en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

冯志强,男,1964年生。教授级高工,长期从事石油地质学、沉积学研究。第五届黄汲清青年地质科学技术奖获奖者。E-mail:fengzq.syky@sinopec.com。

通讯作者:

郭金瑞,男,1971年生。高级工程师,长期从事石油地质研究。E-mail:guojr.syky@sinopec.com。

参考文献
Allen P A, Allen R J. 2013. Basin Analysis: Principles and Applications to Petroleum Play Assessment. Oxford: Blackwell Scientific Publications.
参考文献
Ampferer O. 1906. Über das bewegungsbild von faltengebirgen. Jahrbuch der Geologischen Reichsanstalt, 56(3/4): 539~622.
参考文献
Amstutz A. 1951. Sur l'évolution des structures alpines. Archival Science, 4: 323~329.
参考文献
Armitage P, Worden R, Faulkner D, Aplin A, Butcher A R, Lliffe J. 2010. Diagenetic and sedimentary controls on porosity in Lower Carboniferous fine-grained lithologies, Krechba field, Algeria: A petrological study of a caprock to a carbon capture site. Marine and Petroleum Geology, 27(7): 1395~1410.
参考文献
Bally A W, Snelson S. 1980. Realms of subsidence. Canadian Society of Petroleum Geologists Memoir 6, 9~75.
参考文献
Basile C. 2015. Transform continental margins-part 1: Concepts and models. Tectonophysics, 661: 1~10.
参考文献
Ben-Avraham Z, Hartnady C, Kitchin K. 1997. Structure and tectonics of the Agulhas-Falkland fracture zone. Tectonophysics, 282: 83~98.
参考文献
Biari Y, Klingelhoefer F, Sahabi M, Funck T, Benabdellouahed M. 2017. Opening of the central Atlantic Ocean: Implications for geometric rifting and asymmetric initial seafloor spreading after continental breakup. Tectonics, 36: 1129~1150.
参考文献
Bird J M, Isacks B. 1972. Plate Tectonics. Washington: Journal of Geophysical Research.
参考文献
Bischoff J L, Henyey T L. 1974. Tectonic elements of northern part of the Gulf of California. Geological Society of America Bulletin, 85: 1893~1904.
参考文献
Bott M H P. 1980. Mechanisms of subsidence at passive continental margins. In: Bally A W, Bender P L, McGetchin T R, Walcott R I, eds. Dynamic of Plate Interiors Volume 1. Washington DC: American Geophysical Union, 27~32.
参考文献
Burk C A, Drake C L, Trevisan L. 1976. The geology of continental margins. Scientia, 70(11): 203.
参考文献
Burov E B. 2011. Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8): 1402~1443.
参考文献
Burov E B, Watts A B. 2006. The long-term strength of continental lithosphere: “Jelly Sandwich” or “Crème Brûlée”? Geological Society of America Today, 16(1): 4~10.
参考文献
Cox A. 1973. Plate Tectonics and Geomagnetic Reversals. San Francisco: Freeman.
参考文献
de Lépinay M M, Loncke L, Basile C, Roest W R. 2016. Transform continental margins-part 2: A worldwide review. Tectonophysics, 693: 96~115.
参考文献
Dingle R V. 1973. Post-Palaeozoic stratigraphy of the eastern Agulhas Bank, South African continental margin. Marine Geology, 15(1): 1~23.
参考文献
Drake C L, Ewing M, Sutton G H. 1959. Continental margins and geosynclines: The east coast of North America north of Cape Hatteras. Physics and Chemistry of The Earth, 3: 110~198.
参考文献
Edwards J D, Santogrossi P A. 1990. Divergent/passive margin basins. AAPG Memoir 48, 239~248.
参考文献
Enos P. 1974. Surface sediment facies of the Floride-Bahama Plateau: Coal. Social America Map MC-5, Scale 1: 3168000.
参考文献
Ewing J, Ewing M. 1959. Seismic-refraction measurements in the Atlantic ocean basins, in the Mediterranean sea, on the Mid-Atlantic Ridge, and in the Norwegian sea. Bulletin of the Geological Society of America, 70: 291~318.
参考文献
Fail J P, Montadert L, Delteil J R, Valéry P, Patriat P, Schlich R. 1970. Prolongation des zones de fractures de l'ocean atlantique dans le golfe de Guinee. Earth and Planetary Science Letters, 7(5): 413~419.
参考文献
Falvey D A. 1974. The development of continental margins in plate tectonic theory. Austrilian Petroleum Exploration Association Journal, 14: 95~106.
参考文献
Falvey D A, Middleton M F. 1981. Passive continental margins: Evidence for a prebreakup deep crustal subsidence mechanism. Oceanologica Acta, 4: 103~114.
参考文献
Feng Zhiqiang, Gao Dengliang, Stephan A G, Wu Gaokui, Duan Taizhong. 2023. Classification of Sedimentary Basins. Houston: International Meeting for Applied Geoscience & Energy, 1663~1667.
参考文献
Funck T, Hopper J R, Larsen H C, Louden K. 2003. Crustal structure of the ocean continent transition at Flemish Cap: Seismic refraction results. Journal of Geophysical Research, 108: 1~20.
参考文献
Geoffroy L. 2005. Volcanic passive margins. Comptes Rendus Geoscience, 337: 1395~1408.
参考文献
Ginsburg R N. 1974. Introduction to comparative sedimentology of carbonates. AAPG Bulletin, 58(5): 781~786.
参考文献
Goren L, Aharonov E, Mulugeta G, Koyi H A, Mart Y. 2008. Ductile deformation of passive margins: A new mechanism for subduction initiation. Journal of Geophysical Research, 113: 1~19.
参考文献
Grow J A, Markl R G. 1977. IPOD-USGS multichannel seismic reflection profile from cape Hatteras to the Mid-Atlantic Ridge. Geology, 5(10): 625~630.
参考文献
Guerra M C M, Underhill J R. 2012. Role of halokinesis in controlling structural styles and sediment dispersal in the Santos basin, offshore Brazil. In: Alsop G I, Archer S G, Hartley A J, et al. , eds. Salt Tectonics, Sediments and Prospectivity. London: Geological Society, London, Special Publications, 363: 303~330.
参考文献
Hess H H. 1962. History of ocean basins. In: Engel A E J, James H L, Leonard B F, eds. Petrologic Studies: A Volume in Honor of A. F. Buddington. Colorado: Geological Society of America, 559~620.
参考文献
Holmes A. 1931. Radioactivity and earth movements. Nature, 128: 496~496.
参考文献
Holmes A. 1944. The floor of the ocean. Nature, 153: 389.
参考文献
Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H. 2011. Time-resolved holography with photoelectrons. Science, 331: 61~64.
参考文献
IHS. 2023. International petroleum exploration and production database (2022). http: //www. ihs. com/Energy.
参考文献
King L H, Maclean B. 1976. Geology of the scotian shelf. Marine Sciences, 7: 31~74.
参考文献
Kraft J C, Briggs R B, Halsey S D. 1983. Coastal Geomorphology. New York: Publish State University of New York.
参考文献
Le Pichon X. 1968. Sea floor spreading and continental drift. Journal of Geophysical Research, 73(12): 3661~3697.
参考文献
Le Pichon X, Fox P J. 1971. Marginal offsets, fracture zones, and the early opening of the North Atlantic. Geophysical Research, 76: 6294~6308.
参考文献
Leblanc R J. 1972. Geometry of sandstone reservoir bodies, from underground waste management and environmental implications. AAPG Memoir 18, 133~189.
参考文献
Lorenzo J M. 1997. Sheared continent-ocean margins: An overview. Geo-Marine Letters, 17: 1~3.
参考文献
Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93: 432~466.
参考文献
Marzoli A, Renne P R, Piccirillo E M, Ernesto M, Bellieni G, DeMin A. 1999. Extensive 200 million years old continental flood basalts from the Central Atlantic Magmatic Province. Science, 248: 616~618.
参考文献
Mascle J. 1976. Atlantic-type continental margins-distinction of 2 basic structural types. Anais da Academia Brasileira de Ciências, 48: 191~197.
参考文献
Mascle J, Blarez E. 1987. Evidence for transform margin evolution from the Ivory Coast-Ghana continental margin. Nature, 326: 378~381.
参考文献
McKenzie D P. 1978. Some remarks of development of sedimentary basins. Earth Planetary Science Letters, 40(1): 25~32.
参考文献
McKenzie D P, Davies D, Molnar P H. 1970. Plate tectonics of the Red Sea and East Africa. Nature, 226: 243~248.
参考文献
Meissner R. 1981. Passive margin development: A consequence of specific convection patterne in a variable viscosity upper mantle. Oceanologica Acta, 115~121.
参考文献
Milliman J D. 1974. Recent Sedimentary Carbonates-Part 1: Marine Carbonates. New York: Springer-Verlag.
参考文献
Ministry of Natural Resources of the People's Republic of China. 2020. China oil and gas exploration and development report 2019 released. https: //www. mnr. gov. cn/ (in Chinese).
参考文献
Mohn G, Manatschal G, Masini E, Müntener O. 2011. Rift-related inheritance in orogens: A case study from the Austroalpine nappes in central Alps (SE-Switzerland and N-Italy). International Journal of Earth Sciences, 100(5): 937~961.
参考文献
Mohn G, Manatschal G, Beltrando M, Masini E, Kusznie N. 2012. Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics, 31(1): 1~28.
参考文献
Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73: 1959~1982.
参考文献
Nirrengarten M, Manatschal G, Tugend J, Kusznir N, Sauter D. 2018. Kinematic evolution of the southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics, 37: 89~118.
参考文献
Peltier W R. 1980. Models of glacial isostasy and relative sea level. Dynamics of Plate Interiors, 1: 111~128.
参考文献
Peron-Pinvidic G, Manatschal G, Osmundsen P T. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43: 21~47.
参考文献
Rabinowitz P D. 1974. The boundary between oceanic and continental crust in the western North Atlantic. In: Burk C A, Drake C L, eds. Geology of Continental Margins. New York: Springer-Verlag, 67~84.
参考文献
Rabinowitz P D, LaBrecque J. 1979. The Mesozoic South Atlantic Ocean and evolution of its continental margins. Journal of Geophysical Research, 84: 5973~6002.
参考文献
Reston T J. 2010. The opening of the central segment of the South Atlantic: Symmetry and the extension discrepancy. Petroleum Geoscience, 16(3): 199~206.
参考文献
Schenk C J. 2012. An estimate of undiscovered conventional oil and gas resources of the world. U. S. Geological Survey, 3042.
参考文献
Schlee J J C, Behrendt J A, Grow J M, Robb R E, Mattick P T, Taylor, Lawson B A. 1976. Regional geologic framework off northeastern United States. American Association of Petroleum Geologists Bulletin, 60: 926~951.
参考文献
Schwinner R. 1920. Vulkanismus und gebirgsbildung. Ein Versuch. Zeitschrift für Vulkanologie, 5: 1753~230.
参考文献
Scrutton R A. 1979. On sheared passive continental margins. Tectonophysics, 59: 293~305.
参考文献
Swift D J P. 1974. Continental shelf sedimentation. In: Burk C A, Drake C L, eds. The Geology of Continental Margins. New York: Springer-Verlag, 117~135.
参考文献
Taylor F B. 1910. Bearing of the Tertiary mountain belt on the origin of the Earth's plan. Bulletin of the Geological Society of America, 21: 179~226.
参考文献
Tesauro M, Kaban M K, Cloetingh S. 2012. Global strength and elastic thickness of the lithosphere. Global and Planetary Change, 90(48): 51~57.
参考文献
Tong Xiaoguang, Zhang Guangya, Wang Zhaoming, Wen Zhixin, Tian Zuoji, Wang Hongjun, Wu Yiping. 2018. Distribution and potential of global oil and gas resources. Petroleum Exploration and Development, 45(4): 727~736(in Chinese with English abstract).
参考文献
Torsvik T, Rousse S, Smethurst M A, Labails C. 2009. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177: 1315~1333.
参考文献
Tucholke B E, Sawyer D S, Sibuet J C. 2007. Breakup of the Newfoundland-Iberia rift. In: Karner G D, Manatschal G, Pinheiro L M, eds. Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. London: Geological Society of London, Special Publications, 9~46.
参考文献
Turcotte D L. 1980. Models for the evolution of sedimentary basins. In: Bally A W, Bender P L, McGetchin T R, Walcott R I, eds. Dynamic of Plate Interiors Volume 1. Washington DC: American Geophysical Union, 21~26.
参考文献
Van Avendonk H J A, Shillington D J, Lavier L L, Manatschal G. 2009. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 468(1-4): 131~148.
参考文献
Watts A B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge, New York, Melbourne: Cambridge University Press.
参考文献
Watts A B, Steckler M S. 1981. Subsidence and tectonics of Atlantic-type continental margins. Oceanologica Acta, 143~153.
参考文献
Watts A B, Burov E B. 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213: 113~131.
参考文献
Wegener A. 1912. Die entstehung der kontinente. Petermanns Mitteilungen, 185~195, 253~256, 305~309.
参考文献
Welford J K, Hall J, Sibuet J C. 2010. Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: Evidence for a transtensional rifting environment. Geophysical Journal International, 183(2): 572~586.
参考文献
Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22: 108~125.
参考文献
White R S, McKenzie D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Geology, 94: 7685~7729.
参考文献
Wu Fuyuan, Xu Yigang, Zhu Rixiang, Zhang Guowei. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Science China: Earth Sciences, 44(11): 2358~2372 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Yang Jingsui, Ji Shaocheng, Zhang Zeming, Li Haibing, Liu Fulai, Zhang Jianxin, Wu Cailai, Li Zhonghai, Liang Fenghua. 2010. On the continental tectonics and dynamics of China. Acta Geologica Sinica, 84(1): 1~29 (in Chinese with English abstract).
参考文献
Yang Wencai. 2014. Continental extension and rifting reveled by worldwide comparison of crust and upper mantle structures. Geological Review, 60(5): 945~961(in Chinese with English abstract).
参考文献
Zheng Yongfei, Zhao Zifu, Chen Renxu. 2007. Geodynamics of continental collision and ultrahigh-pressure metamorphism: Constraints from Chinese Continental Scientific Drilling project. Acta Petrologica Sinica, 23(12): 3078~3094 (in Chinese with English abstract).
参考文献
Zhu Weilin, Cui Hanyun, Wu Peikang, Sun Hefeng. 2017. New development and outlook for oil and gas exploration in passive continental margin basins. Acta Petrolei Sinica, 38(10): 1099~1109 (in Chinese with English abstract).
参考文献
Zoback M, Townend J. 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336(1): 19~30.
参考文献
Zou Caineng, Zhai Guangming, Zhang Guangya, Wang Hongjun, Zhang Guosheng, Li Jianzhong, Wang Zhaoming, Wen Zhixin, Ma Feng, Liang Yingbo, Yang Zhi, Li Xin, Liang Kun. 2015. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Petroleum Exploration and Development, 42(1): 14~28.
参考文献
童晓光, 张光亚, 王兆明, 温志新, 田作基, 王红军, 马锋, 吴义平. 2018. 全球油气资源潜力与分布. 石油勘探与开发, 45(4): 727~736.
参考文献
吴福元, 徐义刚, 朱日祥, 张国伟. 2014. 克拉通岩石圈减薄与破坏. 中国科学: 地球科学, 44(11): 2358~2372.
参考文献
许志琴, 杨经绥, 嵇少丞, 张泽明, 李海兵, 刘福来, 张建新, 吴才来, 李忠海, 梁凤华. 2010. 中国大陆构造及动力学若干问题的认识. 地质学报, 84(1): 1~29.
参考文献
杨文采. 2014. 从地壳上地幔构造看大陆岩石圈伸展与裂解. 地质论评, 60(5): 945~961.
参考文献
郑永飞, 赵子福, 陈仁旭. 2007. 大陆碰撞和超高压变质的化学地球动力学: 来自中国大陆科学钻探的结果. 岩石学报, 23(12): 3078~3094.
参考文献
朱伟林, 崔旱云, 吴培康, 孙和风. 2017. 被动大陆边缘盆地油气勘探新进展与展望. 石油学报, 38(10): 1099~1109.
参考文献
自然资源部. 2020. 全国石油天然气资源勘查开采通报(2019年度). https: //www. mnr. gov. cn/.
目录contents

    摘要

    自21世纪以来,被动陆缘盆地已成为全球油气勘探的重点领域。在统计被动陆缘盆地勘探数据,分析被动陆缘盆地历次理论、技术进展带来的勘探领域的不断突破和油气发现规律基础上,认为有三个方面大的持续发展,在勘探理论上已突破过去围绕裂谷找油,近年发展了坳陷型、转换型陆缘盆地油气成藏理论,提出在被动陆缘半封闭—封闭的局限大型坳陷周缘、转换型被动陆缘转换坳陷带、地幔出露带洋壳上覆远洋浊积砂领域找油的观点,在南大西洋西非段、西南非段、地中海东部、中北大西洋两端、东非海上均取得重大勘探突破;在勘探领域上横向呈现由陆上—浅海—深水—超深水,纵向由斜坡水道—斜坡扇—坡底扇—盐下碳酸盐岩—深水扇发展趋势;在工程技术上随着深水钻探、盐下目标地震识别刻画等技术发展,带动了水深3000 m以上目标钻探和勘探突破。全球被动陆缘早期勘探主要在墨西哥湾周缘、南大西洋两岸中段,近年来逐步向中-北大西洋两岸、东非沿岸、北极等领域转移,未来被动陆缘油气勘探越来越走向远洋超深水、盐下、深层、极地等领域。

    Abstract

    Since the beginning of the 21st century, there has been a growing interest in passive marginal basins for global oil and gas exploration. According toexploration data statistics and advancements in theoretical and technological approaches, three keyaspects of sustained developmenthaveemerged. In terms of exploration theory, there has been a significant shiftfrom focusingsolely on rifts to the recent development of theories on sag-type and transform-type hydrocarbon accumulation in passive continental margin basins. This has led to theproposalof exploringoil in large sag margins, transform sag belts in passive continental margins, and the overlying far offshore turbidite sand in the mantle-exposed oceanic crust. Significant exploration breakthroughs have been achieved in the various regions, including the West African segment of the South Atlantic, the Southwest African segment, the eastern Mediterranean, both ends of the central and northern Atlantic, and the East African offshore areas. From an exploration perspective, there is a clear trend of horizontal development, moving from onshore to shallow water, deepwater, and ultra-deep water. Additionally,there is a vertical progression from slope channels to slope fans, base-of-slope fans, sub-salt carbonates, and deepwater fans.In terms of engineering technology, the development of deepwater drilling and seismic identification and characterization of sub-salt targets has greatly contributed to breakthroughs in drilling and exploration targets beyond a water depth of 3000m. Initially, exploration efforts onpassive continental margins were mainly focused on the Gulf of Mexico margins and the mid-sections of both sides of the South Atlantic. However, in recent years, exploration has gradually shifted towards the mid-northern Atlantic, the coast of East Africa, the Arctic, and other areas. In the future, the exploration for oil and gas in passive continental margins is expected to increasingly focus on far offshore ultra-deepwater, sub-salt, deep-sea, and polar regions.

  • 被动大陆边缘盆地,简称被动陆缘盆地,也称离散型大陆边缘盆地,也有人称之为大西洋型大陆边缘或不活动型大陆边缘盆地(Bally et al.,1980; Edwards et al.,1990)。由陆内裂谷(基底为陆壳)到陆间裂谷(窄洋壳)出现洋壳后,软流圈继续扩张,带动岩石圈向洋中脊两侧运动,形成开阔的新生大洋,此时大陆边缘如放置于传送带上被动地向洋中脊两侧搬运,称之为被动大陆边缘(Hess,1962)。随着新的大洋扩展,被动大陆边缘发生热沉降,加上由于沉积物负荷的重力作用导致的区域性挠曲沉降,形成大范围的沉积棱柱体,分布于陆壳及洋壳上,称之为被动大陆边缘盆地。

  • 自20世纪末期特别是21世纪以来,随着深水—超深水勘探大发现领域的不断突破,被动陆缘盆地大油田发现数量和可采储量在全球占比均达到55%以上。随着勘探领域突破,早期认为的油气勘探禁区如洋壳上部、远洋高地带等也取得突破,有必要对被动陆缘盆地油气勘探历程、油气富集控制机制及成藏领域作再回顾与再认识。

  • 1 被动陆缘盆地勘探现状及历程

  • 据统计(IHS2022)全球共发育被动陆缘盆地137个,总沉积面积3392×104km2,其中有66个被动大陆边缘盆地有油气发现,其中可采储量规模超过15.9×108m3被动大陆边缘盆地有20个(图1、图2)。

  • 全球被动大陆边缘盆地共发现大油气田(石油可采储量大于79.5×106 m3,天然气可采储量大于840×108m3)342个,可采储量868×108 m3,占总发现可采储量的14.5%。其中待开发油气田78个,总可采储量209×108m3(石油37×108 m3,天然气175×1011 m3)。统计2000年以来油气大发现,在被动大陆边缘盆地累计发现可采储量133×108 m3,占全球油气大发现总可采储量的57%以上。同时该类盆地待发现可采资源量规模达 1645×108m3,占全球常规油气62%,勘探潜力巨大(Hess et al.,1962; Schenk,2012; IHS,2023)。特别是近十多年来,大西洋两岸、环印度洋、墨西哥湾、地中海等地区的被动陆缘盆地持续获得勘探突破,例如2015年以来圭亚那盆地深水坡底扇巨型油气田持续发现并新增石油可采储量13×108m3,是我国2019年全年新增石油可采储量1.86×108m3的7倍,油田开发全成本仅二十几美元/桶(Schenk,2012; IHS,2023; 自然资源部,2020),被动大陆边缘盆地已成为当前乃至未来几十年全球油气勘探的最重要领域(Mohn,2011; Zou et al.,2015)。

  • 图1 全球被动陆缘盆地及油气发现分布图

  • Fig.1 Oil and gas discovery distribution map of the global passive marginal basin

  • 图2 被动陆缘盆地规模性油气发现(可采储量大于16×108 m3)分布图

  • Fig.2 Distribution map of large-scale oil and gas discovery in passive marginal basins (recoverable reserves greater than 16×108 m3 oil equivalent)

  • 被动陆缘盆地勘探始于美国墨西哥湾、北大西洋和南大西洋。早期的勘探层系主要为被动陆缘盆地裂陷构造层和陆缘构造层,20世纪20年代在墨西哥湾陆上开始油气勘探,1931年取得发现,1937年第一个油田投产。从30年代在美国北大西洋和南美南大西洋开始规模勘探,到目前为止油气发现大致经历四个阶段(图3):

  • 第一阶段为早期勘探阶段(1930~1950年),以陆上勘探为主,该阶段油气发现层系主要为裂陷期构造圈闭,油气发现规模小,属于初期勘探阶段,典型如1941年巴西雷康卡沃(Reconcavo)被动陆缘盆地陆上裂陷层系发现了Candeias油田,储量达19×106 m3,带动了巴西菩提瓜尔(Putiguar)盆地陆上裂陷层勘探突破和西非加蓬盆地内陆坳陷勘探突破。

  • 第二阶段为浅水勘探阶段,随海上钻探、二维地震和测井技术发展,大规模勘探开发和储、产量稳定增长阶段(1950~1980年)。1955年西非宽扎盆地浅海陆缘层三角洲砂岩发现Benfica油田,带动了对全球被动陆缘浅水区斜坡三角洲砂岩勘探,1958年尼日尔三角洲盆地陆架发现巨型油田揭示了被动陆缘盆地大型三角洲砂岩勘探领域,并在1964年发现第一个浅水巨型油田Okan油田。安哥拉下刚果-刚果扇盆地与尼日尔盆地同期于1950年代开始勘探,早期聚焦陆上和滨岸的下刚果次盆,但未获大的突破,直到60年代随地震方法和海上钻探技术发展,勘探目标转向刚果扇三角洲储层,并在1968年N'Kassa128-1井中新统三角洲砂岩获得突破,两年后在N'Kassa128-3井获得7400桶/天高产油流,揭开了刚果扇次盆深水扇三角洲勘探面纱;1970年巴西开始在大坎波斯盆地水上勘探,在坎波斯盆地浅水陆缘层斜坡水道砂岩持续发现Namorado(30×106 m3),Enchova(33×106 m3),Cherne(46×106 m3),Bonito(30×106 m3),Linguado(30×106 m3)和 Corvina(23×106 m3)等37个油田,证实了被动陆缘浅水区斜坡三角洲砂岩的勘探潜力。

  • 第三阶段为半深水—深水勘探阶段(1980~2000年),依托三维地震技术和深水钻探技术实现了勘探领域进一步延伸。1984年坎波斯盆地进入半深水斜坡扇勘探,同年3月发现Marimba油田(74×106 m3),9月发现第一个巨型油气田Albacora油气田(167×106 m3),1985年发现第二个巨型Marlim油气田(458×106 m3),证实了南Marlim构造的成藏潜力。巴西深水勘探突破带动了尼日尔三角洲深水勘探,1994年开钻第一口深水井Congo,1995年发现第一个深水Oyo油田,1996年第一个深水巨型油田Bonga油田发现,1997年Dolivo等持续大发现,其后西非的加蓬盆地、宽扎盆地也开始了半深水—深水勘探并取得了规模不等的发现。

  • 第四阶段为深水—超深水勘探大发现阶段(21世纪开始至今),超深水钻探和开发技术以及地震成像技术发展推动了超深水勘探大发展。自1970年代就按照坎波斯盆地聚焦陆缘斜坡扇勘探思路开展勘探工作的桑托斯盆地虽钻探100余口探井但一直没有突破,受坎波斯盆地深水远端带中央凸起勘探突破启发,自1990年代以来勘探领域转向裂陷层勘探,巴西石油公司认为裂陷期局限湖盆环境烃源岩具有生烃潜力,坳陷期碳酸盐岩和后期顶部盐岩是良好的储盖组合,通过持续勘探,2006年以来陆续发现盐下碳酸盐岩巨型油气田Tupi、Carioca和Jupiter等,截止2022年底已发现可采储量89×108 m3。在碎屑岩领域,继2007年在科特迪瓦盆地转换陆缘盆地坡底扇获得突破后,2010年在塞内加尔盆地坡底扇获得突破,2015年在圭亚那盆地斜坡扇-深水扇砂体获得突破,2019年在西南非海岸盆地地幔剥露带洋壳上覆浊积砂获得突破(IHS,2023),总体呈现离陆越来越远、水体越来越深、从近端带—远端带—地幔剥露带的总趋势。

  • 图3 被动陆缘盆地勘探阶段划分图

  • Fig.3 Division of exploration stages in passive marginal basins

  • 2 21世纪以来被动陆缘油气勘探大发现及典型发现分析

  • 2.1 21世纪以来被动陆缘油气勘探大发现

  • 进入21世纪以来,全球共获得94个大油田发现(可采储量大于80×106 m3),油气可采储量共232×108m3。其中,被动陆缘盆地共获得61个大油田发现,油气可采储量共133×108m3,被动陆缘盆地大油田发现个数占大油田总发现个数的65%,油气可采储量占比57%。

  • 从各盆地发现大油田总储量和个数来看,桑托斯盆地发现个数最多、总规模最大,共发现14个大油田,合计可采储量67×108m3,其次是圭亚那盆地,共发现14个大油田,合计可采储量16×108m3,科特迪瓦盆地、塞内加尔盆地、东地中海盆地、西南非海岸盆地、坎波斯盆地和墨西哥湾盆地大油田发现规模在6.5×108~9.5×108m3之间(表1)。

  • 表1 2000年以来前10个被动陆缘盆地大油田储量发现统计表(据IHS,2023

  • Table1 Statistical table of large oil fields reserves discovered in the top 10 passive marginal basins since2000 (after IHS, 2023)

  • 从发现时间来看,2000~2010年共发现大油田25个,油气可采储量74×108m3,主要发现集中于墨西哥湾盆地、苏雷斯特盆地、尼日尔三角洲盆地、桑托斯盆地等;2011~2020年共发现大油田24个,油气可采储量共34×108m3,主要发现集中于圭亚那盆地、桑托斯盆地、墨西哥湾盆地、苏里南盆地等;2021~2022年共发现大油田11个,油气可采储量共25×108m3,主要发现集中于圭亚那盆地、西南非海岸盆地、桑托斯盆地和坎波斯盆地等(表2)。大油田发现集中于大西洋两岸被动陆缘盆地,其次是北美的墨西哥湾周缘被动陆缘盆地,福克兰岛、挪威等地区被动陆缘盆地也有少量大油气田发现。

  • 表2 2000年以来储量前20的大油田发现信息表(据IHS,2023

  • Table2 Discovery information of the top 20 major oil fields since2000 (after IHS, 2023)

  • 2000年以后,全球共获得104个大气田发现(可采储量大于840×108m3),天然气可采储量共332×1011m3。其中,被动陆缘盆地共获得37个大气田发现,油气可采储量共95×1011 m3,被动陆缘盆地大气田发现个数占大气田总发现个数的36%,可采储量占比28%。

  • 从各盆地发现大气田总储量和个数来看,鲁伍马盆地发现个数最多、总规模最大,共发现8个大气田,天然气可采储量40236×108m3;其次是塞内加尔盆地,共发现5个大气田,可采储量14336×108m3;黎凡特盆地也有较多天然气大发现,发现储量10777×108m3;北卡那封盆地、坎波斯盆地和南喀拉海盆地大气田发现规模在4000×108~8000×108m3(表3)。

  • 从发现时间看,2000~2010年共发现大气田12个,天然气可采储量34664×108m3,发现集中于北卡那封盆地和黎凡特盆地;2011~2020年共发现大气田23个,天然气可采储量57784×108m3,发现集中于鲁伍马盆地、塞内加尔盆地、坦桑尼亚盆地等; 2021~2022年共发现大气田2个,天然气可采储量3130×108m3,均位于坎波斯盆地(表4)。大气田发现集中于东非、西非北段、北极、东地中海、澳西北以及中东中阿拉伯等地区。

  • 表3 2000年以来前10个被动陆缘盆地大气田储量发现统计表(据IHS,2023

  • Table3 Statistical table of large gas fields reserves discovered in the top 10 passive marginal basins since2000 (after IHS, 2023)

  • 表4 2000年以来大气田发现信息表(据IHS,2023

  • Table4 Discovery information of large gas fields since2000 (after IHS, 2023)

  • 总体看,目前全球被动陆缘盆地勘探主要集中在五大领域,一是大型三角洲领域,包括美国墨西哥湾新生代储层、巴西大坎波斯、尼日尔三角洲、刚果等;二是深水碳酸盐岩和浊积岩领域,包括桑托斯、刚果扇、塞内加尔深水坡底扇、科特迪瓦、莫桑比克、挪威伏令盆地外带、澳大利亚埃克斯茅斯外带;三是小型三角洲领域,包括阿拉斯加北坡、加拿大波佛特、喀麦隆Isongo、圭亚那、南非奥兰治盆地、莫桑比克、鲁伍玛、坦桑尼亚盆地等;四是斜坡扇领域,包括加纳、赤道几内亚、安哥拉、加蓬等;五是碳酸盐岩台地及边缘,包括巴基斯坦、毛里塔尼亚、摩洛哥等(图4)。

  • 2.2 勘探大发现带来的启示

  • 从21世纪勘探大发现的特点看,有三点重要启示:

  • (1)对被动陆缘盆地类型新认识推动勘探大发现:以世界典型的科特迪瓦-加纳转换型大陆边缘(transform margin)为例。早期认为其形成与南美大陆和非洲大陆的分离有关,为拉张型被动陆缘盆地,勘探主要聚焦在陆上裂谷发育带和浅水斜坡带,发现的大部分油气田分布在阿比让边缘雅克维尔槽地以南构造圈闭中,如盆地西部的莱恩油气田,埃斯皮诺油气田和魁北克高地油田。发现目标主要是由裂陷层中阿尔布阶(及部分阿普特阶)烃源岩向阿尔布阶上部地层圈闭供油,以塞诺曼不整合面和泥岩为封盖条件,形成自生自储的油气藏。圈闭类型主要是北西西-南东东向的背斜和断块、断垒、断阶、穹隆构造,明显受圣保罗断层及其陆上延伸部分Lagunes断层等大型断裂的控制,在整个20世纪70代初到90年代末,针对下白垩统目的层的构造圈闭投入大量二维地震和钻井工作量,发现油气田60多个,但可采储量石油46×108m3,凝析油4×108m3,天然气700×108m3,资源规模普遍偏小,大部分为非经济油田。进入21世纪,随着对深水勘探认识程度的加深,认为早白垩世阿普特期—阿尔布期,盆地在圣保罗和罗曼彻(Romanche)断裂控制下,横向转换拉张,在这些大型转换断层之间形成了陆-陆转换型盆地(类似于拉分盆地),阿尔布期末—塞诺曼期由于热沉降,罗曼彻转换断层沉陷带内的沉积物变形并抬升,沿构造东南部形成了规模很大、沿罗曼彻转换断层分布的“科特迪瓦—加纳边缘脊”(也称几内亚脊、外几内亚脊)(图5),在边缘脊控制形成的局限环境,形成了晚白垩世早期优质烃源岩,为油气富集创造了条件。基于这些认识,Oranto Petroleum、Canadian Natural Resources、Tullow Oil、Kosmos Energy等一些知名勘探公司纷纷进入该盆地开展勘探,完成了大量二维、三维工作量,针对上白垩统地层圈闭部署了一批钻井工作量,取得了Jubilee Baobab、Tweneboa、Teak 1、Paon 1、Odum 等大中型油气发现45个,石油可采储量415×108m3,凝析油可采储量24×108m3,天然气可采储量1960×108m3。大西洋转换带局限环境控制下坳陷层生烃-陆缘层盆底扇成藏体系新认识带来大西洋转换陆缘领域浊积砂岩油气大发现,带动了大西洋两岸转换型陆缘油气勘探,其后的塞内加尔盆地、圭亚那盆地、菩提瓜儿盆地陆续实现勘探大发现,截至目前发现大油气田32个,新增可采储量约24×108m3以上。据Westwood(2018)统计赤道段钻探发现,该区域早期勘探目标在斜坡三角洲砂岩钻探126口井发现储量877.04×108m3,占总发现储量42%,而针对坳陷层盆底扇12口井发现储量1097.10×108m3,占总发现储量53%,展示转换型陆缘盆地坡底扇巨大勘探潜力。

  • 图4 近20年全球被动陆缘盆地大型油气田发现分布图(紫色为部分代表性发现井)

  • Fig.4 Distribution map of large oil and gas discoveries in passive marginal basins in the past two decades (some of the discovery wells are shown in purple)

  • (2)被动陆缘盆地勘探领域认识转变带动勘探大发现:以桑托斯盆地为例,该盆地最早的勘探活动开始于20世纪70年代,受认识影响,勘探目标集中在盐上下白垩统顶部到上白垩统的水道砂岩和斜坡扇砂岩,一直到20世纪末期钻探82口野猫井,仅有4个商业发现,最大的发现为1-RJS-539井,在上白垩统Ilhabela组浊积砂岩中探明储量0.26×108m3。进入21世纪以来,巴西石油公司开展了进一步成藏机理研究,认为受特里斯坦热点影响,桑托斯盆地基底是早于巴拉那盆地陆壳溢流玄武岩(133~130 Ma)形成的下白垩统玄武岩和凝灰岩,其上发育一套自陆向海的砾岩—砂岩—泥页岩沉积序列,厚度约为1500 m(图6)(Peron-Pinvidic et al.,2013)。到下白垩统阿普特阶沉积时期,受古大西洋南部里奥格莱德-沃尔维斯火山脊阻挡,在巴雷姆阶—早阿普特阶沉积期强烈薄化拆离的作用下形成大型湖盆沉积环境,早期沉积了湖相泥岩,形成优质烃源岩,到下白垩统阿尔布阶沉积时期,南大西洋逐渐打开,南部海隆的阻隔逐渐消失,海水灌入,沉积了2期碳酸盐岩(早期为生物碎屑滩,岩性主要为贝壳灰岩;晚期为微生物礁沉积,岩性主要为叠层石灰岩),后期湖盆变浅,海水进入,沉积了巨厚的盐岩,阿尔布阶盐沉积的最大厚度可达4000 m,组成了断陷层及坳陷层优质烃源岩-陆缘层深海扇及浊流沉积高孔储层-被动陆缘晚期巨厚盐岩+泥岩盖层的良好生储盖组合,并结合由于裂陷期构造和后期盐构造形成的大量背斜型圈闭,为油气富集成藏、形成大型油气田创造了条件(Taylor,1910; Guerra et al.,2012)。按照新认识,巴西石油公司率先把勘探目标瞄向盐下碳酸盐岩,自2004年开始实施钻探,整个21世纪第一个十年钻探野猫井99口,2006年在水深约2000 m处获得Tupi油田这个全球重要的深水巨型发现后,又相继发现Cernambi、Corcovado、Guara、Jupiter、Lula和Mexilhao等巨型油田,揭开了大西洋两岸盐下碳酸盐岩勘探面纱,近年在宽扎盆地、坎波斯盆地等均取得发现。

  • 图5 科特迪瓦盆地地质剖面图

  • Fig.5 Geological profile of the Cote d'Ivoire basin

  • 图6 桑托斯盆地地质剖面图

  • Fig.6 Geological profile of Santos basin

  • (3)被动陆缘盆地理论认识新进展推动勘探突破:以近两年勘探热点领域西南非-南非海岸盆地为例,该盆地早期勘探活动始于20世纪60年代末到70年代,主要在大陆架区域开展了二维地震采集和磁测量,1973年雪佛龙公司在陆架西南部水深167 m钻探了第一口探井Kudu 9A1井,目标层位为上白垩统砂岩,并在井深4450 m钻遇天然气砂岩层76 m,但由于经济性差放弃。其后1987年纳米比亚国家石油公司在Kudu构造外侧钻探9A-2井获得气显示,但测井解释孔隙度仅0~11%,渗透率0.01×10-3 μm2,该井被放弃,接着1988年该公司在构造西南部4 km钻探第三口井9A-3井,钻遇砂岩147.5 m,DST测试日产气126×104m3,但测试期间地层压力快速下降,证明规模有限而放弃。此后虽在1994年钻探1911/15-1井钻遇塞诺曼阶—土伦阶生油源岩、1995年钻探2815/15-1井获少量气显示,1998年钻探2513/08-1和2313/05-1井均为干井。在南非地区,1976年SOEKOR公司先后钻探的Ba-A-2和Ba-A-1井均失利,1979年钻探的K-A-1和K-B-1井仅见到气显示,随后的80年代钻探了23口野猫井大多见到气显示,但1987年钻探的A-K-1井成为第一个发现井,在阿尔布阶河流-三角洲砂岩层获得气发现,测试日产气112×104m3,由于储量规模仅88×108m3不够经济被放弃,后期陆续钻探19口井,虽有个别发现但规模不大。21世纪特别是2008年以来,该区域相关国家同意国际公司进入勘探开发领域,带动了地质认识。研究认为,作为与巴西海域板块构造“共轭”的一部分,纳米比亚奥兰治盆地横跨洋陆转换带,坳陷期,南端福克兰群岛和北部威尔维斯火山脊对西南非海岸盆地起到明显的障壁作用,从而使得盆地处于半封闭海湾缺氧环境,外盆整体披覆于SDR(sea-ward dipping reflector)与洋壳之上(图7),SDR形成的外围高地前端区域坳陷环境沉积了巨厚的富含有机质的深海泥岩,为油气形成创造良好条件。源岩紧邻火山喷发区,促进了源岩成熟,同时早白垩世阿尔布期,奥兰治河受非洲大陆隆升而快速发育,浊积水道携带大量物源穿过SDR高地间峡谷沉积至深海平原,具有形成大型浊积扇储层的条件。在该认识指导下,道达尔和壳牌公司先后钻探的Venus和Graff两口超深水探井在下白垩统阿尔布阶盆底扇浊积砂岩获得突破,地质储量达47×108m3,揭示了被动陆缘盆地洋壳顶部远洋构造带成藏潜力,具有相似沉积特征的佩鲁塔斯盆地、下刚果盆地远端带洋壳上部均为远景勘探领域。

  • 3 被动陆缘勘探理论及技术进展

  • 对被动陆缘的认识是一个循序渐进的过程,美国地质学家Taylor(1910)和德国气象学家Wegener(1912,1915第一次认识到大西洋两岸南美洲和非洲边缘形态可以相当好地吻合,并由此提出了著名的大陆漂移假说,确定了非常简单的大陆伸展到破裂漂移的南大西洋发育史。期间Ampferer(1906)提出了暗流(undercurrents)理论,Schwinner(1920)提出了地热流(currents in the Earth's interior)理论,英国地质学家Holmes(19311944)提出地幔对流理论,Amstutz(1951)提出了俯冲和推覆概念,所有这些理论或概念构成了早期地球动力学的运动模式。

  • 1954年随着第1口水上探井的钻探成功,标志了水上现代石油工业的诞生,进而推动了被动陆缘理论的发展,特别是Hess(1962)提出海底扩张理论并随着1968年深海钻探揭示的洋底沉积物和大洋中脊沉积体相吻合被证实。这些理论认识推动了板块理论形成,法国Le Pichon(1968)、美国的Morgan(1968)和英国的McKenzie et al.(1970)发展完善并提出了“板块构造论”。板块构造理论建立以来,岩石圈的伸展破裂和洋盆的发育被作为Wilson旋回的重要演化阶段而强调,人们开始关注陆壳和洋壳之间的结构关系。从早期纯剪切模式到后来的单剪模式,建立洋陆转换边界(ocean-continent boundary,简写为OCB)(McKenzie et al.,1978Tucholke et al.,2007Welford et al.,2010)。特别是1980年代以来,对Iberia-Newfoundlan深海边缘的大洋钻探(ODP)以及大量的高质量地球物理探测和综合研究,形成了洋陆过渡壳现代概念和OCT(ocean-continent transition)露头概念,进一步推动被动陆缘和油气理论的联系(Tucholke et al.,2007Welford et al.,2010Reston et al.,2010Mohn et al.,2012Peron-Pinvidic et al.,2013)。通过对全球被动陆缘勘探历程和理论、技术进展分析,四次大的理论认识和技术发展带来了四大领域油气勘探突破。

  • 图7 奥兰治盆地结构及油气大发现

  • Fig.7 Structure and oil and gas discovery in Orange basin

  • 3.1 浅水斜坡水道和斜坡扇勘探突破

  • 20世纪60年代末期至70年代初,随着板块构造理论被接受,推动了被动陆缘浅水斜坡水道和斜坡扇认识突破。该时期美国、加拿大的地质学家们开展了对北美大西洋边缘的大量研究,提出了大西洋型边缘(被动陆缘或离散陆缘)、转换边缘和主动边缘分类,认为大西洋型边缘包含海岸平原、陆架、陆坡和陆基,建立了精细的滨岸和陆架环境碎屑岩沉积作用和沉积模式,推动了海岸环境油气成藏认识(Bird and Isacks,1972; Leblanc,1972; Cox,1973; Milliman,1974; Enos,1974; Ginsburg,1974; Swift,1974; King,1976; Bally et al.,1980Kraft and Briggs,1983)。Turcotte(1980)Bott(1980)Watts and Steckler(1981)Falvey(1974)Meissner(1981)等第一次描述了被动边缘演化的三个构造层(演化阶段),即裂谷阶段、漂移开始阶段和主要漂移阶段,提出了裂谷构造层生油,漂移阶段的陆坡水道碎屑岩是重要的储层(Peltier,1980; Turcotte,1980; Bott,1980; Watts,1981)。随着对被动陆缘地质认识的加深,科研人员认识到海上油气勘探领域的重要性,急需新的勘探技术。这个时期,在地质技术上,依赖于地震反射剖面技术,美国科学家们Ewing and Ewing(1959)Drake et al.(1959)进行了早期地震折射方法研究,认识到在大西洋大陆边缘陆架外部“基岩山脊”(现称前缘脊)的存在,1973~1978年, Schlee et al.(1976)Grow and Markl(1977)Rabinowitz(1974)通过改进型地震反射剖面研究了陆架和陆坡下部沉积层,第一次直观观察到沉积历史与具有热流作用结果的均衡地壳减薄模型之间的关系,McKenzie(1978)建立了裂谷的“麦肯齐”纯剪切拉伸模型作为各种不同软件中建模的坚实基础,为推进被动陆缘勘探向浅水发展提供了支持。在工程技术上,由早期钻井驳船演变来的潜水钻机在1948年投入使用并逐渐完善,1954年6月,由美国工程师Charlie设计制造了具有里程碑式的第一台水上移动钻井平台,推动了海上的规模性勘探,到1980年代中期,全球海上每年移动钻井平台达到750个,勘探井已经可以在2000 m水深中钻探,海上船员船、供应船、起重驳船、下水驳船、铺管驳船、潜水设备、海底车辆、直升机和地震船的能力和数量也出现了类似的发展模式,海上勘探得到蓬勃发展,到1986年每年钻探3500余口井,已经钻探海上井64000余口。所有这些理论认识和技术发展带动了对全球被动陆缘盆地新认识,在尼日尔三角洲盆地、加蓬海岸盆地、下刚果盆地、墨西哥湾盆地、坎波斯盆地的陆架和陆坡水道砂岩和三角洲砂岩领域持续取得大发现。

  • 3.2 转换型被动陆缘勘探突破

  • 转换型被动陆缘在20世纪70年代随着被动陆缘分类研究首次提出后,作为一个独立的科研对象出现(Fail et al.,1970; Le Pichon and Fox,1971; Mascle,1976; Rabinowitz and La Brecque,1979; Falvey and Middleton,1981; Meissner,1981)。尽管后续不同学者针对全球不同地区作了一定研究,L159大洋钻探计划也作为唯一的一个专门针对转换型陆缘的科学钻探项目得以顺利实施,但相关研究仍相对较少,认识较为薄弱(Dingle,1973; Bischoff and Henyey,1974; Burk and Drake,1976; Scrutton,1979; Mascle and Blarez,1987; Ben-Avraham et al.,1997; Lorenzo,1997)。一直到进入21世纪,随着深水勘探进展,国际勘探公司如Kosmos等认识到转换型陆缘在全球广泛分布,通过研究大西洋周缘,认为转换型陆缘坳陷期由于转换脊作用形成的局限环境是形成晚白垩世早期优质烃源岩重要场所,并在2007年加纳海上科特迪瓦盆地勘探发现Jubilee等系列大油田,可采储量达6.2×108 m3,进而带动了全球转换陆缘油气勘探,在中大西洋塞内加尔盆地、圭亚那盆地和东非的鲁伍玛盆地持续获得勘探突破,揭示了转换陆缘盆地的勘探潜力。2016年,de Lepinay et al.(2016)根据Kinematic和Exxon等的研究成果,指出了全球61个转换陆缘的分布,转换型陆缘占全球大陆边缘累计长度的16%(Basile,2015)。转换断裂发育是转换陆缘形成的必要条件,与大陆裂解和大洋增生共生的转换断裂运动学演化可划分为3个阶段,即陆内转换断裂、主动转换陆缘和被动转换陆缘(intra-continental transform faulting,active transform margin,passive transform margin)(Mascle and Blarez,1987)。发育于洋-陆过渡带的基底隆起或基底脊,介于大陆斜坡和深海平原之间的边缘脊是转换型陆缘最典型特征之一(de Lépinay et al.,2016)。

  • 3.3 深水盐下碳酸盐岩及坡底扇油气勘探突破

  • 随着深海钻探技术、地球物理方法发展和被动陆缘地质研究认识深化(Funck et al.,2003)。Manatschal(2004)Mohn et al.(2011)在总结前人认识和详细研究目前出露在阿尔卑斯造山带的特提斯被动陆缘的露头剖面基础上,提出了迄今较为完整的被动陆缘构造单元划分方案,从陆向洋方向依次区分出近端带(proximal domain)、细颈化带(necking zone)、远端带(distal margin)和OCT四个带(Manatschal,2004; van Avendonk et al.,2009)。这一划分方案已经广泛运用到了全球被动陆缘的研究中,每一个构造单元都对应了岩石圈伸展破裂的一个特定的变形阶段——伸展阶段、减薄阶段、剥露阶段、岩浆阶段、大洋阶段,并导致了不同类型盆地的规律排列(Torsvik et al.,2009)。油气勘探前景巨大的深水—超深水区地壳强烈薄化,发育了规模巨大的拆离盆地。这一认识正在改变前人认为深水区仅发育小型断陷盆地的传统认识,为深水区规模烃源岩和大型储集层发育的可能性提供了重要的理论依据,对深水油气勘探具有重要的实际应用价值。同时期,深部地震观测和深海钻探揭示了被动边缘地球动力学的更多多样性,以深水勘探为主并向超深水迈进,这个阶段随着被动陆缘成藏理论的发展,盐下地震深度成像技术、深水储层沉积模型预测能力的提高以及深水工程钻探技术的发展促进了巴西深水盐下碳酸盐岩以及西非深水浊积砂岩的勘探。截止目前,深水勘探已经发现约1500个油气田,主要分布在巴西、西非、墨西哥湾、挪威西海岸、东非和北极深盆,特别是近十年来,有70%的大型油气发现来源于被动陆缘深水勘探(童晓光等,2018)。

  • 3.4 洋壳上覆地层勘探领域突破

  • 对被动陆缘早期的研究普遍认为洋壳上覆地层沉积薄,源岩不发育,储层普遍薄或不发育,物性差。近年来,随着勘探技术进步,认识到在洋壳地区,由于海底洋流和缺氧事件,沉积厚度巨厚情况下足以形成席状分布的热源以补偿下地壳热量不足,促进坳陷期烃源岩成熟,并和披覆于洋壳之上的大型三角洲远端带形成的浊积砂岩储层匹配形成油气藏。如近几年来在尼日尔三角洲、刚果扇远端带、南非大型三角洲远端带的大发现均为该类油气藏,研究认为莫桑比克近海异常无结构的简单进积楔,也可能是位于过渡洋壳之下的有利目标区(Marzoli et al.,1999)。

  • 4 被动陆缘未来发展领域判断

  • 虽然对被动陆缘取得了大量勘探认识和勘探领域上的突破,但随着深层地震观测和深海钻探技术发展,以往基于简单地球动力学模型描述的被动陆缘结构,传统的从时间上赋予“裂谷前、同裂谷和漂移期”的几何分类影响了对被动陆缘中区域古构造相关性、不整合面、层序边界、热流和构造史的认识;深层成像技术也揭示了过去认为的主要三角洲“移动基层”(mobile substrate)由于盐或泥岩运动导致解体的错误假设。前人对大陆岩石圈裂解过程及其动力学机制开展了大量研究(Watts,2001郑永飞等,2007Armitage et al.,2010; 许志琴等,2010Huismans et al.,2011; 吴福元等,2014杨文采,2014; Biari et al.,2017; Nirrengarten et al.,2018)。但是,圈层耦合如何控制被动大陆边缘伸展、岩浆活动和断陷-坳陷发育,以及如何定量重建沉积盆地动态演化过程,是被动大陆边缘盆地研究必须首先回答的基础地球科学问题。冯志强等(2023)在分析已有被动陆缘盆地分类的基础上,从动力学机制、岩石圈性质入手,结合板块基底性质,开展了被动陆缘划分(表5),分为“两类四型”盆地,即两类为转换拉张型和热隆拉张型,后者结合基底性质又分为三型即窄深断坳型(年轻基底型)、伸展型(古老基底韧性主导型)、火山断陷型(古老基底脆性主导型)。

  • 火山断陷型盆地的岩石圈时代古老(如太古宙地盾),下地壳和岩石圈地幔厚度大、结晶程度高、含水率低、地温梯度低,下地壳与上地壳耦合性好,岩石圈强度大,塑性变形能力差,以刚性变形为主导,受力时很难破裂变形,多呈整体隆升或沉降(Watts and Burov,2003),岩石圈一旦破裂,大量的岩浆上涌、凝固形成新地壳;伸展型盆地的岩石圈时代较老(元古宙),岩石结晶程度相对较高、含水率中等、地温梯度中等(莫霍面温度450~600℃),下地壳和岩石圈地幔厚度大(通常100~200 km),与刚性的上地壳耦合性差,强度远大于上地壳,是承担外来力的主体(Zoback et al.,2001),岩石圈强度较大,抗应变能力较强,以韧性变形为主导(Goren et al.,2008),受力时上地壳在下地壳和岩石圈地幔蠕动变形主导下发生破裂(McKenzie,1978);窄深断坳型盆地的岩石圈时代较新(古生代和部分新元古代)。下地壳和岩石圈地幔薄(通常50~100 km)、岩石结晶程度低、含水率高、地温梯度高(莫霍面温度550~850℃),抗应变能力弱,与上覆刚性上地壳的耦合程度低,岩石圈强度弱(Burov and Watts,2006)。当岩石圈受力时,上地壳是承受外来力的主体(Burov,2011)。下伏韧性下地壳和岩石圈地幔相对于上覆刚性上地壳很弱(Tesauro et al.,2012),拉伸作用下岩石圈易断裂,岩浆强烈上涌。这一分类解决了被动陆缘结构复杂性,建立了分类与油气成藏主控因素之间的联系,为优选潜力盆地和领域创造了条件。

  • 表5 历史上主要的被动陆缘划分类型及依据对比

  • Table5 Main division types of passive continental margin and basis comparison in history

  • 结合盆地分类认识,在全球重点被动陆缘盆地分类划分基础上(图8),从构造特征和油气成藏潜力等多方面综合评价,未来发展领域除了目前勘探热点领域如圭亚那斜坡扇、塞内加尔坡底扇、桑托斯盐下湖相碳酸盐岩等,前沿领域主要在四类盆地五大领域即中-北大西洋窄深断坳型盆地、南非-东非转换型陆缘盆地、西南非-东南美火山断陷型盆地和南大西洋中段宽缓断坳型盆地。

  • 图8 四类盆地重要勘探领域分布图

  • Fig.8 Distribution map of important exploration areas in four types of basins

  • 4.1 中-北大西洋窄深断坳型盆地

  • 中-北大西洋是随着联合古陆裂解从南向北、从侏罗系到古近系持续开裂(图9),该区基底为古生代(部分新元古代),由于岩石圈强度弱,在经历侏罗纪、白垩纪和古近纪三期裂解和地幔热隆拉伸作用下岩浆强烈上涌,影响了北大西洋北部的海底扩张,格陵兰和挪威-英国两侧陆缘在古新世岩浆作用活跃,在盆地靠近大洋一侧不仅发育了大范围厚层的熔岩,也发育了大量的侵入岩。其中,在非洲古陆与劳亚古陆间发育一条直布罗陀裂谷系(Maghrebian-Gibraltar),沿该裂谷发育的纽芬兰-直布罗陀转换断裂带分隔了中、北大西洋。由于裂谷的分期性和基底差异性,导致北大西洋和中大西洋被动陆缘为窄深断坳型结构。

  • (1)北大西洋被动陆缘盆地:目前油气发现主要富集在挪威海域的伏令盆地、莫尔盆地和法罗-设得兰盆地中生代裂陷层和古新世陆缘层。这些盆地是在加里东褶皱基底之上,经历了中生代裂谷阶段的演化,晚侏罗世钦莫利期—提塘期裂陷内局限海环境沉积的黑色页岩是优质的烃源岩,为油气富集提供了物质基础;侏罗系河流三角洲砂岩、白垩系浊积岩和古新统浊积岩是重要的储层;白垩系和新生界厚层泥岩是优质的盖层。中生代裂陷层仍是北大西洋被动陆缘重要的油气勘探层系,油气藏主要分布于受岩浆活动影响较小的近端带。

  • (2)中大西洋两侧的斯科舍和塞内加尔盆地,虽然裂陷层不发育,但裂陷末期广泛发育盐岩,盐岩的塑性流动、以及陆缘早期板块的旋转运动,在细颈带—远端带形成较深的沉降区,发育优质烃源岩,台缘可形成碳酸盐岩礁体;漂移晚期陆架三角洲-深水浊积砂岩发育(图10),可形成较大规模的构造-地层型油气藏。斯科舍盆地和塞内加尔盆地发现可采储量分别为 11 亿桶和 107 亿桶,其中斯科舍盆地早期发现主要在陆架区,研究认为深水陆坡以浊流沉积形成的砂岩为主要储层,在剖面上可以识别出多种油气富集带,推测斯科舍盆地深水浊积砂岩仍有较大的资源潜力。油气富集带为微盆地底部油气富集带、微盆地侧翼油气富集带、微盆地相关盐脊油气富集带、盐下油气富集带、盐翼深部构造油气富集带和上陆坡扇油气富集带。

  • 4.2 南非-东非转换型陆缘盆地

  • 受南大西洋左旋拉张影响,南部厄加勒斯-福克兰走滑断裂带走滑拉张作用在南非南部形成转换型被动陆缘盆地,而东非由于受控于洋底转换脊Davie断裂带,也形成了东非转换型被动陆缘盆地。形成了南非奥特尼瓜盆地群和东非莫桑比克-鲁伍玛盆地群。裂陷期沉积受控于转换断层作用形成的菱形断陷,早漂移期边缘脊发育利于形成局限环境,可发育优质烃源岩;碳酸盐岩台地型、窄陆架三角洲-坡底扇型和大型三角洲型陆缘沉积体系,在转换脊后端形成良好的油气成藏环境(图11)。

  • 东非海岸被动陆缘盆地裂陷层和陆缘层发育,推测发育三套成藏组合:① 裂陷期碎屑岩成藏组合,以中—下侏罗统浅海相泥岩为潜在烃源岩,以中—下侏罗统陆上及近岸区发育的三角洲碎屑岩为储集层,圈闭类型为与断层有关的背斜圈闭;② 裂陷期碳酸盐岩成藏组合:以中—下侏罗统浅海相泥岩为潜在烃源岩,以陆架、斜坡区断垒之上发育的生物礁、滩相碳酸盐岩为储层,基底之上生物礁建造为圈闭;③ 陆缘期碎屑岩成藏组合,下白垩统海相泥岩为烃源岩,深水区上白垩统浊积水道或盆底扇为储层,形成盐上背斜、盐边遮挡、砂岩尖灭等构造或岩性圈闭。伸展型裂陷叠置陆缘盆地成藏模式为:下生上储,构造位置、沉积相控制储层类型,断层沟通源储,形成裂陷-被动陆缘期构造、岩性多个勘探层系。该类盆地目前勘探程度极低,还未获得勘探突破。

  • 东非坦桑尼亚盆地-穆龙达瓦盆地裂陷期地层薄,上部叠置陆缘期构造层,走滑断裂带控制盆地海上边界,形成一套主要的成藏组合,即白垩系—古近系—新近系碎屑岩成藏组合。中—下侏罗统局限海泥岩为主力烃源岩,上白垩统—新生界三角洲和深水浊积砂岩为储层,浊积扇复合体和区域走滑断层形成相关圈闭。成藏模式为:侏罗系供烃、断层及盐边疏导、上白垩统—新生界浊积砂岩性及构造-岩性型圈闭聚集。成藏的主控因素为浊积砂岩储层、垂向运移通道控藏(烃源岩、盖层广泛分布)。勘探潜力主要位于坦桑尼亚盆地、鲁伍玛盆地海上上白垩统—新生界浊积砂储层与区域走滑断层匹配地区。

  • 4.3 西南非-东南美火山断陷型陆缘盆地

  • 南大西洋的南部区段岩浆活动强烈,为火山断陷型被动大陆边缘。基本特征是发育由大量的、向海倾斜的反射体(SDRs)代表的洪流玄武岩和高速-高密度下地壳,这与大陆裂解期间大规模的火山岩活动相关。南部区段的北部区位于Rio Grande断裂和Salado转换带之间,佩鲁塔斯(Pelotas)和纳米比亚共轭边缘表现为对称的SDRs和对称的洋陆转换带,是在Hauterivian期喷发的Parana-Etendeka 火山熔岩后开始形成,同岩浆大陆岩石圈伸展薄化作用的时间间隔在130 Ma(岩浆侵入喷发结束)和115 Ma之间。发育佩鲁塔斯和奥兰治两个沉积中心。南美洲东岸佩鲁塔斯沉积中心最北部的佩鲁塔斯盆地由于接受陆上巴拉圭河和巴拉那河沉积物输送,形成超8000 m的巨厚沉积层,是南段沉积物厚度最大的盆地,向南各盆地沉积物厚度减小,沉积中心的厚度为3000~4000 m。非洲西岸被动陆缘盆地主要是狭长的沿岸盆地,奥兰治沉积中心沉积物厚达6000 m。

  • 图9 中-北大西洋被动陆缘构造演化期次对比图

  • Fig.9 Tectonic evolution period comparison of Middle-North Atlantic passive margin

  • 图10 斯科舍盆地典型剖面沉积相垂向演变图(据NovaSPANA1600地震测线解释)

  • Fig.10 Vertical evolution of sedimentary facies in a typical profile of the Scotia basin (interpreted by NovaSPANA1600 seismic line)

  • 图11 东非鲁伍玛转换陆缘盆地成藏模式图

  • Fig.11 Model map of hydrocarbon accumulation in the Ruvuma transcontinental basin, East Africa

  • 东南美佩鲁塔斯盆地裂陷期受构造、热沉降影响,随裂谷生长而持续充填裂谷SDRs,不利于裂陷层源岩发育。坳陷期,上倾洋壳未发生明显冷却、沉降,浅水局限海环境发育,有利于生物勃发和有机质富集,厚层上覆陆缘层(3000~5000 m)加上下伏裂陷层火山岩烘烤作用,有利于阿普特阶烃源岩成熟排烃,阿尔布阶—土伦阶最可能发育规模深水浊积岩且距离油源近。目前与其共轭的西南非盆地已在洋壳上覆陆缘层系取得勘探突破,佩鲁塔斯盆地洋壳上覆陆缘层也具有极大勘探远景。

  • 4.4 南大西洋中段伸展型盆地

  • 南大西洋中段伸展型陆缘盆地形成始于白垩纪早期南美洲大陆和非洲大陆的开裂,两岸盆地裂陷层、坳陷层和陆缘层均发育,在早白垩世晚期裂陷-坳陷过渡期局限环境形成区域性阿普特阶烃源岩,坳陷期形成区域性斜坡三角洲砂岩、潟湖相碳酸盐岩储层;盐上源于坳陷层系海相页岩中或者盐窗发育带源于裂陷层系湖相烃源岩的油气,经过断层垂向运移聚集于坳陷层系海相重力流扇体,形成盐下碳酸盐岩-盐上重力流扇体油气藏。在桑托斯盆地、坎波斯盆地、下刚果盆地已发现多个巨型油气藏,单个盆地发现可采储量48×108~80×108 m3,资源潜力巨大,待发现资源量127×108 m3

  • 目前围绕南大西洋中段勘探发现主要在桑托斯盆地盐下碳酸盐岩、坎波斯盆地陆缘期斜坡扇三角洲砂岩、刚果扇三角洲盆地陆缘期扇三角洲砂岩等领域,关注热点勘探领域在刚果扇三角洲盆地远洋带洋壳上覆陆缘层浊积砂岩(图12)、巴西大坎波斯盆地远端带坡底扇砂岩、宽扎盆地深水盐下碳酸盐岩等。

  • 图12 刚果扇伸展型陆缘盆地深海远端成藏模式图

  • Fig.12 Deep-sea reservoir formation model of Congo fan extensional marginal basin

  • 5 结论

  • (1)被动陆缘已成为全球勘探的重点领域,北极、东非、南非、中-北大西洋等新兴和前沿区被动大陆边缘盆地已成为油气储量的主要增长点。分领域对比分析认为圭亚那斜坡扇、塞内加尔坡底扇、桑托斯盐下湖相碳酸盐岩等具有进一步勘探潜力,前沿勘探领域主要为中-北大西洋窄深断坳型盆地、南非-东非转换型陆缘盆地、西南非-东南美火山断陷型盆地和南大西洋中段宽缓断坳型盆地。

  • (2)伸展型被动陆缘盆地为完整的三层结构,裂陷、坳陷规模大,宽缓坳陷层上部易沉积大型三角洲和斜坡扇;窄深断坳型被动陆缘盆地裂陷层异常发育,普遍发育多期裂陷,张性断裂控制形成垒堑相间的构造,坳陷层由于受断陷发育影响,具有多期迁移特点,以双层结构为主,多发育陆架三角洲-深水浊积砂岩;火山断陷型被动陆缘盆地以双层结构为主,裂陷层上部直接上覆陆缘层;转换型陆缘盆地受走滑转换断层控制,两期裂陷相互剪切和骤然断陷和陡坡作用,导致后期基于热沉降的坳陷不发育(仅在陆架区有沉积),陆缘层直接沉积在断陷层上,形成明显的双层结构。

  • (3)从被动陆缘理论认识看,转换型被动陆缘盆地远端带斜坡扇-坡底扇砂岩、伸展型被动陆缘盆地深水盐下碳酸盐岩及坡底扇砂岩、火山断陷型被动陆缘盆地洋壳上覆浊积砂岩和窄深断坳型被动陆缘盆地深水浊积砂岩-斜坡碳酸盐岩是油气进一步实现勘探突破的重要领域。

  • 作者贡献:冯志强负责文章总体构思,并提出被动陆缘分类以及各类盆地的油气地质特征等新认识;郭金瑞执笔并总结了被动陆缘理论、技术进展并提出四个突破领域;田琨和刘静静总结了被动陆缘勘探现状、历程和勘探大发现带来的启示;张忠民、田纳新、吴高奎和宫越分别总结了伸展型、窄深断坳型、火山断陷型和转换型陆缘盆地地质特征和勘探潜力领域。

  • 参考文献

    • Allen P A, Allen R J. 2013. Basin Analysis: Principles and Applications to Petroleum Play Assessment. Oxford: Blackwell Scientific Publications.

    • Ampferer O. 1906. Über das bewegungsbild von faltengebirgen. Jahrbuch der Geologischen Reichsanstalt, 56(3/4): 539~622.

    • Amstutz A. 1951. Sur l'évolution des structures alpines. Archival Science, 4: 323~329.

    • Armitage P, Worden R, Faulkner D, Aplin A, Butcher A R, Lliffe J. 2010. Diagenetic and sedimentary controls on porosity in Lower Carboniferous fine-grained lithologies, Krechba field, Algeria: A petrological study of a caprock to a carbon capture site. Marine and Petroleum Geology, 27(7): 1395~1410.

    • Bally A W, Snelson S. 1980. Realms of subsidence. Canadian Society of Petroleum Geologists Memoir 6, 9~75.

    • Basile C. 2015. Transform continental margins-part 1: Concepts and models. Tectonophysics, 661: 1~10.

    • Ben-Avraham Z, Hartnady C, Kitchin K. 1997. Structure and tectonics of the Agulhas-Falkland fracture zone. Tectonophysics, 282: 83~98.

    • Biari Y, Klingelhoefer F, Sahabi M, Funck T, Benabdellouahed M. 2017. Opening of the central Atlantic Ocean: Implications for geometric rifting and asymmetric initial seafloor spreading after continental breakup. Tectonics, 36: 1129~1150.

    • Bird J M, Isacks B. 1972. Plate Tectonics. Washington: Journal of Geophysical Research.

    • Bischoff J L, Henyey T L. 1974. Tectonic elements of northern part of the Gulf of California. Geological Society of America Bulletin, 85: 1893~1904.

    • Bott M H P. 1980. Mechanisms of subsidence at passive continental margins. In: Bally A W, Bender P L, McGetchin T R, Walcott R I, eds. Dynamic of Plate Interiors Volume 1. Washington DC: American Geophysical Union, 27~32.

    • Burk C A, Drake C L, Trevisan L. 1976. The geology of continental margins. Scientia, 70(11): 203.

    • Burov E B. 2011. Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8): 1402~1443.

    • Burov E B, Watts A B. 2006. The long-term strength of continental lithosphere: “Jelly Sandwich” or “Crème Brûlée”? Geological Society of America Today, 16(1): 4~10.

    • Cox A. 1973. Plate Tectonics and Geomagnetic Reversals. San Francisco: Freeman.

    • de Lépinay M M, Loncke L, Basile C, Roest W R. 2016. Transform continental margins-part 2: A worldwide review. Tectonophysics, 693: 96~115.

    • Dingle R V. 1973. Post-Palaeozoic stratigraphy of the eastern Agulhas Bank, South African continental margin. Marine Geology, 15(1): 1~23.

    • Drake C L, Ewing M, Sutton G H. 1959. Continental margins and geosynclines: The east coast of North America north of Cape Hatteras. Physics and Chemistry of The Earth, 3: 110~198.

    • Edwards J D, Santogrossi P A. 1990. Divergent/passive margin basins. AAPG Memoir 48, 239~248.

    • Enos P. 1974. Surface sediment facies of the Floride-Bahama Plateau: Coal. Social America Map MC-5, Scale 1: 3168000.

    • Ewing J, Ewing M. 1959. Seismic-refraction measurements in the Atlantic ocean basins, in the Mediterranean sea, on the Mid-Atlantic Ridge, and in the Norwegian sea. Bulletin of the Geological Society of America, 70: 291~318.

    • Fail J P, Montadert L, Delteil J R, Valéry P, Patriat P, Schlich R. 1970. Prolongation des zones de fractures de l'ocean atlantique dans le golfe de Guinee. Earth and Planetary Science Letters, 7(5): 413~419.

    • Falvey D A. 1974. The development of continental margins in plate tectonic theory. Austrilian Petroleum Exploration Association Journal, 14: 95~106.

    • Falvey D A, Middleton M F. 1981. Passive continental margins: Evidence for a prebreakup deep crustal subsidence mechanism. Oceanologica Acta, 4: 103~114.

    • Feng Zhiqiang, Gao Dengliang, Stephan A G, Wu Gaokui, Duan Taizhong. 2023. Classification of Sedimentary Basins. Houston: International Meeting for Applied Geoscience & Energy, 1663~1667.

    • Funck T, Hopper J R, Larsen H C, Louden K. 2003. Crustal structure of the ocean continent transition at Flemish Cap: Seismic refraction results. Journal of Geophysical Research, 108: 1~20.

    • Geoffroy L. 2005. Volcanic passive margins. Comptes Rendus Geoscience, 337: 1395~1408.

    • Ginsburg R N. 1974. Introduction to comparative sedimentology of carbonates. AAPG Bulletin, 58(5): 781~786.

    • Goren L, Aharonov E, Mulugeta G, Koyi H A, Mart Y. 2008. Ductile deformation of passive margins: A new mechanism for subduction initiation. Journal of Geophysical Research, 113: 1~19.

    • Grow J A, Markl R G. 1977. IPOD-USGS multichannel seismic reflection profile from cape Hatteras to the Mid-Atlantic Ridge. Geology, 5(10): 625~630.

    • Guerra M C M, Underhill J R. 2012. Role of halokinesis in controlling structural styles and sediment dispersal in the Santos basin, offshore Brazil. In: Alsop G I, Archer S G, Hartley A J, et al. , eds. Salt Tectonics, Sediments and Prospectivity. London: Geological Society, London, Special Publications, 363: 303~330.

    • Hess H H. 1962. History of ocean basins. In: Engel A E J, James H L, Leonard B F, eds. Petrologic Studies: A Volume in Honor of A. F. Buddington. Colorado: Geological Society of America, 559~620.

    • Holmes A. 1931. Radioactivity and earth movements. Nature, 128: 496~496.

    • Holmes A. 1944. The floor of the ocean. Nature, 153: 389.

    • Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H. 2011. Time-resolved holography with photoelectrons. Science, 331: 61~64.

    • IHS. 2023. International petroleum exploration and production database (2022). http: //www. ihs. com/Energy.

    • King L H, Maclean B. 1976. Geology of the scotian shelf. Marine Sciences, 7: 31~74.

    • Kraft J C, Briggs R B, Halsey S D. 1983. Coastal Geomorphology. New York: Publish State University of New York.

    • Le Pichon X. 1968. Sea floor spreading and continental drift. Journal of Geophysical Research, 73(12): 3661~3697.

    • Le Pichon X, Fox P J. 1971. Marginal offsets, fracture zones, and the early opening of the North Atlantic. Geophysical Research, 76: 6294~6308.

    • Leblanc R J. 1972. Geometry of sandstone reservoir bodies, from underground waste management and environmental implications. AAPG Memoir 18, 133~189.

    • Lorenzo J M. 1997. Sheared continent-ocean margins: An overview. Geo-Marine Letters, 17: 1~3.

    • Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93: 432~466.

    • Marzoli A, Renne P R, Piccirillo E M, Ernesto M, Bellieni G, DeMin A. 1999. Extensive 200 million years old continental flood basalts from the Central Atlantic Magmatic Province. Science, 248: 616~618.

    • Mascle J. 1976. Atlantic-type continental margins-distinction of 2 basic structural types. Anais da Academia Brasileira de Ciências, 48: 191~197.

    • Mascle J, Blarez E. 1987. Evidence for transform margin evolution from the Ivory Coast-Ghana continental margin. Nature, 326: 378~381.

    • McKenzie D P. 1978. Some remarks of development of sedimentary basins. Earth Planetary Science Letters, 40(1): 25~32.

    • McKenzie D P, Davies D, Molnar P H. 1970. Plate tectonics of the Red Sea and East Africa. Nature, 226: 243~248.

    • Meissner R. 1981. Passive margin development: A consequence of specific convection patterne in a variable viscosity upper mantle. Oceanologica Acta, 115~121.

    • Milliman J D. 1974. Recent Sedimentary Carbonates-Part 1: Marine Carbonates. New York: Springer-Verlag.

    • Ministry of Natural Resources of the People's Republic of China. 2020. China oil and gas exploration and development report 2019 released. https: //www. mnr. gov. cn/ (in Chinese).

    • Mohn G, Manatschal G, Masini E, Müntener O. 2011. Rift-related inheritance in orogens: A case study from the Austroalpine nappes in central Alps (SE-Switzerland and N-Italy). International Journal of Earth Sciences, 100(5): 937~961.

    • Mohn G, Manatschal G, Beltrando M, Masini E, Kusznie N. 2012. Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics, 31(1): 1~28.

    • Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73: 1959~1982.

    • Nirrengarten M, Manatschal G, Tugend J, Kusznir N, Sauter D. 2018. Kinematic evolution of the southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics, 37: 89~118.

    • Peltier W R. 1980. Models of glacial isostasy and relative sea level. Dynamics of Plate Interiors, 1: 111~128.

    • Peron-Pinvidic G, Manatschal G, Osmundsen P T. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43: 21~47.

    • Rabinowitz P D. 1974. The boundary between oceanic and continental crust in the western North Atlantic. In: Burk C A, Drake C L, eds. Geology of Continental Margins. New York: Springer-Verlag, 67~84.

    • Rabinowitz P D, LaBrecque J. 1979. The Mesozoic South Atlantic Ocean and evolution of its continental margins. Journal of Geophysical Research, 84: 5973~6002.

    • Reston T J. 2010. The opening of the central segment of the South Atlantic: Symmetry and the extension discrepancy. Petroleum Geoscience, 16(3): 199~206.

    • Schenk C J. 2012. An estimate of undiscovered conventional oil and gas resources of the world. U. S. Geological Survey, 3042.

    • Schlee J J C, Behrendt J A, Grow J M, Robb R E, Mattick P T, Taylor, Lawson B A. 1976. Regional geologic framework off northeastern United States. American Association of Petroleum Geologists Bulletin, 60: 926~951.

    • Schwinner R. 1920. Vulkanismus und gebirgsbildung. Ein Versuch. Zeitschrift für Vulkanologie, 5: 1753~230.

    • Scrutton R A. 1979. On sheared passive continental margins. Tectonophysics, 59: 293~305.

    • Swift D J P. 1974. Continental shelf sedimentation. In: Burk C A, Drake C L, eds. The Geology of Continental Margins. New York: Springer-Verlag, 117~135.

    • Taylor F B. 1910. Bearing of the Tertiary mountain belt on the origin of the Earth's plan. Bulletin of the Geological Society of America, 21: 179~226.

    • Tesauro M, Kaban M K, Cloetingh S. 2012. Global strength and elastic thickness of the lithosphere. Global and Planetary Change, 90(48): 51~57.

    • Tong Xiaoguang, Zhang Guangya, Wang Zhaoming, Wen Zhixin, Tian Zuoji, Wang Hongjun, Wu Yiping. 2018. Distribution and potential of global oil and gas resources. Petroleum Exploration and Development, 45(4): 727~736(in Chinese with English abstract).

    • Torsvik T, Rousse S, Smethurst M A, Labails C. 2009. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177: 1315~1333.

    • Tucholke B E, Sawyer D S, Sibuet J C. 2007. Breakup of the Newfoundland-Iberia rift. In: Karner G D, Manatschal G, Pinheiro L M, eds. Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. London: Geological Society of London, Special Publications, 9~46.

    • Turcotte D L. 1980. Models for the evolution of sedimentary basins. In: Bally A W, Bender P L, McGetchin T R, Walcott R I, eds. Dynamic of Plate Interiors Volume 1. Washington DC: American Geophysical Union, 21~26.

    • Van Avendonk H J A, Shillington D J, Lavier L L, Manatschal G. 2009. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 468(1-4): 131~148.

    • Watts A B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge, New York, Melbourne: Cambridge University Press.

    • Watts A B, Steckler M S. 1981. Subsidence and tectonics of Atlantic-type continental margins. Oceanologica Acta, 143~153.

    • Watts A B, Burov E B. 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213: 113~131.

    • Wegener A. 1912. Die entstehung der kontinente. Petermanns Mitteilungen, 185~195, 253~256, 305~309.

    • Welford J K, Hall J, Sibuet J C. 2010. Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: Evidence for a transtensional rifting environment. Geophysical Journal International, 183(2): 572~586.

    • Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22: 108~125.

    • White R S, McKenzie D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Geology, 94: 7685~7729.

    • Wu Fuyuan, Xu Yigang, Zhu Rixiang, Zhang Guowei. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Science China: Earth Sciences, 44(11): 2358~2372 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Ji Shaocheng, Zhang Zeming, Li Haibing, Liu Fulai, Zhang Jianxin, Wu Cailai, Li Zhonghai, Liang Fenghua. 2010. On the continental tectonics and dynamics of China. Acta Geologica Sinica, 84(1): 1~29 (in Chinese with English abstract).

    • Yang Wencai. 2014. Continental extension and rifting reveled by worldwide comparison of crust and upper mantle structures. Geological Review, 60(5): 945~961(in Chinese with English abstract).

    • Zheng Yongfei, Zhao Zifu, Chen Renxu. 2007. Geodynamics of continental collision and ultrahigh-pressure metamorphism: Constraints from Chinese Continental Scientific Drilling project. Acta Petrologica Sinica, 23(12): 3078~3094 (in Chinese with English abstract).

    • Zhu Weilin, Cui Hanyun, Wu Peikang, Sun Hefeng. 2017. New development and outlook for oil and gas exploration in passive continental margin basins. Acta Petrolei Sinica, 38(10): 1099~1109 (in Chinese with English abstract).

    • Zoback M, Townend J. 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336(1): 19~30.

    • Zou Caineng, Zhai Guangming, Zhang Guangya, Wang Hongjun, Zhang Guosheng, Li Jianzhong, Wang Zhaoming, Wen Zhixin, Ma Feng, Liang Yingbo, Yang Zhi, Li Xin, Liang Kun. 2015. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Petroleum Exploration and Development, 42(1): 14~28.

    • 童晓光, 张光亚, 王兆明, 温志新, 田作基, 王红军, 马锋, 吴义平. 2018. 全球油气资源潜力与分布. 石油勘探与开发, 45(4): 727~736.

    • 吴福元, 徐义刚, 朱日祥, 张国伟. 2014. 克拉通岩石圈减薄与破坏. 中国科学: 地球科学, 44(11): 2358~2372.

    • 许志琴, 杨经绥, 嵇少丞, 张泽明, 李海兵, 刘福来, 张建新, 吴才来, 李忠海, 梁凤华. 2010. 中国大陆构造及动力学若干问题的认识. 地质学报, 84(1): 1~29.

    • 杨文采. 2014. 从地壳上地幔构造看大陆岩石圈伸展与裂解. 地质论评, 60(5): 945~961.

    • 郑永飞, 赵子福, 陈仁旭. 2007. 大陆碰撞和超高压变质的化学地球动力学: 来自中国大陆科学钻探的结果. 岩石学报, 23(12): 3078~3094.

    • 朱伟林, 崔旱云, 吴培康, 孙和风. 2017. 被动大陆边缘盆地油气勘探新进展与展望. 石油学报, 38(10): 1099~1109.

    • 自然资源部. 2020. 全国石油天然气资源勘查开采通报(2019年度). https: //www. mnr. gov. cn/.

  • 参考文献

    • Allen P A, Allen R J. 2013. Basin Analysis: Principles and Applications to Petroleum Play Assessment. Oxford: Blackwell Scientific Publications.

    • Ampferer O. 1906. Über das bewegungsbild von faltengebirgen. Jahrbuch der Geologischen Reichsanstalt, 56(3/4): 539~622.

    • Amstutz A. 1951. Sur l'évolution des structures alpines. Archival Science, 4: 323~329.

    • Armitage P, Worden R, Faulkner D, Aplin A, Butcher A R, Lliffe J. 2010. Diagenetic and sedimentary controls on porosity in Lower Carboniferous fine-grained lithologies, Krechba field, Algeria: A petrological study of a caprock to a carbon capture site. Marine and Petroleum Geology, 27(7): 1395~1410.

    • Bally A W, Snelson S. 1980. Realms of subsidence. Canadian Society of Petroleum Geologists Memoir 6, 9~75.

    • Basile C. 2015. Transform continental margins-part 1: Concepts and models. Tectonophysics, 661: 1~10.

    • Ben-Avraham Z, Hartnady C, Kitchin K. 1997. Structure and tectonics of the Agulhas-Falkland fracture zone. Tectonophysics, 282: 83~98.

    • Biari Y, Klingelhoefer F, Sahabi M, Funck T, Benabdellouahed M. 2017. Opening of the central Atlantic Ocean: Implications for geometric rifting and asymmetric initial seafloor spreading after continental breakup. Tectonics, 36: 1129~1150.

    • Bird J M, Isacks B. 1972. Plate Tectonics. Washington: Journal of Geophysical Research.

    • Bischoff J L, Henyey T L. 1974. Tectonic elements of northern part of the Gulf of California. Geological Society of America Bulletin, 85: 1893~1904.

    • Bott M H P. 1980. Mechanisms of subsidence at passive continental margins. In: Bally A W, Bender P L, McGetchin T R, Walcott R I, eds. Dynamic of Plate Interiors Volume 1. Washington DC: American Geophysical Union, 27~32.

    • Burk C A, Drake C L, Trevisan L. 1976. The geology of continental margins. Scientia, 70(11): 203.

    • Burov E B. 2011. Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8): 1402~1443.

    • Burov E B, Watts A B. 2006. The long-term strength of continental lithosphere: “Jelly Sandwich” or “Crème Brûlée”? Geological Society of America Today, 16(1): 4~10.

    • Cox A. 1973. Plate Tectonics and Geomagnetic Reversals. San Francisco: Freeman.

    • de Lépinay M M, Loncke L, Basile C, Roest W R. 2016. Transform continental margins-part 2: A worldwide review. Tectonophysics, 693: 96~115.

    • Dingle R V. 1973. Post-Palaeozoic stratigraphy of the eastern Agulhas Bank, South African continental margin. Marine Geology, 15(1): 1~23.

    • Drake C L, Ewing M, Sutton G H. 1959. Continental margins and geosynclines: The east coast of North America north of Cape Hatteras. Physics and Chemistry of The Earth, 3: 110~198.

    • Edwards J D, Santogrossi P A. 1990. Divergent/passive margin basins. AAPG Memoir 48, 239~248.

    • Enos P. 1974. Surface sediment facies of the Floride-Bahama Plateau: Coal. Social America Map MC-5, Scale 1: 3168000.

    • Ewing J, Ewing M. 1959. Seismic-refraction measurements in the Atlantic ocean basins, in the Mediterranean sea, on the Mid-Atlantic Ridge, and in the Norwegian sea. Bulletin of the Geological Society of America, 70: 291~318.

    • Fail J P, Montadert L, Delteil J R, Valéry P, Patriat P, Schlich R. 1970. Prolongation des zones de fractures de l'ocean atlantique dans le golfe de Guinee. Earth and Planetary Science Letters, 7(5): 413~419.

    • Falvey D A. 1974. The development of continental margins in plate tectonic theory. Austrilian Petroleum Exploration Association Journal, 14: 95~106.

    • Falvey D A, Middleton M F. 1981. Passive continental margins: Evidence for a prebreakup deep crustal subsidence mechanism. Oceanologica Acta, 4: 103~114.

    • Feng Zhiqiang, Gao Dengliang, Stephan A G, Wu Gaokui, Duan Taizhong. 2023. Classification of Sedimentary Basins. Houston: International Meeting for Applied Geoscience & Energy, 1663~1667.

    • Funck T, Hopper J R, Larsen H C, Louden K. 2003. Crustal structure of the ocean continent transition at Flemish Cap: Seismic refraction results. Journal of Geophysical Research, 108: 1~20.

    • Geoffroy L. 2005. Volcanic passive margins. Comptes Rendus Geoscience, 337: 1395~1408.

    • Ginsburg R N. 1974. Introduction to comparative sedimentology of carbonates. AAPG Bulletin, 58(5): 781~786.

    • Goren L, Aharonov E, Mulugeta G, Koyi H A, Mart Y. 2008. Ductile deformation of passive margins: A new mechanism for subduction initiation. Journal of Geophysical Research, 113: 1~19.

    • Grow J A, Markl R G. 1977. IPOD-USGS multichannel seismic reflection profile from cape Hatteras to the Mid-Atlantic Ridge. Geology, 5(10): 625~630.

    • Guerra M C M, Underhill J R. 2012. Role of halokinesis in controlling structural styles and sediment dispersal in the Santos basin, offshore Brazil. In: Alsop G I, Archer S G, Hartley A J, et al. , eds. Salt Tectonics, Sediments and Prospectivity. London: Geological Society, London, Special Publications, 363: 303~330.

    • Hess H H. 1962. History of ocean basins. In: Engel A E J, James H L, Leonard B F, eds. Petrologic Studies: A Volume in Honor of A. F. Buddington. Colorado: Geological Society of America, 559~620.

    • Holmes A. 1931. Radioactivity and earth movements. Nature, 128: 496~496.

    • Holmes A. 1944. The floor of the ocean. Nature, 153: 389.

    • Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H. 2011. Time-resolved holography with photoelectrons. Science, 331: 61~64.

    • IHS. 2023. International petroleum exploration and production database (2022). http: //www. ihs. com/Energy.

    • King L H, Maclean B. 1976. Geology of the scotian shelf. Marine Sciences, 7: 31~74.

    • Kraft J C, Briggs R B, Halsey S D. 1983. Coastal Geomorphology. New York: Publish State University of New York.

    • Le Pichon X. 1968. Sea floor spreading and continental drift. Journal of Geophysical Research, 73(12): 3661~3697.

    • Le Pichon X, Fox P J. 1971. Marginal offsets, fracture zones, and the early opening of the North Atlantic. Geophysical Research, 76: 6294~6308.

    • Leblanc R J. 1972. Geometry of sandstone reservoir bodies, from underground waste management and environmental implications. AAPG Memoir 18, 133~189.

    • Lorenzo J M. 1997. Sheared continent-ocean margins: An overview. Geo-Marine Letters, 17: 1~3.

    • Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93: 432~466.

    • Marzoli A, Renne P R, Piccirillo E M, Ernesto M, Bellieni G, DeMin A. 1999. Extensive 200 million years old continental flood basalts from the Central Atlantic Magmatic Province. Science, 248: 616~618.

    • Mascle J. 1976. Atlantic-type continental margins-distinction of 2 basic structural types. Anais da Academia Brasileira de Ciências, 48: 191~197.

    • Mascle J, Blarez E. 1987. Evidence for transform margin evolution from the Ivory Coast-Ghana continental margin. Nature, 326: 378~381.

    • McKenzie D P. 1978. Some remarks of development of sedimentary basins. Earth Planetary Science Letters, 40(1): 25~32.

    • McKenzie D P, Davies D, Molnar P H. 1970. Plate tectonics of the Red Sea and East Africa. Nature, 226: 243~248.

    • Meissner R. 1981. Passive margin development: A consequence of specific convection patterne in a variable viscosity upper mantle. Oceanologica Acta, 115~121.

    • Milliman J D. 1974. Recent Sedimentary Carbonates-Part 1: Marine Carbonates. New York: Springer-Verlag.

    • Ministry of Natural Resources of the People's Republic of China. 2020. China oil and gas exploration and development report 2019 released. https: //www. mnr. gov. cn/ (in Chinese).

    • Mohn G, Manatschal G, Masini E, Müntener O. 2011. Rift-related inheritance in orogens: A case study from the Austroalpine nappes in central Alps (SE-Switzerland and N-Italy). International Journal of Earth Sciences, 100(5): 937~961.

    • Mohn G, Manatschal G, Beltrando M, Masini E, Kusznie N. 2012. Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics, 31(1): 1~28.

    • Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73: 1959~1982.

    • Nirrengarten M, Manatschal G, Tugend J, Kusznir N, Sauter D. 2018. Kinematic evolution of the southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics, 37: 89~118.

    • Peltier W R. 1980. Models of glacial isostasy and relative sea level. Dynamics of Plate Interiors, 1: 111~128.

    • Peron-Pinvidic G, Manatschal G, Osmundsen P T. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43: 21~47.

    • Rabinowitz P D. 1974. The boundary between oceanic and continental crust in the western North Atlantic. In: Burk C A, Drake C L, eds. Geology of Continental Margins. New York: Springer-Verlag, 67~84.

    • Rabinowitz P D, LaBrecque J. 1979. The Mesozoic South Atlantic Ocean and evolution of its continental margins. Journal of Geophysical Research, 84: 5973~6002.

    • Reston T J. 2010. The opening of the central segment of the South Atlantic: Symmetry and the extension discrepancy. Petroleum Geoscience, 16(3): 199~206.

    • Schenk C J. 2012. An estimate of undiscovered conventional oil and gas resources of the world. U. S. Geological Survey, 3042.

    • Schlee J J C, Behrendt J A, Grow J M, Robb R E, Mattick P T, Taylor, Lawson B A. 1976. Regional geologic framework off northeastern United States. American Association of Petroleum Geologists Bulletin, 60: 926~951.

    • Schwinner R. 1920. Vulkanismus und gebirgsbildung. Ein Versuch. Zeitschrift für Vulkanologie, 5: 1753~230.

    • Scrutton R A. 1979. On sheared passive continental margins. Tectonophysics, 59: 293~305.

    • Swift D J P. 1974. Continental shelf sedimentation. In: Burk C A, Drake C L, eds. The Geology of Continental Margins. New York: Springer-Verlag, 117~135.

    • Taylor F B. 1910. Bearing of the Tertiary mountain belt on the origin of the Earth's plan. Bulletin of the Geological Society of America, 21: 179~226.

    • Tesauro M, Kaban M K, Cloetingh S. 2012. Global strength and elastic thickness of the lithosphere. Global and Planetary Change, 90(48): 51~57.

    • Tong Xiaoguang, Zhang Guangya, Wang Zhaoming, Wen Zhixin, Tian Zuoji, Wang Hongjun, Wu Yiping. 2018. Distribution and potential of global oil and gas resources. Petroleum Exploration and Development, 45(4): 727~736(in Chinese with English abstract).

    • Torsvik T, Rousse S, Smethurst M A, Labails C. 2009. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177: 1315~1333.

    • Tucholke B E, Sawyer D S, Sibuet J C. 2007. Breakup of the Newfoundland-Iberia rift. In: Karner G D, Manatschal G, Pinheiro L M, eds. Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. London: Geological Society of London, Special Publications, 9~46.

    • Turcotte D L. 1980. Models for the evolution of sedimentary basins. In: Bally A W, Bender P L, McGetchin T R, Walcott R I, eds. Dynamic of Plate Interiors Volume 1. Washington DC: American Geophysical Union, 21~26.

    • Van Avendonk H J A, Shillington D J, Lavier L L, Manatschal G. 2009. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 468(1-4): 131~148.

    • Watts A B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge, New York, Melbourne: Cambridge University Press.

    • Watts A B, Steckler M S. 1981. Subsidence and tectonics of Atlantic-type continental margins. Oceanologica Acta, 143~153.

    • Watts A B, Burov E B. 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213: 113~131.

    • Wegener A. 1912. Die entstehung der kontinente. Petermanns Mitteilungen, 185~195, 253~256, 305~309.

    • Welford J K, Hall J, Sibuet J C. 2010. Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: Evidence for a transtensional rifting environment. Geophysical Journal International, 183(2): 572~586.

    • Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22: 108~125.

    • White R S, McKenzie D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Geology, 94: 7685~7729.

    • Wu Fuyuan, Xu Yigang, Zhu Rixiang, Zhang Guowei. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Science China: Earth Sciences, 44(11): 2358~2372 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Ji Shaocheng, Zhang Zeming, Li Haibing, Liu Fulai, Zhang Jianxin, Wu Cailai, Li Zhonghai, Liang Fenghua. 2010. On the continental tectonics and dynamics of China. Acta Geologica Sinica, 84(1): 1~29 (in Chinese with English abstract).

    • Yang Wencai. 2014. Continental extension and rifting reveled by worldwide comparison of crust and upper mantle structures. Geological Review, 60(5): 945~961(in Chinese with English abstract).

    • Zheng Yongfei, Zhao Zifu, Chen Renxu. 2007. Geodynamics of continental collision and ultrahigh-pressure metamorphism: Constraints from Chinese Continental Scientific Drilling project. Acta Petrologica Sinica, 23(12): 3078~3094 (in Chinese with English abstract).

    • Zhu Weilin, Cui Hanyun, Wu Peikang, Sun Hefeng. 2017. New development and outlook for oil and gas exploration in passive continental margin basins. Acta Petrolei Sinica, 38(10): 1099~1109 (in Chinese with English abstract).

    • Zoback M, Townend J. 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336(1): 19~30.

    • Zou Caineng, Zhai Guangming, Zhang Guangya, Wang Hongjun, Zhang Guosheng, Li Jianzhong, Wang Zhaoming, Wen Zhixin, Ma Feng, Liang Yingbo, Yang Zhi, Li Xin, Liang Kun. 2015. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Petroleum Exploration and Development, 42(1): 14~28.

    • 童晓光, 张光亚, 王兆明, 温志新, 田作基, 王红军, 马锋, 吴义平. 2018. 全球油气资源潜力与分布. 石油勘探与开发, 45(4): 727~736.

    • 吴福元, 徐义刚, 朱日祥, 张国伟. 2014. 克拉通岩石圈减薄与破坏. 中国科学: 地球科学, 44(11): 2358~2372.

    • 许志琴, 杨经绥, 嵇少丞, 张泽明, 李海兵, 刘福来, 张建新, 吴才来, 李忠海, 梁凤华. 2010. 中国大陆构造及动力学若干问题的认识. 地质学报, 84(1): 1~29.

    • 杨文采. 2014. 从地壳上地幔构造看大陆岩石圈伸展与裂解. 地质论评, 60(5): 945~961.

    • 郑永飞, 赵子福, 陈仁旭. 2007. 大陆碰撞和超高压变质的化学地球动力学: 来自中国大陆科学钻探的结果. 岩石学报, 23(12): 3078~3094.

    • 朱伟林, 崔旱云, 吴培康, 孙和风. 2017. 被动大陆边缘盆地油气勘探新进展与展望. 石油学报, 38(10): 1099~1109.

    • 自然资源部. 2020. 全国石油天然气资源勘查开采通报(2019年度). https: //www. mnr. gov. cn/.