.
参考文献
He Xiong, Tromp J. 1996. Normal-mode constraints on the structure of the Earth. Journal of Geophysical Research, 101(B9): 20053~20082.
参考文献
Ho T, Priestley K, Debayle E. 2016. A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements. Geophysical Journal International, 207(1): 542~561.
参考文献
Hofmann A W. 1988. Chemical differentiation of the Earth--the relationship between mantle, continental-crust, and oceanic-crust. Earth and Planetary Science Letters, 90(3): 297~314.
参考文献
Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219~229.
参考文献
Hofmann A W. 2004. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. Treatise on Geochemistry, 2(2003): 1~44.
参考文献
Hofmann A W, White W M, Whitford D J. 1978. Geochemical constraints on mantle models: The case for a layered mantle. Carnegie Institution of Washington Year Book, 77: 548~562.
参考文献
Hou Guiting, Santosh M, Qian Xianglin, Lister G S, Li Jianghai. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395~409.
参考文献
Houser C, Masters G, Laske G, Shearer P. 2008. Global seismic tomography: A snapshot of convection in the Earth. Geological Societyof America, Special Papers, 430: 235~254.
参考文献
Jackson M G, Hart S R, Koppers A A, Staudigel H, Konter J, Blusztajn J, Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448(7154): 684~687.
参考文献
Jackson M G, Konter J G, Becker T W. 2017. Primordial helium entrained by the hottest mantle plumes. Nature, 542(7641): 340~343.
参考文献
Jackson M G, Macdonald F A. 2022. Hemispheric geochemical dichotomy of the mantle is a legacy of austral supercontinent assembly and onset of deep continental crust subduction. AGU Advances, 3: e2022AV000664.
参考文献
Jacobsen S B, Yu Gang. 2015. Extinct isotope heterogeneities in the mantles of Earth and Mars: Implications for mantle stirring rates. Meteoritics and Planetary Science, 50: 555~567.
参考文献
Jarvis G T, Lowman J P. 2007. Survival times of subducted slab remnants in numerical models of mantle flow. Earth and Planetary Science Letters, 260: 23~36.
参考文献
Jordan T H. 1978. Composition and development of the continental tectosphere. Nature, 274(5671): 544~548.
参考文献
Kempton P D, Pearce J A, Barry T L, Fitton J G, Langmuir C, Christie D M. 2002. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic discordance and origin of the Indian MORB source. Geochemistry, Geophysics, Geosystems, 3(12): 1~35.
参考文献
Kennett B L N. 1998. On the density distribution within the Earth. Geophysical Journal International, 132: 374~382.
参考文献
Keppie D F. 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea. Geology, 43: 335~338.
参考文献
Khedr M Z, Arai S, Python M, Tamura A. 2014. Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity. Gondwana Research, 25(3): 1242~1262.
参考文献
King S D, Frost D J, Rubie D C. 2015. Why cold slabs stagnate in the transition zone. Geology, 43(3): 231~234.
参考文献
Klein E M, Langmuir C H, Zindler A, Staudigel H, Hamelin B. 1988. Isotope evidence of a mantle convection boundary at the Australian-Antarctic discordance. Nature, 333: 623~629.
参考文献
Koppers A A P, Becker T W, Jackson M G, Konrad K, Dietmar Müller R, Romanowicz B, Steinberger B, Whittaker J M. 2021. Mantle plumes and their role in Earth processes. Nature Reviews Earth & Environment, 2: 382~401.
参考文献
Kurz M D, Jenkins W J, Hart S R. 1982. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature, 297(5861): 43~47.
参考文献
Kustowski B, Ekström G, Dziewoński A M. 2008. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. Journal of Geophysical Research, 113: B06306.
参考文献
Labrosse S, Hernlund J, Coltice N. 2007. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 450: 866~869.
参考文献
Lee C T, Luffi P, Höink T, Li Jie, Dasgupta R, Hernlund J. 2010. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature, 463: 930~933.
参考文献
Lee C-T A. 2006. Geochemical/petrologic constraints on the origin of cratonic mantle. In: Benn K, Mareschal J-C, Condie K C, eds. Archean Geodynamics and Environments. Washington DC American Geophysical Union Geophysical Monograph Series.
参考文献
Lei Wenjie, Ruan Youyi, Bozdağ E, Peter D, Lefebvre M, Komatitsch D, Tromp J, Hill J, Podhorszki N, Pugmire D. 2020. Global adjoint tomography—model GLAD-M25. Geophysical Journal International, 223(1): 1~21.
参考文献
Li Xianhua. 2021. The major driving force triggering break up of supercontinent: Mantle plumes or deep subduction? Acta Geologica Sinica, 95(1): 20~31 (in Chinese with English abstract).
参考文献
Li Zhengxiang, Bogdanova S V, Collins A S, Davidson A, de Waele B, Ernst R, Fitzsimons I, Fuck R A, Gladkochub D P, Jacobs J. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179~210.
参考文献
Li Zhengxiang, Zhong S J. 2009. Supercontinent-superplume coupling, truepolar wander and plume mobility: Plate dominance in whole mantle tectonics. Physics of the Earth and Planetary Interiors, 176: 143~156.
参考文献
Li Zhengxiang, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 323: 1~5.
参考文献
Li Zhengxiang, Liu Yebo, Ernst R. 2023. A dynamic 2000~540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 238: 104336.
参考文献
Lithgow-Bertelloni C, Richards M A. 1998. The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, 36(1): 27~78.
参考文献
Liu Shuangliang, Ma Lin, Zou Xinyu, Fang Linru, Qin Ben, Melnik A E, Kirscher U, Yang Kuifeng, Fan Hongrui, Mitchell R N. 2022. Trends and rhythms in carbonatites and kimberlites reflect thermo-tectonic evolution of Earth. Geology, 51(1): 101~105.
参考文献
Liu Xijun, Xu Jifeng, Xiao Wenjiao, Liu Pengde. 2023. Origin of the DUPAL anomaly in the Tethyan mantle domain and its geodynamic significance. Science China Earth Sciences, 66(12): 2712~2727 (in Chinese with English abstract).
参考文献
Machetel P, Weber P. 1991. Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature, 350: 55~57.
参考文献
Mansur A T, Manya S, Timpa S, Rudnick R L. 2014. Granulite-facies xenoliths in rift basalts of northern Tanzania: Age, composition and origin of Archean lower crust. Journal of Petrology, 55(7): 1243~1286.
参考文献
Mao Wei, Zhong Shijie. 2018. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geoscience, 11: 876~881.
参考文献
Masters G, Laske G, Bolton H, Dziewonski A. 2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In: Karato S-I, Forte A, Liebermann R, Masters G, Stixrude L, eds. Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Volume 117. American Geophysical Union, 63~87.
参考文献
McKenzie D A N, O'Nions R K. 1995. The source regions of ocean island basalts. Journal of Petrology, 36(1): 133~159.
参考文献
McNamara A K, Zhong S. 2005. Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437: 1136~1139.
参考文献
Melson W G, Vallier T L, Wright T L, Byerly G, Nelen J. 1976. Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic, and Indian Ocean sea-floor spreading centers. The Geophysics of the Pacific Ocean Basin and Its Margin, 19: 351~367.
参考文献
Mitchell R N, Kilian T M, Evans D A D. 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature, 482(7384): 208~211.
参考文献
Mitchell R N, Zhang Nan, Salminen J, Liu Yebo, Spencer C J, Steinberger B, Murphy J B, Li Zhengxiang. 2021. The supercontinent cycle. Nature Review Earth Environment, 2: 358~374.
参考文献
Miyazaki Y, Korenaga J. 2022. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature, 603: 86~90.
参考文献
Montelli R, Nolet G, Dahlen F A, Masters G, Engdahl E R, Hung Shuhuei. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656): 338~343.
参考文献
Morgan J, Smith W. 1992. Flattening of the sea-floor depth-age curve as a response to asthenospheric flow. Nature, 359: 524~527.
参考文献
Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230(5288): 42~43.
参考文献
Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486(7401): 101~104.
参考文献
Mulyukova E, Steinberger B, Dabrowski M, Sobolev S V. 2015. Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly. Journal of Geophysical Research: Solid Earth, 120: 3824~3847.
参考文献
Mundl-Petermeier A, Walker R J, Jackson M G, Blichert-Toft J, Kurz M D, Halldórsson S A. 2019. Temporal evolution of primordial tungsten-182 and 3He/4 He signatures in the Iceland mantle plume. Chemical Geology, 525: 245~259.
参考文献
Mundl-Petermeier A, Walker R J, Fischer R A, Lekic V, Jackson M G, Kurz M D. 2020. Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth's core? Geochimica et Cosmochimica Acta, 271: 194~211.
参考文献
Murphy J B, Nance R D. 2005. Do supercontinents turn inside-in or inside-out? International Geology Review, 47(6): 591~619.
参考文献
Ni Sidao, Tan E, Gurnis M, Helmberger D. 2002. Sharp sides to the African superplume. Science, 296: 1850~1852.
参考文献
Nishida K, Montagner J P, Kawakatsu H. 2009. Global surface wave tomography using seismic hum. Science, 326(5949): 112~112.
参考文献
Niu Yaoling. 2018. Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics—A petrological and geochemical perspective. Geoscience Frontiers, 9: 1265~1278.
参考文献
Niu Yaoling, Wilson M, Humphreys E R, O'Hara M J. 2011. The origin of intra-plate ocean island basalts (OIB): The lid effect and its geodynamic implications. Journal of Petrology, 52(7-8): 1443~1468.
参考文献
Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J, Muto S, Ishii H, Hiraoka N. 2011. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nature, 473: 199~202.
参考文献
Olson P, Schubert G, Anderson C. 1993. Structure of axisymmetric mantle plumes. Journal of Geophysical Research, 98: 6829~6844.
参考文献
Panning M, Romanowicz B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal Internationnal, 167: 361~379.
参考文献
Parsons B, Sclater J G. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82(5): 803~827.
参考文献
Perry H K C, Forte A M, Eaton D W S. 2003. Upper-mantle thermochemical structure below North America from seismic-geodynamic flow models. Geophysical Journal International, 154: 279~299.
参考文献
Pyle D G, Christie D M, Mahoney J J. 1992. Resolving an isotopic boundary within the Australian-Antarctic Discordance. Earth and Planetary Science Letters, 112: 161~178.
参考文献
Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, 148: 247~261.
参考文献
Rawlinson N, Pozgay S, Fishwick S. 2010. Seismic tomography: A window into deep Earth. Physics of the Earth and Planetary Interiors, 178: 101~135.
参考文献
Ren Jishun, Niu Baogui, Xu Qinqin, Zhao Lei, Liu Jianhui, Li Shan, Zhu Junbin, Liu Renyan. 2022. Multisphere tectonic view of the Earth system. Acta Geologica Sinica, 96(1):
参考文献
50~64 (in Chinese with English abstract).
参考文献
Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hot-spot tracks: Plume heads and tails. Science, 246: 103~107.
参考文献
Richards M A, Engebretson D C. 1992. Large-scale mantle convection and the history of subduction. Nature, 355: 437~440.
参考文献
Ritsema J, Garnero E, Lay T. 1997. A strongly negative shear velocity gradient and lateral variability in the lowermost mantle beneath the Pacific. Journal of Geophysical Research: Solid Earth, 102: 20395~20411.
参考文献
Ritsema J, McNamara A K, Bull A L. 2007. Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure. Journal of Geophysical Research: Solid Earth, 112.
参考文献
Ritsema J, Deuss A, van Heijst H J, Woodhouse J H. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184: 1223~1236.
参考文献
Rizo H, Andrault D, Bennett N R, Humayun M, Brandon A, Vlastélic I, Moine B, Poirier A, Bouhifd M A, Murphy D T. 2019. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochemical Perspectives Letters, 11: 6~11.
参考文献
Rudolph M L, Lekiǵ V, Lithgow-Bertelloni C. 2015. Viscosity jump in Earth's mid-mantle. Science, 350(6266): 1349~1352.
参考文献
Saunders A D, Jones S M, Morgan L A, Pierce K L, Widdowson M, Xu Yigang. 2007. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chemical Geology, 241(3): 282~318.
参考文献
Schilling J G. 1973. Iceland mantle plume: Geochemical evidence along Reykjanes Ridge. Nature, 242: 565~571.
参考文献
Schroeder W. 1984. The empirical age-depth relation and depth anomalies in the Pacific Ocean Basin. Journal of Geophysical Research, 89(B12): 9873~9883.
参考文献
Schubert G, Masters G, Olson P, Tackley P. 2004. Superplumes or plume clusters? Physics of the Earth and Planetary Interiors, 146: 147~162.
参考文献
Schuberth B S A, Bunge H P, Ritsema J. 2009. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10.
参考文献
Sengupta M K, Toksöz M N. 1976. Three dimensional model of seismic velocity variation in the Earth's mantle. Geophysical Research Letters, 3: 84~86.
参考文献
Shapiro N M, Ritzwoller M. 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151: 88~105.
参考文献
Shapiro S S, Hager B H, Jordan T H. 1999. The continental tectosphere and Earth's long-wavelength gravity field. Lithos, 48: 135~152.
参考文献
Shearer P M, Masters T G. 1992. Global mapping of topography on the 660-km discontinuity. Nature, 355(6363): 791~796.
参考文献
Shimizu N, Sobolev A V, Layne G D, Tsameryan O P. 2003. Large Pb isotope variations in olivine-hosted melt inclusions in a basalt from the Mid-Atlantic Ridge. Science (ms: submitted May 2003).
参考文献
Simmons N A, Myers S C, Johannesson G, Matzel E. 2012. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research, 117: B10302.
参考文献
Sleep N H. 2005. Evolution of the continental lithosphere. Annual Review of Earth and Planetary Sciences, 33: 369~393.
参考文献
Soule S A. 2015. Mid-ocean ridge volcanism. In: Haraldur Sigurdsson, ed. The Encyclopedia of Volcanoes. Academic Press, 395~403.
参考文献
Stein C, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359: 123~129.
参考文献
Stern R J. 2018. The evolution of plate tectonics. Philosophical Transactions of the Royal Society Series A, 376: 20170406.
参考文献
Storey B C. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377: 301~308.
参考文献
Stracke A. 2012. Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330: 274~299.
参考文献
Stracke A, Hofmann A W, Hart S R. 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6(5): 1~20.
参考文献
Su W J, Woodward R L, Dziewonski A M. 1992. Deep origin of mid-ocean-ridge seismic velocity anomalies. Nature, 360: 149~152.
参考文献
Su W J, Dziewonski A M. 1997. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Physics of the Earth and Planetary Interiors, 100: 135~156.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Sun Xinlei, Song Xiaodong, Zheng Sihua, Helmberger D V. 2007. Evidence for a chemical-thermal structure at the base of mantle from sharp lateral P-wave variations beneath Central America. Proceedings of the National Academy of Sciences of the United States of America, 104: 26~30.
参考文献
Sun Pu, Niu Yaoling, Duan Meng, Chen Shuo, Guo Pengyuan, Gong Hongmei, Xiao Yuanyuan, Wang Xiaohong. 2023. Zinc isotope fractionation during mid-ocean ridge basalt differentiation: Evidence from lavas on the East Pacific Rise at 10°30′N. Geochimica et Cosmochimica Acta, 346: 180~191.
参考文献
Tackley P J, Stevenson D J, Glatzmaier G A, Schubert G. 1993. Effects of an endothermic phase-transition at 670 km depth in a spherical model of convection in the earth's mantle. Nature, 361(6414): 699~704.
参考文献
Tolstikhin I, Hofmann A W. 2005. Early crust on top of the Earth's core. Physics of the Earth and Planetary Interiors, 148: 109~130.
参考文献
Torii Y, Yoshioka S. 2007. Physical conditions producing slab stagnation: Constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip angles. Tectonophysics, 445(3-4): 200~209.
参考文献
Torsvik T H, Smethurst M A, Burke K, Steinberger B. 2006. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical Journal International, 167: 1447~1460.
参考文献
Torsvik T H, van der Voo R, Doubrovine P V, Burke K, Steinberger B, Ashwald L D, Tronnes R G, Webb S J, Bulla A L. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proceedings of the National Academy of Sciences, 111: 8735~8740.
参考文献
Trampert J, Woodhouse J H. 1995. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds. Geophysical Journal International, 122: 675~690.
参考文献
Tseng T L, Chen Wangping. 2004. Contrasts in seismic wave speeds and density across the 660 km discontinuity beneath the Philippine and the Japan Seas. Journal of Geophysical Research: Solid Earth, 109(B4).
参考文献
van der Hilst R. 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374: 154~157.
参考文献
van der Hilst R, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578~584.
参考文献
van Keken P E, Hauri E H, Ballentine C J. 2002. Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity. Annual Review of Earth and Planetary Sciences, 30: 493~525.
参考文献
Wang Chao, Song Shuguang, Wei Chunjing, Su Li, Allen M B, Niu Yaoling, Li Xianhua, Dong Jinlong. 2019. Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants. Nature Geoscience, 12(8): 672~678.
参考文献
Weaver B L. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104: 381~397.
参考文献
Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537(7622): 666~670.
参考文献
Wen Lianxing, Silver P, James D, Kuehnel R. 2001. Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle. Earth and Planetary Science Letters, 189: 141~153.
参考文献
White W M. 2010. Oceanic island basalts and mantle plumes: The geochemical perspective. Annual Review of Earth and Planetary Sciences, 38: 133~160.
参考文献
White W M. 2015. Isotopes, DUPAL, LLSVPs and anekantavada. Chemical Geology, 419: 10~28.
参考文献
Wu Fei, Turner S, Hoernle K, Hauff F, Schaefer B F, Kokfelt T, Bindeman I. 2022. Barium isotope composition of depleted MORB mantle constrained by basalts from the South Mid-Atlantic Ridge (5~11°S) with implication for recycled components in the convecting upper mantle. Geochimica et Cosmochimica Acta, 340: 85~98.
参考文献
Xu Yigang, Huang Xiaolong, Wang Qiang, Wang Yu, Li Gaojun, Liu Yun, Mao Heguang, Ni Huaiwei, Zhu Maoyan. 2024. Earth's habitability driven by deep processes. Chinese Science Bulletin, 69(2): 169~183 (in Chinese).
参考文献
Yang Jinghui, Mei Qingfeng. 2022. Chemical heterogeneity in the early Earth's mantle and its geodynamic genesis. Acta Petrologica Sinica, 38(12): 3621~3630 (in Chinese with English abstract).
参考文献
Yang Wencai. 2020. On dynamic processes of the shallow-mantle system. Geological Review, 66(3): 521~532 (in Chinese with English abstract).
参考文献
Yoshioka S, Naganoda A. 2010. Effects of trench migration on fall of stagnant slabs into the lower mantle. Physics of the Earth and Planetary Interiors, 183(1-2): 321~329.
参考文献
Yuan Qian, Li Mingming. 2022. Instability of the African large low-shear-wave-velocity province due to its low intrinsic density. Nature Geoscience, 15: 334~339.
参考文献
Yuan Qian, Li Mingming, Desch S J, Ko B, Deng Hongping, Garnero E J, Gabriel T S J, Kegerreis J A, Miyazaki Y, Eke V, Asimow P D. 2023. Moon-forming impactor as a source of Earth's basal mantle anomalies. Nature, 623(7985): 95~99.
参考文献
Zhang Yushen, Tanimoto T. 1992. Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature, 355: 45~49.
参考文献
Zhang Yushen, Tanimoto, T. 1993. High-resolution global upper mantle structure and plate tectonics. Journal of Geophysical Research, 98(B6): 9793~9823.
参考文献
Zhang Zhen, Li Sanzhong, Suo Yanhui, Somerville I D, Li Xiyao. 2016. Formation mechanism of the global Dupal isotope anomaly. Geological Journal, 51: 644~651.
参考文献
Zhao Dapeng, Arai T, Liu L, Ohtani E. 2012. Seismic tomography and geochemical evidence for lunar mantle heterogeneity: Comparing with Earth. Global and Planetary Change, 90: 29~36.
参考文献
Zhao Guochun, Cawood P A, Wilde S A, Sun M. 2002. Review of global 2. 1~1. 8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125~162.
参考文献
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1): 91~123.
参考文献
Zhong Yuan, Zhang Guoliang, Jin Qizhen, Huang Fang, Wang Xiaojun, Xie Liewen. 2021. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes. Science Bulletin, 66: 740~748.
参考文献
Zhou Huawei, Anderson D L. 1989. Search for deep slabs in the Northwest Pacific mantle. Proceedings of the National Academy of Sciences of the United States of America, 86(22): 8602~8606.
参考文献
Zindler A, Jagoutz E, Goldstein S. 1982. Nd, Sr and Pb isotopic systematics in a three component mantle: A new perspective. Nature, 298(5874): 519~523.
参考文献
Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493~571.
参考文献
李献华. 2021. 超大陆裂解的主要驱动力——地幔柱或深俯冲? 地质学报, 95(1): 20~31.
参考文献
刘希军, 许继峰, 肖文交, 刘鹏德. 2023. 特提斯地幔域DUPAL异常成因及地球动力学意义. 中国科学: 地球科学, 53(12): 2750~2766.
参考文献
任纪舜, 牛宝贵, 徐芹芹, 赵磊, 刘建辉, 李舢, 朱俊宾, 刘仁燕. 2022. 地球系统多圈层构造观. 地质学报, 96(1): 50~64.
参考文献
徐义刚, 黄小龙, 王强, 王煜, 李高军, 刘耘, 毛河光, 倪怀玮, 朱茂炎. 2024. 地球宜居性的深部驱动机制. 科学通报, 69(2): 169~183.
参考文献
杨进辉, 梅清风. 2022. 地球早期地幔化学不均一性及其成因机制. 岩石学报, 38 (12): 3621~3630.
参考文献
杨文采. 2020. 浅地幔系统的动力学作用. 地质论评, 66(3): 521~532.
目录contents

    摘要

    地幔早先经核-幔-壳分异形成,后受不同尺度对流和循环的影响,因而具有不均一性特征。近三十年来,地幔化学通过研究大洋玄武岩发现了多样地幔端元和非放射性同位素证据并证明了地幔不均一性,逐渐建全了地幔地球化学体系。然而,地幔不均一性如何对应于时空尺度的地幔循环,以及地球演化如何影响地幔不均一性等,仍不清楚。此外,地球物理研究显示,岩石圈厚度差异、中下地幔的波速异常体以及俯冲板片形态的观测为纵横向对流系统提供了空间不均一性证据支持。联合地球化学和地球物理手段对研究地幔不均一性至关重要,用好透视地幔成分与结构的“双目镜”已成为共识。本文从地幔不均一性结合地球化学场、地球物理的不同表现形式,以及现今及历史时期的洋陆格局的对比,多维度联系地幔循环和演化,思考了超大陆旋回与地幔不均一化的内在逻辑。强调了从全球演化角度看地幔不均一性的重要性和提出多手段联合建立地幔循环驱动模型的展望。

    Abstract

    The mantle experienced core-mantle-crust differentiation in its early stages, followed by convection circulation at various scales, resulting in mantle heterogeneity. Overthe past three decades, the study of oceanic basalt has gradually established a comprehensive geochemical system of the mantle, revealing the presence of various mantle end members and non-radioactive isotopic evidence, confirmingthe existence of mantle heterogeneity. However, the relationship between mantle heterogeneity and mantle cycling in terms of time and space scales remains unclear, as well as the evolutionary history and laws governing mantle heterogeneity. Geophysical studies have provided evidence for the spatial heterogeneity of the traversal convective system through observations of differences in thickness of the upper mantle lithosphere between the ocean and the continent, velocity anomalies in the middle and lower mantle, and the morphology of subduction plates.The combination of geochemical and geophysical methods is crucial for studying mantle heterogeneity, and it has been widely accepted to use this “binocular” approach to better understand the composition and structure of the mantle. This paper considers the internal logic of the superficial supercontinent cycle and mantle heterogeneity by integrating different manifestations of the geochemical field and geophysics, and contrasting oceanic and continental patterns in both present and historical periods. The significance of mantle heterogeneity in the context of global evolution is emphasized, and the potential for establishing amantle cycle driving model through multiple approaches is proposed.

  • 地球由于具有独特的板块构造而区别于其他太阳系星球,活跃的板块构造为星球宜居性提供了有利条件,但同时影响了地幔不均一性的演变,对于月球和火星等而言,宁静的停滞盖层构造暗示月幔和火幔的不均一程度、演化阶段等与地幔不同(Zhao Dapeng et al.,2012; Jacobsen and Yu Gang,2015; Stern et al.,2018)。因此,地球在经历了早期壳幔分异和不同动力背景下圈层相互作用后,所形成的地幔不均一性是对比行星间不同演化过程的重要特征。

  • 地幔不均一性是地球不同储库之间物质交换的结果,记录了地球圈层间能量和物质传输的重要信息;地球内部结构的复杂性、特别是重要界面的形成与物理化学组成的不均一性密切相关;地球内部物质和界面的物理化学不均一性又会控制圈层间物质循环和能力交换(van Keken et al.,2002; Goes et al.,2022)。因此,地幔不均一性是地球内部运行“动力系统”的重要环节,是探究地球内部运行机制及其对地球宜居环境形成与演化的关键抓手(Miyazaki and Korenaga,2022; 徐义刚等,2024)。基于此,深地科学,从地幔组成结构到演化过程、从物质循环到资源富集、从内外动力到早期起源,近三十年一直围绕地幔不均一性等方面开展研究并得出了大量的认识。本文将聚焦地球化学、地球物理的视角下地幔不均一性的表征,重点从全球演化角度联系超大陆旋回模式,并对地幔循环和不均一性表征和过程提出相应的思考和未来展望,明确建立系统性看待圈层循环和不均一性的地学思维。

  • 1 大洋地幔与地球化学场

  • 上地幔部分熔融是硅酸盐地球化学分异的主要驱动力,最终产生了大洋地壳和大陆地壳,甚至塑造了水圈、大气圈等地球外部圈层(Gast et al.,1964Hofmann,1988)。容易进入液相的不相容元素随着熔融作用不断移出地幔源区,从而使残余地幔亏损这些元素,变得更加难熔。板块构造运动改变了地球早期相对单一的、自下而上的圈层相互作用方式,地球浅部和外部圈层的物质可以通过多种途径再循环返回深部地幔,原本已经亏损的难熔地幔因而重新富集不相容元素,使现今地幔具有高度不均一的物质和地球化学组成(Hofmann,2004; Boyet et al.,2005; Stracke,2012; Wang Chao et al.,2019; Doucet et al.,2022)。

  • 起源于地幔的玄武岩是研究地幔不均一性最主要的窗口。其中大洋玄武岩因为分布广泛、形成过程中没有或较少受到地壳物质混染的影响,在揭示地幔大尺度地球化学不均一性方面发挥了重要作用(Zindler et al.,1986Hofmann,1997Rampone et al.,2012Khedr et al.,2014White,2015)。大洋玄武岩按产出环境被划分为两类:成分相对均匀的洋中脊玄武岩(MORB),以及成分变化范围更大的洋岛玄武岩(OIB)。两类玄武岩的岩石学特征、元素和Sr-Nd-Pb同位素组成明显不同,反映了它们在源区组成、熔融程度和分馏机制上的差异。

  • 1.1 洋中脊玄武岩

  • 大洋中脊(MOR)以2.5~15 cm/a的速率持续扩张,产生规模巨大的玄武岩,认为是地球上最大的岩浆系统。洋中脊喷出的岩浆以拉斑玄武岩为主,在同等的MgO含量下,相对于大陆和岛弧玄武岩更加富集CaO和Al2O3,亏损FeO*、TiO2、K2O和P2O5Melson et al.,1976)。它们表现出亏损不相容元素和放射性同位素的特征。根据微量元素组成和喷发位置,洋中脊玄武岩又被划分为普通型(N-MORB)和富集型(E-MORB)(图1)以及介于二者之间的过渡型(T-MORB)玄武岩。

  • 洋中脊玄武岩都是由软流圈地幔物质经减压熔融产生的。N-MORB由熔融抽取后残留的难熔地幔部分熔融所形成,因此,不论是大西洋中脊、东太平洋隆起还是印度洋中脊所产生的N-MORB都显著亏损轻稀土元素(LREE)和高度不相容微量元素、具有低87Sr/86Sr(<0.7028)和高εNdt)(>+9)的放射性同位素组成特征。N-MORB型玄武岩代表了大部分正常洋脊段的岩浆岩,它们稳定不变的微量元素比值(例如:La/Ta≈18,Th/Ta≈0.7,Ba/La≈3,Th/Hf≈0.05),表明正常洋中脊地幔源区、即亏损地幔的成分较为均一(Floyd et al.,2012; Soule et al.,2015)。但是,不同扩散速度的洋中脊所产生的玄武岩之间存在明显的地球化学差异,例如与慢速扩张的大西洋脊和印度洋脊形成的MORB相比,快速扩张的东太平洋隆起形成的MORB具有更高的TiO2和更低的Al2O3含量,且相对富集大离子亲石元素(LIFE),而亏损高场强元素(HFSE)(图1),表明不同扩张速率以及大洋岩石圈厚度控制了地幔部分熔融程度、影响了岩浆作用过程。E-MORB主要是拉斑玄武岩,但也有少量碱性玄武岩出现。它们的不相容元素含量相对富集,Sr-Nd-Pb放射性同位素也不如N-MORB亏损,因此它们并非难熔亏损地幔直接熔融的产物。一般认为,它们有一个相对富集的地幔源区,该富集源区的形成通常归因于地幔热点、或者是再循环物质(俯冲洋壳或岩石圈地幔等)所引起的地幔交代作用(Hart et al.,1971Schilling,1973)。E-MORB通常产于异常洋脊段,具有升高的洋脊地形,洋壳发生明显减薄,且具有高于正常洋脊段的地热梯度。

  • 图1 MORB平均原始地幔均一化微量元素模式图

  • Fig.1 Primitive mantle-normalized trace element abundances of MORB

  • 仅展示了8%<MgO<16%受分离结晶作用影响较小的样品,数据源自GeoRoc数据库。N-MORN,E-MORB和OIB平均值据 Sun et al.(1989)

  • In order to minimize the effect of fractionation crystallization, only samples with 8%<MgO<16% were used, with data derived from the GeoRoc database. N-MOPB, E-MORB and OIB averages according to Sun et al. (1989)

  • 图2展示了不同洋盆MORB玄武岩的放射性同位素差异,从而反映了洋中脊玄武岩源区中存在大规模的同位素不均一性。印度洋MORB的208Pb/204Pb和208Pb*/206Pb*比值与太平洋MORB的重叠区域很少(但与大西洋MORB强烈重叠),这种大规模异常现象首先由Dupré and Allègre(1983)发现,并由Hart(1984)命名为DUPAL异常。印度洋和太平洋地球化学域的边界与位于澳大利亚和南极洲之间的澳大利亚-南极不协调带(AAD)重合,这是一个异常深的脊段,具有特殊的物理和地理特征。放射性Sr-Nd-Hf-Pb同位素在AAD边界上的地球化学转变也十分明显(Klein et al.,1988Pyle et al.,1992Kempton et al.,2002),且没有明显的化学域混合现象。值得注意的是,近年来在北极圈Gakkel洋脊玄武岩中发现了曾被认为是南半球软流圈地幔独有的DUPAL异常(Goldstein et al.,2008),表明软流圈地幔的不均一性远超以往认识。此外,对洋中脊玄武岩斑晶的熔体包裹体研究显示,即使是单个洋中脊玄武岩样品同样存在元素和同位素的不均一性,这可能受控于岩浆房不均一化作用(Shimizu et al.,2003Stracke et al.,2012)。

  • 1.2 洋岛玄武岩

  • 大洋板块内部洋岛和海山上的玄武岩常被统称为洋岛玄武岩(OIB),包含拉斑和碱性两个系列,且二者在全球OIB出现的相对丰度并不相同,例如在冰岛拉斑质岩浆活动强烈,而亚速尔群岛拉斑玄武岩极少。洋岛玄武岩富集高度不相容元素(特别是Nb、Ta、LREE、Th、U、Cs、Rb、Ba、K),与MORB截然不同(图1),主要原因是OIB的地幔源区相较于MORB源区更为富集、且部分熔融程度更低(McKenzie and O'Nions,1995White et al.,2010Niu Yaoling et al.,2011)。OIB 的同位素组成也与MORB不同(图2),进一步表明它们来自不同的地幔储库端元(Hofmann et al.,1978)。

  • 图2 大洋玄武岩Sr-Nd-Pb同位素组成(数据源自GeoRoc和PeTDB数据库)

  • Fig.2 Isotopic compositions of Sr-Nd-Pb in oceanic basalts (data sources from GeoRoc and PeTDB database)

  • 地幔柱是解释OIB起源及其独特地球化学特征的主流假说(Morgan,1971)。从核-幔边界起源的地幔柱逐渐上升,将核幔边界的物质和能量向上输送,形成来源深、温度高、成分相对富集的岩浆。洋岛玄武岩的同位素组成高度不均一(Gast et al.,1964Zindler and Hart,1986; Hofmann,2004Stracke et al.,20052012White,2015),它们的Sr-Nd-Pb-Hf同位素变化说明深部地幔除了亏损地幔(DMM)组分以外,还存在高μ(HIMU,μ=238U/204Pb)、I型富集地幔(EM-Ⅰ)、II型富集地幔(EM-Ⅱ)和FOZO四个端元组分(图2)。尽管目前对这四个地幔端元的成因机制和分布特征等重要问题仍存在激烈争论,但学者们对这四种地幔端元组分的形成与浅部物质的再循环有关已达成共识(Zindler and Hart,1986; Hofmann,2004; Stracke,2012; White,2015)。HIMU端元代表大洋玄武岩源区具有极高的U/Pb和Th/Pb比值,以及比N-MORB略低的87Sr/86Sr。这种组分一般被认为与再循环热液蚀变洋壳有关,其在俯冲和与海水发生反应的过程中丢失了碱和铅元素(Zindler et al.,1982Chauvel et al.,1992Hofmann,1997Hanyu et al.,2011)。Weiss et al.(2016)通过对南太平洋和印度洋OIB的橄榄石斑晶研究,认为HIMU地幔端元组分是经碳酸盐流体交代的橄榄岩,而非再循环的蚀变洋壳,并提出该交代橄榄岩可能早在太古宙时期就已经存在,后来被输送到对流地幔中并在核幔边界储存,最终伴随着地幔热柱部分熔融形成了洋岛玄武岩。

  • EM-Ⅰ和EM-Ⅱ是大洋玄武岩地幔源区中的两个富集端元,被认为与地幔中含有俯冲沉积物、洋壳和陆壳等组分有关(Zindler and Hart,1986Weaver,1991Hofmann,1997)。EM-Ⅰ地幔端元发现于Pitcairn、Tristan、Gough洋岛,Walvis洋脊和印度洋中脊MORB等,具有典型的低143Nd/144Nd、87Sr/86Sr和206Pb/204Pb,以及高208Pb/204Pb同位素特征。EM-Ⅰ通常与洋壳和沉积物以及再循环下地壳的加入相关。例如古老下地壳主要由低U/Pb、Th/Pb和Sm/Nd的基性麻粒岩组成(Mansur et al.,2014),其发生熔融后的残留物将具有低放射性成因的Pb和Nd同位素特征。如果这些残余古老地壳再循环进入地幔,那么生成的岩浆则会继承EM-Ⅰ型同位素特征(图2)。EM-Ⅱ与大陆上地壳和陆源沉积物的加入相关。Jackson et al.(2007)发现来自Samoa和Society洋岛的EM-Ⅱ岩浆具有非常高的87Sr /86Sr(>0.72)和207Pb/204Pb,低143Nd/144Nd比值,这为古陆壳和陆源碎屑沉积物再循环进入地幔源区提供了强有力的证据。

  • 除了常见的以上四个地幔端元,可能还存在第五种地幔端元PRIMA,或称FOZO或C,它们的同位素组成介于上述四种地幔端元之间且在OIB和MORB中都普遍存在,所以PRIMA代表了地幔中广泛存在的组分(Zindler and Hart,1986; Hofmann,2004)。

  • 1.3 地球化学视角下的地幔不均一性和地幔对流

  • 大洋玄武岩具有高度不均一的放射性Sr-Nd-Pb-Hf以及稀有气体Ne-Xe同位素组成特征(Mukhopadhyay,2012),特别是MORB和OIB两类岩石的同位素组成截然不同,这说明地幔是化学不均一的(Zindler and Hart,1986Hofmann,1997)。地幔分层对流模型被用来解释MORB和OIB之间所观察到的地球化学组成差异(图3a)。地球内部~660 km深度的地震波不连续面之上的上地幔和之下的下地幔在化学成分和矿物组成上存在显著差别,被认为是全地幔对流的一道屏障(Shearer et al.,1992; Tseng et al.,2004)。地幔柱假说主张OIB源区位于深部下地幔,而MORB则来自浅部上地幔。因此,OIB和MORB之间的同位素差异也被认为反映了上下地幔成分之间的差异。大洋玄武岩的3He/4He比值支持了这种模型,数据表明夏威夷等热点地区来自于一个更原始、3He/4He比值更高的深部地幔源,而MORB则来自一个更脱气、3He/4He比值更低的上地幔储层(Kurz et al.,1982)。最近(Jackson et al.,2017)认为高3He/4He地幔可能密度更大,因此会独立于对流地幔并保持其独特的3He/4He特征。

  • 俯冲板块可以穿过660 km不连续面进入下地幔(van der Hilst et al.,1997Montelli et al.,2004),挑战了传统的分层地幔对流模型。全地幔对流模型和混合对流模型也被用来解释地球内部的运行方式和物质交换,前者允许穿越660 km不连续面的物质交换发生(图3b),后者上下地幔对流速率不同,物质在上下地幔之间的交换是有限的(图3c)(Gonnermann et al.,2009)。尽管地幔地球化学不均一性对于理解地球内部的状态与运行机制十分重要,但是目前对其理解仍存在很大不确定性,尤其是对地幔端元的形成时间和机制,地幔不均一性对地球内部运行规律的控制作用,以及如何影响浅表宜居环境等重要问题仍知之甚少,有待进一步深入。

  • 2 现代洋陆格局与地球物理场

  • 地球物理场是研究地幔深部物质不均一性和地幔对流特征的有效工具,因其包含了多种能够揭示深部物质特性和动态过程的物理量度,是探测现今地球内部状态与运行机制的重要手段。在众多地球物理数据中,地震数据在地幔结构成像中具有显著优势,主要得益于地震波直接穿过了地球深部,携带了大量关于地下介质的温度、化学组分以及相态变化等关键信息,而地震层析成像则是一种利用地震记录中的信息来反演构建地球内部二维或三维模型的技术(Rawlinson et al.,2010)。

  • 地震层析成像最早可以追溯到20世纪70年代,最早Aki et al.(1977)Dziewonski et al.(1977)Sengupta and Toksöz(1976)利用远震体波到时数据成功探测到中下地幔的大尺度横向波速异常体,为地震层析成像在研究全球地幔不均一性方面奠定了基础。随后,利用地震信号中不同的组成部分,一系列的全球尺度地震参考模型得以建立,例如基于体波到时的P1200、TX2011、SAW24B16、LLNL-G3Dv3、MIT-P08等模型(Dziewonski,1984van der Hilst et al.,1997Grand,1997Zhao Guochun et al.,2004Li Zhengxiang et al.,2008Simmons et al.,2012);基于面波频散的RG5.5、CAM2016、GDM52等模型(Zhang Yushen and Tanimoto,1992;Trampert and Woodhouse,1995;Ekström et al.,1997Shapiro and Ritzwoller,2002; Ekström,2011Ho et al.,2016);基于多种数据联合反演的SEISGLOB2、S40RTS、SGLOBE-rani、SAW642AN、S362ANI等模型(He Xiong and Tromp,1996Panning and Romanowicz,2006;Kustowsk,2008; Houser et al.,2008; Ritsema et al.,2011; Chang et al.,2015; Durand et al.,2017);以及基于地球背景噪声数据的模型(Nishida et al.,2009; Haned et al.,2016)。上述模型在反映地幔大尺度(横向大于1000 km)的异常中通常一致性较好,但针对较小尺度的异常体存在较大差异以及不确定性,主要是不同地震数据类型的敏感度差异以及反演方法和模型参数化的不同所致。

  • 图3 地幔对流模式卡通图(据Hofmann,1997修改)

  • Fig.3 Cartoon of mantle convection model (modified after Hofmann, 1997)

  • (a)—分层地幔对流;(b)—全地幔对流;(c)—混合对流模式:上下地幔独立但两者之间存在有限的物质交换

  • (a) —stratified mantle convection; (b) —whole-mantle convection; (c) —mixed convection mode: upper and lower mantle are independent but there is limited exchange of material between them

  • 近年来,随着全球地震数据覆盖率的持续攀升、方法技术和计算能力的进步,全球尺度三维地震层析成像研究取得了显著的发展,其中有代表性的是基于波形反演的全球地震参考模型GLAD的建立(Bozdağ et al.,2016; Lei Wenjie et al.,2020)。相对于传统走时成像技术构建的模型,全波形反演充分考虑了地震波传播的三维效应,其模型重建结果更可靠、分辨率更高。通过使用地震记录的完整波形信息,全波形反演能够准确还原地下介质的物理属性,为分析地球内部物质不均一性和相关动力学过程提供重要参考。

  • 2.1 上地幔地震波速度异常与现代海陆格局

  • 现代海陆格局在地幔中的最直接表征体现在上地幔顶部岩石圈深度。整体速度较高的大陆岩石圈与低速的大洋上地幔形成鲜明对比,两者间地震纵波(P)速度差异超过6%(图4),横波(S)速度差异超过10%(图5)。需要指出的是,地震波场反演过程中,为了算法稳定性而引入的平滑参数意味着实际的波速对比可能更为显著(Rawlinson et al.,2010; Bozdağ et al.,2016)。在100~150 km深度区间,GLAD-M15模型显示出的最明显的高速异常主要与克拉通地区相对应,诸如北美、南美亚马逊、西非、刚果、卡普瓦、津巴布韦、坦桑尼亚、东南极和西澳伊尔干以及西伯利亚克拉通等;而与之形成鲜明对比的低速异常主要呈条带状分布于持续扩张的大洋中脊区域。此外,在大多数弧后扩张盆地和裂谷区,上地幔也表现为低速异常,如西南太平洋的汤加弧后盆地和东非裂谷等(图4、图5)。一般来说,克拉通岩石圈地幔能够在数十亿年的地质时期中保持稳定性,是其近乎中性的浮力和高黏度属性的结果(如Shapiro et al.,1999; Perry et al.,2003; Sleep,2005)。由于克拉通岩石圈地幔较低的温度和高亏损性,使得地震波以更快的速度传播(如Jordan,1978; Boyd,1989; Griffin et al.,1999; Lee,2006);相对地,大洋中脊、裂谷和弧后地区的软流圈热物质由于持续的上涌和减压熔融作用,表现为地震波低速异常。此前研究表明,大洋中脊上地幔低速异常幅值通常与扩张速率正相关,与不同扩张速率产生的MORB的不同地球化学特征有对应关系,揭示了不同洋脊地幔部分熔融程度和岩浆作用过程的差异(如Zhang Yushen and Tanimoto,19921993; Su et al.,1992)。整体上,与相对稳定的大陆岩石圈相比,大洋岩石圈的厚度较薄,这一特征形成了洋陆上地幔在地震学结构上明显的差异。

  • 图4 地幔纵波(P)相对速度深度切片(数据来自GLAD-M15;Bozdağ et al.,2016

  • Fig.4 P-wave velocity perturbations along depth slices (data are sourced from GLAD-M15 model; Bozdağ et al., 2016)

  • 图5 地幔横波(S)相对速度深度切片(数据来自GLAD-M15;Bozdağ et al.,2016

  • Fig.5 S-wave velocity perturbations along depth slices (data are sourced from GLAD-M15 model; Bozdağ et al., 2016)

  • 在大洋内部,大洋岩石圈的演化过程基本遵循半空间冷却模型,但研究发现该模型无法适用于年龄较大(大于约80 Ma)的大洋岩石圈,随着洋盆年龄增长,其地形和热通量都表现出趋于平坦的特征,不再与半空间冷却模型一致(Parsons and Sclater,1977Stein and Stein,1992)。针对该问题,前人研究提出了不同的解释机制,包括岩石圈固有热结构演化、海山和大洋高原带来的扰动、地幔柱引起的动态隆升、或是受控于不同尺度上地幔对流等(如Schroeder,1984; Morgan and Smith,1992; Barbara and Gung,2002; 杨文采,2020)。如图5所示,GLAD-M15模型在50~150 km深度上的地震波速与大洋岩石圈年龄表现出高度相关性,其中太平洋西部整体表现为较高的波速,与该区普遍大于100 Ma的大洋岩石圈一致;与之对应地,东太平洋Nazca、Cocos和Juan De Fuca等新生大洋板片(年龄小于40 Ma)下方展现出相对低速。造成该观测的原因是随着大洋岩石圈持续地冷却,其厚度持续增加,最终在同一深度剖面上形成年龄较大的大洋岩石圈地幔底部和新生大洋岩石圈下伏软流圈的显著地震波横向速度差异。

  • 2.2 中下地幔地震波速度异常

  • 随着深度的增加,中地幔的地震波速异常在500~1250 km深度范围内显著减小。根据GLAD模型,这一深度范围内的最大速度异常通常不超过2%(见图4、图5)。其中,高速异常在一定程度上呈带状分布,与已知的俯冲板块位置相符,如北美和中南美洲、马里亚纳、汤加、Sunda、菲律宾板块等。这一特征作为俯冲板片穿过地幔转换带的重要地震学观测,为全地幔或混合对流模型提供了证据(van der Hilst et al.,1997; Fukao et al.,2001)。

  • 地球下地幔中最显著的地震波低速异常位于非洲和太平洋下方,通常被称为大型剪切波低速省(LLSVPs; large low-shear-velocity provinces),该异常在横波速度模型中更加显著(图5)。虽然LLSVPs在早期的全球模型中就已被发现,随着地震数据覆盖范围的扩大和成像精度的提高,它们的形态特征和异常幅值在后续的模型中愈发清晰。其中,位于非洲下方的LLSVP主要覆盖了非洲西部和南部、大西洋东南部和印度洋南部的区域,占据着核幔边界上方大约4000 km×2000 km的区域(图4、图5)。

  • 随着深度的增加,该LLSVP表现出明显的东南向延伸,在2600 km深度上延伸至澳大利亚西部海域,使其整体呈现出“L”形分布特征。而位于太平洋下方的LLSVP主体坐落于中南太平洋下方,主体宽度为3000 km左右,其东西方向跨度略大于南北向。比较非洲和太平洋两大LLSVPs,可以发现它们的形态、尤其是高度(相对于核幔边界)存在一定差异,其中非洲LLSVP的高度明显大于太平洋LLSVP,在750~1000 km深度切片上已经开始显现,而太平洋LLSVP的主体部分在大约1500 km深度的切片上才开始显现(图4),反映了两大LLSVPs内部组分和动力学演化存在一定差异(Yuan Qian and Li Mingming,2022)。尽管层析成像研究确定了下地幔大尺度低速异常体的存在与大致形态,受限于反演平滑和阻尼参数的引入,仍旧无法确定下地幔LLSVPs的精细结构,尤其是其边界的具体形态和与周围地幔的物性差异。然而,大量基于走时和波形拟合的地震学研究提供了LLSVPs与周围地幔明显物性差异的证据,勾勒出LLSVPs边界相对周围地幔尖锐且快速的地震波速变化特征,进一步为研究LLSVP起源和内部物质属性提供参考(如Ritsema et al.,1997; Breger and Romanowicz,1998; Wen Lianxing et al.,2001; Ni Sidao et al.,2002; Sun Xinlei et al.,2007)。

  • 关于下地幔底部LLSVPs的成因目前主要存在两种假说,其中一部分研究认为其由单纯的热异常引起。动力学模拟显示,由板块俯冲驱动的地幔对流倾向于在非洲和太平洋下方形成热物质上涌(如Bunge et al.,1998; Lithgow-Bertelloni and Richards,1998; McNamara and Zhong,2005),造成地幔深部显著的高温异常区域,是地震层析成像中所观测到的大型低速异常的可能原因。然而,考虑到高温下地幔通常较低的黏滞度,形成超级地幔柱(megaplume)的可能性较低,与地震层析成像中观测到的大范围低速异常不符(如Campbell and Griffiths,1990Olson et al.,1993; Schubert et al.,2004)。因此,有学者提出,地震层析成像模型中观测到的下地幔LLSVPs其实是由一系列宽度较窄的小型地幔上涌组成,经过层析成像反演过程中引入的平滑参数的作用,横向拉伸形成了模型中观测到的大尺度低速异常(Schubert et al.,2004)。该假说后续被一系列考虑到地震成像平滑效应的动力学模拟研究所验证(如Ritsema et al.,2007; Bull et al.,2009; Schuberth et al.,2009; Davies et al.,2012)。

  • 尽管单纯的热异常可能是下地幔LLSVPs的成因之一,但其无法解释LLSVP边界处与周围地幔强烈且尖锐的弹性属性的差异,其同样亦无法协调LLSVPs内观测到的体波速(bulk-sound velocity;对体模量和密度敏感)和横波速度的反相关性(如Su and Dziewonski,1997; Kennett et al.,1998; Masters et al.,2000; Ni Sidao et al.,2002; Sun Xinlei et al.,2007; Deschamps et al.,2012)。基于此,大量研究认为下地幔LLSVPs是由热化学成分异常导致,且其内部物质密度大于围岩地幔,可能起源于地球形成早期的物质分异过程或与地球演化过程中的地幔热化学对流相关,具体机制可概括为早期残留的岩浆海基底(Labrosse et al.,2007)、高密度熔体积累(Lee et al.,2010; Nomura et al.,2011)、地球早期地壳或者俯冲的海洋板片物质堆积运移等(如Davies and Gurnis,1986; Gurnis,1986; Christensen and Hofmann,1994Tolstikhin and Hofmann,2005)。近期的研究表明其甚至有可能代表着忒伊亚(Theia)行星的原始地幔物质,这些物质在月球形成的巨大撞击事件之后被保留在原地球的地幔中至今(Yuan Qian et al.,2023)。由于LLSVPs的热化学异常以及高密度特征,通常认为其能够抵御或减缓与周围地幔物质的混合和物质交换,可以稳定保存数百万年之久,甚至可以追溯到地球形成初期(Mulyukova et al.,2015Ballmer et al.,2016Niu Yaoling,2018)。

  • 若下地幔LLSVPs代表着热化学成分异常区域,其可能有助于解释MORB和OIB微量元素化学组成的差异。简单来说,起源于地幔深部的OIB可能携带有关于LLSVPs的地球化学特征,区分于来自浅部上地幔的MORB。这与目前现存的热点位置主要位于下地幔LLSVPs上部和周缘相对应(图6;如Anderson,1982Richards and Engebretson,1992Koppers et al.,2021),表明OIB的形成与下地幔LLSVPs有关,而OIB的同位素差异也潜在反映了下地幔LLSVPs内组分的差异。同时,基于古地磁数据的板块重建显示,数百万年来大型火成岩省(LIPs)和金伯利岩的原始喷发位置与现今下地幔两大LLSVPs位置基本一致,主要位于其顶部、且具有向其边缘靠近的趋势(如Richards et al.,1989Torsvik et al.,20062014),这不仅表明了LLSVPs在地球演化历史中位置和形态的稳定性,也揭示了其在重建板块构造历史上的潜在应用前景,具有进一步研究价值。

  • 2.3 地球物理视角下的地幔不均一性和物质循环作用

  • 尽管早期基于体波走时的成像研究已发现俯冲板片穿过地幔转换带的证据,为全地幔对流模型或混合对流模型提供了支持,但目前仍尚未完全解析地幔对流模式的具体动力学过程和机制。成像结果显示,虽然一些俯冲板片直接穿透地幔转换带至下地幔深部(如Grand et al.,1997van der Hilst et al.,1997),但另一些俯冲板片在地幔转换带底部或上部发生水平偏转并滞留(如Zhou Huawei and Anderson,1989; Fukao et al.,1992; van der Hilst,1995; Grand,2002)。动力学数值模拟表明,俯冲大洋板片在转换带附近的水平偏转与停滞受到诸多因素的控制,包括地幔660 km深度处的相变(如Christensen and Yuen,1985)、地幔转换带与中—下地幔的黏滞度(如Rudolph et al.,2015; Mao Wei and Zhong Shijie,2018)、海沟的后撤(如Goes et al.,2008; Yoshioka and Naganoda,2010)以及俯冲板块固有属性包括其强度、倾角和密度等(如Torii and Yoshioka,2007; King et al.,2015)。然而,进一步的研究表明,除非660 km深度相变的Clapeyron负斜率幅值非常高(至少约为-4 MPa/K),否则在660 km处停滞的板片最终难以逃脱继续下沉的命运,最终到达下地幔深部(如Christensen and Yuen,1985; Machetel and Weber,1991; Tackley et al.,1993; Christensen,1996; Jarvis and Lowman,2007)。因此,地震成像模型中俯冲大洋板片形态的多样性很可能代表着其在下沉至地幔深部过程中的不同阶段(Goes et al.,2017)。

  • 已俯冲的大洋板片在地幔物质循环中扮演着极其重要的角色,其不仅是复杂地幔对流系统的主要推动力,也在一定程度上造成了地幔物质的横向不均一。例如,大规模地幔对流被分隔为孤立的对流单元,长久以来阻隔或减缓了不同单元之间的物质交换,是造成印度洋和太平洋MORB玄武岩放射性同位素差异的可能原因之一(Barry et al.,2017)。

  • 图6 大型剪切波低速省(LLSVPs)与主要地幔柱和热点位置关系(引自Doucet et al.,2020

  • Fig.6 Comparison between locations of large low-shear-velocity provinces (LLSVPs) and major hot spots (after Doucet et al., 2020)

  • 3 超大陆旋回与地幔不均一性

  • 3.1 超大陆聚散模式

  • 从古元古代开始,全球联动的板块运动逐渐运行,各大陆/陆块出现周期性的聚合和离散,代表着超级大陆的诞生及随后的消失。超大陆聚合的形式和动力学背景,相对而言比较容易理解。但对于超大陆裂解的形式和动力学机制,还存在较大的争议或不确定性。同时,在超级大陆旋回的过程中,各陆块及陆块之间大洋的相互关系,即历史时期的洋陆格局,发生了周期性剧烈的变化,持续性影响了地球深部地幔循环模式、改造地球化学场分布。因此,认识地球历史时期超大陆旋回可以提供海陆格局对地幔不均一性的浅部解释。

  • 超大陆的裂解至下一次超大陆聚合的形式主要包括Introversion、Extroversion和Orthoversion三种(Murphy and Nance,2005; Mitchell et al.,2012)。超大陆聚合期,其外围被大洋环绕。在裂解期,超大陆内部发生裂解并形成新的洋壳及岩石圈。显而易见地,外部洋的岩石圈时代要早于内部洋岩石圈时代,而内部洋的岩石圈要晚于大陆裂解的时代。而Introversion、Extroversion和Orthoversion 模式的最主要区别就是,在下一次超大陆聚合过程中,闭合的是内部洋还是外部洋。

  • 在Introversion模式中,内部洋壳及岩石圈并没有保存太久就再次闭合(图7),使两次超大陆的主体部分十分相似,例如哥伦比亚的裂解和罗迪尼亚的聚合。有研究提出罗迪尼亚超大陆以哥伦比亚超大陆裂解时内部洋闭合(Introversion)的方式形成(Li Zhengxiang et al.,2019),同时二者古地理模型具有高度的相似性(Zhao Guochun et al.,2002; Li Zhengxiang et al.,2008),比如澳洲-东南极-劳伦和劳伦-西伯利亚-波罗的连接模式一直贯穿着哥伦比亚超大陆与罗迪尼亚超大陆。最近有学者更视哥伦比亚超大陆与罗迪尼亚超大陆为一个单一超大陆“Nudinia”,存在时间从2.1 Ga一直跨度到0.7 Ga(Cawood,2020)。类似地,潘吉亚大陆是冈瓦纳古大陆裂解后沿着内部洋Iapetus和Rheic闭合形成(Murphy and Nance,2005)。

  • 在Extroversion模式中,外部洋在下一次超大陆聚合的时候被消耗(图7),形成了新的超大陆格局,并与前一次超大陆位于对应的半球,例如罗迪尼亚的裂解和冈瓦纳大陆的聚合。罗迪尼亚的裂解起始于南极洲-澳大利亚板块与劳伦大陆的分离,形成了新的大洋(古太平洋)。在此之后,作为泛罗迪尼亚大洋一部分的莫桑比克洋逐渐消亡,致使东-西冈瓦纳陆块沿着东非造山带碰撞拼合形成了冈瓦纳大陆,而新生成的古太平洋则在此过程中保留下来。而Orthoversion模式则是指新的超大陆形成与之前超大陆外围的俯冲带相垂直,各板块在围绕超大陆的俯冲带环的内部聚合(Mitchell et al.,2012)。

  • 图7以潘吉亚超大陆裂解和Amasia超大陆聚合为例展示上述三种模式的演化过程。Amasia超大陆被认为是地球上下一次出现的超大陆,主要由欧亚和美洲板块拼贴合成,还包括,印度、澳大利亚和非洲以及可能的南极洲板块。在Introversion模式中,相对较年轻的大西洋关闭,Amasia与潘吉亚超大陆格局相似,其大陆中心也处于相似的位置(图7a)。在Extroversion模式中,相对较老的太平洋闭合,Amasia超大陆的聚集可以在沿潘吉亚超大陆外围俯冲带的任何位置。在图7c中,Orthoversion模式下,Amasia超大陆将以北冰洋为主的洋壳关闭为标志而形成。

  • 图7 不同裂解模式下,潘吉亚-Amasia超大陆的旋回过程(据Mitchell et al.,2012

  • Fig.7 The cycle process of the Pangya-Amasia supercontinent under different breakup modes (after Mitchell et al., 2012)

  • 关于超大陆裂解动力学机制目前主要存在两种观点:地幔柱模式(自下而上模式)和深俯冲模式(自上而下模式)(Cawood et al.,2016; 李献华,2021)。由于地幔柱起源较深(可能来自核幔边界),为板块运动提供了驱动力。地幔柱上涌时会致使其上方的大陆发生数千米级的隆升,最后导致陆块裂解(Morgan,1971; Campbell,2007; Saunders et al.,2007; 李献华,2021)。由于地幔柱可诱发超大陆裂解,因此可以根据基性岩墙(群)对超大陆进行古地理重建(Hou Guiting et al.,2008; Ernst and Bleeker,2010; Ernst et al.,2016)。Storey(1995)通过对冈瓦纳古大陆的裂解过程进行了分析总结,发现其三个阶段的裂解过程均与相关地幔柱活动在时空关系上可以很好的匹配起来:包括~180 Ma Bouvet/Karoo地幔柱诱发西冈瓦纳(非洲-南美洲)与东冈瓦纳(南极-澳洲-印度-新西兰)分离,~130 Ma Tristan地幔柱诱发南美大陆与非洲-印度大陆分离,~110 Ma St Helena地幔柱和~100 Ma Marie Byrd Land地幔柱诱发澳洲-新西兰与南极洲分离。

  • 除了地幔柱可以诱发超大陆发生裂解之外,也有学者提出超大陆外围环型深俯冲产生的板片拖拽力也可以造成超大陆裂解(Keppie,2015; Cawood et al.,2016)。Cawood et al.(2016)系统总结了罗迪尼亚超大陆裂解时期环绕在其外围与俯冲作用相关的增生造山带记录,发现这些增生造山作用与罗迪尼亚超大陆内部岩石圈伸展-裂解在时间上具有耦合性,因此提出罗迪尼亚超大陆的裂解主要与环超大陆俯冲有关。不管何种裂解模式,或是结合系统性多圈层的构造观来看(任纪舜等,2022),超大陆旋回必然引起了跨圈层的物质循环,是地幔不均一性起源的重要地球动力学过程。

  • 3.2 超大陆旋回背景下的地幔不均一性演变

  • 由于不同超大陆时期的裂解方式和驱动力不同,由此将主导和影响各自时期地幔循环,导致不同时期的不均一性,例如罗迪尼亚超大陆的裂解与环超大陆俯冲有关,地幔循环受环超大陆俯冲主导,如果是洋壳板片沿环状俯冲带下插至下地幔后将下地幔隔离,带动了全地幔尺度的对流,形成对跖的位于超大陆下方和外洋下方的两个LLSVPs(图8)(Li Zhengxiang et al.,2023)。位于超大陆下方的LLSVPs的持续地幔柱活动可诱发超大陆裂解,而如果是由于俯冲板片后撤的拖拽力导致超大陆裂解(Keppie,2015; Cawood et al.,2016),那么其所带动的地幔循环尺度是怎样的呢?对于潘基亚超大陆而言,其裂解与地幔柱活动有关,地幔循环受地幔柱驱动为主导,同时,潘基亚的聚合和裂解证明超大陆旋回与整个地幔对流密切相关(Mitchell et al.,2021)。

  • 图8 活动顶盖地幔对流地球动力学数值模拟研究结果(据Li Zhengxiang et al.,2009

  • Fig.8 Numerical modelling results of the mobile-lid convection (after Li Zhengxiang et al., 2009)

  • 地幔活动同时受超大陆旋回的联动响应,经过大量的数据统计,全球大火成岩省、地幔柱岩浆活动强度、锆石低氧同位素与以600 Ma为周期的超大陆旋回的时间序列存在耦合关系(Li Zhengxiang et al.,20192023Mitchell et al.,2021),金伯利岩与超大陆裂解的时空关系存在耦合或规律性滞后响应,并与碳酸岩协同演化(Liu Shuangliang et al.,2022; Gernon et al.,2023),所以,了解超大陆旋回周期和地幔活动之间存在直接动力学耦合,是研究其如何影响地幔循环的前提。

  • 超大陆旋回如何影响地幔地球化学场的形成演化呢?广泛DUPAL异常被认为是核幔边界的地幔柱、俯冲板块或大陆地幔的再循环的结果(Zhang Zhen et al.,2016),区域上与LLSVPs位置相关(Castillo et al.,1988),且不局限于南半球的分布(Goldstein,2006),是否可以提供超大陆旋回影响地球化学场的思考?大部分地幔域的DUPAL异常与南方大陆冈瓦纳附近俯冲的大陆物质有关(Jackson and Macdonald,2022),以特提斯构造域为例,受高Th/U壳源物质改造的特提斯域地幔,表现出广泛DUPAL异常(刘希军等,2023)。而在更早的旋回中,地幔化学异常信息如何寻找呢?古老的蛇绿岩中是否保存了旋回早期地幔域的同位素证据?

  • 同时,短寿命放射性衰变同位素也可以提供早期地幔不均一性的证据(杨进辉和梅清风,2022),如129I-129Xe、146Sm-142Nd和182Hf-182W,以182W为例,太古宙幔源岩石相对3.5~3.2 Ga以及年轻OIB的182W同位素比值变化范围更大,揭示了地球早期地幔的不均一性(Mundl-Petermeier et al.,20192020; Rizo et al.,2019)。另外近两年来,其他非传统同位素快速发展,利用Fe、Mg、Zn、Ca、Ba、Ti、Mo等同位素对大洋玄武岩进行了不同程度的研究,且在国内掀起了研究热潮,为地幔不均一性提供了多方面证据和成因解释(Zhong Yuan et al.,2021; Eriksen and Jacobsen,2022Chen Shuo et al.,2022; Wu Fei et al.,2022; Guo Pengyuan et al.,2023; Sun Pu et al.,2023; Deng Zhengbin et al.,2023)。

  • 图9 超大陆裂解与地幔对流循环的关系示意图(据李献华,2021Goes et al.,2022修改)

  • Fig.9 Schematic diagram of the relationship between supercontinent fragmentation and mantle convective and circulation (modified after Li Xianhua, 2021; Goes et al., 2022)

  • 4 研究展望

  • 整体来看,由地幔化学场和物理场所表征的地幔物质与结构不均一性是在多种地幔对流模式并存背景下并以超大陆聚散为浅表响应的物质循环的结果(图9)。

  • 为了提供更多地幔不均一性的证据,深入探讨地幔对流和循环驱动力及早期演化历史,在元素尺度上研究地幔循环系统的多种手段已趋于精细化、非传统化,在矿物尺度上,深部地幔的物质循环过程和条件被越来越多的微观信息展示出来。然而,地质样品的局限性与微观尺度使认识存在不足,因此,针对高度宏观的科学问题急需多样化数据库的有效整合和大尺度数值模拟,对不同尺度的地幔不均一性和物质循环过程开展多维度的量化表征,可以更清晰地了解超大陆旋回演化与地质事件的耦合响应,进而建立地球化学场、地球物理场与浅表-深地协同演化的三维关系,以及备受关注的地幔循环的驱动模型,为地球系统科学研究提供参考。

  • 致谢:感谢任纪舜院士邀请撰写此文以缅怀和纪念黄汲清先生诞辰120周年。

  • 参考文献

    • Aki K, Christoffersson A, Husebye E S. 1977. Determination of the three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82: 277~296.

    • Anderson D L. 1982. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297: 391~393.

    • Ballmer M D, Schumacher L, Lekic V, Thomas C, Ito G. 2016. Compositional layering within the large low shear-wave velocity provinces in the lower mantle. Geochemistry, Geophysics, Geosystems, 17: 5056~5077.

    • Barbara R, Gung Yuancheng. 2002. Superplumes from the core-mantle boundary to the lithosphere: Implications for heat flux. Science, 296(5568): 513~516.

    • Barry T L, Davies J H, Wolstencroft M, Millar I L, Zhao Z, Jian P, Safonova I, Price M. 2017. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry. Scientific Reports, 7: 1870.

    • Boyd F R. 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96: 15~26.

    • Boyet M, Carlson R W. 2005. 142Nd evidence for early (>4. 53 Ga) global differentiation of the silicate Earth. Science, 309(5734): 576~581.

    • Bozdağ E, Peter D, Lefebvre M, Komatitsch D, Tromp J, Hill J, Podhorszki N, Pugmire D. 2016. Global adjoint tomography: First-generation model. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(3): 1739~1766.

    • Breger L, Romanowicz B. 1998. Three-dimensional structure at the base of the mantle beneath the Central Pacific. Science, 282: 718~720.

    • Bull A L, McNamara A K, Ritsema J. 2009. Synthetic tomography of plume clusters and thermochemical piles. Earth and Planetary Science Letters, 278: 152~162.

    • Bunge H P, Richards M A, Lithgow-Bertelloni C, Baumgardner J R, Grand S P, Romanowicz B A. 1998. Time scales and heterogeneous structure in geodynamic earth models. Science, 280: 91~95.

    • Campbell I H. 2007. Testing the plume theory. Chemical Geology, 241(3): 153~176.

    • Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99: 79~93.

    • Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336: 667~670.

    • Cawood P A. 2020. Earth matters: A tempo to our planet's evolution. Geology, 48(5): 525~526.

    • Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449: 118~126.

    • Chang Sungjoon, Ferreira A M G, Ritsema J, van Heijst H J, Woodhouse J H. 2015. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. Journal of Geophysical Research, 120: 4278~4300.

    • Chauvel C, Hofmann A W, Vidal P. 1992. HIMU-EM: The French-Polynesian connection. Earth and Planetary Science Letters, 110(1~4): 99~119.

    • Chen Shuo, Sun Pu, Niu Yaoling, Guo Pengyuan, El1iott T, Hin R C. 2022. Molybdenum isotope systematics of lavas from the East Pacific Rise: Constraints on the source of enriched mid-ocean ridge basalts. Earth and Planetary Science Letters, 117283.

    • Christensen U R. 1996. The influence of trench migration on slab penetration into the lower mantle. Earth and Planetary Science Letters, 140(1-4): 27~39.

    • Christensen U R, Yuen D A. 1985. Layered convection induced by phase transitions. Journal of Geophysical Research, 90(B12): 10291~10300.

    • Christensen U R, Hofmann A W. 1994. Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research, 99: 19867~19884.

    • Davies D R, Goes S, Davies J H, Schuberth B S A, Bunge H P, Ritsema J. 2012. Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity. Earth and Planetary Science Letters, 353-354: 253~269.

    • Davies G F, Gurnis M. 1986. Interaction of mantle dregs with convection-lateral heterogeneity at the core mantle boundary. Geophysical Research Letters, 13: 1517~1520.

    • Deng Zhengbin, Schiller M, Jackson M G, Millet M A, Lu Pan, Nikolajsen K, Saji N S, Huang Dongyang, Bizzarro M. 2023. Earth's evolving geodynamic regime recorded by titanium isotopes. Nature, 621: 100~104.

    • Deschamps F, Cobden L, Tackley P J. 2012. The primitive nature of large low shear-wave velocity provinces. Earth and Planetary Science Letters, 349: 198~208.

    • Doucet L S, Li Zhengxiang, Gamal El Dien H, Pourteau A, Murphy J B, Collins W J, Mattielli N, Olierook H K H, Spencer C J, Mitchell R N. 2020. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 13(7): 511~515.

    • Doucet L S, Tetley M G, Li Zhengxiang, Liu Yebo, Gamaleldien H. 2022. Geochemical fingerprinting of continental and oceanic basalts: A machine learning approach. Earth-Science Reviews, 104~192.

    • Dupré B, Allègre C J. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303: 142~146.

    • Durand S, Debayle E, Ricard Y, Zaroli C, Lambotte S. 2017. Confirmation of a change in the global shear velocity pattern at around 1, 000 km depth. Geophysical Journal International, 211(3): 1628~1639.

    • Dziewonski A M. 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research, 89: 5929~5952.

    • Dziewonski A M, Hager B H, O'Connell R J. 1977. Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research, 82(2): 239~255.

    • Ekström G. 2011. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25~250 s. Geophysical Journal International, 187: 1668~1686.

    • Ekström G, Tromp J, Larson E W F. 1997. Measurements and global models of surface wave propagation. Journal of Geophysical Research, 102: 8137~8157.

    • Eriksen Z T, Jacobsen S B. 2022. Calcium isotope constraints on OIB and MORB petrogenesis: The importance of melt mixing. Earth and Planetary Science Letters, 593: 117665.

    • Ernst R E, Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2. 5 Ga to thepresent. Canadian Journal of Earth Sciences, 47(5): 695~739.

    • Ernst R E, Hamilton M A, Soderlund U, Hanes J A, Gladkochub D P, Okrugin A V, Kolotilina T, Mekhonoshin A S, Bleeker W, LeCheminant A N, Buchan K L, Chamberlain K R, Didenko A N. 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 9(6): 464~469.

    • Floyd P A. 2012. Oceanic Basalts. Springer Science and Business Media.

    • Fukao Y, Obayashi M, Inoue H, Nenbai M. 1992. Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research, 97(B4): 4809~4822.

    • Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39: 291~323.

    • Gast P W, Tilton G R, Hedge C. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145(3637): 1181~1185.

    • Gernon T M, Jones S M, Brune S, Hincks T K, Palmer M R, Schumacher J C, Primiceri R M, Field M, Griffin W L, O'Reilly S Y, Keir D, Spencer C J, Merdith A S, Glerum A. 2023. Rift-induced disruption of cratonic keels drives kimberlite volcanism. Nature, 620: 344~350.

    • Goes S, Capitanio F, Morra G. 2008. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451: 981~984.

    • Goes S, Agrusta R, van Hunen J, Garel F. 2017. Subduction-transition zone interaction: A review. Geosphere, 13(3): 644~664.

    • Goes S, Yu Chunquan, Ballmer M D, Yan J, van der Hilst R D. 2022. Compositional heterogeneity in the mantle transition zone. Nature Reviews Earth and Environment, 3(8): 533~550.

    • Goldstein S L, Soffer G, Langmuir C H. 2006. Isotope geochemistry of gakkel ridge basalts and origin of a “Dupal” signature. Ofioliti, 31(1): 59~60.

    • Goldstein S L, Soffer G, Langmuir C H, Lehnert K A, Graham D W, Michael P J. 2008. Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature, 453(7191): 89~93.

    • Gonnermann H M, Mukhopadhyay S. 2009. Preserving noble gases in a convecting mantle. Nature, 459(7246): 560~563.

    • Grand S P. 2002. Mantle shearwave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society A, 360: 2475~2491.

    • Grand S P, van der Hilst R D, Widiyantoro S. 1997. Global seismic tomography: A snapshot of convection in the Earth. Geological Society of America Today, 7: 1~7.

    • Griffin W L, Ryan C G, Kaminsky F V, O'Reilly S Y, Natapov L M, Win T T, Kinny P D, Ilupin I P. 1999. The Siberian lithosphere traverse: Mantle terranes and the assembly of the Siberian craton. Tectonophysics, 310: 1~35.

    • Guo Pengyuan, Niu Yaoling, Chen Shuo, Duan Meng, Sun Pu, Chen Yanhong, Gong Hongmei, Wang Xiaohong. 2023. Low-degree melt metasomatic origin of heavy Fe isotope enrichment in the MORB mantle. Earth Planetary Science Letters, 601: 117892.

    • Gurnis M. 1986. The effects of chemical density differences on convective mixing in the Earth's mantle. Journal of Geophysical Research, 91(B11): 11407~11419.

    • Haned A, Stutzmann E, Schimmel M, Kiselev S, Davaille A, Yelles-Chaouche A. 2016. Global tomography using seismic hum. Geophysical Journal International, 204(2): 1222~1236.

    • Hanyu T, Tatsumi Y, Senda R, Miyazaki T, Chang Q, Hirahara Y, Nakai S I. 2011. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochemistry, Geophysics, Geosystems, 12(2): 1~30.

    • Hart S R. 1971. K, Rb, Cs, Sr, Ba contents and Sr isotope ratios of ocean floor basalts. Philosophical Transactions of the Royal Society Series A, 268: 573~587.

    • Hart S R. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309: 753~757.

    • He Xiong, Tromp J. 1996. Normal-mode constraints on the structure of the Earth. Journal of Geophysical Research, 101(B9): 20053~20082.

    • Ho T, Priestley K, Debayle E. 2016. A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements. Geophysical Journal International, 207(1): 542~561.

    • Hofmann A W. 1988. Chemical differentiation of the Earth--the relationship between mantle, continental-crust, and oceanic-crust. Earth and Planetary Science Letters, 90(3): 297~314.

    • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219~229.

    • Hofmann A W. 2004. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. Treatise on Geochemistry, 2(2003): 1~44.

    • Hofmann A W, White W M, Whitford D J. 1978. Geochemical constraints on mantle models: The case for a layered mantle. Carnegie Institution of Washington Year Book, 77: 548~562.

    • Hou Guiting, Santosh M, Qian Xianglin, Lister G S, Li Jianghai. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395~409.

    • Houser C, Masters G, Laske G, Shearer P. 2008. Global seismic tomography: A snapshot of convection in the Earth. Geological Societyof America, Special Papers, 430: 235~254.

    • Jackson M G, Hart S R, Koppers A A, Staudigel H, Konter J, Blusztajn J, Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448(7154): 684~687.

    • Jackson M G, Konter J G, Becker T W. 2017. Primordial helium entrained by the hottest mantle plumes. Nature, 542(7641): 340~343.

    • Jackson M G, Macdonald F A. 2022. Hemispheric geochemical dichotomy of the mantle is a legacy of austral supercontinent assembly and onset of deep continental crust subduction. AGU Advances, 3: e2022AV000664.

    • Jacobsen S B, Yu Gang. 2015. Extinct isotope heterogeneities in the mantles of Earth and Mars: Implications for mantle stirring rates. Meteoritics and Planetary Science, 50: 555~567.

    • Jarvis G T, Lowman J P. 2007. Survival times of subducted slab remnants in numerical models of mantle flow. Earth and Planetary Science Letters, 260: 23~36.

    • Jordan T H. 1978. Composition and development of the continental tectosphere. Nature, 274(5671): 544~548.

    • Kempton P D, Pearce J A, Barry T L, Fitton J G, Langmuir C, Christie D M. 2002. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic discordance and origin of the Indian MORB source. Geochemistry, Geophysics, Geosystems, 3(12): 1~35.

    • Kennett B L N. 1998. On the density distribution within the Earth. Geophysical Journal International, 132: 374~382.

    • Keppie D F. 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea. Geology, 43: 335~338.

    • Khedr M Z, Arai S, Python M, Tamura A. 2014. Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity. Gondwana Research, 25(3): 1242~1262.

    • King S D, Frost D J, Rubie D C. 2015. Why cold slabs stagnate in the transition zone. Geology, 43(3): 231~234.

    • Klein E M, Langmuir C H, Zindler A, Staudigel H, Hamelin B. 1988. Isotope evidence of a mantle convection boundary at the Australian-Antarctic discordance. Nature, 333: 623~629.

    • Koppers A A P, Becker T W, Jackson M G, Konrad K, Dietmar Müller R, Romanowicz B, Steinberger B, Whittaker J M. 2021. Mantle plumes and their role in Earth processes. Nature Reviews Earth & Environment, 2: 382~401.

    • Kurz M D, Jenkins W J, Hart S R. 1982. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature, 297(5861): 43~47.

    • Kustowski B, Ekström G, Dziewoński A M. 2008. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. Journal of Geophysical Research, 113: B06306.

    • Labrosse S, Hernlund J, Coltice N. 2007. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 450: 866~869.

    • Lee C T, Luffi P, Höink T, Li Jie, Dasgupta R, Hernlund J. 2010. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature, 463: 930~933.

    • Lee C-T A. 2006. Geochemical/petrologic constraints on the origin of cratonic mantle. In: Benn K, Mareschal J-C, Condie K C, eds. Archean Geodynamics and Environments. Washington DC American Geophysical Union Geophysical Monograph Series.

    • Lei Wenjie, Ruan Youyi, Bozdağ E, Peter D, Lefebvre M, Komatitsch D, Tromp J, Hill J, Podhorszki N, Pugmire D. 2020. Global adjoint tomography—model GLAD-M25. Geophysical Journal International, 223(1): 1~21.

    • Li Xianhua. 2021. The major driving force triggering break up of supercontinent: Mantle plumes or deep subduction? Acta Geologica Sinica, 95(1): 20~31 (in Chinese with English abstract).

    • Li Zhengxiang, Bogdanova S V, Collins A S, Davidson A, de Waele B, Ernst R, Fitzsimons I, Fuck R A, Gladkochub D P, Jacobs J. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179~210.

    • Li Zhengxiang, Zhong S J. 2009. Supercontinent-superplume coupling, truepolar wander and plume mobility: Plate dominance in whole mantle tectonics. Physics of the Earth and Planetary Interiors, 176: 143~156.

    • Li Zhengxiang, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 323: 1~5.

    • Li Zhengxiang, Liu Yebo, Ernst R. 2023. A dynamic 2000~540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 238: 104336.

    • Lithgow-Bertelloni C, Richards M A. 1998. The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, 36(1): 27~78.

    • Liu Shuangliang, Ma Lin, Zou Xinyu, Fang Linru, Qin Ben, Melnik A E, Kirscher U, Yang Kuifeng, Fan Hongrui, Mitchell R N. 2022. Trends and rhythms in carbonatites and kimberlites reflect thermo-tectonic evolution of Earth. Geology, 51(1): 101~105.

    • Liu Xijun, Xu Jifeng, Xiao Wenjiao, Liu Pengde. 2023. Origin of the DUPAL anomaly in the Tethyan mantle domain and its geodynamic significance. Science China Earth Sciences, 66(12): 2712~2727 (in Chinese with English abstract).

    • Machetel P, Weber P. 1991. Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature, 350: 55~57.

    • Mansur A T, Manya S, Timpa S, Rudnick R L. 2014. Granulite-facies xenoliths in rift basalts of northern Tanzania: Age, composition and origin of Archean lower crust. Journal of Petrology, 55(7): 1243~1286.

    • Mao Wei, Zhong Shijie. 2018. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geoscience, 11: 876~881.

    • Masters G, Laske G, Bolton H, Dziewonski A. 2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In: Karato S-I, Forte A, Liebermann R, Masters G, Stixrude L, eds. Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Volume 117. American Geophysical Union, 63~87.

    • McKenzie D A N, O'Nions R K. 1995. The source regions of ocean island basalts. Journal of Petrology, 36(1): 133~159.

    • McNamara A K, Zhong S. 2005. Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437: 1136~1139.

    • Melson W G, Vallier T L, Wright T L, Byerly G, Nelen J. 1976. Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic, and Indian Ocean sea-floor spreading centers. The Geophysics of the Pacific Ocean Basin and Its Margin, 19: 351~367.

    • Mitchell R N, Kilian T M, Evans D A D. 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature, 482(7384): 208~211.

    • Mitchell R N, Zhang Nan, Salminen J, Liu Yebo, Spencer C J, Steinberger B, Murphy J B, Li Zhengxiang. 2021. The supercontinent cycle. Nature Review Earth Environment, 2: 358~374.

    • Miyazaki Y, Korenaga J. 2022. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature, 603: 86~90.

    • Montelli R, Nolet G, Dahlen F A, Masters G, Engdahl E R, Hung Shuhuei. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656): 338~343.

    • Morgan J, Smith W. 1992. Flattening of the sea-floor depth-age curve as a response to asthenospheric flow. Nature, 359: 524~527.

    • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230(5288): 42~43.

    • Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486(7401): 101~104.

    • Mulyukova E, Steinberger B, Dabrowski M, Sobolev S V. 2015. Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly. Journal of Geophysical Research: Solid Earth, 120: 3824~3847.

    • Mundl-Petermeier A, Walker R J, Jackson M G, Blichert-Toft J, Kurz M D, Halldórsson S A. 2019. Temporal evolution of primordial tungsten-182 and 3He/4 He signatures in the Iceland mantle plume. Chemical Geology, 525: 245~259.

    • Mundl-Petermeier A, Walker R J, Fischer R A, Lekic V, Jackson M G, Kurz M D. 2020. Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth's core? Geochimica et Cosmochimica Acta, 271: 194~211.

    • Murphy J B, Nance R D. 2005. Do supercontinents turn inside-in or inside-out? International Geology Review, 47(6): 591~619.

    • Ni Sidao, Tan E, Gurnis M, Helmberger D. 2002. Sharp sides to the African superplume. Science, 296: 1850~1852.

    • Nishida K, Montagner J P, Kawakatsu H. 2009. Global surface wave tomography using seismic hum. Science, 326(5949): 112~112.

    • Niu Yaoling. 2018. Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics—A petrological and geochemical perspective. Geoscience Frontiers, 9: 1265~1278.

    • Niu Yaoling, Wilson M, Humphreys E R, O'Hara M J. 2011. The origin of intra-plate ocean island basalts (OIB): The lid effect and its geodynamic implications. Journal of Petrology, 52(7-8): 1443~1468.

    • Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J, Muto S, Ishii H, Hiraoka N. 2011. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nature, 473: 199~202.

    • Olson P, Schubert G, Anderson C. 1993. Structure of axisymmetric mantle plumes. Journal of Geophysical Research, 98: 6829~6844.

    • Panning M, Romanowicz B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal Internationnal, 167: 361~379.

    • Parsons B, Sclater J G. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82(5): 803~827.

    • Perry H K C, Forte A M, Eaton D W S. 2003. Upper-mantle thermochemical structure below North America from seismic-geodynamic flow models. Geophysical Journal International, 154: 279~299.

    • Pyle D G, Christie D M, Mahoney J J. 1992. Resolving an isotopic boundary within the Australian-Antarctic Discordance. Earth and Planetary Science Letters, 112: 161~178.

    • Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, 148: 247~261.

    • Rawlinson N, Pozgay S, Fishwick S. 2010. Seismic tomography: A window into deep Earth. Physics of the Earth and Planetary Interiors, 178: 101~135.

    • Ren Jishun, Niu Baogui, Xu Qinqin, Zhao Lei, Liu Jianhui, Li Shan, Zhu Junbin, Liu Renyan. 2022. Multisphere tectonic view of the Earth system. Acta Geologica Sinica, 96(1):

    • 50~64 (in Chinese with English abstract).

    • Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hot-spot tracks: Plume heads and tails. Science, 246: 103~107.

    • Richards M A, Engebretson D C. 1992. Large-scale mantle convection and the history of subduction. Nature, 355: 437~440.

    • Ritsema J, Garnero E, Lay T. 1997. A strongly negative shear velocity gradient and lateral variability in the lowermost mantle beneath the Pacific. Journal of Geophysical Research: Solid Earth, 102: 20395~20411.

    • Ritsema J, McNamara A K, Bull A L. 2007. Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure. Journal of Geophysical Research: Solid Earth, 112.

    • Ritsema J, Deuss A, van Heijst H J, Woodhouse J H. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184: 1223~1236.

    • Rizo H, Andrault D, Bennett N R, Humayun M, Brandon A, Vlastélic I, Moine B, Poirier A, Bouhifd M A, Murphy D T. 2019. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochemical Perspectives Letters, 11: 6~11.

    • Rudolph M L, Lekiǵ V, Lithgow-Bertelloni C. 2015. Viscosity jump in Earth's mid-mantle. Science, 350(6266): 1349~1352.

    • Saunders A D, Jones S M, Morgan L A, Pierce K L, Widdowson M, Xu Yigang. 2007. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chemical Geology, 241(3): 282~318.

    • Schilling J G. 1973. Iceland mantle plume: Geochemical evidence along Reykjanes Ridge. Nature, 242: 565~571.

    • Schroeder W. 1984. The empirical age-depth relation and depth anomalies in the Pacific Ocean Basin. Journal of Geophysical Research, 89(B12): 9873~9883.

    • Schubert G, Masters G, Olson P, Tackley P. 2004. Superplumes or plume clusters? Physics of the Earth and Planetary Interiors, 146: 147~162.

    • Schuberth B S A, Bunge H P, Ritsema J. 2009. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10.

    • Sengupta M K, Toksöz M N. 1976. Three dimensional model of seismic velocity variation in the Earth's mantle. Geophysical Research Letters, 3: 84~86.

    • Shapiro N M, Ritzwoller M. 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151: 88~105.

    • Shapiro S S, Hager B H, Jordan T H. 1999. The continental tectosphere and Earth's long-wavelength gravity field. Lithos, 48: 135~152.

    • Shearer P M, Masters T G. 1992. Global mapping of topography on the 660-km discontinuity. Nature, 355(6363): 791~796.

    • Shimizu N, Sobolev A V, Layne G D, Tsameryan O P. 2003. Large Pb isotope variations in olivine-hosted melt inclusions in a basalt from the Mid-Atlantic Ridge. Science (ms: submitted May 2003).

    • Simmons N A, Myers S C, Johannesson G, Matzel E. 2012. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research, 117: B10302.

    • Sleep N H. 2005. Evolution of the continental lithosphere. Annual Review of Earth and Planetary Sciences, 33: 369~393.

    • Soule S A. 2015. Mid-ocean ridge volcanism. In: Haraldur Sigurdsson, ed. The Encyclopedia of Volcanoes. Academic Press, 395~403.

    • Stein C, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359: 123~129.

    • Stern R J. 2018. The evolution of plate tectonics. Philosophical Transactions of the Royal Society Series A, 376: 20170406.

    • Storey B C. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377: 301~308.

    • Stracke A. 2012. Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330: 274~299.

    • Stracke A, Hofmann A W, Hart S R. 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6(5): 1~20.

    • Su W J, Woodward R L, Dziewonski A M. 1992. Deep origin of mid-ocean-ridge seismic velocity anomalies. Nature, 360: 149~152.

    • Su W J, Dziewonski A M. 1997. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Physics of the Earth and Planetary Interiors, 100: 135~156.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Sun Xinlei, Song Xiaodong, Zheng Sihua, Helmberger D V. 2007. Evidence for a chemical-thermal structure at the base of mantle from sharp lateral P-wave variations beneath Central America. Proceedings of the National Academy of Sciences of the United States of America, 104: 26~30.

    • Sun Pu, Niu Yaoling, Duan Meng, Chen Shuo, Guo Pengyuan, Gong Hongmei, Xiao Yuanyuan, Wang Xiaohong. 2023. Zinc isotope fractionation during mid-ocean ridge basalt differentiation: Evidence from lavas on the East Pacific Rise at 10°30′N. Geochimica et Cosmochimica Acta, 346: 180~191.

    • Tackley P J, Stevenson D J, Glatzmaier G A, Schubert G. 1993. Effects of an endothermic phase-transition at 670 km depth in a spherical model of convection in the earth's mantle. Nature, 361(6414): 699~704.

    • Tolstikhin I, Hofmann A W. 2005. Early crust on top of the Earth's core. Physics of the Earth and Planetary Interiors, 148: 109~130.

    • Torii Y, Yoshioka S. 2007. Physical conditions producing slab stagnation: Constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip angles. Tectonophysics, 445(3-4): 200~209.

    • Torsvik T H, Smethurst M A, Burke K, Steinberger B. 2006. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical Journal International, 167: 1447~1460.

    • Torsvik T H, van der Voo R, Doubrovine P V, Burke K, Steinberger B, Ashwald L D, Tronnes R G, Webb S J, Bulla A L. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proceedings of the National Academy of Sciences, 111: 8735~8740.

    • Trampert J, Woodhouse J H. 1995. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds. Geophysical Journal International, 122: 675~690.

    • Tseng T L, Chen Wangping. 2004. Contrasts in seismic wave speeds and density across the 660 km discontinuity beneath the Philippine and the Japan Seas. Journal of Geophysical Research: Solid Earth, 109(B4).

    • van der Hilst R. 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374: 154~157.

    • van der Hilst R, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578~584.

    • van Keken P E, Hauri E H, Ballentine C J. 2002. Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity. Annual Review of Earth and Planetary Sciences, 30: 493~525.

    • Wang Chao, Song Shuguang, Wei Chunjing, Su Li, Allen M B, Niu Yaoling, Li Xianhua, Dong Jinlong. 2019. Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants. Nature Geoscience, 12(8): 672~678.

    • Weaver B L. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104: 381~397.

    • Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537(7622): 666~670.

    • Wen Lianxing, Silver P, James D, Kuehnel R. 2001. Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle. Earth and Planetary Science Letters, 189: 141~153.

    • White W M. 2010. Oceanic island basalts and mantle plumes: The geochemical perspective. Annual Review of Earth and Planetary Sciences, 38: 133~160.

    • White W M. 2015. Isotopes, DUPAL, LLSVPs and anekantavada. Chemical Geology, 419: 10~28.

    • Wu Fei, Turner S, Hoernle K, Hauff F, Schaefer B F, Kokfelt T, Bindeman I. 2022. Barium isotope composition of depleted MORB mantle constrained by basalts from the South Mid-Atlantic Ridge (5~11°S) with implication for recycled components in the convecting upper mantle. Geochimica et Cosmochimica Acta, 340: 85~98.

    • Xu Yigang, Huang Xiaolong, Wang Qiang, Wang Yu, Li Gaojun, Liu Yun, Mao Heguang, Ni Huaiwei, Zhu Maoyan. 2024. Earth's habitability driven by deep processes. Chinese Science Bulletin, 69(2): 169~183 (in Chinese).

    • Yang Jinghui, Mei Qingfeng. 2022. Chemical heterogeneity in the early Earth's mantle and its geodynamic genesis. Acta Petrologica Sinica, 38(12): 3621~3630 (in Chinese with English abstract).

    • Yang Wencai. 2020. On dynamic processes of the shallow-mantle system. Geological Review, 66(3): 521~532 (in Chinese with English abstract).

    • Yoshioka S, Naganoda A. 2010. Effects of trench migration on fall of stagnant slabs into the lower mantle. Physics of the Earth and Planetary Interiors, 183(1-2): 321~329.

    • Yuan Qian, Li Mingming. 2022. Instability of the African large low-shear-wave-velocity province due to its low intrinsic density. Nature Geoscience, 15: 334~339.

    • Yuan Qian, Li Mingming, Desch S J, Ko B, Deng Hongping, Garnero E J, Gabriel T S J, Kegerreis J A, Miyazaki Y, Eke V, Asimow P D. 2023. Moon-forming impactor as a source of Earth's basal mantle anomalies. Nature, 623(7985): 95~99.

    • Zhang Yushen, Tanimoto T. 1992. Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature, 355: 45~49.

    • Zhang Yushen, Tanimoto, T. 1993. High-resolution global upper mantle structure and plate tectonics. Journal of Geophysical Research, 98(B6): 9793~9823.

    • Zhang Zhen, Li Sanzhong, Suo Yanhui, Somerville I D, Li Xiyao. 2016. Formation mechanism of the global Dupal isotope anomaly. Geological Journal, 51: 644~651.

    • Zhao Dapeng, Arai T, Liu L, Ohtani E. 2012. Seismic tomography and geochemical evidence for lunar mantle heterogeneity: Comparing with Earth. Global and Planetary Change, 90: 29~36.

    • Zhao Guochun, Cawood P A, Wilde S A, Sun M. 2002. Review of global 2. 1~1. 8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125~162.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1): 91~123.

    • Zhong Yuan, Zhang Guoliang, Jin Qizhen, Huang Fang, Wang Xiaojun, Xie Liewen. 2021. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes. Science Bulletin, 66: 740~748.

    • Zhou Huawei, Anderson D L. 1989. Search for deep slabs in the Northwest Pacific mantle. Proceedings of the National Academy of Sciences of the United States of America, 86(22): 8602~8606.

    • Zindler A, Jagoutz E, Goldstein S. 1982. Nd, Sr and Pb isotopic systematics in a three component mantle: A new perspective. Nature, 298(5874): 519~523.

    • Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493~571.

    • 李献华. 2021. 超大陆裂解的主要驱动力——地幔柱或深俯冲? 地质学报, 95(1): 20~31.

    • 刘希军, 许继峰, 肖文交, 刘鹏德. 2023. 特提斯地幔域DUPAL异常成因及地球动力学意义. 中国科学: 地球科学, 53(12): 2750~2766.

    • 任纪舜, 牛宝贵, 徐芹芹, 赵磊, 刘建辉, 李舢, 朱俊宾, 刘仁燕. 2022. 地球系统多圈层构造观. 地质学报, 96(1): 50~64.

    • 徐义刚, 黄小龙, 王强, 王煜, 李高军, 刘耘, 毛河光, 倪怀玮, 朱茂炎. 2024. 地球宜居性的深部驱动机制. 科学通报, 69(2): 169~183.

    • 杨进辉, 梅清风. 2022. 地球早期地幔化学不均一性及其成因机制. 岩石学报, 38 (12): 3621~3630.

    • 杨文采. 2020. 浅地幔系统的动力学作用. 地质论评, 66(3): 521~532.

  • 参考文献

    • Aki K, Christoffersson A, Husebye E S. 1977. Determination of the three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82: 277~296.

    • Anderson D L. 1982. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297: 391~393.

    • Ballmer M D, Schumacher L, Lekic V, Thomas C, Ito G. 2016. Compositional layering within the large low shear-wave velocity provinces in the lower mantle. Geochemistry, Geophysics, Geosystems, 17: 5056~5077.

    • Barbara R, Gung Yuancheng. 2002. Superplumes from the core-mantle boundary to the lithosphere: Implications for heat flux. Science, 296(5568): 513~516.

    • Barry T L, Davies J H, Wolstencroft M, Millar I L, Zhao Z, Jian P, Safonova I, Price M. 2017. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry. Scientific Reports, 7: 1870.

    • Boyd F R. 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96: 15~26.

    • Boyet M, Carlson R W. 2005. 142Nd evidence for early (>4. 53 Ga) global differentiation of the silicate Earth. Science, 309(5734): 576~581.

    • Bozdağ E, Peter D, Lefebvre M, Komatitsch D, Tromp J, Hill J, Podhorszki N, Pugmire D. 2016. Global adjoint tomography: First-generation model. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(3): 1739~1766.

    • Breger L, Romanowicz B. 1998. Three-dimensional structure at the base of the mantle beneath the Central Pacific. Science, 282: 718~720.

    • Bull A L, McNamara A K, Ritsema J. 2009. Synthetic tomography of plume clusters and thermochemical piles. Earth and Planetary Science Letters, 278: 152~162.

    • Bunge H P, Richards M A, Lithgow-Bertelloni C, Baumgardner J R, Grand S P, Romanowicz B A. 1998. Time scales and heterogeneous structure in geodynamic earth models. Science, 280: 91~95.

    • Campbell I H. 2007. Testing the plume theory. Chemical Geology, 241(3): 153~176.

    • Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99: 79~93.

    • Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336: 667~670.

    • Cawood P A. 2020. Earth matters: A tempo to our planet's evolution. Geology, 48(5): 525~526.

    • Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449: 118~126.

    • Chang Sungjoon, Ferreira A M G, Ritsema J, van Heijst H J, Woodhouse J H. 2015. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. Journal of Geophysical Research, 120: 4278~4300.

    • Chauvel C, Hofmann A W, Vidal P. 1992. HIMU-EM: The French-Polynesian connection. Earth and Planetary Science Letters, 110(1~4): 99~119.

    • Chen Shuo, Sun Pu, Niu Yaoling, Guo Pengyuan, El1iott T, Hin R C. 2022. Molybdenum isotope systematics of lavas from the East Pacific Rise: Constraints on the source of enriched mid-ocean ridge basalts. Earth and Planetary Science Letters, 117283.

    • Christensen U R. 1996. The influence of trench migration on slab penetration into the lower mantle. Earth and Planetary Science Letters, 140(1-4): 27~39.

    • Christensen U R, Yuen D A. 1985. Layered convection induced by phase transitions. Journal of Geophysical Research, 90(B12): 10291~10300.

    • Christensen U R, Hofmann A W. 1994. Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research, 99: 19867~19884.

    • Davies D R, Goes S, Davies J H, Schuberth B S A, Bunge H P, Ritsema J. 2012. Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity. Earth and Planetary Science Letters, 353-354: 253~269.

    • Davies G F, Gurnis M. 1986. Interaction of mantle dregs with convection-lateral heterogeneity at the core mantle boundary. Geophysical Research Letters, 13: 1517~1520.

    • Deng Zhengbin, Schiller M, Jackson M G, Millet M A, Lu Pan, Nikolajsen K, Saji N S, Huang Dongyang, Bizzarro M. 2023. Earth's evolving geodynamic regime recorded by titanium isotopes. Nature, 621: 100~104.

    • Deschamps F, Cobden L, Tackley P J. 2012. The primitive nature of large low shear-wave velocity provinces. Earth and Planetary Science Letters, 349: 198~208.

    • Doucet L S, Li Zhengxiang, Gamal El Dien H, Pourteau A, Murphy J B, Collins W J, Mattielli N, Olierook H K H, Spencer C J, Mitchell R N. 2020. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 13(7): 511~515.

    • Doucet L S, Tetley M G, Li Zhengxiang, Liu Yebo, Gamaleldien H. 2022. Geochemical fingerprinting of continental and oceanic basalts: A machine learning approach. Earth-Science Reviews, 104~192.

    • Dupré B, Allègre C J. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303: 142~146.

    • Durand S, Debayle E, Ricard Y, Zaroli C, Lambotte S. 2017. Confirmation of a change in the global shear velocity pattern at around 1, 000 km depth. Geophysical Journal International, 211(3): 1628~1639.

    • Dziewonski A M. 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research, 89: 5929~5952.

    • Dziewonski A M, Hager B H, O'Connell R J. 1977. Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research, 82(2): 239~255.

    • Ekström G. 2011. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25~250 s. Geophysical Journal International, 187: 1668~1686.

    • Ekström G, Tromp J, Larson E W F. 1997. Measurements and global models of surface wave propagation. Journal of Geophysical Research, 102: 8137~8157.

    • Eriksen Z T, Jacobsen S B. 2022. Calcium isotope constraints on OIB and MORB petrogenesis: The importance of melt mixing. Earth and Planetary Science Letters, 593: 117665.

    • Ernst R E, Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2. 5 Ga to thepresent. Canadian Journal of Earth Sciences, 47(5): 695~739.

    • Ernst R E, Hamilton M A, Soderlund U, Hanes J A, Gladkochub D P, Okrugin A V, Kolotilina T, Mekhonoshin A S, Bleeker W, LeCheminant A N, Buchan K L, Chamberlain K R, Didenko A N. 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 9(6): 464~469.

    • Floyd P A. 2012. Oceanic Basalts. Springer Science and Business Media.

    • Fukao Y, Obayashi M, Inoue H, Nenbai M. 1992. Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research, 97(B4): 4809~4822.

    • Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39: 291~323.

    • Gast P W, Tilton G R, Hedge C. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145(3637): 1181~1185.

    • Gernon T M, Jones S M, Brune S, Hincks T K, Palmer M R, Schumacher J C, Primiceri R M, Field M, Griffin W L, O'Reilly S Y, Keir D, Spencer C J, Merdith A S, Glerum A. 2023. Rift-induced disruption of cratonic keels drives kimberlite volcanism. Nature, 620: 344~350.

    • Goes S, Capitanio F, Morra G. 2008. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451: 981~984.

    • Goes S, Agrusta R, van Hunen J, Garel F. 2017. Subduction-transition zone interaction: A review. Geosphere, 13(3): 644~664.

    • Goes S, Yu Chunquan, Ballmer M D, Yan J, van der Hilst R D. 2022. Compositional heterogeneity in the mantle transition zone. Nature Reviews Earth and Environment, 3(8): 533~550.

    • Goldstein S L, Soffer G, Langmuir C H. 2006. Isotope geochemistry of gakkel ridge basalts and origin of a “Dupal” signature. Ofioliti, 31(1): 59~60.

    • Goldstein S L, Soffer G, Langmuir C H, Lehnert K A, Graham D W, Michael P J. 2008. Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature, 453(7191): 89~93.

    • Gonnermann H M, Mukhopadhyay S. 2009. Preserving noble gases in a convecting mantle. Nature, 459(7246): 560~563.

    • Grand S P. 2002. Mantle shearwave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society A, 360: 2475~2491.

    • Grand S P, van der Hilst R D, Widiyantoro S. 1997. Global seismic tomography: A snapshot of convection in the Earth. Geological Society of America Today, 7: 1~7.

    • Griffin W L, Ryan C G, Kaminsky F V, O'Reilly S Y, Natapov L M, Win T T, Kinny P D, Ilupin I P. 1999. The Siberian lithosphere traverse: Mantle terranes and the assembly of the Siberian craton. Tectonophysics, 310: 1~35.

    • Guo Pengyuan, Niu Yaoling, Chen Shuo, Duan Meng, Sun Pu, Chen Yanhong, Gong Hongmei, Wang Xiaohong. 2023. Low-degree melt metasomatic origin of heavy Fe isotope enrichment in the MORB mantle. Earth Planetary Science Letters, 601: 117892.

    • Gurnis M. 1986. The effects of chemical density differences on convective mixing in the Earth's mantle. Journal of Geophysical Research, 91(B11): 11407~11419.

    • Haned A, Stutzmann E, Schimmel M, Kiselev S, Davaille A, Yelles-Chaouche A. 2016. Global tomography using seismic hum. Geophysical Journal International, 204(2): 1222~1236.

    • Hanyu T, Tatsumi Y, Senda R, Miyazaki T, Chang Q, Hirahara Y, Nakai S I. 2011. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochemistry, Geophysics, Geosystems, 12(2): 1~30.

    • Hart S R. 1971. K, Rb, Cs, Sr, Ba contents and Sr isotope ratios of ocean floor basalts. Philosophical Transactions of the Royal Society Series A, 268: 573~587.

    • Hart S R. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309: 753~757.

    • He Xiong, Tromp J. 1996. Normal-mode constraints on the structure of the Earth. Journal of Geophysical Research, 101(B9): 20053~20082.

    • Ho T, Priestley K, Debayle E. 2016. A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements. Geophysical Journal International, 207(1): 542~561.

    • Hofmann A W. 1988. Chemical differentiation of the Earth--the relationship between mantle, continental-crust, and oceanic-crust. Earth and Planetary Science Letters, 90(3): 297~314.

    • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219~229.

    • Hofmann A W. 2004. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. Treatise on Geochemistry, 2(2003): 1~44.

    • Hofmann A W, White W M, Whitford D J. 1978. Geochemical constraints on mantle models: The case for a layered mantle. Carnegie Institution of Washington Year Book, 77: 548~562.

    • Hou Guiting, Santosh M, Qian Xianglin, Lister G S, Li Jianghai. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395~409.

    • Houser C, Masters G, Laske G, Shearer P. 2008. Global seismic tomography: A snapshot of convection in the Earth. Geological Societyof America, Special Papers, 430: 235~254.

    • Jackson M G, Hart S R, Koppers A A, Staudigel H, Konter J, Blusztajn J, Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448(7154): 684~687.

    • Jackson M G, Konter J G, Becker T W. 2017. Primordial helium entrained by the hottest mantle plumes. Nature, 542(7641): 340~343.

    • Jackson M G, Macdonald F A. 2022. Hemispheric geochemical dichotomy of the mantle is a legacy of austral supercontinent assembly and onset of deep continental crust subduction. AGU Advances, 3: e2022AV000664.

    • Jacobsen S B, Yu Gang. 2015. Extinct isotope heterogeneities in the mantles of Earth and Mars: Implications for mantle stirring rates. Meteoritics and Planetary Science, 50: 555~567.

    • Jarvis G T, Lowman J P. 2007. Survival times of subducted slab remnants in numerical models of mantle flow. Earth and Planetary Science Letters, 260: 23~36.

    • Jordan T H. 1978. Composition and development of the continental tectosphere. Nature, 274(5671): 544~548.

    • Kempton P D, Pearce J A, Barry T L, Fitton J G, Langmuir C, Christie D M. 2002. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic discordance and origin of the Indian MORB source. Geochemistry, Geophysics, Geosystems, 3(12): 1~35.

    • Kennett B L N. 1998. On the density distribution within the Earth. Geophysical Journal International, 132: 374~382.

    • Keppie D F. 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea. Geology, 43: 335~338.

    • Khedr M Z, Arai S, Python M, Tamura A. 2014. Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity. Gondwana Research, 25(3): 1242~1262.

    • King S D, Frost D J, Rubie D C. 2015. Why cold slabs stagnate in the transition zone. Geology, 43(3): 231~234.

    • Klein E M, Langmuir C H, Zindler A, Staudigel H, Hamelin B. 1988. Isotope evidence of a mantle convection boundary at the Australian-Antarctic discordance. Nature, 333: 623~629.

    • Koppers A A P, Becker T W, Jackson M G, Konrad K, Dietmar Müller R, Romanowicz B, Steinberger B, Whittaker J M. 2021. Mantle plumes and their role in Earth processes. Nature Reviews Earth & Environment, 2: 382~401.

    • Kurz M D, Jenkins W J, Hart S R. 1982. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature, 297(5861): 43~47.

    • Kustowski B, Ekström G, Dziewoński A M. 2008. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. Journal of Geophysical Research, 113: B06306.

    • Labrosse S, Hernlund J, Coltice N. 2007. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 450: 866~869.

    • Lee C T, Luffi P, Höink T, Li Jie, Dasgupta R, Hernlund J. 2010. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature, 463: 930~933.

    • Lee C-T A. 2006. Geochemical/petrologic constraints on the origin of cratonic mantle. In: Benn K, Mareschal J-C, Condie K C, eds. Archean Geodynamics and Environments. Washington DC American Geophysical Union Geophysical Monograph Series.

    • Lei Wenjie, Ruan Youyi, Bozdağ E, Peter D, Lefebvre M, Komatitsch D, Tromp J, Hill J, Podhorszki N, Pugmire D. 2020. Global adjoint tomography—model GLAD-M25. Geophysical Journal International, 223(1): 1~21.

    • Li Xianhua. 2021. The major driving force triggering break up of supercontinent: Mantle plumes or deep subduction? Acta Geologica Sinica, 95(1): 20~31 (in Chinese with English abstract).

    • Li Zhengxiang, Bogdanova S V, Collins A S, Davidson A, de Waele B, Ernst R, Fitzsimons I, Fuck R A, Gladkochub D P, Jacobs J. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179~210.

    • Li Zhengxiang, Zhong S J. 2009. Supercontinent-superplume coupling, truepolar wander and plume mobility: Plate dominance in whole mantle tectonics. Physics of the Earth and Planetary Interiors, 176: 143~156.

    • Li Zhengxiang, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 323: 1~5.

    • Li Zhengxiang, Liu Yebo, Ernst R. 2023. A dynamic 2000~540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 238: 104336.

    • Lithgow-Bertelloni C, Richards M A. 1998. The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, 36(1): 27~78.

    • Liu Shuangliang, Ma Lin, Zou Xinyu, Fang Linru, Qin Ben, Melnik A E, Kirscher U, Yang Kuifeng, Fan Hongrui, Mitchell R N. 2022. Trends and rhythms in carbonatites and kimberlites reflect thermo-tectonic evolution of Earth. Geology, 51(1): 101~105.

    • Liu Xijun, Xu Jifeng, Xiao Wenjiao, Liu Pengde. 2023. Origin of the DUPAL anomaly in the Tethyan mantle domain and its geodynamic significance. Science China Earth Sciences, 66(12): 2712~2727 (in Chinese with English abstract).

    • Machetel P, Weber P. 1991. Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature, 350: 55~57.

    • Mansur A T, Manya S, Timpa S, Rudnick R L. 2014. Granulite-facies xenoliths in rift basalts of northern Tanzania: Age, composition and origin of Archean lower crust. Journal of Petrology, 55(7): 1243~1286.

    • Mao Wei, Zhong Shijie. 2018. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geoscience, 11: 876~881.

    • Masters G, Laske G, Bolton H, Dziewonski A. 2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In: Karato S-I, Forte A, Liebermann R, Masters G, Stixrude L, eds. Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Volume 117. American Geophysical Union, 63~87.

    • McKenzie D A N, O'Nions R K. 1995. The source regions of ocean island basalts. Journal of Petrology, 36(1): 133~159.

    • McNamara A K, Zhong S. 2005. Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437: 1136~1139.

    • Melson W G, Vallier T L, Wright T L, Byerly G, Nelen J. 1976. Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic, and Indian Ocean sea-floor spreading centers. The Geophysics of the Pacific Ocean Basin and Its Margin, 19: 351~367.

    • Mitchell R N, Kilian T M, Evans D A D. 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature, 482(7384): 208~211.

    • Mitchell R N, Zhang Nan, Salminen J, Liu Yebo, Spencer C J, Steinberger B, Murphy J B, Li Zhengxiang. 2021. The supercontinent cycle. Nature Review Earth Environment, 2: 358~374.

    • Miyazaki Y, Korenaga J. 2022. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature, 603: 86~90.

    • Montelli R, Nolet G, Dahlen F A, Masters G, Engdahl E R, Hung Shuhuei. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656): 338~343.

    • Morgan J, Smith W. 1992. Flattening of the sea-floor depth-age curve as a response to asthenospheric flow. Nature, 359: 524~527.

    • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230(5288): 42~43.

    • Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486(7401): 101~104.

    • Mulyukova E, Steinberger B, Dabrowski M, Sobolev S V. 2015. Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly. Journal of Geophysical Research: Solid Earth, 120: 3824~3847.

    • Mundl-Petermeier A, Walker R J, Jackson M G, Blichert-Toft J, Kurz M D, Halldórsson S A. 2019. Temporal evolution of primordial tungsten-182 and 3He/4 He signatures in the Iceland mantle plume. Chemical Geology, 525: 245~259.

    • Mundl-Petermeier A, Walker R J, Fischer R A, Lekic V, Jackson M G, Kurz M D. 2020. Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth's core? Geochimica et Cosmochimica Acta, 271: 194~211.

    • Murphy J B, Nance R D. 2005. Do supercontinents turn inside-in or inside-out? International Geology Review, 47(6): 591~619.

    • Ni Sidao, Tan E, Gurnis M, Helmberger D. 2002. Sharp sides to the African superplume. Science, 296: 1850~1852.

    • Nishida K, Montagner J P, Kawakatsu H. 2009. Global surface wave tomography using seismic hum. Science, 326(5949): 112~112.

    • Niu Yaoling. 2018. Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics—A petrological and geochemical perspective. Geoscience Frontiers, 9: 1265~1278.

    • Niu Yaoling, Wilson M, Humphreys E R, O'Hara M J. 2011. The origin of intra-plate ocean island basalts (OIB): The lid effect and its geodynamic implications. Journal of Petrology, 52(7-8): 1443~1468.

    • Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J, Muto S, Ishii H, Hiraoka N. 2011. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nature, 473: 199~202.

    • Olson P, Schubert G, Anderson C. 1993. Structure of axisymmetric mantle plumes. Journal of Geophysical Research, 98: 6829~6844.

    • Panning M, Romanowicz B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal Internationnal, 167: 361~379.

    • Parsons B, Sclater J G. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82(5): 803~827.

    • Perry H K C, Forte A M, Eaton D W S. 2003. Upper-mantle thermochemical structure below North America from seismic-geodynamic flow models. Geophysical Journal International, 154: 279~299.

    • Pyle D G, Christie D M, Mahoney J J. 1992. Resolving an isotopic boundary within the Australian-Antarctic Discordance. Earth and Planetary Science Letters, 112: 161~178.

    • Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, 148: 247~261.

    • Rawlinson N, Pozgay S, Fishwick S. 2010. Seismic tomography: A window into deep Earth. Physics of the Earth and Planetary Interiors, 178: 101~135.

    • Ren Jishun, Niu Baogui, Xu Qinqin, Zhao Lei, Liu Jianhui, Li Shan, Zhu Junbin, Liu Renyan. 2022. Multisphere tectonic view of the Earth system. Acta Geologica Sinica, 96(1):

    • 50~64 (in Chinese with English abstract).

    • Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hot-spot tracks: Plume heads and tails. Science, 246: 103~107.

    • Richards M A, Engebretson D C. 1992. Large-scale mantle convection and the history of subduction. Nature, 355: 437~440.

    • Ritsema J, Garnero E, Lay T. 1997. A strongly negative shear velocity gradient and lateral variability in the lowermost mantle beneath the Pacific. Journal of Geophysical Research: Solid Earth, 102: 20395~20411.

    • Ritsema J, McNamara A K, Bull A L. 2007. Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure. Journal of Geophysical Research: Solid Earth, 112.

    • Ritsema J, Deuss A, van Heijst H J, Woodhouse J H. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184: 1223~1236.

    • Rizo H, Andrault D, Bennett N R, Humayun M, Brandon A, Vlastélic I, Moine B, Poirier A, Bouhifd M A, Murphy D T. 2019. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochemical Perspectives Letters, 11: 6~11.

    • Rudolph M L, Lekiǵ V, Lithgow-Bertelloni C. 2015. Viscosity jump in Earth's mid-mantle. Science, 350(6266): 1349~1352.

    • Saunders A D, Jones S M, Morgan L A, Pierce K L, Widdowson M, Xu Yigang. 2007. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chemical Geology, 241(3): 282~318.

    • Schilling J G. 1973. Iceland mantle plume: Geochemical evidence along Reykjanes Ridge. Nature, 242: 565~571.

    • Schroeder W. 1984. The empirical age-depth relation and depth anomalies in the Pacific Ocean Basin. Journal of Geophysical Research, 89(B12): 9873~9883.

    • Schubert G, Masters G, Olson P, Tackley P. 2004. Superplumes or plume clusters? Physics of the Earth and Planetary Interiors, 146: 147~162.

    • Schuberth B S A, Bunge H P, Ritsema J. 2009. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10.

    • Sengupta M K, Toksöz M N. 1976. Three dimensional model of seismic velocity variation in the Earth's mantle. Geophysical Research Letters, 3: 84~86.

    • Shapiro N M, Ritzwoller M. 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151: 88~105.

    • Shapiro S S, Hager B H, Jordan T H. 1999. The continental tectosphere and Earth's long-wavelength gravity field. Lithos, 48: 135~152.

    • Shearer P M, Masters T G. 1992. Global mapping of topography on the 660-km discontinuity. Nature, 355(6363): 791~796.

    • Shimizu N, Sobolev A V, Layne G D, Tsameryan O P. 2003. Large Pb isotope variations in olivine-hosted melt inclusions in a basalt from the Mid-Atlantic Ridge. Science (ms: submitted May 2003).

    • Simmons N A, Myers S C, Johannesson G, Matzel E. 2012. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research, 117: B10302.

    • Sleep N H. 2005. Evolution of the continental lithosphere. Annual Review of Earth and Planetary Sciences, 33: 369~393.

    • Soule S A. 2015. Mid-ocean ridge volcanism. In: Haraldur Sigurdsson, ed. The Encyclopedia of Volcanoes. Academic Press, 395~403.

    • Stein C, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359: 123~129.

    • Stern R J. 2018. The evolution of plate tectonics. Philosophical Transactions of the Royal Society Series A, 376: 20170406.

    • Storey B C. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377: 301~308.

    • Stracke A. 2012. Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330: 274~299.

    • Stracke A, Hofmann A W, Hart S R. 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6(5): 1~20.

    • Su W J, Woodward R L, Dziewonski A M. 1992. Deep origin of mid-ocean-ridge seismic velocity anomalies. Nature, 360: 149~152.

    • Su W J, Dziewonski A M. 1997. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Physics of the Earth and Planetary Interiors, 100: 135~156.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Sun Xinlei, Song Xiaodong, Zheng Sihua, Helmberger D V. 2007. Evidence for a chemical-thermal structure at the base of mantle from sharp lateral P-wave variations beneath Central America. Proceedings of the National Academy of Sciences of the United States of America, 104: 26~30.

    • Sun Pu, Niu Yaoling, Duan Meng, Chen Shuo, Guo Pengyuan, Gong Hongmei, Xiao Yuanyuan, Wang Xiaohong. 2023. Zinc isotope fractionation during mid-ocean ridge basalt differentiation: Evidence from lavas on the East Pacific Rise at 10°30′N. Geochimica et Cosmochimica Acta, 346: 180~191.

    • Tackley P J, Stevenson D J, Glatzmaier G A, Schubert G. 1993. Effects of an endothermic phase-transition at 670 km depth in a spherical model of convection in the earth's mantle. Nature, 361(6414): 699~704.

    • Tolstikhin I, Hofmann A W. 2005. Early crust on top of the Earth's core. Physics of the Earth and Planetary Interiors, 148: 109~130.

    • Torii Y, Yoshioka S. 2007. Physical conditions producing slab stagnation: Constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip angles. Tectonophysics, 445(3-4): 200~209.

    • Torsvik T H, Smethurst M A, Burke K, Steinberger B. 2006. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical Journal International, 167: 1447~1460.

    • Torsvik T H, van der Voo R, Doubrovine P V, Burke K, Steinberger B, Ashwald L D, Tronnes R G, Webb S J, Bulla A L. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proceedings of the National Academy of Sciences, 111: 8735~8740.

    • Trampert J, Woodhouse J H. 1995. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds. Geophysical Journal International, 122: 675~690.

    • Tseng T L, Chen Wangping. 2004. Contrasts in seismic wave speeds and density across the 660 km discontinuity beneath the Philippine and the Japan Seas. Journal of Geophysical Research: Solid Earth, 109(B4).

    • van der Hilst R. 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374: 154~157.

    • van der Hilst R, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578~584.

    • van Keken P E, Hauri E H, Ballentine C J. 2002. Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity. Annual Review of Earth and Planetary Sciences, 30: 493~525.

    • Wang Chao, Song Shuguang, Wei Chunjing, Su Li, Allen M B, Niu Yaoling, Li Xianhua, Dong Jinlong. 2019. Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants. Nature Geoscience, 12(8): 672~678.

    • Weaver B L. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104: 381~397.

    • Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537(7622): 666~670.

    • Wen Lianxing, Silver P, James D, Kuehnel R. 2001. Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle. Earth and Planetary Science Letters, 189: 141~153.

    • White W M. 2010. Oceanic island basalts and mantle plumes: The geochemical perspective. Annual Review of Earth and Planetary Sciences, 38: 133~160.

    • White W M. 2015. Isotopes, DUPAL, LLSVPs and anekantavada. Chemical Geology, 419: 10~28.

    • Wu Fei, Turner S, Hoernle K, Hauff F, Schaefer B F, Kokfelt T, Bindeman I. 2022. Barium isotope composition of depleted MORB mantle constrained by basalts from the South Mid-Atlantic Ridge (5~11°S) with implication for recycled components in the convecting upper mantle. Geochimica et Cosmochimica Acta, 340: 85~98.

    • Xu Yigang, Huang Xiaolong, Wang Qiang, Wang Yu, Li Gaojun, Liu Yun, Mao Heguang, Ni Huaiwei, Zhu Maoyan. 2024. Earth's habitability driven by deep processes. Chinese Science Bulletin, 69(2): 169~183 (in Chinese).

    • Yang Jinghui, Mei Qingfeng. 2022. Chemical heterogeneity in the early Earth's mantle and its geodynamic genesis. Acta Petrologica Sinica, 38(12): 3621~3630 (in Chinese with English abstract).

    • Yang Wencai. 2020. On dynamic processes of the shallow-mantle system. Geological Review, 66(3): 521~532 (in Chinese with English abstract).

    • Yoshioka S, Naganoda A. 2010. Effects of trench migration on fall of stagnant slabs into the lower mantle. Physics of the Earth and Planetary Interiors, 183(1-2): 321~329.

    • Yuan Qian, Li Mingming. 2022. Instability of the African large low-shear-wave-velocity province due to its low intrinsic density. Nature Geoscience, 15: 334~339.

    • Yuan Qian, Li Mingming, Desch S J, Ko B, Deng Hongping, Garnero E J, Gabriel T S J, Kegerreis J A, Miyazaki Y, Eke V, Asimow P D. 2023. Moon-forming impactor as a source of Earth's basal mantle anomalies. Nature, 623(7985): 95~99.

    • Zhang Yushen, Tanimoto T. 1992. Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature, 355: 45~49.

    • Zhang Yushen, Tanimoto, T. 1993. High-resolution global upper mantle structure and plate tectonics. Journal of Geophysical Research, 98(B6): 9793~9823.

    • Zhang Zhen, Li Sanzhong, Suo Yanhui, Somerville I D, Li Xiyao. 2016. Formation mechanism of the global Dupal isotope anomaly. Geological Journal, 51: 644~651.

    • Zhao Dapeng, Arai T, Liu L, Ohtani E. 2012. Seismic tomography and geochemical evidence for lunar mantle heterogeneity: Comparing with Earth. Global and Planetary Change, 90: 29~36.

    • Zhao Guochun, Cawood P A, Wilde S A, Sun M. 2002. Review of global 2. 1~1. 8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125~162.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1): 91~123.

    • Zhong Yuan, Zhang Guoliang, Jin Qizhen, Huang Fang, Wang Xiaojun, Xie Liewen. 2021. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes. Science Bulletin, 66: 740~748.

    • Zhou Huawei, Anderson D L. 1989. Search for deep slabs in the Northwest Pacific mantle. Proceedings of the National Academy of Sciences of the United States of America, 86(22): 8602~8606.

    • Zindler A, Jagoutz E, Goldstein S. 1982. Nd, Sr and Pb isotopic systematics in a three component mantle: A new perspective. Nature, 298(5874): 519~523.

    • Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493~571.

    • 李献华. 2021. 超大陆裂解的主要驱动力——地幔柱或深俯冲? 地质学报, 95(1): 20~31.

    • 刘希军, 许继峰, 肖文交, 刘鹏德. 2023. 特提斯地幔域DUPAL异常成因及地球动力学意义. 中国科学: 地球科学, 53(12): 2750~2766.

    • 任纪舜, 牛宝贵, 徐芹芹, 赵磊, 刘建辉, 李舢, 朱俊宾, 刘仁燕. 2022. 地球系统多圈层构造观. 地质学报, 96(1): 50~64.

    • 徐义刚, 黄小龙, 王强, 王煜, 李高军, 刘耘, 毛河光, 倪怀玮, 朱茂炎. 2024. 地球宜居性的深部驱动机制. 科学通报, 69(2): 169~183.

    • 杨进辉, 梅清风. 2022. 地球早期地幔化学不均一性及其成因机制. 岩石学报, 38 (12): 3621~3630.

    • 杨文采. 2020. 浅地幔系统的动力学作用. 地质论评, 66(3): 521~532.