en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

关成国,男,1988年生。高级工程师,主要从事稳定同位素实验分析和晚前寒武纪古环境研究。E-mail:cgguan@nigpas.ac.cn。

通讯作者:

周传明,男,1968年生。研究员,主要从事晚前寒武纪综合地层学、古生物学和古环境研究。第七届黄汲清青年地质科学技术奖获奖者。E-mail:cmzhou@nipas.ac.cn。

参考文献
Aloisi G, Pierre C, Rouchy J, Foucher J, Woodside J. 2000. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization. Earth and Planetary Science Letters, 184(1): 321~338.
参考文献
Banner J L, Hanson G N. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimicaet Cosmochimica Acta, 54(11): 3123~3137.
参考文献
Barnaby R J, Rimstidt J D. 1989. Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. GSA Bulletin, 101(6): 795~804.
参考文献
Bristow T F, Bonifacie M, Derkowski A, Eiler J M, Grotzinger J P. 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature, 474(7349): 68~71.
参考文献
Busch J F, Hodgin E B, Ahm A C, Husson J M, Macdonald F A, Bergmann K D, Higgins J A, Strauss J V. 2022. Global and local drivers of the Ediacaran Shuram carbon isotope excursion. Earth and Planetary Science Letters, 579: 117368.
参考文献
Cazenave S, Chapoulie R, Villeneuve G. 2003. Cathodoluminescence of synthetic and natural calcite: The effects of manganese and iron on orange emission. Mineralogy and Petrology, 78(3): 243~253.
参考文献
Chen Wei, Lu Jue, Jiang Shaoyong, Zhao Kuidong, Duan Dengfei. 2017. In situ carbon isotope analysis by laser ablation MC-ICP-MS. Analytical Chemistry, 89(24): 13415~13421.
参考文献
Cramer B D, Jarvis I. 2020. Carbon isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. Geologic Time Scale 2020. Elsevier, 309~343
参考文献
Cui Huan, Kaufman A J, Xiao Shuhai, Zhou Chuanming, Liu Xiao-Ming. 2017. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59~80.
参考文献
Cui Huan, Kitajima K, Orland I J, Baele J M, Xiao Shuhai, Kaufman A J, Denny A, Spicuzza M J, Fournelle J H, Valley J W. 2022. An authigenic response to Ediacaran surface oxidation: Remarkable micron-scale isotopic heterogeneity revealed by SIMS. Precambrian Research, 377: 106676.
参考文献
Derkowski A, Bristow T F, Wampler J M, Srodon J, Marynowski L, Elliott W C, Chamberlain C P. 2013. Hydrothermal alteration of the Ediacaran Doushantuo Formation in the Yangtze Gorges area (South China). Geochimicaet Cosmochimica Acta, 107: 279~298.
参考文献
Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294(1): 152~162.
参考文献
Dickson J A D, Coleman M L. 1980. Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology, 27(1): 107~118.
参考文献
Du Yong, Song Huyue. 2020. Refined protocol for δ13C analysis of calcite and dolomite in carbonate mixture samples. Rapid Communications in Mass Spectrometry, 34(10): e8743.
参考文献
Emrich K, Ehhalt D H, Vogel J C. 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters, 8(5): 363~371.
参考文献
Gawthorpe R L. 2003. Burial dolomitization and porosity development in a mixed carbonate-clastic sequence: An example from the Bowland basin, northern England. In: Burley S D, Worden R H, eds. Sandstone Diagenesis, 413~438.
参考文献
Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S. 2003. Precise dating of Dansgaard-Oeschger climate oscillations in Western Europe from stalagmite data. Nature, 421(6925): 833~837.
参考文献
Hemming N G, Meyers W J, Grams J C. 1989. Cathodoluminescence in diagenetic calcites; the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements. Journal of Sedimentary Research, 59(3): 404~411.
参考文献
Hendry J P. 1995. Calcite cementation during bacterial manganese, iron and sulphate reduction in Jurassic shallow marine carbonates. Sedimentology, 40(1): 87~106.
参考文献
Hoefs J. 2009. Stable Isotope Geochemistry. Berlin: Springer.
参考文献
Jiang Ganqing, Kennedy M J, Christie-Blick N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426(6968): 822~826.
参考文献
Jiang Ganqing, Kennedy M J, Christie-Blick N, Wu Huaichun, Zhang Shihong. 2006. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research, 76(7): 978~995
参考文献
Jiang Ganqing, Kaufman A J, Christie-Blick N, Zhang Shihong, Wu Huaichun. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261(1-2): 303~320.
参考文献
Jiang Ganqing, Shi Xiaoying, Zhang Shihong, Wang Yue, Xiao Shuhai. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831~849.
参考文献
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27~49.
参考文献
Laakso T A, Schrag D P. 2020. The role of authigenic carbonate in Neoproterozoic carbon isotope excursions. Earth and Planetary Science Letters, 549: 116534.
参考文献
Lin Zhijia, Wang Qinxian, Feng Dong, Liu Qian, Chen Duofu. 2011. Post-depositional origin of highly 13C-depleted carbonate in the Doushantuo cap dolostone in South China: Insights from petrography and stable carbon isotopes. Sedimentary Geology, 242: 71~79
参考文献
Liu Pengju, Chen Shouming, Zhu Maoyan, Li Meng, Yin Chongyu, Shang Xiaodong. 2014. High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System. Precambrian Research, 249: 199~214.
参考文献
Lu Miao, Zhu Maoyan, Zhao Fangchen. 2012. Revisiting the Tianjiayuanzi section-the stratotype section of the Ediacaran Doushantuo Formation, Yangtze Gorges, South China. Bulletin of Geosciences, 87(1): 183~194.
参考文献
Marais D J D, Strauss H, Summons R E, Hayez J M. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359(6396): 605~609.
参考文献
McFadden K A, Huang Jing, Chu Xuelei, Jiang Ganqing, Kaufman A J, Zhou Chuanming, Yuan Xunlai, Xiao Shuhai. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197~3202.
参考文献
Melezhik V A, Roberts D, Fallick A E, Gorokhov I M, Kusnetzov A B. 2005. Geochemical preservation potential of high-grade calcite marble versus dolomite marble: Implication for isotope chemostratigraphy. Chemical Geology, 216(3): 203~224.
参考文献
Mozley P S, Burns S J. 1993. Oxygen and carbon isotopic composition of marine carbonate concretions; an overview. Journal of Sedimentary Research, 63(1): 73~83.
参考文献
Ouyang Qing, Zhou Chuanming, Xiao Shuhai, Chen Zhe, Shao Yefei. 2019. Acanthomorphic acritarchs from the Ediacaran Doushantuo Formation at Zhangcunping in South China, with implications for the evolution of early Ediacaran eukaryotes. Precambrian Research, 320: 171~192.
参考文献
Peckmann J, Thiel V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205(3-4): 443~467.
参考文献
Peng Yongbo, Bao Huiming, Jiang Ganqing, Crockford P, Feng Dong, Xiao Shuhai, Kaufman A J, Wang Jiasheng. 2022. A transient peak in marine sulfate after the 635-Ma snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2117341119.
参考文献
Petersen G W, Chesters G. 1966. Quantitative determination of calcite and dolomite in pure carbonates and limestones. Journal of Soil Science, 17(2): 317~327.
参考文献
Pierson B J. 1981. The control of cathodoluminescence in dolomite by iron and manganese. Sedimentology, 28(5): 601~610.
参考文献
Pokrovsky O S, Golubev S V, Schott J. 2005. Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chemical Geology, 217(3): 239~255.
参考文献
Sawaki Y, Ohno T, Tahata M, Komiya T, Hirata T, Maruyama S, Windley B F, Han Jian, Shu Degan, Li Yong. 2010. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research, 176(1-4): 46~64.
参考文献
Shields G A, Mills B J W, Zhu Maoyan, Raub T D, Daines S J, Lenton T M. 2019. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nature Geoscience, 12(10): 823~827.
参考文献
Śliwiński, M G, Kitajima K, Kozdon R, Spicuzza M J, Denny A, Valley J W. 2017. In situ δ13C and δ18O microanalysis by SIMS: A method for characterizing the carbonate components of natural and engineered CO2-reservoirs. International Journal of Greenhouse Gas Control, 57: 116~133.
参考文献
Tahata M, Ueno Y, Ishikawa T, Sawaki Y, Murakami K, Han Jian, Shu Degan, Li Yong, Guo Junfeng, Yoshida N, Komiya T. 2013. Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: Decoding temperature and environmental changes through the Ediacaran. Gondwana Research, 23(1): 333~353.
参考文献
Tan F C, Hudson J D. 1971. Carbon and oxygen isotopic relationships of dolomites and co-existing calcites, Great Estuarine Series (Jurassic), Scotland. Geochimica et Cosmochimica Acta, 35(8): 755~767.
参考文献
Tong Hongpeng, Feng Dong, Cheng Hai, Yang Shengxiong, Wang Hongbin, Min A G, Edwards R L, Chen Zhong, Chen Duofu. 2013. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Marine and Petroleum Geology, 43: 260~271.
参考文献
Toyama K, Terakado Y. 2015. Differential dissolution technique for the geochemical separation of the calcite and dolomite of dolomitic limestones. Geochemical Journal, 49(5): 567~570.
参考文献
Vanneste H, Kastner M, James R H, Connelly D P, Fisher R E, Kelly-Gerreyn B A, Heeschen K, Haeckel M, Mills R A. 2012. Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: A record of palaeo-seepage of hydrocarbon bearing fluids. Chemical Geology, 300-301: 24~39.
参考文献
Wang Jiasheng, Jiang Ganqing, Xiao Shuhai, Li Qing, Wei Qing. 2008. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 36(5): 347~350.
参考文献
Wang Xinqiang, Jiang Ganqing, Shi Xiaoying, Xiao Shuhai. 2016. Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China. Precambrian Research, 273: 53~66.
参考文献
Xiao Shuhai, Cui Huan, Kang Junyao, McFadden K A, Kaufman A J, Kitajima K, Fournelle J H, Schwid M, Nolan M, Baele J, Valley J W. 2020. Using SIMS to decode noisy stratigraphic δ13C variations in Ediacaran carbonates. Precambrian Research, 343: 105686.
参考文献
Yadav S K, Chakrapani G J, Gupta M K. 2008. An experimental study of dissolution kinetics ofcalcite, dolomite, leucogranite and gneiss in buffered solutions at temperature 25 and 5°C. Environmental Geology, 53(8): 1683~1694.
参考文献
Zhou Chuanming, Xiao Shuhai. 2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology, 237(1-2): 89~108.
参考文献
Zhou Chuanming, Bao Huiming, Peng Yongbo, Yuan Xunlai. 2010. Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China. Geology, 38(10): 903~906
参考文献
Zhou Chuanming, Guan Chengguo, Cui Huan, Ouyang Qing, Wang Wei. 2016. Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 145~155.
参考文献
Zhu Maoyan, Lu Miao, Zhang Junming, Zhao Fangchen, Li Guoxiang, Yang Aihua, Zhao Xin, Zhao Meijuan. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Research, 225: 7~28.
目录contents

    摘要

    湖北宜昌地区埃迪卡拉系陡山沱组记录了多次显著的无机碳同位素(δ13Ccarb)波动事件,它们可以在华南乃至全球范围内进行广泛对比。然而,在一些特定剖面中,陡山沱组底部盖帽碳酸盐岩记录了δ13Ccarb极负值(<-30‰,VPDB),以及上覆陡山沱组二段底部地层中δ13Ccarb在正负值之间频繁波动的现象。一般认为,成岩作用中形成的碳酸盐矿物导致了这些分布不规律的δ13Ccarb波动,并对利用碳酸盐岩全岩无机碳同位素(δ13Cbulk)数据进行古海洋碳同位素组成恢复的可靠性造成了干扰。为了评估成岩作用对δ13Cbulk的影响,本文利用宜昌雾河地区埃迪卡拉系的一口钻井岩芯,对陡山沱组下部地层进行了详细的岩石学观察和碳同位素分析。研究结果表明,陡山沱组下部的碳酸盐岩中存在形成于成岩过程中的方解石矿物,而碳酸盐岩中的白云石组分并未遭受严重的后期成岩作用改造,白云石组分的碳同位素(δ13Cdolo)组成能够更加准确地反映沉积时的海水信息。为获得样品的δ13Cdolo信息,本研究首先将全岩粉末样品与30%磷酸反应2 h,去除其中的方解石组分,然后测试残余样品的碳同位素。实验结果显示,该方法可以有效去除岩石粉末中的方解石组分,最终获得的数据能够准确地反映δ13Cdolo特征。陡山沱组二段下部样品δ13Cdolo为连续稳定的正值,且明显高于δ13Cbulk,δ13Cdolo曲线更加真实地反映了新元古代冰期结束之后海洋碳同位素组成的变化特征。

    Abstract

    The Ediacaran Doushantuo Formation in the Yangtze Gorges area of South China records several prominent carbonate carbon isotope (δ13Ccarb) shifts, some of which have also been recognized elsewhere in South China and around the world. However, the extremely negative δ13Ccarb values (<-30‰, VPDB) occurred in cap carbonate, and the δ13Ccarb fluctuations between positive and negative values in the overlying strata of the lower Doushantuo Formation, are exclusive to some specific Ediacaran sections in the Yangtze Gorges area of South China. The prevailing hypothesis attributes these irregular isotope features to the occurrence of diagenetic carbonate minerals, raising concerns about the reliability of utilizing bulk rock inorganic carbon isotope data (δ13Cbulk) to reveal paleo-oceanic carbon isotope information. To assess the potential impact of diagenesis on δ13Cbulk and to obtain the original δ13C signal of ancient seawater, comprehensive studies including petrologic observations and carbon isotopic measurements were conducted on a drill core of the Ediacaran Doushantuo Formation at Wuhe, Yichang of Hubei Province. The results indicate the presence of diagenetic calcite in the lower Doushantuo Formation dolostones, and limited late-stage diagenetic alteration for the dolomites. These observations highlight that, in contrast to δ13Cbulk, the carbon isotope composition of dolomites (δ13Cdolo) from samples in Member I and lower Member II of the Doushantuo Formation may have higher potential to record contemporaneous seawater signals. To acquire the δ13Cdolo from the analyzed carbonate rocks, the bulk rock powders were reacted with 30% phosphoric acid for 2 hours to remove calcite minerals. The experiment on the mixture of calcite and dolomite powder with known carbon isotopic compositions indicates that calcite can be completely removed after this reaction. The results show that δ13Cdolo values of samples from the lower Member II of the Doushantuo Formation are consistently positive and significantly higher than their δ13Cbulk values, probably reflecting the primary variation of oceanic carbon isotope composition following the termination of the Neoproterozoic global glaciation.

  • 碳酸盐矿物可以继承沉积水体的无机碳同位素信息(Emrich et al.,1970; Hoefs,2009),并将这些信息保存于沉积物和地层中。因此,可以通过研究碳酸盐岩无机碳同位素(δ13Ccarb)来恢复古海洋的碳同位素组成,并据此探讨各类生物地质事件的形成机制与过程,以及进行地层对比(Marais et al.,1992; Genty et al.,2003; Cramer et al.,2020)。作为一种有效的地球化学指标,δ13Ccarb已经广泛应用于各个地质历史时期,尤其是在缺乏化石记录的前寒武纪。δ13Ccarb特征在探讨埃迪卡拉纪(635~539 Ma)地层对比、古环境、古气候变化和生物演化等科学问题中发挥了重要作用(Zhou Chuanming et al.,2007; McFadden et al.,2008; Shields et al.,2019; Laakso et al.,2020; Cui Huan et al.,2022)。研究表明,在华南宜昌地区的埃迪卡拉纪地层中记录了至少4次δ13Ccarb负漂移事件,它们分别发育于陡山沱组底部盖帽碳酸盐岩(EN1/CANCE)、陡山沱组中部(EN2/BAINCE)、陡山沱组上部(EN3/DOUNCE)和埃迪卡拉系—寒武系界线附近(EN4/BACE)。这些δ13Ccarb负漂移事件不仅可以在华南板块内的不同剖面之间对比,且除了EN2/BAINCE之外,其他δ13Ccarb负漂移事件还可以在全球范围内进行对比(Zhou Chuanming et al.,2007; Zhu Maoyan et al.,2013)。由于这些δ13Ccarb负漂移在地层对比、古环境恢复等地质问题中的重要作用,它们受到了广泛的关注。

  • 除了以上这些可以在华南地区甚至全球范围内进行广泛对比的δ13Ccarb负漂移事件,在华南宜昌九龙湾剖面的埃迪卡拉系陡山沱组底部还识别出了两次分布局限的δ13Ccarb异常现象。它们分别是陡山沱组盖帽碳酸盐岩下部溶蚀孔洞中的方解石胶结物和顶部透镜状灰岩中的δ13Ccarb极负值(<-30‰,VPDB),以及盖帽碳酸盐岩之上地层中δ13Ccarb在正负值之间反复波动现象(Carbon Isotope Fluctuation,CIF)。到目前为止,报道的陡山沱组底部的δ13Ccarb极负值主要来自于宜昌地区,例如九龙湾剖面、花鸡坡剖面和王子石剖面等(Jiang Ganqing et al.,2003; Wang Jiasheng et al.,2008; Zhou Chuanming et al.,2010; Lin Zhijia et al.,2011; Zhu Maoyan et al.,2013; Peng Yongbo et al.,2022)。虽然CIF也主要分布在宜昌地区黄陵背斜周围的剖面(如九龙湾和樟村坪剖面,图1)(McFadden et al.,2008; Sawaki et al.,2010; Tahata et al.,2013; Zhu Maoyan et al.,2013; Ouyang Qing et al.,2019),但与九龙湾剖面相距不远的花鸡坡剖面和陈家园子剖面却没有识别出CIF(Jiang Ganqing et al.,2003; Liu Pengju et al.,2014)。在黄陵背斜以外的华南区域也没有CIF记录的报道。

  • 由于δ13Ccarb极负值和CIF现象分布较为局限,因此无法将它们归因于区域上的埃迪卡拉纪古海洋分层和溶解有机碳库的氧化(Jiang Ganqing et al.,2007; McFadden et al.,2008; Jiang Ganqing et al.,2011; Wang Xinqiang et al.,2016)。而局部的甲烷厌氧氧化(Anaerobic Oxidation of Methane,AOM)、沉积有机物氧化、成岩作用以及海平面变化等因素更有可能是造成这些δ13Ccarb异常的根本原因(Wang Jiasheng et al.,2008; Bristow et al.,2011; Zhou Chuanming et al.,2016; Busch et al.,2022)。大量的研究证实早期成岩阶段的AOM过程导致了陡山沱组底部的δ13Ccarb极负值(Zhou Chuanming et al.,2010; Lin Zhijia et al.,2011)。然而,关于CIF成因的研究则相对有限。Derkowski et al.(2013)通过对花鸡坡和九龙湾剖面陡山沱组下部地层的黏土矿物和有机物的详细研究,推断热液改造可能是引发CIF的直接原因。Xiao Shuhai et al.(2020)利用SIMS分析技术在陡山沱组二段下部样品中识别出δ13C值在微米级空间尺度上的非均一性,并据此推测成岩作用导致了陡山沱组二段下部δ13C值的频繁变化。这些后期成岩因素导致全岩无机碳同位素(δ13Cbulk)无法准确地指示古海洋的碳同位素组成,从而限制了δ13Cbulk的应用。

  • 为了评估成岩作用对于埃迪卡拉纪早期沉积物无机碳同位素的影响,我们选择了与九龙湾剖面毗邻的雾河地区埃迪卡拉系陡山沱组钻井岩芯,对其中记录了EN1/CANCE、δ13Ccarb极负值和CIF的陡山沱组下部地层进行了详细的岩石学观察,研究结果进一步证实了δ13Ccarb极负值和CIF是由成岩作用形成的方解石矿物造成的。此外,我们还利用酸预溶解方法去除了全岩样品中叠加的成岩方解石信号,恢复了宜昌地区埃迪卡拉纪早期古海洋碳同位素组成特征。

  • 1 研究样品

  • 本研究选用的岩石样品来自华南宜昌雾河地区的一口钻井岩芯(GPS: 111°03′09.94″ E,30°47′22.27″ N,图1),其埃迪卡拉系岩石地层序列与九龙湾剖面相同。陡山沱组覆盖在南沱组冰碛杂砾岩之上,其岩性从下至上可分为4段。一段为厚3.7 m的盖帽碳酸盐岩,其下部为厚约3 m的白云岩,上部为厚约0.7 m的灰岩;二段为薄层状泥质白云岩和白云质泥岩,总厚约115 m;三段厚约82 m,其下部为白云岩,中上部转变为薄层青灰色灰岩夹暗色薄层状白云岩;四段为厚约8.5 m的黑色页岩。陡山沱组上覆地层为灯影组白云岩。碳同位素负漂移事件EN1/CANCE、EN2/BAINCE和EN3/DOUNCE分别发育于陡山沱组一段、二段和三段交界附近以及三段上部(Zhou Chuanming et al.,2007; Zhu Maoyan et al.,2013)。本研究关注的δ13Ccarb极负值事件保存于盖帽碳酸盐岩中的方解石胶结物和顶部灰岩之中(Jiang Ganqing et al.,2003; Zhou Chuanming et al.,2016),CIF则保存于陡山沱组二段下部(McFadden et al.,2008)。本次研究样品全部来自于陡山沱组下部厚约28 m的地层,共选取了46件碳酸盐岩样品,其中13件来自于陡山沱组一段盖帽碳酸盐岩,其余33件来自于陡山沱组二段下部。

  • 2 研究方法

  • 首先,我们挑选了一些具有代表性的岩石样品磨制岩石薄片,并使用阴极发光显微镜(阴极发光设备CL8200 MK5-II与光学显微镜Zeisss Scope A1联用系统)进行岩石学观察。阴极发光设备的工作真空、电压和电流分别为30 Pa、10.8 kV和270 μA。其次,我们利用莱驰RS 200盘式振动研磨仪(钨钢研磨罐)将采集的岩石样品粉碎至200目以下,以便进行后续的δ13C和δ18O分析测试。

  • 图1 湖北宜昌黄陵背斜地区地质简图

  • Fig.1 Geological map of the Huangling anticline area, Yichang in Hubei Province

  • 本文涉及的埃迪卡拉系剖面包括:①—雾河岩芯剖面(本研究)和九龙湾露头剖面(McFadden et al.,2008; Zhu Maoyan et al.,2013);②—花鸡坡剖面(Jiang Ganqing et al.,2003);③—陈家园子剖面(Liu Pengju et al.,2014);④—樟村坪剖面(Ouyang Qing et al.,2019)。灰色圆圈代表发育CIF的剖面

  • The Ediacaran sections referred in this paper include: ①—Wuhe drill core (this study) and Jiulongwan section (McFadden et al., 2008; Zhu Maoyan et al., 2013) ; ②—Huajipo section (Jiang Ganqing et al., 2003) ; ③—Chenjiayuanzi section (Liu Pengju et al., 2014) ; ④—Zhangcunping section (Ouyang Qing et al., 2019) . The circles in grey represent sections yielding CIF

  • 前期研究表明,陡山沱组下部岩石样品中常同时含有白云石和方解石矿物,它们可能分别代表了沉积和成岩阶段的产物(Zhou Chuanming et al.,20102016; Xiao Shuhai et al.,2020),而只有原生碳酸盐矿物的δ13C值才可能准确记录古海洋的无机碳同位素特征。目前,LA-MC-ICP-MS和SIMS已经被尝试应用于碳酸盐矿物的原位微区δ13C分析(Chen Wei et al.,2017; Śliwiński,et al.,2017),但是由于实验资源有限,通常难以进行大规模和高效的样品测试。本研究尝试采用酸预溶解法,来获取不同碳酸盐矿物的同位素信息,分析方法如下:待测样品首先与30%磷酸反应2 h,去除其中的方解石组分,然后将残余的样品用超纯水离心清洗三遍后烘干,以备后续的δ13C和δ18O分析测试。完整的实验流程如图2所示。

  • 我们利用已知同位素组成的纯方解石晶体粉末(湖南石门杨家坪剖面埃迪卡拉系陡山沱组方解石样品,δ13C:-19.9‰,δ18O:-10.2‰)和纯白云石晶体粉末(采购的白云石晶体,δ13C:-0.4‰,δ18O:-17.1‰)的混合样品,来验证本研究采用的酸预溶解方法是否能够有效地去除碳酸盐岩粉末中的方解石组分。混合样品中方解石和白云石的质量比分别为4∶1、2∶1、1∶1和1∶2(表1)。经过酸预溶解处理后的残余物和全岩粉末样品分别进行δ13C和δ18O测试。

  • 图2 雾河岩芯剖面陡山沱组碳酸盐岩样品酸预溶解处理和无机碳氧同位素测试流程

  • Fig.2 Flow chart depicting acid pre-dissolution treatment and inorganic carbon and oxygen isotope analyses for the Doushantuo Formation carbonate rocks in the Wuhe drill core

  • δ13C和δ18O的测试仪器为Kiel IV碳酸盐反应装置和MAT253稳定同位素质谱仪联用系统。称取~100 μg的待测样品,与100%的磷酸在Kiel IV碳酸盐反应装置中反应350 s,反应温度为70℃。反应过程中产生的CO2导入到MAT253稳定同位素质谱仪测量δ13C和δ18O。δ13C的分析精度优于0.04‰(1σ),δ18O的分析精度优于0.08‰(1σ)。

  • 样品研磨、薄片制作和岩石学观察,以及所有样品的酸预溶解处理、δ13C和δ18O测试均在中国科学院南京地质古生物研究所进行。

  • 3 研究结果

  • 3.1 岩石学特征

  • 根据岩石学特征的变化,我们将陡山沱组下部地层细分为4个单元(表2,图3),自下而上包括第1单元:盖帽碳酸盐岩的白云岩部分(0~3.0 m,样品105-6~104-5-1,共7件);第2单元:盖帽碳酸盐岩顶部的灰岩(3.0~3.7 m,样品104-5-2~104-4-2,共6件);第3单元(3.7~20.0 m,样品104-4-3~98-1,共27件)和第4单元(20.0~28.0 m,样品97-9~95-1,共6件):互层的泥质白云岩和白云质泥岩。

  • 前人研究表明,盖帽白云岩结构组分复杂,不同组构的矿物成分及其δ13Ccarb值表现出显著差异(Jiang Ganqing et al.,2006; Wang Jiasheng et al.,2008; Zhou Chuanming et al.,2010; Lin Zhijia et al.,2011)。本研究仅选取外观上结构单一的盖帽白云岩样品进行岩石学观察。结果显示,盖帽白云岩下部样品中方解石含量低,且主要沿裂隙分布(例如样品104-8,图4a);盖帽白云岩上部岩石中的方解石含量略微增高,并多以胶结物形式存在于白云石之间的孔隙内(例如样品104-5-1,图4b)。此外,在盖帽白云岩上部的样品中可见一些火山碎屑,它们已经部分蚀变为黏土矿物或被白云石交代(例如样品104-6,图4c)。根据晶形、赋存状态和阴极发光特征,岩石中可以识别出两种类型的白云石矿物。第一类为基质中的微晶白云石,少部分充填于火山碎屑的内部(图4c),这类白云石阴极发光较弱;第二类为交代火山碎屑的白云石,他们全部位于火山碎屑内部,且晶体粒径(~200 μm)显著大于第一类白云石,阴极发光强度也稍高于第一类微晶白云石(例如样品104-6,图4d)。

  • 图3 雾河岩芯剖面陡山沱组下部碳酸盐岩全岩和白云石组分δ13C剖面

  • Fig.3 δ13Cbulk and δ13Cdolo profiles of the lower Doushantuo Formation carbonate rocks in the Wuhe drill core

  • 位于盖帽白云岩之上的第2岩性单元主体为灰岩。在雾河岩芯中,该单元厚约0.7 m。在邻近的九龙湾露头剖面,该单元灰岩呈透镜状产出,最大厚度约0.3 m(Zhou Chuanming et al.2016)。在雾河岩芯中,第2单元内部的岩性也有显著差异。下部样品主要由方解石、白云石、石英和火山碎屑组成(例如样品104-5,图4e~g)。其中,方解石矿物占比最高,通常高于50%,晶体最大可达500 μm以上,晶体接触呈现典型的镶嵌状结构。岩石中的火山碎屑已经不同程度地被方解石和白云石交代。与此同时,一些方解石和石英晶体内部可见以漂浮自形晶形式存在的白云石晶体(图4g)。除了漂浮自形晶以外,岩石中还存在较多的微晶白云石(图4e)。此外,岩石中出现一些被方解石交代的菱形残余阴影,其原始矿物可能为白云石(图4e)。第2单元中部岩石样品结构较为简单,为典型的微晶白云质灰岩,方解石胶结物分布在白云石颗粒之间(例如样品104-5-3,图4h)。第2单元中上部的岩石样品主要由方解石、白云石和火山碎屑组成,几乎不含石英(例如样品104-4,图5a)。其中,方解石晶体和火山碎屑粒径较大,可达200 μm以上,火山碎屑边缘常发育一圈方解石包壳(图5a),并可以被方解石部分交代(例如样品104-4,图5b)。相对而言,白云石粒径通常较小,并可细分为两类:白云石集合体中部的微晶白云石和白云石集合体边缘的自形白云石(图5a)。对于第2单元的所有样品而言,受到电子束的激发,火山碎屑不发光,白云石发光极弱,而方解石发光强烈(图4f、5b)。

  • 第3单元为呈互层状产出的泥质白云岩和白云质泥岩,各样品之间的结构差异显著。部分样品中存在明显的方解石胶结物(例如样品103-10,图5c),然而部分样品中几乎不含方解石(例如样品103-1,图5d)。此外,部分样品含石英和胶磷矿等颗粒,且方解石充填于孔隙之中(例如样品103-8,图5e)。随着地层向上进入第4单元,岩性并未显著改变,但岩石中的方解石矿物基本消失(例如样品97-3,图5f)。

  • 3.2 全岩和白云石组分无机碳氧同位素

  • 纯方解石和白云石粉末混合样品经过与30%的磷酸反应2 h后,残余粉末的δ13C值为-0.9‰~-0.5‰(平均值-0.7‰,n=4),δ18O为-18.3‰~-17.3‰(平均值-18.0‰,n=4)。详细数据见表1。

  • 表1 纯方解石和白云石混合样品 δ13C和δ18O实验分析数据

  • Table1 δ13C and δ18O data of pure calcite and dolomite mixtures

  • 注:mcal/mdolo值表示方解石和白云石的质量比。

  • 陡山沱组下部样品的全岩和白云石组分无机碳氧同位素见表2和图3。对于全岩样品而言,盖帽碳酸盐岩白云岩部分(第1单元)的δ13Cbulk和δ18Obulk分别为-7.7‰~-3.1‰和-15.8‰~-5.3‰。盖帽白云岩之上的灰岩部分(第2单元)表现出极低的δ13Cbulk值,为-36.4‰~-13.4‰;与δ13Cbulk不同,样品的δ18Obulk值较为稳定,为-9.0‰~-6.2‰。灰岩之上的泥质白云岩和白云质泥岩(第3单元)的δ13Cbulk值迅速升高至-1.9‰~3.0‰。值得注意的是,该段地层中的δ13Cbulk值极不稳定,在正负值之间反复波动;第3单元样品的δ18Obulk值为-8.9‰~-1.7‰。至第4单元,δ13Cbulk转变为稳定的正值,为3.5‰~5.3‰;δ18Obulk值也显著升高至-3.8‰~-0.8‰。

  • 经过与30%磷酸反应2 h后,共计15件样品的残余物由于碳酸盐矿物含量过低,而无法测试其碳氧同位素。其余31件样品的δ13Cdolo和δ18Odolo显示出与δ13Cbulk和δ18Obulk的显著差异。盖帽白云岩样品的δ13Cdolo和δ18Odolo分别为-5.3‰~-2.8‰和-8.6‰~-5.6‰(n=6);上覆灰岩样品的 δ13Cdolo和δ18Odolo分别为-32.9‰~4.3‰和-8.8‰~1.2‰(n=5)。至第3单元和第4单元,δ13Cdolo为-1.2‰~6.4‰(n=20),其中仅有一个样品为负值;δ18Odolo为-5.9‰~1.0‰(n=20)。第4单元的δ13Cdolo和δ18Odolo值都略高于第3单元,但差别并不显著。

  • 图4 雾河岩芯剖面陡山沱组盖帽碳酸盐岩岩石薄片的光学显微镜和阴极发光照片

  • Fig.4 Optical and cathodoluminescence photographs of the cap carbonate rocks from the Doushantuo Formation in the Wuhe drill core

  • (a)—样品104-8,微晶白云岩,少量方解石沿裂隙分布;(b)—样品104-5-1,盖帽白云岩顶部样品中的方解石胶结物;(c、d)—样品104-6,盖帽白云岩上部样品中火山碎屑被白云石矿物交代;(e、f)—样品104-5,灰岩中方解石晶体呈镶嵌状结构,暗色部分为白云石交代残余;(g)—样品104-5,方解石和石英矿物中的漂浮自形晶白云石;(h)—样品104-5-3,微晶白云质灰岩。图片中的比例尺均为200 μm;所有薄片均被茜素红染色;(a)、(b)、(e)、(g)、(h)为单偏光照片,(c)为正交偏光照片,(d)、(f)为阴极发光照片

  • (a) —sample 104-8, dolomicrite with calcite vein; (b) —sample 105-5-1, calcite cements in the cap dolostone; (c, d) —sample 104-6, volcanic clast replaced by dolomite minerals; (e, f) —sample 104-5, mosaic structure of calcite crystals in the limestone, and metasomatic residual structure of dolomite crystals; (g) —sample 104-5, euhedral dolomite crystals floating in calcite and quartz minerals; (h) —sample 104-5-3, microcrystalline dolomitic limestone. All the scale bars represent 200 μm; all thin sections were stained with alizarin red-S; (a) , (b) , (e) , (g) and (h) were taken under plain-polarized light, (c) was taken under cross-polarized light, and (d) and (f) are cathodoluminescence photographs

  • 图5 雾河岩芯剖面陡山沱组一段顶部和二段下部岩石薄片光学显微镜和阴极发光照片

  • Fig.5 Optical microscope and cathodoluminescence photographs of the carbonate rocks from the top of 1st Member and lower 2nd Member of the Doushantuo Formation in the Wuhe drill core

  • (a)—样品104-4,方解石胶结的火山碎屑和白云石,部分火山碎屑发育方解石包壳;(b)—样品104-4,被方解石交代的火山碎屑(灰色箭头指示处);(c)—样品103-10,白云岩中的方解石胶结物;(d)—样品103-1,微晶白云岩;(e)—样品103-8,泥晶白云岩,常见石英和胶磷矿颗粒,以及方解石胶结物;(f)—样品97-3,泥质白云岩。图片中的比例尺均为200 μm;所有薄片均被茜素红染色,除了阴极发光照片(图5b)以外,其他均为光学显微镜单偏光照片

  • (a) —sample 104-4, calcite cemented volcanic clasts and dolomites, note some volcanic clasts are coated with calcite rims; (b) —sample 104-4, volcanic clasts replaced by calcite (gray arrow) ; (c) —sample 103-10, calcite cements in dolostone; (d) —sample 103-1, microcrystalline dolostone; (e) —sample 103-8, dolomicrite with quartz and collophanite clasts, and calcite cement; (f) —sample 97-3, argillaceous dolostone. All the scale bars represent 200 μm; all thin sections were stained with alizarin red-S; Fig.5b is cathodoluminescence photograph and others were taken under plain-polarized light

  • 4 讨论

  • 4.1 实验方法可靠性评估

  • 方解石与磷酸、醋酸等常见酸的反应速度通常快于白云石(Petersen et al.,1966; Pokrovsky et al.,2005; Yadav et al.,2008; Toyama et al.,2015; Du Yong et al.,2020),故本研究中采用的酸预溶解方法可以优先溶解样品中的方解石,但是我们仍需进一步评估该方法是否能够有效去除样品中的全部方解石组分,以及残余样品的δ13C和δ18O测试结果是否能够代表样品的δ13Cdolo和δ18Odolo。本研究对4件纯方解石和纯白云石按不同比例混合的样品进行分析测试。经过酸预溶解处理后,分析样品残余粉末的δ13C值为-0.9‰~-0.5‰(表1),与纯方解石的δ13C值(-19.0‰)相差极大,而非常接近纯白云石的δ13C值(-0.4‰)。随着混合样品中方解石组分的增加,最终酸预溶解残余物样品的δ13C值略微向纯方解石的δ13C值靠近。但是,即使混合样品中方解石质量占比高达80%,最终残余物的δ13C值也仅比纯白云石样品的碳同位素值低0.5‰。根据纯方解石和纯白云石的δ13C值,以及酸预溶解后残余物的δ13C值,可以计算出酸预溶解后的残余物中白云石矿物的质量占比为97.1%~99.4%(平均98.3%,n=4)。即使对于纯白云石只占原始样品20%的样品D,在与30%磷酸反应2 h后,残余物中白云石的质量比例也提高至97.1%。由此可见,酸预溶解方法可以有效地去除混合样品中的方解石组分,而最终测试的δ13C值能够准确反映δ13Cdolo组成。因此,该方法可以应用于研究被成岩方解石干扰的白云岩样品的无机碳同位素。

  • 表2 雾河岩芯陡山沱组下部样品碳氧同位素数据

  • Table2 Carbon and oxygen isotopic data for samples from the lower Doushantuo Formation in Wuhe drill core

  • 注:层位表示样品距离陡山沱组底部的厚度。Δδ13C=δ13Cdolo13Cbulk,Δδ18O=δ18Odolo18Obulk

  • 与δ13C不同,酸预溶解样品残余物的δ18O表现出较差的稳定性。仅有一个样品的δ18O数据与纯白云石的δ18O值接近(表1),其他样品与纯白云石δ18O值之间的差值为1‰~1.2‰。值得注意的是,酸预溶解样品残余物的δ18O值并不介于纯方解石和纯白云石的δ18O值之间。造成这种现象的原因目前并不清楚,可能是由于在酸预溶解样品过程中发生了白云石的再沉淀,而在此过程中发生了氧同位素的动力学分馏。尽管最终获得的残余物δ18O值并不能十分准确地反映δ18Odolo特征,但是两者之间的差值较小,因此其δ18O值仍然具有一定的参考价值。

  • 4.2 陡山沱组下部地层碳酸盐矿物成因

  • 碳酸盐岩样品常具有复杂的结构和成分,不同的结构和矿物成分可能因为形成于不同的环境背景,而保存截然不同的成因信息。以常见的颗粒碳酸盐岩为例,其中的颗粒,譬如生物碎屑、鲕粒等通常形成于水体之中,记录了沉积水体的信息;而颗粒之间的胶结物通常形成于孔隙水之中,记录了孔隙水的地球化学特征。此外,白云岩化作用、热液活动等其他成岩作用,在改变碳酸盐岩矿物成分和结构的同时,也能够改变沉积物的原始碳同位素组成(Dickson et al.,1980; Banner et al.,1990)。阴极发光显微镜分析可以有效地帮助我们识别岩石样品中碳酸盐矿物的结构特征及成因。锰元素可以诱发碳酸盐矿物的阴极发光,而铁元素则可以抑制碳酸盐矿物的阴极发光(Pierson,1981; Hemming et al.,1989)。由于海水中锰浓度低,因此开阔海水中形成的方解石和文石等矿物通常不发光或者发光不明显。白云岩化往往会导致岩石矿物中的锰含量显著提高(Kaufman et al.,1995; Gawthorpe,2003),而很多方解石矿物也会因为成岩作用改造或者沉积水体氧化还原环境的改变而含有较高的锰元素,从而导致强烈的阴极发光特征(Barnaby et al.,1989; Hendry,1995; Cazenave et al.,2003)。因此,对碳酸盐岩样品进行详细的岩石学研究,可以帮助我们评估岩石遭受的成岩改造以及其中碳酸盐矿物的成因,有利于全面理解和分析其碳同位素组成特征。

  • 盖帽白云岩的主要组成矿物为微晶白云石,部分样品中含有少量沿裂隙分布或者是填充于白云石孔隙之间的方解石,这样的赋存形态表明这些方解石矿物是在后期成岩过程中形成的,而非原生沉淀,故不能反映沉积水体的信息。在岩石中占主导地位的白云石矿物并没有明显的后期改造痕迹(图4a、b),这些白云石仍可能保存了海水的原始信息。盖帽白云岩顶部样品中含火山碎屑,并且这些火山碎屑被白云石矿物交代(图4c、d)。交代火山碎屑的白云石矿物表现出了比围岩中微晶白云石稍强的阴极发光特征以及更大的晶体粒径,指示交代火山碎屑的白云石形成于更加后期的成岩作用过程,因此并不适用于指示古海水的信息。综上所述,陡山沱组盖帽白云岩中仅含有极少量的形成于孔隙水和成岩过程中的方解石,除了上部的样品中有部分后期成岩过程中形成的白云石外,其他样品的白云石并没有经历显著的后期改造,其δ13Cdolo值可以代表沉积水体的碳同位素组成特征。

  • 第2单元灰岩中的方解石晶体常呈镶嵌状结构(图4e、f),这种结构特征在现代海洋和地质历史时期的自生碳酸盐岩中非常常见(Aloisi et al.,2000; Vanneste et al.,2012; Cui Huan et al.,2017)。与此同时,样品δ13Cbulk值最低可至-36.4‰(表1,图3),也类似于现代海底冷泉和地质历史中AOM过程中形成的自生方解石(Peckmann et al.,2004; Tong et al.,2013),表明第2单元灰岩中的方解石矿物是AOM的产物(Zhou Chuanming et al.,2016; Peng Yongbo et al.,2022)。此外,火山碎屑颗粒边缘发育方解石包壳(图5a),且一些火山碎屑被方解石交代(图5b),这些岩石学特征都表明方解石矿物形成于火山碎屑沉积之后,是成岩过程的产物。综上述所,第2单元中的方解石晶体形成于火山碎屑沉积之后的AOM过程中,并且大多经历了严重的后期重结晶,因此这些方解石矿物的δ13C值并不代表原始海水的碳同位素组成。由于方解石是第2单元样品的最主要矿物组成,因此这一单元的全岩样品不能反映古海水的碳同位素信号。

  • 第2单元岩石样品中的白云石矿物表现出截然不同的特征。在第2单元下部的样品104-5-2和104-5中,除了微晶白云石以外,还有很多自形白云石晶体。这些白云石晶体以漂浮自形晶的形式存在于方解石和石英晶体内部(图4g),表明它们的形成时间晚于方解石和石英,其无机碳同位素可能直接继承于AOM过程中形成的方解石。在以104-5-3~104-4-2为代表的第2单元中上部样品中,白云石以微晶为主(图4h、5a)。其中样品104-5-3结构简单,并未见任何后期改造的痕迹。样品104-4中出现大量围绕微晶白云石集合体产出的自形白云石晶体,这些自形白云石的阴极发光特征与微晶白云石相同,而与方解石矿物的阴极发光特征明显不同(图5b)。因此,我们认为这些自形白云石应该是源自于微晶白云石的重结晶,而与岩石中的方解石无关,故这些样品中白云石的δ13C值可能仍然代表了沉积时期水体的碳同位素组成信号。

  • 第3单元的样品岩性也表现出多样化。部分样品为微晶白云岩,方解石仅填充在白云石晶体间的孔隙中(图5c)。有些样品为矿物组分单一的微晶白云岩,几乎不含方解石(图5d)。然而也有部分样品表现出更为复杂的结构和成分特征,譬如样品103-8为含颗粒的泥质白云岩,其中颗粒主要为粒径较大的石英和胶磷矿,泥晶—微晶白云石、颗粒较小的石英和泥质矿物作为基质充填于颗粒之间(图5e)。岩石中的方解石均充填于孔隙之中,应该是形成于沉积之后的孔隙水之中。第3单元样品中的次生方解石矿物,表明样品的δ13Cbulk受到了非同沉积期信号的干扰,不利于使用其全岩样品进行古海洋同位素组成的恢复。值得注意的是,虽然第3单元的样品中方解石矿物均为成岩作用产物,但是其中的白云石均为泥晶—微晶,应该是直接沉淀于开阔水体之中或者形成于成岩初期的白云岩化,这些白云石矿物并没有遭受显著的成岩作用改造。

  • 第4单元样品为白云质泥岩和泥质白云岩,矿物成分以白云石、石英和黏土矿物为主,几乎不含方解石(图5f)。样品中白云石均为泥晶—微晶,未见其他显著后期成岩改造的特征。因此,该层段的样品是研究古海洋无机碳同位素的理想材料。

  • 综上所述,陡山沱组下部地层存在显著的岩性变化。其中方解石矿物的成因较为复杂,既有形成于成岩早期的自生方解石和孔隙中的方解石胶结物,也有形成于可能更加晚期的方解石脉体。在本次研究的第2、3单元岩石样品中,方解石均是成岩作用的产物。而除了样品104-6、104-5-2和104-5之外,其他样品中的白云石主要以泥晶—微晶为主,没有经历明显的后期改造。根据他们的赋存形态和结构特征,推断这些白云石矿物应该是直接沉淀于开阔水体之中,或者由先前沉淀的泥晶—微晶方解石在成岩初期白云岩化而来。不论是哪种成因,这些白云石矿物的无机碳同位素都基本继承了开阔水体的信息。

  • 4.3 埃迪卡拉纪早期海水无机碳同位素特征的真实记录

  • 沉积物孔隙水中形成的成岩方解石通常会导致岩石样品δ13Cbulk值的下降(Mozley et al.,1993; Derry,2010; Cui Huan et al.,2022)。根据岩石学特征,陡山沱组下部,尤其是第2、3单元的碳酸盐岩中含有大量成岩作用过程中形成的方解石,只有当这些方解石被去除之后,残余物的δ13C值才能代表沉积水体的原始碳同位素组成。采用酸预溶解方法对陡山沱组下部碳酸盐岩样品进行处理,并对残余物进行碳氧同位素测试,根据这些数据我们可以直观地评估成岩方解石对于原始沉积物无机碳同位素的影响程度。陡山沱组下部样品的δ13Cdolo普遍高于δ13Cbulk(表2,图3),两者之差(Δδ13C)为-2‰~26.9‰(平均值为3.7‰,n=31)。其中第1、4单元样品的Δδ13C总体较小(平均Δδ13C值分别为0.5‰和0.9‰),与岩石学观察显示的这两个单元的样品含有较少的成岩方解石相吻合。与之形成鲜明对比的是,第2、3单元样品的平均Δδ13C值分别为13.7‰和2.6‰,且最大Δδ13C值可达26.9‰,明显超出白云岩化导致的δ13C改变范围(Tan et al.,1971; Melezhik et al.,2005),表明第2、3单元样品显著叠加了大量成岩方解石的干扰。另外,陡山沱组下部样品的δ18Odolo值普遍高于-5‰,指示了白云石矿物经历了有限的成岩作用改造。

  • 综合岩石学和无机碳氧同位素的证据,我们认为相对于含有成岩方解石矿物的全岩样品而言,白云石组分经历了更加有限的后期改造,可以更加准确地示踪古海洋无机碳同位素组成。需要指出的是,部分样品,如104-6、104-5-2和104-5含有晚期成岩阶段的白云石,利用这些样品的δ13Cdolo数据示踪古海洋信息时需要特别谨慎。

  • 雾河岩芯剖面δ13Cdolo数据表明,埃迪卡拉系盖帽白云岩沉积时,古海水碳同位素组成为13C相对亏损的负值,而在盖帽白云岩沉积后δ13C迅速转为正值(图3),这与邻近的花鸡坡、田家园子和陈家园子剖面的δ13Ccarb特征一致(Jiang Ganqing et al.,2003; Lu Miao et al.,2012; Liu Pengju et al.,2014)。δ13Cbulk曲线显示的碳同位素极负值(第2单元)和CIF(第3单元)两次异常事件在δ13Cdolo曲线中并未显现(图3)。岩石学和无机碳氧同位素证据都证实了这两次无机碳同位素的扰动实为后期成岩作用的结果。宜昌地区陡山沱组盖帽碳酸盐岩中记录的极负碳同位素值被解释为AOM作用的结果(Zhou Chuanming et al.,2016; Peng Yongbo et al.,2022),但是AOM作用是否影响了开阔海水的无机碳同位素组成还未可知。本次研究中,虽然样品104-5和104-5-2的δ13Cdolo表现出极端的负值,但是由于这两件样品中的白云石矿物多由AOM过程中形成的方解石转变而来(图4g),因此并不能代表海水的信息。而第2单元其他样品的δ13Cdolo位于2.1‰~4.3‰之间,和上覆地层的δ13Cdolo值并无显著差别,表明埃迪卡拉纪初期的AOM过程被限制在沉积物内,并没有影响海水的碳同位素组成。

  • 5 结论

  • 岩石学和稳定碳氧同位素研究显示,在湖北宜昌地区雾河岩芯剖面,埃迪卡拉系陡山沱组底部(主要涉及第2、3单元)的样品中含有大量的形成于成岩过程中的方解石,因此无法利用其全岩样品来准确示踪埃迪卡拉纪初期的古海洋碳同位素组成特征。大多数样品中白云石组分为泥晶—微晶,未经明显的成岩改造,普遍高于-5‰的δ18Odolo特征也指示白云岩化过程对碳酸盐岩的无机碳同位素改造轻微,因此δ13Cdolo可以反映沉积水体的真实信息。

  • 采用30%的磷酸对碳酸盐岩全岩粉末样品进行酸预溶解,可以有效地去除方解石组分,对残余物进行无机碳同位素测试即可获得δ13Cdolo数据。δ13Cdolo分析结果表明,在盖帽白云岩沉积之后,海水的δ13C转为持续的正值。陡山沱组下部全岩样品呈现出的δ13C极负值和CIF事件是由成岩作用过程中形成的方解石造成的。鉴于成岩作用对碳酸盐岩样品碳同位素组成的影响不可忽视,在对样品进行碳同位素分析测试前,需要通过详细的岩石学观察对成岩作用的影响进行评估。

  • 致谢:陈小明、刘静、张东在碳氧同位素分析测试中给予技术帮助,两位审稿人提出了宝贵的修改意见,特此致谢。

  • 参考文献

    • Aloisi G, Pierre C, Rouchy J, Foucher J, Woodside J. 2000. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization. Earth and Planetary Science Letters, 184(1): 321~338.

    • Banner J L, Hanson G N. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimicaet Cosmochimica Acta, 54(11): 3123~3137.

    • Barnaby R J, Rimstidt J D. 1989. Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. GSA Bulletin, 101(6): 795~804.

    • Bristow T F, Bonifacie M, Derkowski A, Eiler J M, Grotzinger J P. 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature, 474(7349): 68~71.

    • Busch J F, Hodgin E B, Ahm A C, Husson J M, Macdonald F A, Bergmann K D, Higgins J A, Strauss J V. 2022. Global and local drivers of the Ediacaran Shuram carbon isotope excursion. Earth and Planetary Science Letters, 579: 117368.

    • Cazenave S, Chapoulie R, Villeneuve G. 2003. Cathodoluminescence of synthetic and natural calcite: The effects of manganese and iron on orange emission. Mineralogy and Petrology, 78(3): 243~253.

    • Chen Wei, Lu Jue, Jiang Shaoyong, Zhao Kuidong, Duan Dengfei. 2017. In situ carbon isotope analysis by laser ablation MC-ICP-MS. Analytical Chemistry, 89(24): 13415~13421.

    • Cramer B D, Jarvis I. 2020. Carbon isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. Geologic Time Scale 2020. Elsevier, 309~343

    • Cui Huan, Kaufman A J, Xiao Shuhai, Zhou Chuanming, Liu Xiao-Ming. 2017. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59~80.

    • Cui Huan, Kitajima K, Orland I J, Baele J M, Xiao Shuhai, Kaufman A J, Denny A, Spicuzza M J, Fournelle J H, Valley J W. 2022. An authigenic response to Ediacaran surface oxidation: Remarkable micron-scale isotopic heterogeneity revealed by SIMS. Precambrian Research, 377: 106676.

    • Derkowski A, Bristow T F, Wampler J M, Srodon J, Marynowski L, Elliott W C, Chamberlain C P. 2013. Hydrothermal alteration of the Ediacaran Doushantuo Formation in the Yangtze Gorges area (South China). Geochimicaet Cosmochimica Acta, 107: 279~298.

    • Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294(1): 152~162.

    • Dickson J A D, Coleman M L. 1980. Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology, 27(1): 107~118.

    • Du Yong, Song Huyue. 2020. Refined protocol for δ13C analysis of calcite and dolomite in carbonate mixture samples. Rapid Communications in Mass Spectrometry, 34(10): e8743.

    • Emrich K, Ehhalt D H, Vogel J C. 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters, 8(5): 363~371.

    • Gawthorpe R L. 2003. Burial dolomitization and porosity development in a mixed carbonate-clastic sequence: An example from the Bowland basin, northern England. In: Burley S D, Worden R H, eds. Sandstone Diagenesis, 413~438.

    • Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S. 2003. Precise dating of Dansgaard-Oeschger climate oscillations in Western Europe from stalagmite data. Nature, 421(6925): 833~837.

    • Hemming N G, Meyers W J, Grams J C. 1989. Cathodoluminescence in diagenetic calcites; the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements. Journal of Sedimentary Research, 59(3): 404~411.

    • Hendry J P. 1995. Calcite cementation during bacterial manganese, iron and sulphate reduction in Jurassic shallow marine carbonates. Sedimentology, 40(1): 87~106.

    • Hoefs J. 2009. Stable Isotope Geochemistry. Berlin: Springer.

    • Jiang Ganqing, Kennedy M J, Christie-Blick N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426(6968): 822~826.

    • Jiang Ganqing, Kennedy M J, Christie-Blick N, Wu Huaichun, Zhang Shihong. 2006. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research, 76(7): 978~995

    • Jiang Ganqing, Kaufman A J, Christie-Blick N, Zhang Shihong, Wu Huaichun. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261(1-2): 303~320.

    • Jiang Ganqing, Shi Xiaoying, Zhang Shihong, Wang Yue, Xiao Shuhai. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831~849.

    • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27~49.

    • Laakso T A, Schrag D P. 2020. The role of authigenic carbonate in Neoproterozoic carbon isotope excursions. Earth and Planetary Science Letters, 549: 116534.

    • Lin Zhijia, Wang Qinxian, Feng Dong, Liu Qian, Chen Duofu. 2011. Post-depositional origin of highly 13C-depleted carbonate in the Doushantuo cap dolostone in South China: Insights from petrography and stable carbon isotopes. Sedimentary Geology, 242: 71~79

    • Liu Pengju, Chen Shouming, Zhu Maoyan, Li Meng, Yin Chongyu, Shang Xiaodong. 2014. High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System. Precambrian Research, 249: 199~214.

    • Lu Miao, Zhu Maoyan, Zhao Fangchen. 2012. Revisiting the Tianjiayuanzi section-the stratotype section of the Ediacaran Doushantuo Formation, Yangtze Gorges, South China. Bulletin of Geosciences, 87(1): 183~194.

    • Marais D J D, Strauss H, Summons R E, Hayez J M. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359(6396): 605~609.

    • McFadden K A, Huang Jing, Chu Xuelei, Jiang Ganqing, Kaufman A J, Zhou Chuanming, Yuan Xunlai, Xiao Shuhai. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197~3202.

    • Melezhik V A, Roberts D, Fallick A E, Gorokhov I M, Kusnetzov A B. 2005. Geochemical preservation potential of high-grade calcite marble versus dolomite marble: Implication for isotope chemostratigraphy. Chemical Geology, 216(3): 203~224.

    • Mozley P S, Burns S J. 1993. Oxygen and carbon isotopic composition of marine carbonate concretions; an overview. Journal of Sedimentary Research, 63(1): 73~83.

    • Ouyang Qing, Zhou Chuanming, Xiao Shuhai, Chen Zhe, Shao Yefei. 2019. Acanthomorphic acritarchs from the Ediacaran Doushantuo Formation at Zhangcunping in South China, with implications for the evolution of early Ediacaran eukaryotes. Precambrian Research, 320: 171~192.

    • Peckmann J, Thiel V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205(3-4): 443~467.

    • Peng Yongbo, Bao Huiming, Jiang Ganqing, Crockford P, Feng Dong, Xiao Shuhai, Kaufman A J, Wang Jiasheng. 2022. A transient peak in marine sulfate after the 635-Ma snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2117341119.

    • Petersen G W, Chesters G. 1966. Quantitative determination of calcite and dolomite in pure carbonates and limestones. Journal of Soil Science, 17(2): 317~327.

    • Pierson B J. 1981. The control of cathodoluminescence in dolomite by iron and manganese. Sedimentology, 28(5): 601~610.

    • Pokrovsky O S, Golubev S V, Schott J. 2005. Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chemical Geology, 217(3): 239~255.

    • Sawaki Y, Ohno T, Tahata M, Komiya T, Hirata T, Maruyama S, Windley B F, Han Jian, Shu Degan, Li Yong. 2010. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research, 176(1-4): 46~64.

    • Shields G A, Mills B J W, Zhu Maoyan, Raub T D, Daines S J, Lenton T M. 2019. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nature Geoscience, 12(10): 823~827.

    • Śliwiński, M G, Kitajima K, Kozdon R, Spicuzza M J, Denny A, Valley J W. 2017. In situ δ13C and δ18O microanalysis by SIMS: A method for characterizing the carbonate components of natural and engineered CO2-reservoirs. International Journal of Greenhouse Gas Control, 57: 116~133.

    • Tahata M, Ueno Y, Ishikawa T, Sawaki Y, Murakami K, Han Jian, Shu Degan, Li Yong, Guo Junfeng, Yoshida N, Komiya T. 2013. Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: Decoding temperature and environmental changes through the Ediacaran. Gondwana Research, 23(1): 333~353.

    • Tan F C, Hudson J D. 1971. Carbon and oxygen isotopic relationships of dolomites and co-existing calcites, Great Estuarine Series (Jurassic), Scotland. Geochimica et Cosmochimica Acta, 35(8): 755~767.

    • Tong Hongpeng, Feng Dong, Cheng Hai, Yang Shengxiong, Wang Hongbin, Min A G, Edwards R L, Chen Zhong, Chen Duofu. 2013. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Marine and Petroleum Geology, 43: 260~271.

    • Toyama K, Terakado Y. 2015. Differential dissolution technique for the geochemical separation of the calcite and dolomite of dolomitic limestones. Geochemical Journal, 49(5): 567~570.

    • Vanneste H, Kastner M, James R H, Connelly D P, Fisher R E, Kelly-Gerreyn B A, Heeschen K, Haeckel M, Mills R A. 2012. Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: A record of palaeo-seepage of hydrocarbon bearing fluids. Chemical Geology, 300-301: 24~39.

    • Wang Jiasheng, Jiang Ganqing, Xiao Shuhai, Li Qing, Wei Qing. 2008. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 36(5): 347~350.

    • Wang Xinqiang, Jiang Ganqing, Shi Xiaoying, Xiao Shuhai. 2016. Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China. Precambrian Research, 273: 53~66.

    • Xiao Shuhai, Cui Huan, Kang Junyao, McFadden K A, Kaufman A J, Kitajima K, Fournelle J H, Schwid M, Nolan M, Baele J, Valley J W. 2020. Using SIMS to decode noisy stratigraphic δ13C variations in Ediacaran carbonates. Precambrian Research, 343: 105686.

    • Yadav S K, Chakrapani G J, Gupta M K. 2008. An experimental study of dissolution kinetics ofcalcite, dolomite, leucogranite and gneiss in buffered solutions at temperature 25 and 5°C. Environmental Geology, 53(8): 1683~1694.

    • Zhou Chuanming, Xiao Shuhai. 2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology, 237(1-2): 89~108.

    • Zhou Chuanming, Bao Huiming, Peng Yongbo, Yuan Xunlai. 2010. Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China. Geology, 38(10): 903~906

    • Zhou Chuanming, Guan Chengguo, Cui Huan, Ouyang Qing, Wang Wei. 2016. Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 145~155.

    • Zhu Maoyan, Lu Miao, Zhang Junming, Zhao Fangchen, Li Guoxiang, Yang Aihua, Zhao Xin, Zhao Meijuan. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Research, 225: 7~28.

  • 参考文献

    • Aloisi G, Pierre C, Rouchy J, Foucher J, Woodside J. 2000. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization. Earth and Planetary Science Letters, 184(1): 321~338.

    • Banner J L, Hanson G N. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimicaet Cosmochimica Acta, 54(11): 3123~3137.

    • Barnaby R J, Rimstidt J D. 1989. Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. GSA Bulletin, 101(6): 795~804.

    • Bristow T F, Bonifacie M, Derkowski A, Eiler J M, Grotzinger J P. 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature, 474(7349): 68~71.

    • Busch J F, Hodgin E B, Ahm A C, Husson J M, Macdonald F A, Bergmann K D, Higgins J A, Strauss J V. 2022. Global and local drivers of the Ediacaran Shuram carbon isotope excursion. Earth and Planetary Science Letters, 579: 117368.

    • Cazenave S, Chapoulie R, Villeneuve G. 2003. Cathodoluminescence of synthetic and natural calcite: The effects of manganese and iron on orange emission. Mineralogy and Petrology, 78(3): 243~253.

    • Chen Wei, Lu Jue, Jiang Shaoyong, Zhao Kuidong, Duan Dengfei. 2017. In situ carbon isotope analysis by laser ablation MC-ICP-MS. Analytical Chemistry, 89(24): 13415~13421.

    • Cramer B D, Jarvis I. 2020. Carbon isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. Geologic Time Scale 2020. Elsevier, 309~343

    • Cui Huan, Kaufman A J, Xiao Shuhai, Zhou Chuanming, Liu Xiao-Ming. 2017. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59~80.

    • Cui Huan, Kitajima K, Orland I J, Baele J M, Xiao Shuhai, Kaufman A J, Denny A, Spicuzza M J, Fournelle J H, Valley J W. 2022. An authigenic response to Ediacaran surface oxidation: Remarkable micron-scale isotopic heterogeneity revealed by SIMS. Precambrian Research, 377: 106676.

    • Derkowski A, Bristow T F, Wampler J M, Srodon J, Marynowski L, Elliott W C, Chamberlain C P. 2013. Hydrothermal alteration of the Ediacaran Doushantuo Formation in the Yangtze Gorges area (South China). Geochimicaet Cosmochimica Acta, 107: 279~298.

    • Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294(1): 152~162.

    • Dickson J A D, Coleman M L. 1980. Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology, 27(1): 107~118.

    • Du Yong, Song Huyue. 2020. Refined protocol for δ13C analysis of calcite and dolomite in carbonate mixture samples. Rapid Communications in Mass Spectrometry, 34(10): e8743.

    • Emrich K, Ehhalt D H, Vogel J C. 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters, 8(5): 363~371.

    • Gawthorpe R L. 2003. Burial dolomitization and porosity development in a mixed carbonate-clastic sequence: An example from the Bowland basin, northern England. In: Burley S D, Worden R H, eds. Sandstone Diagenesis, 413~438.

    • Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S. 2003. Precise dating of Dansgaard-Oeschger climate oscillations in Western Europe from stalagmite data. Nature, 421(6925): 833~837.

    • Hemming N G, Meyers W J, Grams J C. 1989. Cathodoluminescence in diagenetic calcites; the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements. Journal of Sedimentary Research, 59(3): 404~411.

    • Hendry J P. 1995. Calcite cementation during bacterial manganese, iron and sulphate reduction in Jurassic shallow marine carbonates. Sedimentology, 40(1): 87~106.

    • Hoefs J. 2009. Stable Isotope Geochemistry. Berlin: Springer.

    • Jiang Ganqing, Kennedy M J, Christie-Blick N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426(6968): 822~826.

    • Jiang Ganqing, Kennedy M J, Christie-Blick N, Wu Huaichun, Zhang Shihong. 2006. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research, 76(7): 978~995

    • Jiang Ganqing, Kaufman A J, Christie-Blick N, Zhang Shihong, Wu Huaichun. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261(1-2): 303~320.

    • Jiang Ganqing, Shi Xiaoying, Zhang Shihong, Wang Yue, Xiao Shuhai. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831~849.

    • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27~49.

    • Laakso T A, Schrag D P. 2020. The role of authigenic carbonate in Neoproterozoic carbon isotope excursions. Earth and Planetary Science Letters, 549: 116534.

    • Lin Zhijia, Wang Qinxian, Feng Dong, Liu Qian, Chen Duofu. 2011. Post-depositional origin of highly 13C-depleted carbonate in the Doushantuo cap dolostone in South China: Insights from petrography and stable carbon isotopes. Sedimentary Geology, 242: 71~79

    • Liu Pengju, Chen Shouming, Zhu Maoyan, Li Meng, Yin Chongyu, Shang Xiaodong. 2014. High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System. Precambrian Research, 249: 199~214.

    • Lu Miao, Zhu Maoyan, Zhao Fangchen. 2012. Revisiting the Tianjiayuanzi section-the stratotype section of the Ediacaran Doushantuo Formation, Yangtze Gorges, South China. Bulletin of Geosciences, 87(1): 183~194.

    • Marais D J D, Strauss H, Summons R E, Hayez J M. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359(6396): 605~609.

    • McFadden K A, Huang Jing, Chu Xuelei, Jiang Ganqing, Kaufman A J, Zhou Chuanming, Yuan Xunlai, Xiao Shuhai. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197~3202.

    • Melezhik V A, Roberts D, Fallick A E, Gorokhov I M, Kusnetzov A B. 2005. Geochemical preservation potential of high-grade calcite marble versus dolomite marble: Implication for isotope chemostratigraphy. Chemical Geology, 216(3): 203~224.

    • Mozley P S, Burns S J. 1993. Oxygen and carbon isotopic composition of marine carbonate concretions; an overview. Journal of Sedimentary Research, 63(1): 73~83.

    • Ouyang Qing, Zhou Chuanming, Xiao Shuhai, Chen Zhe, Shao Yefei. 2019. Acanthomorphic acritarchs from the Ediacaran Doushantuo Formation at Zhangcunping in South China, with implications for the evolution of early Ediacaran eukaryotes. Precambrian Research, 320: 171~192.

    • Peckmann J, Thiel V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205(3-4): 443~467.

    • Peng Yongbo, Bao Huiming, Jiang Ganqing, Crockford P, Feng Dong, Xiao Shuhai, Kaufman A J, Wang Jiasheng. 2022. A transient peak in marine sulfate after the 635-Ma snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2117341119.

    • Petersen G W, Chesters G. 1966. Quantitative determination of calcite and dolomite in pure carbonates and limestones. Journal of Soil Science, 17(2): 317~327.

    • Pierson B J. 1981. The control of cathodoluminescence in dolomite by iron and manganese. Sedimentology, 28(5): 601~610.

    • Pokrovsky O S, Golubev S V, Schott J. 2005. Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chemical Geology, 217(3): 239~255.

    • Sawaki Y, Ohno T, Tahata M, Komiya T, Hirata T, Maruyama S, Windley B F, Han Jian, Shu Degan, Li Yong. 2010. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research, 176(1-4): 46~64.

    • Shields G A, Mills B J W, Zhu Maoyan, Raub T D, Daines S J, Lenton T M. 2019. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nature Geoscience, 12(10): 823~827.

    • Śliwiński, M G, Kitajima K, Kozdon R, Spicuzza M J, Denny A, Valley J W. 2017. In situ δ13C and δ18O microanalysis by SIMS: A method for characterizing the carbonate components of natural and engineered CO2-reservoirs. International Journal of Greenhouse Gas Control, 57: 116~133.

    • Tahata M, Ueno Y, Ishikawa T, Sawaki Y, Murakami K, Han Jian, Shu Degan, Li Yong, Guo Junfeng, Yoshida N, Komiya T. 2013. Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: Decoding temperature and environmental changes through the Ediacaran. Gondwana Research, 23(1): 333~353.

    • Tan F C, Hudson J D. 1971. Carbon and oxygen isotopic relationships of dolomites and co-existing calcites, Great Estuarine Series (Jurassic), Scotland. Geochimica et Cosmochimica Acta, 35(8): 755~767.

    • Tong Hongpeng, Feng Dong, Cheng Hai, Yang Shengxiong, Wang Hongbin, Min A G, Edwards R L, Chen Zhong, Chen Duofu. 2013. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Marine and Petroleum Geology, 43: 260~271.

    • Toyama K, Terakado Y. 2015. Differential dissolution technique for the geochemical separation of the calcite and dolomite of dolomitic limestones. Geochemical Journal, 49(5): 567~570.

    • Vanneste H, Kastner M, James R H, Connelly D P, Fisher R E, Kelly-Gerreyn B A, Heeschen K, Haeckel M, Mills R A. 2012. Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: A record of palaeo-seepage of hydrocarbon bearing fluids. Chemical Geology, 300-301: 24~39.

    • Wang Jiasheng, Jiang Ganqing, Xiao Shuhai, Li Qing, Wei Qing. 2008. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 36(5): 347~350.

    • Wang Xinqiang, Jiang Ganqing, Shi Xiaoying, Xiao Shuhai. 2016. Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China. Precambrian Research, 273: 53~66.

    • Xiao Shuhai, Cui Huan, Kang Junyao, McFadden K A, Kaufman A J, Kitajima K, Fournelle J H, Schwid M, Nolan M, Baele J, Valley J W. 2020. Using SIMS to decode noisy stratigraphic δ13C variations in Ediacaran carbonates. Precambrian Research, 343: 105686.

    • Yadav S K, Chakrapani G J, Gupta M K. 2008. An experimental study of dissolution kinetics ofcalcite, dolomite, leucogranite and gneiss in buffered solutions at temperature 25 and 5°C. Environmental Geology, 53(8): 1683~1694.

    • Zhou Chuanming, Xiao Shuhai. 2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology, 237(1-2): 89~108.

    • Zhou Chuanming, Bao Huiming, Peng Yongbo, Yuan Xunlai. 2010. Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China. Geology, 38(10): 903~906

    • Zhou Chuanming, Guan Chengguo, Cui Huan, Ouyang Qing, Wang Wei. 2016. Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 145~155.

    • Zhu Maoyan, Lu Miao, Zhang Junming, Zhao Fangchen, Li Guoxiang, Yang Aihua, Zhao Xin, Zhao Meijuan. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Research, 225: 7~28.