en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

魏海珍,女,1977年生。教授,矿床同位素地球化学专业。E-mail:haizhenwei@nju.edu.cn。

通讯作者:

许志琴,女,1941年生。教授,中国科学院院士,长期从事青藏高原及大陆造山带研究,曾担任中国大陆科学钻探和汶川地震断裂带科学钻探工程首席科学家。E-mail:xzq@nju.edu.cn。

参考文献
Bachmann O, Bergantz G W. 2004. On the origin of crystal-poor rhyolites extracted from batholithic crystal mushes. Journal of Petrology, 45: 1565~82.
参考文献
Baker L L, Rutherford M J. 1996. The effect of dissolved water on the oxidation state of silicic melts. Geochimica et Cosmochimica Acta, 60: 2179~2187.
参考文献
Billerot A, Duchene S, Vanderhaeghe O, de Sigoyer J. 2017. Gneiss domes of the Danba metamorphic complex, Songpan Ganze, eastern Tibet. Journal of Asian Earth Science, 140: 48~74.
参考文献
Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems. Resource Geology, 54: 241~52.
参考文献
Bradley D C, McCauley A D, Stillings L L. 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites. Scientific Investigations Report. Reston, VA.
参考文献
Breiter K, Škoda R. 2017. Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineralogy and Petrology, 111: 435~57.
参考文献
Bruguier O, Lancelot J R, Malavieille J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations. Earth and Planetary Science Letters, 152(1): 217~231.
参考文献
Černý P. 1991. Rare-element granitic pegmatites. Part Ⅰ Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18: 49~67.
参考文献
Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005~2026.
参考文献
Černý P, London D, Novak M. 2012. Granitic pegmatites as reflections of their sources. Elements, 8: 289~294.
参考文献
Cesare B, Meli S, Nodari L, Russo U. 2005. Fe3+ reduction during biotite melting in graphitic metapelites: Another origin of CO2 in granulites. Contributions to Mineralogy and Petrology, 149: 129~140.
参考文献
Chen Bin, Huang Chao, Zhao Hui. 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551(1): 119769.
参考文献
Codeço M S, Weis P, Trumbull R B, Glodny J, Wiedenbeck M, Romer R L. 2019. Boron isotope muscovite-tourmaline geothermometry indicates fluid cooling during magmatic-hydrothermal W-Sn ore formation. Economic Geology, 114 (1): 153~163.
参考文献
Dauphas N, Roskosz M, Alp E E, Neuville D R, Hu M Y, Sio C K, Tissot F L H, Zhao J, Tissandier L, Médard E, Cordier C. 2014. Magma redox and structural controls on iron isotope variations in Earth's mantle and crust. Earth and Planetary Science Letters, 398: 127~140.
参考文献
de Sigoyer J, Vanderhaeghe O, Duchêne S, Billerot A. 2014. Generation and emplacement of Triassic granitoids within the Songpan-Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China. Journal of Asian Earth Science, 88: 192~216.
参考文献
Ding Lin, Yang D, Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H, Shi R D. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34~48.
参考文献
Dittrich T, Seifert T, Schulz B, Hagemann S, Gerdes A, Pfänder J. 2019. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations. Springer.
参考文献
Du Dehong, Wang Xiaolei, Yang Tao, Chen Xin, Li Junyong, Li Weiqiang. 2017. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective. Geochimica et Cosmochimica Acta, 218: 58~72.
参考文献
Du Dehong, Li Weiqiang, Wang Xiaolei, Shu Xujie, Yang Tao, Sun Tao. 2019. Fe isotopic fractionation during the magmatic-hydrothermal stage of granitic magmatism. Lithos, 350~351.
参考文献
Dutrow B L, Henry D J. 2018. Tourmaline compositions and textures: Reflections of the fluid phase. Journal of Geoscience, 63 (2): 99~110.
参考文献
Eby G N, Woolley A R, Din V, Platt G. 1998. Geochemistry and petrogenesis of nepheline syenites: Kasungu-Chipala, Ilomba, and Ulindi nepheline syenite intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology, 39: 1405~1424.
参考文献
Edmonds M, Woods A W. 2018. Exsolved volatiles in magma reservoirs. Journal of Volcanology & Geothermal Research, 368: 13~30.
参考文献
Elliott T, Jeffcoate A, Bouman C. 2004. The terrestrial Li isotope cycle: Light-weight constraints on mantle convection. Earth & Planetary Science Letters, 220(3~4): 231~245.
参考文献
Elliott T, Thomas A, Jeffcoate A, Niu Y L. 2006. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature, 443(7111): 565~568.
参考文献
Fan Jingjing, Tang Gongjian, Wei Gangjian, Wang He, Xu Yigang, Wang Qiang, Zhou Jinsheng, Zhang Zhuoying, Huang Tongyu, Wang Zilong. 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos, 352~353.
参考文献
Fan Jingjing, Wang Q, Wei G J, Li J, Ma L, Zhang X Z, Jiang Z Q, Ma J L, Zhou J S, Li Q W, Wang Z L, Liu X, Huang T Y, Zheng M Y. 2023. Boron and molybdenum isotope evidence for source-contrilled compositional diversity of Cenozoic granites in the eastern Tethyan Himalaya. Geochemistry, Geophysics, Geosystem, 24: e2022GC010629.
参考文献
Foden J, Sossi P A, Wawryk C M. 2015. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos, 212~215, 32~44.
参考文献
Fu Xiaofang, Wang Chenghong, Yuan Linping, Liang Bin, Hao Xuefeng, Pan Meng. 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China. Geological Survey of China, 1(3): 37~43 (in Chinese with English abstract).
参考文献
Fu Xiaofang, Yuan Linping, Wang Denghong, Hou Liwei, Pan Meng, Liang Bin, Tang Yi. 2015. Mineralization charecteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan. Mineral Deposits, 34(6): 1172~1186 (in Chinese with English abstract).
参考文献
Gao Jianguo, Wei Guangyi, Li Guangwei, Yin Yisheng, Zhang Rongqing, Ling Hongfei, Xu Zhiqin. 2023. Geochemical constraints on the origin of the rare metal mineralization in granite pegmatite, evidence from three-kilometer scientific drilling core in the Jiajika Li deposit, eastern Tibetan Plateau. Ore Geology Reviews (Revision in review).
参考文献
Ghosh U, Upadhyay D, Abhinay K, Mishra B. 2021. Nature of the mineralizing fluids in the Balda and Motiya W-prospects, western India: Constraints from chemical and B-isotope composition of tourmaline. Chemical Geology, 582: 120439.
参考文献
Gourcerol B, Gloaguen E, Melleton J, Tuduri J, Galiegue X. 2019. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geology Reviews. 109: 494~519.
参考文献
Hamilton P J, O'Nions R K, Pankhurst R J. 1980. Isotopic evidence for the provenance of some Caledonian granites. Nature, 287: 279~284.
参考文献
Harrowfield M J, Wilson C J L. 2005. Indosinian deformation of the Songpan-Garzê fold belt, northeast Tibetan Plateau. Journal of Structural Geology, 27: 101~117.
参考文献
Heimann A, Beard B L, Johnson C M. 2008. The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochimica et Cosmochimica Acta, 72: 4379~4396.
参考文献
Henry D J, Guidotti C V. 1985. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70: 1~15.
参考文献
Hervig R L, Moore G M, Williams L B, Peacock S M, Holloway J R, Roggensack K. 2002. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. American Mineralogist, 87: 769~774.
参考文献
Huan Chun, Wei Haizhen, Zhu Wenbin, Palmer M R, Lin Hefeng, Zheng Bihai, Cai Yue, Zhu Yuanfeng, Wang Junlin, Xu Zhiqin. 2023. Boron isotopes in tourmaline from drill core of the Jiajika granitic pegmatite type lithium deposit: Insights for granitic magma evolution and lithium enrichment. Ore Geology Reviews (Revision in review).
参考文献
Huang M H, Buick I S, Hou L W. 2003. Tectonometamorphic evolution of the eastern Tibet Plateau: Evidence from the Central Songpan-Garzê orogenic belt, western China. Journal of Petrology, 44 (2): 255~278.
参考文献
Huang Tao, Fu Xiaofang, Ge Liangquan, Zou Fuge, Hao Xuefeng, Yang Rong, Xiao Ruiqing, Fan Junbo. 2020. The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach. Ore Geology Reviews, 124: 103557.
参考文献
Iveson A A, Webster J D, Rowe M C, Neill O K. 2019. Fluid-melt trace-element partitioning behavior between evolved melts and aqueous fluids: Experimental constraints on the magmatic-hydrothermal transport of metals. Chemical Geology, 516: 18~41.
参考文献
Jian Xing, Weislogel A, Pullen A. 2019. Triassic sedimentary filling and closure of the eastern Paleo-Tethys Ocean: New insights from detrital zircon geochronology of Songpan-Ganzi, Yidun, and West Qinling flysch in eastern Tibet. Tectonics, 38 (2): 767~787.
参考文献
Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer.
参考文献
Johnson C, Beard B, Weyer S. 2020. Iron Geochemistry: An Isotopic Perspective. Advances in Isotope Geochemistry. Springer.
参考文献
Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180 km depth. Nature, 437: 724~727.
参考文献
Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust. 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148: 193~205.
参考文献
Li Jiankang, Wang Denghong, Zhang Dehui, Fu Xiaofang. 2006. The discovery of silicate daughter mineral-bearing inclusions in the Jiajika pegmatite deposit, western Sichuan, and its significance. Mineral Deposits, 25(S1): 131~134 (in Chinese with English abstract).
参考文献
Li Jiankang, Wang Denghong, Chen Yuchuan. 2013. The ore-forming mechanism of the Jiajika pegmatite-type rare metal deposit in western Sichuan Province: Evidence from isotope dating. Acta Geologica Sinica (English Edition), 87(1): 91~101.
参考文献
Li Jiankang, Chou I M. 2016. An occurrence of metastable cristobalite in spodumene-hosted crystal rich inclusions from Jiajika pegmatite deposit, China. Journal of Geochemical Exploration, 171: 29~36.
参考文献
Li Mingze, Qin Yulong, Li Zheng, Xu Yunfeng, Wu Wenhui, Liu Wei, Ye Yakang, Zhou Xiong. 2018. Geochemical characteristics of two-mica granite and granite pegmatite in Jiajika area, western Sichuan, and their geological implications. Acta Petrologica et Mineralogica, 37 (3): 366~378 (in Chinese with English abstract).
参考文献
Li Xianfang, Tian Shihong, Wang Denghong, Zhang Huijuan, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan, Yu Yang, Wang Hai. 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry. Mineral Deposits, 39: 273~304 (in Chinese with English abstract).
参考文献
Li Yinchuan, Chen Hongwei, Wei Haizhen, Jiang Shaoyong, Palmer M R, van de Ven T G M, Hohl S, Lu Jianjun, Ma Jing. 2020. Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: A density functional theory study. Chemical Geology, 536: 119466.
参考文献
Li Yinchuan, Wei Haizhen, Palmer M R, Jiang Shaoyong, Liu Xi, Williams-Jones A E, Ma Jing, Lu Jianjun, Lin Yibo, Dong Ge. 2021. Boron coordination and B/Si ordering controls over equilibrium boron isotope fractionation among minerals, melts, and fluids. Chemical Geology, 561: 120030.
参考文献
Li Yinchuan, Wei Haizhen, Palmer M R, Ma Jing, Jiang Shaoyong, Chen Yixiang, Lu Jianjun, Liu Xi. 2022. Equilibrium boron isotope fractionation during serpentinization and applications in understanding subduction zone processes. Chemical Geology, 609: 121047.
参考文献
Linnen R L, van Lichtervelde M, Cerny P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8: 275~280.
参考文献
Liu Lijun, Fu Xiaofang, Wang Denghong, Hao Xuefang, Yuan Linping, Pan Meng. 2015. Geological characteristics and metallogeny of Jiajika-style rare metal deposits. Mineral Deposits, 34(6): 1187~1198 (in Chinese with English abstract).
参考文献
Liu Lijun, Wang Denghong, Gao Juanqin, Yu Feng, Wang Wei. 2019. Breakthroughs of lithium exploration progress (2017~2018) and its significance to China's strategic key mineral exploration. Acta Geologica Sinica, 93: 1479~1488 (in Chinese with English abstract).
参考文献
Liu Shengao, Teng Fangzhen, Yang Wei, Wu Fuyuan. 2011. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton. Earth and Planetary Science Letters, 308: 131~140.
参考文献
London D. 2008. Pegmatites. Canadian Mineralogist Special Publication, 10: 1~368.
参考文献
London D. 2015. Reading pegmatites: Part 1—What Beryl says. Rocks & Minerals, 90: 138~153.
参考文献
London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.
参考文献
London D, Manning D A C. 1995. Chemical variation and significance of tourmaline from southwest England. Economy Geology, 90(3): 495~519.
参考文献
London D, Evensen J E. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. In: Grew E S, eds. Beryllium: Mineralogy, Petrology, and Geochemistry. Mineralogical Society of America Reviews in Mineralogy and Geochemistry, 50: 445~486.
参考文献
Luo Xianglong, Li Weiqiang, Du Dehong, An Shichao, Zheng Bihai, Zhu Wenbin, Xu Zhiqin. 2023. Iron isotope systematics of the Jiajika granitic-pegmatite lithium deposit, Sichuan, China. Ore Geology Reviews (Revision in review).
参考文献
Martins T, Roda-Robles E, Lima A, de Parseval P. 2012. Geochemistry and evolution of micas in the Barroso-Alvao pegmatite field, northern Portugal. The Canadian Mineralogist, 50: 1117~1129.
参考文献
Marschall H R, Jiang Shaoyong. 2011. Tourmaline isotopes: No element left behind. Elements, 7: 313~319.
参考文献
Marschall H R, Foster G L. 2018. Boron Isotopes—The Fifth Element. Berlin Heidelberg: Springer-Verlag.
参考文献
Nie N X, Dauphas N, Alp E E, Zeng Hao, Sio C K, Hu J Y, Chen Xi, Aarons S M, Zhang Zhe, Tian Hengci, Wang Da, Prissel K B, Greer J, Bi Wenli, Hu M Y, Zhao Jiyong, Shahar A, Roskosz M, Teng Fangzhen, Krawczynski M J, Heck P R, Spear F S. 2021. Iron, magnesium, and titanium isotopic fractionations between garnet, ilmenite, fayalite, biotite, and tourmaline: Results from NRIXS, ab initio, and study of mineral separates from the Moosilauke metapelite. Geochimica et Cosmochimica Acta, 302: 18~45.
参考文献
Palmer M R, Slack J F. 1989. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contributions Mineralogy & Petrology, 103(4): 434~451.
参考文献
Palmer M R, Swihart G H. 2002. Boron isotope geochemistry: An overview. In: Boron: Mineralogy, Petrology and Geochemistry, 2nd ed. Mineralogical Society of America, Washington DC, 709~744 (Reviews in Mineralogy, 33).
参考文献
Penniston-Dorland S, Liu Xiaoming, Rudnick R L. 2017. Lithium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 165~217.
参考文献
Pichavant M, Manning D. 1984. Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Physics of the Earth and Planetary Interiors, 35: 31~50.
参考文献
Pistiner J S, Henderson G M. 2003. Lithium-isotope fractionation during continental weathering processes. Earth & Planetary Science Letters, 214(1~2): 327~339.
参考文献
Qin Yulong, Hao Xuefeng, Xu Yunfeng, Wang Xianfeng. 2015. Metallogenic regularity and prospecting criteria of granite type rare metal deposits in Jiajika area, Sichuan Province. Geological Survey of China, 2(7): 35~39 (in Chinese with English abstract).
参考文献
Raimbault L, Cuney M, Azencott C, Duthou J L, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology and the Bulletin of the Society of Economic Geologists, 90: 548~576.
参考文献
Richter F M, Davis A M, Depaolo D J, Watson E B. 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905~3923.
参考文献
Roger F, Malavieille J, Leloup P H, Calassou S, Xu Z. 2004. Timing of granite emplacement and cooling in the Songpan-Garzê fold belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Science, 22 (5): 465~481.
参考文献
Roger F, Jolivet M, Malavieille J. 2008. Tectonic evolution of the Triassic fold belts of Tibet. Comptes Rendus-Geoscience, 340 (2~3): 180~189.
参考文献
Roger F, Jolivet M, Malavieille J. 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis. Journal of Asian Earth Science, 39 (4): 254~269.
参考文献
Rudnick R L, Gao S, Holland H D, Turekian K K. 2003. Composition of the continental crust. The Crust, 3: 1~64.
参考文献
Scaillet B, Holtz F, Pichavamt M, Schmidt M. 1996. Viscosity of Himalayan leucogranites: Implications for mechanism of granitic magma ascent. Journal of Geophysical Research: Solid Earth, 101: 27691~27699.
参考文献
Schuessler J A, Schoenberg R, Sigmarsson O. 2009. Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation. Chemical Geology, 258: 78~91.
参考文献
Shi Qingshang, He Yongshang, Zhao Zhidan, Liu Dong, Harris N G, Zhu D C. 2021. Petrogenesis of Himalayan leucogranites: Perspective from a combined elemental and Fe-Sr-Nd isotope study. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB021839.
参考文献
Simmons W B S, Foord E E, Falster A U, King V T. 1995. Evidence for an anatectic origin of granitic pegmatites, western Maine, USA. Geological Society of America Programs with Abstracts 27.
参考文献
Simmons W B S, Webber K L. 2008. Pegmatite genesis: State of the art. European Journal of Mineralogy, 20: 421~438.
参考文献
Slack J F. 1996. Tourmaline associations with hydrothermal ore deposits. In: Grew E S, Anovitz L M, eds. Boron: Mineralogy, Petrology and Geochemistry. Reviews in Mineralogy, 33: 559~644.
参考文献
Smith M P, Yardley B W D. 1996. The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: An ion microprobe study. Geochimica et Cosmochimica Acta, 60 (8): 1415~1427.
参考文献
Sossi P A, Foden J D, Halverson G P. 2012. Redox-controlled iron isotope fractionation during magmatic differentiation: An example from the Red Hill intrusion, S. Tasmania. Contributions to Mineralogy and Petrology, 164: 757~772.
参考文献
Stepanov A A, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”. Geology, 41: 303~306.
参考文献
Tang Ming, Lee C-T A, Costin G, Höfer H E. 2019. Recycling reduced iron at the base of magmatic orogens. Earth and Planetary Science Letters, 528: 115827.
参考文献
Telus M, Dauphas N, Moynier F, Tissot F L H, Teng Fangzhen, Nabelek P I, Craddock P R, Groat L A. 2012. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites. Geochimica et Cosmochimica Acta, 97: 247~265.
参考文献
Teng Fangzhen, McDonough W F, Rudnick R L, Walker R J. 2006. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243: 701~710.
参考文献
Thomas R, Förster H J, Rickers K, Webster J D. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contributions to Mineralogy and Petrology, 148: 582~601.
参考文献
Thomas R, Davidson P, Badanina E. 2009. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: Implications for pegmatite-forming melt systems. Mineralogy and Petrology, 96: 129~140.
参考文献
Thomas R, Davidson P. 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state—Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088~1101.
参考文献
Tian Hengci, Teng Fangzhen, Hou Zengqian, Tian Shihong, Yang Wei, Chen Xinyang, Song Yucai. 2020. Magnesium and lithium isotopic evidence for a remnant oceanic slab beneath Central Tibet. Journal of Geophysical Research: Solid Earth, 125(1): e2019JB018197.
参考文献
Tomascak P B. 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Geochemistry of Non-Traditional Stable Isotopes, 55(1): 153~195.
参考文献
Trumbull R B, Slack J F. 2018. Boron isotopes in the continental crust: Granites, pegmatites, felsic volcanic rocks, and related ore deposits, boron isotopes. Advances in Isotope Geochemistry, 249~272.
参考文献
Van Hinsberg V J, Henry D J, Dutrow B L. 2011. Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7 (5): 327~332.
参考文献
Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies. Chemical Geology, 210: 7~31.
参考文献
Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Chen Zhenghui, Li Dexian, Qu Wenjun, Deng Maochun, Fu Xiaofang, Sun Yan, Zheng Guodong. 2013. The progress in the strategic reseach and survey of rare earth, rare metal and rare-scattered elements mineral resources. Geology in China, 40: 361~370 (in Chinese with English abstract).
参考文献
Wang Denghong, Liu Lijun, Dai Hongzhang, Liu Shanbao, Hou Jianglong, Wu Xishun 2017. Discussion on particularity and prospecting direction of large and super-large spodumene deposits. Earth Science, 42 (12): 2243~2257 (in Chinese with English abstract).
参考文献
Webster J D, Holloway J R, Hervig R L. 1989. Partitioning of lithophile trace elements between H2O and H2O+CO2 fluids and topaz rhyolite melt. Economic Geology, 84: 116~134.
参考文献
Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G E. 2010. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production. Geological Society of American Bulletin, 122 (11~12): 2041~2062.
参考文献
White W, Hofmann A. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296: 821~825.
参考文献
Wu Hongjie, He Yongsheng, Bao Leier, Zhu Chuanwei, Li Shuguang. 2017. Mineral composition control on inter-mineral iron isotopic fractionation in granitoids. Geochimica et Cosmochimica Acta, 198: 208~217.
参考文献
Wu Fuyuan, Liu Xiaochi, Liu Zhichao, Wang Rucheng, Xie Lei, Wang Jiamin, Ji Weiqiang, Yang Lei, Liu Chen, Khanal G P, He Shaoxiong. 2022. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 353-353: 105319.
参考文献
Xia Ying, Li Shuangqing, Huang Fang. 2017. Iron and zinc isotope fractionation during magmatism in the continental crust: Evidence from bimodal volcanic rocks from Hailar basin, NE China. Geochimica et Cosmochimica Acta, 213: 35~46.
参考文献
Xiao Long, Zhang Hongfei, Clemens J D, Wang Qiang, Kan Z Z, Wang K M, Ni P Z, Liu X M. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 96 (3-4): 436~452.
参考文献
Xu Zhiqin, Ma Xuxuan. 2015. The Chinese Phanerozoic gneiss domes: subduction-related type, collision-related type and combination type of subduction-collision. Acta Petrologica Sinica, 31 (12): 3509~3523 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Fu Xiaofang, Ma Xuxuan, Qi Xuexiang, Wu Chan, Hou Liwei, Zhao Zhongbao. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting. Acta Geologica Sinica, 90 (11): 2971~2981 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Wang Rucheng, Zhao Zhongbao, Fu Xiaofang. 2018. On the structural back grounds of the large-scale “Hard-rock type” lithium ore belts in China. Acta Geologica Sinica, 92(6): 1091~1106 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Fu Xiaofang, Wang Rucheng, Li Guangwei, Zheng Yilong, Zhao Zhongbao, Lian Dongyan. 2020a. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354~355.
参考文献
Xu Zhiqin, Wang Rucheng, Zhu Wenbin, Qin Yulong, Fu Xiaofang, Li Guangwei. 2020b. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: Scientific problems and significance. Acta Geologica Sinica, 94(8): 2177~2189 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Zhu Wenbin, Zheng Bihai, Shu Liangshu, Li Guangwei, Che Xudong, Qin Yulong. 2021. New energy strategy for lithium resource and the continental dynamics research—Celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10): 2937~2954 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau. Acta Geologica Sinica, 96(1): 65~94 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Zheng Bihai, Zhu Wenbin, Chen Yanjing, Li Guangwei, Gao Jianguo, Che Xudong, Zhang Rongqing, Wei Haizhen, Li Weiqiang, Wang Guoguang, Wei Guangyi, Yan Haoyu. 2023. Geologic Scenario from granite to Li-rich pegmatite uncovered by scientific drilling at the Jiajika lithium deposit in eastern Tibetan Plateau. Ore Geology Reviews, 161: 105636.
参考文献
Ye Hui, Wu Changzhi, Brzozowski M J, Yang Tao, Zha Xiangping, Zhao Shugao, Gao Bingfei, Li Weiqiang. 2020. Calibrating equilibrium Fe isotope fractionation factors between magnetite, garnet, amphibole, and biotite. Geochimica et Cosmochimica Acta, 271: 78~95.
参考文献
Yuan Chao, Zhou Meifu, Sun Min, Zhao Yongjiu, Wilde S, Long Xiaoping, Yan Danping. 2010. Triassic granitoids in the eastern Songpan-Ganze fold belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290 (3~4): 481~492.
参考文献
Zambardi T, Lundstrom C C, Li Xiaoxiao, McCurry M. 2014. Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation. Earth and Planetary Science Letters, 405: 169~179.
参考文献
Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33 (2): 106~111(in Chinese with English abstract).
参考文献
Zhang Hongfei, Zhang Li, Harris N, Jin Lanlan, Yuan Honglin. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy Petrology, 152 (1): 75~88.
参考文献
Zhang Hongfei, Parrish R, Zhang Li, Xu Wangchun, Yuan Honglin, Gao Shan, Crowley Q G. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97 (3~4): 323~335.
参考文献
Zhang Huijuan, Tian Shihong, Wang Denghong, Li Xianfang, Liu Tao, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan. 2021. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China. Ore Geology Reviews, 134: 104~139.
参考文献
Zhang Huijuan, Tian Shihong, Wang Denghong, Liu Tao, Li Xianfang, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan. 2022. Lithium isotopic constraints on the petrogenesis of the Jiajika two-mica granites and associated Li mineralization. Ore Geology Reviews, 150: 105174.
参考文献
Zhao Hui, Chen Bin, Huang Chao, Bao Chuang, Yang Qian, Cao Rui. 2022. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: Implications for Li mineralization. Contributions to Mineralogy and Petrology, 177: 4.
参考文献
Zhao Zhongbao, Du J X, Liang F H, Wu C, Liu X J. 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan Plateau and its implications for crustal thickening, metamorphism, and exhumation. Geochemistry, Geophysics, Geosystems, 20 (1): 24~45.
参考文献
Zheng Yilong, Xu Zhiqin, Li Guangwei, Lian Dongyang, Zhao Zhongbao, Ma Zeliang, Gao Wenqi. 2020. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau. Lithos, 362~363.
参考文献
付小方. 2017. 甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型. 北京: 科学出版社.
参考文献
付小方, 侯立玮, 王登红, 袁蔺平, 梁斌, 郝雪峰, 潘蒙. 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果. 中国地质调查, 1(3): 37~43.
参考文献
付小方, 袁蔺平, 王登红, 侯立玮, 潘蒙, 郝雪峰, 梁斌, 唐屹. 2015. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘察模型. 矿床地质, 34(6): 1172~1186.
参考文献
李建康, 王登红, 张德会, 付小方. 2006. 川西甲基卡伟晶岩型矿床中含硅酸盐子矿物包裹体的发现及其意义. 矿床地质, 25(S1): 131~134.
参考文献
李建康, 王登红, 张德会, 付小方. 2007. 川西伟晶岩型矿床的形成机制及大陆动力学背景. 北京: 原子能出版社.
参考文献
李名则, 秦宇龙, 李峥, 徐云峰, 武文辉, 刘伟, 叶亚康, 周雄. 2018. 川西甲基卡二云母花岗岩与伟晶岩脉地球化学特征及其地质意义. 岩石矿物学杂志, 37(3): 366~378.
参考文献
李贤芳, 田世洪, 王登红, 张慧娟, 张玉洁, 付小方, 郝雪峰, 侯可君, 赵悦, 秦燕, 于扬, 王海. 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证. 矿床地质39(2): 273~304.
参考文献
刘丽君, 付小方, 王登红, 郝雪峰, 袁蔺平, 潘蒙. 2015. 甲基卡式稀有金属矿床的地质特征与成矿规. 矿床地质, 34(6): 1187~1198.
参考文献
刘丽君, 王登红, 高娟琴, 于沨, 王伟. 2019. 国外锂矿找矿的新突破(2017~2018年)及对我国关键矿产勘查的启示. 地质学报, 93(6): 1479~1488.
参考文献
秦宇龙, 郝雪峰, 徐云峰, 王显峰. 2015. 四川甲基卡地区花岗岩型稀有金属矿找矿规律及标志. 中国地质调查, 2(7): 35~39.
参考文献
王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361~370.
参考文献
王登红, 刘丽君, 代鸿章, 刘善宝, 侯江龙, 吴西顺. 2017. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向. 地球科学, 42(12): 2243~2257.
参考文献
王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.
参考文献
许志琴, 马绪宣. 2015. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群). 岩石学报, 31(12): 3509~3523.
参考文献
许志琴, 付小方, 马绪宣, 戚学祥, 吴婵, 侯利伟, 赵中宝. 2016. 青藏高原片麻岩穹窿与找矿前景. 地质学报, 90(11): 2971~2981.
参考文献
许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背. 地质学报, 92(6): 1091~1106.
参考文献
许志琴, 王汝成, 朱文斌, 秦宇龙, 付小芳, 李广伟. 2020b. 川西花岗-伟晶岩型锂矿科学钻探: 科学问题和科学意. 地质学报, 94(8): 2177~2189.
参考文献
许志琴, 朱文斌, 郑碧海, 舒良树, 李广伟, 车旭东, 秦宇龙. 2021. 新能源锂矿战略与大陆动力学研究——纪念南京大学地球科学与工程学院100周年华诞. 地质学报, 95(10): 2937~2954.
参考文献
许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.
参考文献
翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106~111.
目录contents

    摘要

    甲基卡伟晶岩型锂矿位于青藏高原东部松潘-甘孜地体东南部,是我国最大的硬岩型锂矿,其成岩成矿机制至今仍有争议。为了深入认识甲基卡伟晶岩型锂矿床稀有金属超常富集的关键岩浆热液过程,研究团队基于甲基卡一号钻孔(JSD-1)岩芯开展全孔Li-B-Fe-Nd同位素地球化学研究。伟晶岩和二云母花岗岩较低的Nb/Ta、Zr/Hf值以及Li-Nd同位素表明甲基卡伟晶岩可能来源于马颈子二云母花岗岩深成岩体的岩浆结晶分异。JSD-1岩芯花岗岩和伟晶岩中电气石的硼同位素(δ11B)在-9.5‰~-7.1‰之间,与世界上90%的花岗岩和伟晶岩中δ11B变化范围一致。JSD-1岩芯电气石δ11B与全岩Li含量的实验和模型模拟结果表明花岗质岩浆演化过程遵循平衡结晶模型,花岗质岩浆极端结晶分异不能达到熔体中锂辉石过饱和。JSD-1岩芯全岩的Fe同位素(δ56Fe)变化范围为-0.12‰~-0.38‰。δ56Fe的显著变化反映了黑云母分离结晶、热液蚀变(电气石化)以及石榴子石堆晶等多阶段岩浆-热液过程的共同结果。全孔Li-B-Fe-Nd同位素综合表明,伴随着广泛流体出溶的岩浆结晶分异过程控制了Li的逐步富集。由于岩浆上升的减压作用,花岗岩岩席穹隆的形成有利于晚期花岗岩岩浆的大量流体出溶,使得浅部形成锂辉石为主的矿体。

    Abstract

    The Jiajika pegmatite-type lithium deposit located in the southeastern Songpan-Ganze terrane of the eastern Tibetan Plateau is the largest hard-rock lithium deposit in China, and its paragenetic mechanism is still controversial. To understand the critical magmatic-hydrothermal process that leads to Li concentration of potentially economic levels in the Jiajika pegmatite-type lithium deposit, the association between Li enrichment and granitic magma evolution is investigated using Li-B-Fe-Nd isotopes along the entire 3211-m-depth of the JSD-1 scientific drill core. The data of Li isotope (δ7Li) and Nd isotope (εNd(t)), together with consistently low Nb/Ta, Zr/Hf of the pegmatites and two-mica granites, suggest that the Jiajika pegmatites are more likely from magmatic crystallization of the Majingzi two-mica granite pluton. The boron isotope (δ11B) of tourmalines in granite and pegmatite in JSD-1 scientific drill core vary from -9.5‰ to -7.1‰, in line with the range observed in 90% of worldwide granites and pegmatites related to melt-fluid fractionation in fluid exsolution. In comparison of the measured data of δ11B vs. Li to the modeled curves indicates that the differentiation process of granitic magma follows an equilibrium crystallization model better than a fractional crystallization model and the extreme differentiation of granitic magma alone could not reach the solubility-saturation for spodumene in the pegmatite-forming melt. The δ56Fe values of bulk rocks in JSD-1 vary from -0.12‰±0.02‰ to 0.38‰±0.02‰, and the significant Fe isotope variation reflect the combined results of biotite fractionation, hydrothermal alteration (tourmalinization), and garnet accumulation during multistage magmatic-hydrothermal processes. The compiled evidence of Li-B-Fe-Nd isotopes proves that magma differentiation accompanied by fluid exsolution facilitates the enrichment of Li during granitic magmatic evolution. The formation of the domal structure of granitic sheets due to the decompressing effect of magma ascent favors massive fluid exsolution at the late-stage granitic magma, which contributes to the deposition of spodumene dominated ore body at the shallower depth.

  • 锂是最轻的金属元素,具有活泼的化学性质(刘丽君等,2019)。锂铝合金是航空航天工业的重要材料,锂化合物被广泛应用于冶金、轻工、石油、化工等领域。锂电池和新能源汽车的发展大大增加了对锂的需求(刘丽君等,2019; 翟明国,2019; 许志琴等,2021)。除了沉积岩型和黏土型矿床外,硬岩锂矿床和富锂盐湖卤水是锂金属的两个最重要来源(王登红等,2022)。稀有金属伟晶岩通常分为两种类型,NYF(Nb-Y-F)型和LCT(Li-Cs-Ta)型(Černý,1991)。LCT型伟晶岩的Li含量普遍较高,甚至达到了工业开采的要求,因此伟晶岩型锂矿床通常指LCT型伟晶岩(Bradley et al.,2017; London,2018; Dittrich et al.,2019; Gourcerol et al.,2019)。LCT型伟晶岩作为锂矿床的主要载体常以板块汇聚的岩浆产物侵位于造山腹地(Bradley et al.,2017)。虽然伟晶岩通常被认为是造山花岗岩极端分离结晶的产物(London et al.,1995),但LCT型伟晶岩形成机制长期以来一直存在争议,主要有花岗岩分异模型(London,2008)、地壳部分熔融模型(Simmons et al.,2008)和岩浆不混溶模型(Veksler,2004)等观点。根据花岗岩结晶分异模型,随着早期结晶的矿物分离,伟晶岩代表了岩浆结晶的晚期产物。在残余熔体中,不相容元素(如Li、Cs和Ta)和挥发分物质(如 F、B、P和H2O)不断富集(Teng Fangzhen et al.,2006London,2008)。挥发分可以降低残余花岗岩熔体的固相线温度,延长结晶时间和降低熔体的黏度,提高扩散速率。熔体中不混溶的H2O可以抑制熔体中晶核的形成,从而降低成核密度,并最终在伟晶岩中形成粗晶体(Simmons et al.,2008)。部分熔融模型基于实验岩石学提出,研究发现一些LCT型伟晶岩化学分带不显著,并且伟晶岩具有与花岗岩母岩不同的稀土元素分配模式(Simmons et al.,1995; Martins et al.,2012),Simmons et al.(1995)认为伟晶岩是以深部岩浆为热源,变质沉积岩部分熔融形成的产物。而岩浆不混溶模型认为,在一定的物理化学条件下,花岗质岩浆可分为富挥发分熔体和贫挥发分熔体,富含挥发分的熔体富含Na、Li和碱土金属,但缺乏K和HREE元素(Veksler,2004)。这种不混溶性现象可以解释伟晶岩中长石的分带性,随着Na、Li等元素迁移距离增加,结晶温度降低,从而造成了钠长石和钾长石的分带(李建康等,2007付小方,2017)。

  • 在我国四川西部松潘-甘孜地体(SGT)相继发现了甲基卡和可尔因等大型至超大型Li-Be矿床(付小方等,2014; 付小方,2017王登红等,2017Zhao Zhongbao et al.,2019Xu Zhiqin et al.,2020aZheng Yilong et al.,2020),这使得松潘-甘孜造山带成为我国一个重要的稀有金属矿化带(Xu Zhiqin et al.,2020a)。甲基卡伟晶岩型锂矿床赋存于松潘-甘孜地体(SGT)的上三叠统浊积岩,形成于基墨里(晚三叠世—早侏罗世)造山运动过程中(许志琴等,2022)。松潘-甘孜地体中的富锂伟晶岩在成因上与S型花岗岩有关,S型花岗岩在片麻岩穹隆中发育(许志琴等,2016Xu Zhiqin et al.,2020a)。这些片麻岩穹隆是松潘-甘孜地体中普遍存在的结构,以S型花岗岩为核部,巨厚上三叠统浊积岩为幔部,被大量富锂伟晶岩侵位(Zhao Zhongbao et al.,2019; Xu Zhiqin et al.,2020a)。近年来研究提出的甲基卡稀有金属伟晶岩的成岩机制主要有:岩浆结晶分异作用(秦宇龙等,2015),如马颈子二云母花岗岩的极端分异(Xu Zhiqin et al.,2020a; Zhang Huijuan et al.,2021);富含Li-F的花岗质岩浆的不混溶作用(李建康等,2006Li Jiankang et al.,2013; 李名则等,2018);以及白云母脱水熔融作用(Zhao Hui et al.,2022)。

  • 随着“中国稀有资源战略调查”项目的启动,在川西甲基卡地区已经开展了一系列地质勘查、地球物理和地球化学研究(王登红等,2013)。在过去的十年里,前人已在甲基卡伟晶岩型锂矿区内实施了多个科学钻探,并通过科钻发现了几个新的矿脉。例如,在ZK1101岩芯126.49 m深处发现了一个以锂辉石为主的大型稀有金属工业矿脉(X03矿脉),使得甲基卡锂矿床的总锂储量扩大到89.49万t(刘丽君等,2015)。在ZK801(139.2 m)岩芯中,首次发现了一个钠辉石-锂辉石-钠长石型花岗岩工业矿体(刘丽君等,2019)。然而,这些钻孔受深度限制,无法深入探究片麻岩穹隆构造和富锂伟晶岩的成因关系。在“南京大学卓越研究计划”资助下,许志琴院士领衔团队在马颈子二云母花岗岩岩体东北端约1 km处实施了我国第一个伟晶岩型锂矿科学钻探项目“川西甲基卡伟晶岩型锂矿科学钻探”(JSD-1,深度达3211 m)(图1)。

  • 锂(Li)是流体活动性、不相容元素,具有两种稳定的同位素(其相对原子丰度分别为6Li7.5%,7Li92.5%)。因同位素间显著的相对质量差,在地质过程已观察到显著的锂同位素分馏(δ7Li=-35‰~+50‰)(Tomascak,2004; Penniston-Dorland et al.,2017)。锂同位素已被广泛用于示踪大陆风化、洋壳蚀变、地幔交代和俯冲脱水等领域(Pistiner et al.,2003Elliott et al.,20042006; Tian Hengci et al.,2020),以及稀有金属-花岗岩-伟晶岩系统成矿流体演化研究(Richter et al.,2003Thomas et al.,20052009Teng Fangzhen et al.,2006; Chen Bin et al.,2020)。电气石是地壳中最重要的含硼矿物,常见于各种岩石类型和矿床中,因其在广泛的温压条件下的稳定性和对抗蚀变性,成为研究火成岩、变质岩成岩和成矿过程的有用工具(Henry and Guidotti,1985;Slack,1996Marschall and Jiang Shaoyong,2011)。由于硼同位素对流体物源变化、结晶的P-T条件和相变响应敏感,电气石中的硼同位素可以示踪晚期岩浆演化和成矿过程岩浆热液流体的起源(Palmer and Slack,1989Slack,1996; Smith and Yardley,1996; Palmer and Swihart,2002; Fan Jingjing et al.,2023)。铁是一种对氧化还原反映敏感的主量元素,其同位素可以用于研究各种岩浆作用过程。从玄武质到安山质的火成岩铁同位素(δ56Fe)变化有限,其平均值为0.09‰(Johnson et al.,2020),但高硅火成岩(SiO2>70%)具有显著偏重的铁同位素组成(Telus et al.,2012Zambardi et al.,2014Foden et al.,2015; Du Dehong et al.,2017Xia Ying et al.,2017)。伟晶岩作为长英质熔体高度演化产物,其化学成分和铁同位素比值受到流体-熔体相互作用的影响(Sossi et al.,2012; Foden et al.,2015; Du Dehong et al.,20172019; Heimann et al.,2008; Schuessler et al.,2009),因此铁同位素是示踪岩浆-热液过程花岗伟晶岩演化的良好工具。

  • 图1 川西甲基卡矿田地质图和伟晶岩的区域分带(a)(修改自Li Jiankang and Chou,2016; Huang Tao et al.,2020)及3000 m JSD-1科学钻孔岩性示意图(b)(修改自Xu Zhiqin et al.,2023

  • Fig.1 The geological map of the Jiajika ore field, showing the location of 3000 m scientific drilling core and the regional zonation of the pegmatite in the Jiajika area (a) (modified from Li Jiankang and Chou, 2016; Huang Tao et al., 2020) , and schematic column showing the lithological zones in 3000 m scientific drilling hole (b) (modified from Xu Zhiqin et al., 2023)

  • I—微斜长石伟晶岩带;II—微斜长石-钠长石伟晶岩带;III—钠长石伟晶岩带;IV—钠长石-锂辉石伟晶岩带;V—钠长石-锂云母伟晶岩带

  • I—microcline pegmatite; II—microcline-albite pegmatite; III—albite pegmatite; IV—albite-spodumene pegmatite; V—albite-lepidolite pegmatite

  • 相比于高分异花岗岩或伟晶岩的广泛深入研究,对造成稀有金属超常富集的关键岩浆热液过程仍然是稀有金属矿床研究的主要空白(许志琴等,2022)。目前,基于物理化学原理、地质事实和岩石学的热力学机制是与花岗-伟晶岩有关的稀有金属成矿研究的前沿(许志琴等,2022)。南京大学研究团队对甲基卡3211 m科学钻探岩芯开展了综合的矿物学、元素地球化学和Li-B-Fe-Nd同位素地球化学研究,从同位素地球化学角度解译花岗质岩浆演化过程中锂的配分行为和伟晶岩锂的富集机制,进而探讨松潘-甘孜地体中伟晶岩型锂矿床的成矿作用。

  • 1 研究区地质背景

  • 松潘-甘孜地体中的三叠纪造山楔(约5~15 km)是由一层巨厚中—上三叠统浊积岩组成,沉积于早三叠纪松潘-甘孜洋盆。三叠系浊积岩中碎屑锆石U-Pb年龄表明,古特提斯洋的闭合和三叠系浊积物沉积的结束晚于230 Ma之后(Bruguier et al.,1997Weislogel et al.,2010Ding Lin et al.,2013Jian Xing et al.,2019)。松潘-甘孜地体随后沿着古生代—三叠纪沉积盖层和新元古代基底之间的接触带经历了显著的地壳加厚和广泛的韧性剪切。随后在226~190 Ma期间被大量花岗岩侵入(Zhang Hongfei et al.,20062007Xiao Long et al.,2007Yuan Chao et al.,2010Roger et al.,2010; de Sigoyer et al.,2014许志琴等,2022)。根据花岗岩和变质岩的热年代学数据,在晚侏罗世至白垩纪期间,松潘-甘孜地体经历了长时间的高原地形弱变形(Roger et al.,20042010)。松潘-甘孜地体中的花岗岩主要是高钾A型花岗岩、过铝质S型花岗岩和准铝质I型花岗岩(Roger et al.,20042008Zhang Hongfei et al.,20062007Xiao Long et al.,2007李贤芳等,2020)。松潘-甘孜地体中的大多数S型花岗岩被认为起源于地壳熔融(Roger et al.,2004de Sigoyer et al.,2014),它们是松潘-甘孜地体中广泛分布的片麻岩穹隆的主要组成部分。

  • 与松潘-甘孜地体东部富锂伟晶岩相关的片麻岩穹隆包括甲基卡穹隆、可尔因穹隆和扎乌龙穹隆等(许志琴和马绪宣,2015许志琴等,2016Xu Zhiqin et al.,2020aZheng Yilong et al.,2020)。这些片麻岩穹隆的特征是三叠纪花岗岩核被三叠纪含硅线石-十字石-红柱石-石榴子石-黑云母变质岩包裹,且变质围岩被大量富锂伟晶岩侵入(付小方等,2015许志琴等,2018Zhao Zhongbao et al.,2019)。松潘-甘孜地体东部的另一种类型的片麻岩穹隆以丹巴片麻岩穹隆为代表,由部分熔融的新元古代基底和早古生代泥质层序组成穹隆核部和幔部,在大约210 Ma、190 Ma和204~190 Ma经历了巴罗式和巴肯式变质作用(Huang et al.,2003Billerot et al.,2017)。在鲜水河走滑断裂的西南侧,雅江地区出现了长征、容须卡、甲基卡、新都桥和瓦多等片麻岩穹隆。南北走向的甲基卡穹隆宽约7 km,长约15 km,其核部由上三叠统侏倭组钙硅酸盐岩,幔部主要由上三叠统新都桥组泥质岩组成。在甲基卡穹隆的东南部,马颈子花岗岩向北底辟(Huang Tao et al.,2020)。马颈子花岗岩岩体为钙碱性和过铝质二云母S型花岗岩,其周围的三叠纪变质沉积物可分为红柱石、十字石、石榴子石和黑云母变质带(Huang Tao et al.,2020)。野外勘查和甲基卡科钻浅层岩芯观察表明,大量伟晶岩侵位在红柱石和十字石变质带中(付小方,2017许志琴等,2020bHuang Tao et al.,2020)。伟晶岩主要分布在马颈子花岗岩周围,形成微斜长石伟晶岩带,从微斜长石钠长石伟晶岩带到钠长石伟晶岩带、钠长石-锂辉石伟晶岩带和外围钠长石锂云母伟晶岩带。

  • 在甲基卡矿田,马颈子二云母花岗岩岩体侵入甲基卡背斜下倾端及露头面积5.3 km2Huang Tao et al.,2020)。在甲基卡锂矿田马颈子岩体周围发育了134个花岗伟晶岩脉(Li Jiankang and Chou,2016),包括五个伟晶岩带:(I)微斜长石伟晶岩带;(II)微斜长石-钠长石伟晶岩带;(III)钠长石伟晶岩带;(IV)钠长石-锂辉石伟晶岩带;(V)钠长石-锂云母伟晶岩带。甲基卡锂矿3200 m深科学钻探工程(JSD-1)位于马颈子东北部深成岩体(图1a),其钻孔坐标为E 101°16′39.34″,N 30°17′16.31″,海拔4425 m(许志琴等,2022)。在JSD-1的钻孔岩芯中变质沉积物、花岗岩和伟晶岩分别占总厚度的35%、14%和51%。在钻芯418~440 m和1245~1455 m处为两块花岗岩岩席,主要为灰白色细粒花岗岩,矿物粒度大部分为0.5~1 mm,由石英(35%~40%)、钾长石(20%~30%)、钠长石(20%~30%)、少量白云母(1%~5%)和黑云母(5%)组成。深度400~600 m主要为细晶岩,其粒度为0.1~0.5 mm,平均0.2 mm。矿物组成有钾长石(35%~40%)、钠长石(25%~30%)、石英(20%~25%)和少量电气石(1%~2%)。伟晶岩的矿物组成与二云母花岗岩相似,但晶体尺寸明显不同(>1 mm),其组成有20%~30%石英,30%~40%钠长石,25%~35%微斜长石、少量电气石、黑云母和石榴子石。根据主要矿物组成,贫矿伟晶岩分为含电气石伟晶岩(600~1200 m、1400~1800 m)和含石榴子石伟晶岩(2000~3200 m)。富矿锂辉石伟晶岩(300 m以上)含有高达15%的锂辉石。钻孔岩芯含有大量围岩,包括片岩和钙硅酸岩。

  • 2 全岩Li含量和Li-Nd同位素特征

  • 甲基卡科钻岩芯贫锂伟晶岩的εNdt)变化范围为-17.1~-2.5,二云母花岗岩和钙硅酸岩分别为-8.4~-14.1和-6.9~-11.9。地表出露闪长岩和花岗岩的εNdt)范围为-4.1~-7.5和-7.4~-11.7。钻孔富锂伟晶岩特征为高锂含量(3075.64×10-6~6011.49×10-6),δ7Li为+0.9‰~+1.1‰(平均+1.0‰)。贫Li伟晶岩的Li含量显著较低(49.08×10-6~444.95×10-6),δ7Li变化较大(-1.38‰~+6.3‰,平均值+1.54‰)。地表出露伟晶岩具有极高的Li含量(5321.29×10-6~7509.87×10-6)和较低的δ7Li(-0.27‰~-0.52‰,平均值-0.39‰)。JSD-1钻孔0~1000 m深度片岩的Li含量和δ7Li值分别为351.58×10-6~916.91×10-6和-2.8‰~-8.22‰(平均值-5.52‰)。岩芯下部(约1500~3000 m)钙镁硅酸盐变质岩含锂量低(10.46×10-6~172.48×10-6),其δ7Li值为-1.28‰~-4.48‰(平均-2.99‰)(图2)。

  • 在源岩部分熔融和封闭系统岩浆演化过程中,放射成因Nd同位素组成εNdt)通常保持一致,因此被用来示踪伟晶岩-花岗岩岩浆的来源(Hamilton et al.,1980White et al.,1982Chen Bin et al.,2020)。JSD-1钻孔二云母花岗岩εNdt)平均值为11.2,伟晶岩的εNdt)平均值为10.8,这与岩浆源的εNdt)平均值-9.7大致一致。此外,与伟晶岩和花岗岩相比,甲基卡深部片岩和钙硅酸岩具有较高的Nd含量(20.25×10-6~47.27×10-6,平均值37.6×10-6)和εNdt)值(平均值-7.3)。甲基卡钻探地表3 km周围闪长岩具有I型花岗质岩石特征,其εNdt)值为-5.8。因而地表花岗岩、二云母花岗岩和伟晶岩具有共同的岩浆来源。岩石K/Rb、Zr/Hf和Nb/Ta比值是花岗质岩浆演化程度的关键指标(Eby et al.,1998Blevin,2004Breiter et al.,2017)。雅江片麻岩穹隆群露头和深层岩芯样品K/Rb和SiO2含量呈现显著的负相关性,变质浊积岩、二云母花岗岩到贫锂伟晶岩和富锂伟晶岩的Zr/Hf和Nb/Ta具有逐渐降低的协变关系(图3a~d),这些证据一致表明伟晶岩是高演化花岗质岩浆进一步演化的产物。此外大部分花岗岩和伟晶岩具有REE四分组效应特征(TE1,3>1.1)并沿结晶分异趋势变化。研究样品从闪长岩到二云母花岗岩,再到贫锂伟晶岩和富锂伟晶岩中的Li含量与Zr/Hf、K/Rb和Rb/Ba负相关,与SiO2含量正相关(图3e~h)。所有这些观察结果进一步揭示富锂伟晶岩起源于二云母花岗质岩浆的分异演化。

  • 图2 甲基卡JSD-1科钻岩芯富锂伟晶岩、贫锂伟晶岩、二云母花岗岩、片岩和钙镁硅酸盐变质岩的锂含量和锂、钕同位素组成的变化(数据引自Gao Jianguo et al.,2023

  • Fig.2 Variation of lithium content and Li-Nd isotope compositions of the Li-rich, Li-poor pegmatites, two-mica granites, schists and calc-magnesium-silicate metamorphic rocks with depth along the 3000 m Jiajika scientific drilling core (data cited from Gao Jianguo et al., 2023)

  • 甲基卡岩芯贫锂伟晶岩的锂同位素值(δ7Li=-1.38‰~+1.98‰,平均值+0.34‰)略低于富锂伟晶岩(δ7Li=+0.9‰~+1.1‰,平均值+1.34‰)。在雅江片麻岩穹隆(YDG)的露头中,富锂伟晶岩δ7Li值(δ7Li=-0.27‰~-0.52‰,平均值-0.39‰)低于贫锂伟晶岩(δ7Li=-0.61‰~+2.56‰,平均值+0.36‰)。总体而言,贫锂伟晶岩的δ7Li值相对均一,并与二云母花岗岩相近,但略低于富锂伟晶岩(图4)。高演化的花岗伟晶岩的结晶过程一般发生在岩浆侵位后经历晚期熔体-流体共存阶段(Černý,1991; Černý et al.,2005Li Jiankang et al.,2013)。由于片岩含有多种黏土矿物(如白云母),它是稀有金属(Li、Rb、Cs、Nd和Ta)和挥发分的主要载体(Černý et al.,2012Stepanov and Hermann,2013London,2018)。JSD-1岩芯片岩富含Li(平均512×10-6n=5),与先前的研究认识一致(Zhang Huijuan et al.,2022,Liavg.=334×10-6)。甲基卡科钻岩芯δ7Li和元素地球化学数据表明,富锂伟晶岩是连续岩浆演化的产物,分异程度最高的富锂伟晶岩δ7Li值略高于贫锂伟晶岩和二云母花岗岩(图4)。因此甲基卡花岗伟晶岩的Li矿化作用经历了三个富集过程:① 三叠系变沉积岩部分熔融(或黑云母脱水熔融)产生长英质岩浆,其富含稀有元素(Li、Rb、Cs和Ta等);② 花岗质岩浆结晶形成富含电气石和绿柱石的贫锂伟晶岩(Be、Nd和Ta等);③ 富含挥发分的晚期熔体进一步结晶分异产生富锂伟晶岩。

  • 3 JSD-1岩芯岩石矿物学和电气石B同位素地球化学

  • JSD-1岩芯花岗岩中的电气石通常与钠长石、微斜长石、石英、白云母和黑云母共存。电气石常见于花岗岩和边缘片麻岩中,它们表现出内部圆形(环形)分带结构。在片麻状花岗岩中还观察到由石英和电气石组成的定向胶囊状结构。London and Manning(1995)研究表明,岩浆成因的电气石没有成分分带,在晶格的Y位置具有高Fe/Mg值和高Al阳离子数的特征,而热液成因的电气石通常具有成分分带,并且在晶格Y位置以高Mg、低Al或无Al为特征。JSD-1岩芯电气石相对富铝(6.62~6.96 apfu),具有高Fe/Mn值(49~273),属于岩浆成因的铁电气石。

  • 自然界中电气石的硼同位素组成变化很大,其δ11B值范围很宽(-25‰~+28‰)(Marschall and Jiang Shaoyong,2011)。例如,海底块状硫化物矿床以及高压变质岩中的电气石的δ11B远高于Broken Hill Pb-Zn-Ag矿床中与非海相蒸发岩有关的电气石(Marschall and Jiang Shaoyong,2011)。相比之下,大多数花岗岩和伟晶岩中的电气石的δ11B值接近平均大陆地壳(-10‰±3‰)(图5)。甲基卡花岗伟晶岩型锂矿床中电气石的δ11B值为-9.5‰~-7.1‰,与世界上90%的花岗岩和伟晶岩的值一致,显示与岩浆晚期阶段的熔-流体分馏有关(图5),反映了甲基卡成矿流体的岩浆成因。JSD-1岩芯伟晶岩和花岗岩中电气石δ11B值的频率直方图与Trumbull and Slack(2018)对S型长英质侵入岩和火山岩δ11B的统计非常一致(图6)。

  • 4 JSD-1岩芯全岩和单矿物铁同位素地球化学

  • 甲基卡锂矿科钻JSD-1岩芯的全岩δ56Fe变化显著,从-0.12‰到0.38‰(图7),其中二云母花岗岩、伟晶岩和细晶岩的δ56Fe变化范围分别为0.11‰~0.21‰、-0.12‰~0.35‰和0.26‰~0.38‰。浅层富锂伟晶岩δ56Fe为0.18‰~0.30‰,钻孔浅部(0~400 m)的热接触变质带片岩δ56Fe值在0.02‰~0.19‰之间,较深部分(2900~3200 m)角砾岩δ56Fe范围为-0.07‰~0.06‰。甲基卡花岗伟晶岩中的主要含铁矿物(电气石、黑云母和石榴子石)的δ56Fe值变化范围同样显著,其中电气石的δ56Fe值最高(0.15‰~0.22‰,n=8),石榴子石的δ56Fe值最低(-0.19‰~-0.06‰,n=7),黑云母的δ56Fe范围为0.06‰~0.18‰(n=3)。

  • 图3 甲基卡JSD-1科钻岩芯及露头富锂伟晶岩、贫锂伟晶岩、花岗岩、闪长岩、片岩和钙硅酸盐变质岩地球化学指标相关图(数据引自Gao Jianguo et al.,2023

  • Fig.3 Plots of correlations among geochemical indices for the Li-rich, Li-poor pegmatites, granites, diorites, schists and calc-magnesium-silicate metamorphic rocks from the 3000 m Jiajika scientific drilling core and the outcrop around the Jiajika lithium-mining field (data cited from Gao Jianguo et al., 2023)

  • (a)—A/CNK与A/NK;(b)—SiO2与K/Rb;(c)—Zr/Hf与Nb/Ta;(d)—δ7Li与TE1,3;(e)—Li含量与SiO2;(f)—Li含量与Zr/Hf;(g)—Li含量与K/Rb;(h)—Li含量与Ba/Rb

  • (a) —A/CNK versus A/NK; (b) —SiO2 versus K/Rb; (c) —Zr/Hf versus Nb/Ta; (d) —δ7Li versus TE1, 3; (e) —Li concentrations versus SiO2; (f) —Li concentrations versus Zr/Hf; (g) —Li concentrations versus K/Rb; (h) —Li concentrations versus Ba/Rb

  • 图4 甲基卡JSD-1科钻岩芯和YDG全岩Li同位素组成(a)及甲基卡伟晶岩锂矿科钻全岩和松潘甘孜造山带已发表Li同位素组成与Li浓度关系图(b)

  • Fig.4 Distribution of Li isotopic compositions for the whole rocks from the 3-km Jiajika scientific drill core and outcrops in the YDG (a) , and plot of Li isotopic compositions versus Li concentrations in rocks of JSD-1 drill core compared with other granite pegmatites data in Songpan-Ganze (b)

  • 贫锂伟晶岩、富锂伟晶矿、二云母花岗岩和西康群变质泥质岩数据来自Gao Jianguo et al.(2023)Fan Jingjing et al.(2020)Zhao Hui et al.(2022);灰色横线为硅酸岩地球(BSE)锂同位素值,GLOSS-Ⅱ为全球海洋俯冲沉积物(δ7LiGLOSS-II=+2.4‰±0.2‰,引自Penniston-Dorland et al.,2017

  • Data of the Li-poor pg (Li-poor pegmatite) , the Li-rich pg (Li-rich pegmatite) , two-mica granites and the Xikang Group metapelites are from other granite pegmatites studied cited from Gao Jianguo et al. (2023) , Fan Jingjing et al. (2020) and Zhao Hui et al. (2022) . Gray horizontal line is the composition of bulk silicate Earth; Global Oceanic Subducting Sediment (GLOSS-Ⅱ, δ7LiGLOSS-Ⅱ=+2.4‰±0.2‰) after Penniston-Dorland et al. (2017)

  • 图5 电气石B同位素组成与宿主岩石类型(彩色方框)和B来源(灰色带)的对应关系(数据引自Huan Chun et al.,2023

  • Fig.5 Measured B isotope composition as a function of host rock type (colored boxes) and inferred B sources (grey bands) (data cited from Huan Chun et al., 2023)

  • Tur—电气石;MORB—大洋中脊玄武岩(据Marschall and Jiang Shaoyong,2011; van Hisberg et al.,2011修改)

  • Tur—tourmaline; MORB—mid-ocean ridge basalt (modified after Marschall and Jiang Shaoyong, 2011; van Hisberg et al., 2011)

  • 图6 甲基卡伟晶岩型锂矿床科学钻探JSD-I剖面从上到下的电气石样品采样点(a);沿 JSD-1剖面全岩中的Li丰度(b)(据Xu Zhiqin et al.,2023);电气石中B同位素沿JSD-I剖面的变化(c);JSD-1钻孔花岗岩和伟晶岩中电气石与S型花岗岩和火山岩的B同位素频次分布图(d)(引自Trumbull and Slack,2018);JSD-1钻孔岩芯电气石δ11B值与全岩中Li含量的相关性(e)(数据引自Huan Chun et al.,2023

  • Fig.6 Sampling sites of tourmaline along the JSD-I profile from the top to the bottom (a) ; Li abundance in the bulk rock along the JSD-1 profile (b) (after Xu Zhiqin et al., 2023) ; B isotope variation in tourmaline along the JSD-I profile (c) ; histograms representing the δ11B values of tourmaline in granite and pegmatite in the Jiajika pegmatite-type lithium deposit, literature data are the compilation of B-isotope data from felsic intrusive and volcanic rocks of S-type (d) (cited after Trumbull and Slack, 2018) ; correlation of δ11B values of tourmaline with Li contents in bulk rocks (e) (data cited from Huan Chun et al., 2023)

  • 甲基卡锂矿科钻JSD-1花岗伟晶岩中共生含铁矿物间Fe同位素分馏显著,电气石-黑云母-石榴子石含铁矿物之间的δ56Fe差值在误差范围内一致,分别为Δ56FeTur-Bt=0.07‰±0.12‰、Δ56FeTur-Grt=0.30‰±0.09‰,Δ56FeBt-Grt=0.22‰±0.07‰,这暗示样品间达到了Fe同位素平衡分馏(Liu Shengao et al.,2011Ye Hui et al.,2020)。另外,岩浆系统中石榴子石具有最低的Fe3+/∑Fe比值(<0.08)(Tang Ming et al.,2019),相比之下,电气石(Fe3+/∑Fe=0.05)和黑云母(Fe3+/∑Fe=0.09~0.26)的Fe3+/∑Fe较高,与还原条件下的熔体相似(Baker and Rutherford,1996;Cesare et al.,2005Wu Hongjie et al.,2017; Nie et al.,2021)。矿物δ56Fe随着Fe氧化还原态的升高而增大(电气石>黑云母>石榴子石)(图8a),这与矿物间Fe同位素分馏的理论预测一致(Dauphas et al.,2014)。

  • 通过对文献报道的高硅花岗岩(SiO2>70%)和本研究获得的花岗伟晶岩Fe同位素组成数据统计分析结果表明,大多数高硅火成岩样品的δ56Fe相对偏重(δ56Fe=0.09‰,Johnson et al.,2020),显示高硅火成岩在岩浆演化过程富集重铁同位素(图8b)。目前已知的伟晶岩δ56Fe数据变化很大,平均值为0.19‰±0.21‰(2SD,n=58)。图8c中稀有金属伟晶岩均为锂辉石伟晶岩,分别来自Little Nahanni(δ56Fe=-0.07‰±0.03‰~+0.22‰±0.05‰,n=6,Telus et al.,2012)和甲基卡(δ56Fe=-0.18‰±0.04‰~+0.30‰±0.03‰,n=2,本研究)。这种变化可能反映了伟晶岩在晚期岩浆-热液阶段富铁矿物组成的不均一性。富含稀有元素伟晶岩可能比不成矿伟晶岩经历更显著的流体-熔体相互作用,然而,统计数据显示贫瘠伟晶岩和富稀有元素伟晶岩的δ56Fe没有显著差异(图8c)。这可能反映了不同类型的成矿伟晶岩具有不同的成矿环境和流体-熔体相互作用程度,或者是由于成矿流体(岩浆流体、成岩流体或热液流体)来源的差异造成的(Linnen et al.,2012London,2018)。

  • 图7 甲基卡钻孔JSD-1岩芯不同深度岩石组成矿物的丰度(a),δ56Fe(b),TFe2O3(c),Li含量(d),K/Rb比值(e)和 Zr/Hf比值(f)(数据引自Luo Xianglong et al.,2023

  • Fig.7 Downhole geochemical profiles of the abundance of the constituent minerals with stratigraphic height (a) , δ56Fe (b) , TFe2O3 (c) , Li (d) , K/Rb (e) and Zr/Hf (f) for the measured samples in the Jiajika hole (JSD-1) (data cited from Luo Xianglong et al., 2023)

  • 甲基卡科钻JSD-1岩芯不同深度样品的全岩铁同位素组成与地球化学数据与矿物组成存在系统变化和相关性(图7)。全岩δ56Fe从深到浅随着全铁含量、K/Rb值和Zr/Hf值的降低而增加,随Li含量的增加而增加。相比岩芯中部位置的二云母花岗岩岩席(δ56Feavg=0.17‰±0.04‰,1SD,n=8),浅部的细晶岩具有最重的Fe同位素组成(δ56Feavg= 0.34‰±0.05‰,1SD,n=4)。另外,岩芯浅部含电气石的伟晶岩(δ56Feavg=0.19‰±0.07‰,1SD,n=32)比深部含石榴子石的伟晶岩(δ56Feavg=0.00‰±0.07‰,1SD,n=10)具有更重的铁同位素组成及更低的岩浆演化程度(图7)。尤其值得注意的是,与其他贫锂伟晶岩相比,地表的富锂辉石伟晶岩(δ56Feavg=0.24‰±0.08‰,1SD,n=2)经历了显著的流体-熔体相互作用(Zr/Hf=3.74~6.49,K/Rb=29.33~30.35)。在JSD-1钻孔岩芯中,二云母花岗岩的铁同位素变化有限(0.11‰~0.21‰),而伟晶岩和细晶岩的δ56Fe变化显著(-0.12‰~0.38‰),这反映了花岗伟晶岩系统在岩浆晚期演化可能发生多阶段岩浆-热液过程。分离结晶在高硅质岩浆演化过程中起着关键作用(Bachmann and Bergantz,2004),可能是造成硅质火成岩中铁同位素分馏的主要因素(Foden et al.,2015Du Dehong et al.,20172019)。本研究为简化模型,只考虑花岗岩的主要含铁矿物(黑云母)的分离结晶作用,使用瑞利分馏模型来量化矿物分离对二云母花岗岩、细晶岩与伟晶岩可能产生的影响。

  • 图8 甲基卡钻孔JSD-1岩芯全岩样品和含铁矿物的δ56Fe变化(a)及高硅火成岩(SiO2>70%)(b)和高硅伟晶岩(c)δ56Fe数据直方分布图(数据引自Luo Xianglong et al.,2023

  • Fig.8 Fe isotope compositions of bulk-rock and minerals of tourmaline, garnet, and biotite for selected Jiajika granite and pegmatite samples (a) , and histograms of compiled δ56Fe data for high-silica igneous rocks (with SiO2>70%) (b) and high-silica pegmatites (c) (data cited from Luo Xianglong et al., 2023)

  • δ56Femelt =δ56Femelto +Δ56Fecrystal-melt ×lnfFe
    (1)
  • 式中,δ56Femelt和δ56Femelt0分别为残余熔体和初始熔体的铁同位素组成,Δ56Fecrystal-melt为矿物和熔体之间的铁同位素分馏系数,fFe是结晶熔体中的残余铁组分。fFe可用fFe=Fmelt×Cmelt/Cmelt0公式计算,其中Fmelt为残余熔体的质量分数,CmeltCmelt0分别代表残余熔体和初始熔体的铁含量。为了确定演化熔体中的Fmelt,我们通过Cmelt /Cmelt 0=Fmelt D--1等式将δ56FemeltCmelt/Cmelt0联系起来。因此,分异熔体的铁同位素组成可以写成:

  • δ56Femelt =δ56Femelt0 +Δ56Fecrystal-melt ×D-(D--1)×lnCmelt Cmelto (D-1)
    (2)
  • 式中,D-为矿物组合的全岩配分系数,计算公式为:D-=x1 ·DFe1+x2·DFe2 +...,其中xi为矿物在全岩中的比例,DFe为矿物和熔体之间的铁分配系数。在模拟中,设定x1=黑云母/(黑云母+长石),并将TFe2O3最高(1.09%)的样品(二云母花岗岩)设定为初始熔体。花岗岩熔体中的斜长石和黑云母的DFe来自文献结果(Shi Qingshang et al.,2021)。模拟计算结果表明,当黑云母/(黑云母+长石)的比例在0.03~1之间时,黑云母的分离结晶可以解释大部分二云母花岗岩和伟晶岩的铁同位素变化(图9a),该结果同样得到了δ56Fe-Rb/Sr(图9b)和δ56Fe-Nb/Ta(图9c)变化的验证。这些结果表明黑云母的结晶分异是造成甲基卡花岗伟晶岩铁同位素变化的主要原因。考虑到石榴子石具有低δ56Fe值,而含石榴子石伟晶岩(0.06~0.34)中Mn/(Mg+Fe)摩尔比远远高于其他伟晶岩(<0.06),部分样品δ56Fe数值不符合模拟结果说明岩体深部存在石榴子石堆晶(图9d),因此石榴子石(-0.19‰~-0.04‰)的堆晶可能导致了岩芯深部含石榴子石伟晶岩的较低δ56Fe组成。另外,部分含电气石伟晶岩极度富集电气石,甚至达到了电气石化的程度,这些样品受到电气石化等流体变质作用的影响,可能代表演化后期的热液起源。因此,岩芯样品δ56Fe的显著变化反映了甲基卡花岗伟晶岩的岩浆-热液多阶段过程。

  • 5 岩浆结晶分异和流体出溶过程的锂富集

  • 熔体中挥发分随着持续的岩浆分异而富集(Thomas et al.,2005),并在特定的温度和压力条件下从熔体中出溶(Edmonds and Woods,2018)。对于具有低X空位的电气石,挥发分的掺入可以反映挥发物的来源(Dutrow and Henry,2018Ghosh et al.,2021)。JSD-1岩芯全岩Li含量与电气石1/X位空位之间的正相关性,反映了残余熔体中不相容元素的富集与岩浆分异的直接联系。在花岗质岩浆结晶分异过程中,与熔体和矿物(如云母和电气石等)相比,流体相更倾向于富集重硼同位素(即11B)(Marschall and Foster,2018Li Yinchuan et al.,202020212022)。电气石和云母是花岗伟晶岩主要含硼矿物(Codeço et al.,2019),JSD-1岩芯花岗伟晶岩电气石的硼含量(31000×10-6~38000×10-6)比云母的硼含量(38×10-6~632×10-6)高两个数量级,因而可以忽略硼在云母中的分配对电气石中的硼同位素的影响。甲基卡电气石δ11B值与全岩Li含量间具有显著的正相关性(图6),反映了花岗岩岩浆分异过程中Li和B在熔体、矿物和流体之间的迁移和配分。JSD-1全孔3000 m岩芯中产出大量的电气石和磷灰石,这表明花岗岩母熔体含有丰富的H2O、F、P和B等挥发分,这些组分可以显著降低岩浆的黏度(Johannes and Holtz,1996)。利用平衡结晶模型(式3、4)和分离结晶模型(式5、6),可以估计残余熔体达到锂辉石结晶(9000×10-6 Li)所需要的分异程度:

  • 图9 甲基卡钻孔JSD-1岩芯全岩δ56Fe与地球化学指标的关系图(数据引自Luo Xianglong et al.,2023

  • Fig.9 Cross plots of bulk-rock Fe isotope compositions against geochemical indices for granites and pegmatites in the Jiajika hole (JSD-1) (data cited from Luo Xianglong et al., 2023)

  • (a)—δ56Fe与TFe2O3关系;(b)—δ56Fe与Rb/Sr关系;(c)—δ56Fe与Nb/Ta关系;(d)—δ56Fe与Mn/(Mg+Fe)关系;Bt/(Bt+Pl)—黑云母/(黑云母+长石)

  • (a) —δ56Fe vs. TFe2O3; (b) —δ56Fe vs. Rb/Sr; (c) —δ56Fe vs. Nb/Ta; (d) —δ56Fe vs. Mn/ (Mg+Fe) (mole) ; Bt/ (Bt+Pl) —biotite/ (biotite+ feldspar)

  • [Li]residual melt ×(1-f)+[Li]residual melt DLimelt-mineral ×f=[Li]initial magma
    (3)
  • δ11Bresidual melt ×[B]residual melt ×(1-f)+δ11Bmineral ×[B]residual melt DBmelt-mineral ×f=δ11Binitial magma ×[B]initial magma
    (4)
  • [Li]residual melt =[Li]initial magma ×(1-f)DLimelt-mineral -1
    (5)
  • δ11Bresidual melt =δ11Binitial magma +10001000×(1-f)expΔ11Bmineral-melt 1000-1×1000
    (6)
  • 式中,f为结晶的分数;D为元素在两相中的分配系数;Δ11Bmineral-melt为矿物(即电气石)和熔体之间的硼同位素分馏因子。

  • 根据大陆地壳的Li平均含量(31×10-6)(Rudnick et al.,2003)和花岗岩熔体中的平均初始H2O含量(~4%)(Scaillet et al.,1996),以及在花岗岩和伟晶岩结晶温度区间等参数,随着熔体结晶残余熔体中H2O含量和Li含量以及硼同位素组成变化曲线如图10a、b所示。JSD-1钻孔电气石δ11B和全岩Li含量的实验测量数据与平衡结晶模型相吻合。模型计算结果表明,在84%的原始熔体结晶后,熔体中锂富集到400×10-6左右,仍远远低于锂辉石在熔体中过饱和度。London and Evensen(2002)提出,花岗岩岩浆可能会经历多个阶段的结晶分异,稀有元素难以在一次连续结晶分异过程中富集达到矿化浓度,因此熔体的不断抽离提取过程可达到稀有金属矿化。根据London模型,花岗质岩浆达到绿柱石的结晶浓度需要至少五次熔体的抽离,喜马拉雅浅色花岗岩-伟晶岩中锂辉石的结晶需要七次熔体抽离(Wu Fuyuan et al.,2022)。在甲基卡花岗伟晶岩型锂矿床中,沿整个约3000 m岩芯的花岗岩和伟晶岩中未观察到Li在花岗岩和伟晶岩中“渐进式”富集模式(图10a)。

  • 除了热力学条件影响含锂矿物(如锂辉石)在熔体中的溶解度和饱和度(London,2015),流体出溶对Li配分和富集也有影响。已有研究表明,在较低的压力条件下,锂在流体和熔体间的配分系数随着温度的降低而增加(Webster et al.,1989)。根据花岗质岩席岩浆房的热力学条件(T=550~610℃和P=180~360 MPa)(Xu Zhiqin et al.,2023),以及实验测得6.14 mmol/L Cl-的流体的Li分配系数(DLifluid melt=2.5)(Iveson et al.,2019)和500~600℃条件下硼同位素分馏因子(Δ11B熔体-流体=-7.1‰~-4.4‰)(Hervig et al.,2002Li Yinchuan et al.,2021),我们基于Rayleigh分馏模型计算流体出溶过程中Li含量和硼同位素的变化如图10c。模型计算表明,Li在出溶岩浆流体中的富集程度取决于初始熔体中的Li含量和出溶流体的相对分数,晚期花岗质岩浆(Li含量高于300×10-6)出溶的岩浆流体可以达到富锂辉石伟晶岩的饱和浓度。全岩岩石中的Li含量和电气石硼同位素变化模式相结合(图10d),表明了花岗岩岩浆结晶分异和伴随的流体出溶都促进了花岗岩岩浆演化过程中 Li的富集。

  • 一般来说,花岗伟晶岩熔体中的流体流动元素(如Li、Rb、Cs)会优先分入流体,最终富集在岩浆演化最晚期产物中(Kogiso et al.,1997Kessel et al.,2005)。在甲基卡的花岗伟晶岩中,稀有金属Rb、Cs、Nb和Ta与Zr/Hf负相关(图11),并且高度富集于地表的锂辉石伟晶岩中,这反映了典型的岩浆演化过程。值得注意的是,稀有金属Li在二云母花岗岩与其他贫矿伟晶岩中含量较低,却在最后阶段的含锂辉石伟晶岩中富集(图11a),这可能与流体/熔体的不溶性有关(Raimbault et al.,1995Thomas et al.,2009;Thomas and Davidson,2016)。熔体中溶解的超临界流体可富含碱和熔剂成分,有利于有效提取稀有金属,促进伟晶岩型稀有金属成矿。此外,由于热液作用,B往往会在残余熔体中逐渐富集,并最终结晶出电气石等副矿物。因此,含电气石伟晶岩代表岩浆-热液演化的高级分异阶段(Pichavant and Manning,1984),其大量结晶使得流体中B含量下降,并在最晚期的锂辉石伟晶岩中达到最低(图11f)。因此,甲基卡花岗伟晶岩的稀有金属成矿受到岩浆演化与流体迁移的共同影响。甲基卡花岗质岩浆在构造作用的推力及减压情况下上升(Roger et al.,20042010Harrowfield et al.,2005),大量富含稀有金属的岩浆流体(如Li、Rb、Cs)从岩浆运移到甲基卡穹隆的顶部(图11),最终锂矿化集中在JSD-1约300 m以上的浅部。

  • 6 结论

  • 本研究对川西甲基卡一号钻孔JSD-1全孔岩芯的Li-B-Fe-Nd同位素研究结果做了系统总结。花岗岩和伟晶岩中电气石的B同位素证据判断其为S型花岗岩,全岩Li-Nd同位素指示甲基卡花岗岩岩席与马颈子二云母花岗岩均为强过铝质S型花岗岩分异演化产物。JSD-1钻孔岩芯全岩Fe同位素系统表明岩浆经历了多阶段岩浆-热液演化过程,浅部的伟晶岩较高的铁同位素组成与Zr/Hf和K/ Rb比值反映了稀有金属的富集与岩浆高度分异和流体-熔体相互作用有关。根据熔体结晶分异和流体出溶过程锂配分和B同位素分馏行为推断,花岗质岩浆的分异过程遵循平衡结晶模型,且花岗质岩浆极端分化不能达到熔体锂辉石过饱和。根据花岗片麻岩岩席岩浆房的热力学条件推断晚期花岗质岩浆出溶的岩浆流体可达到富锂辉石伟晶岩的饱和浓度。JSD-1钻孔岩芯全孔Li-B-Fe-Nd同位素研究表明,甲基卡花岗伟晶岩型锂矿床的花岗质岩浆演化过程中,岩浆结晶分异和伴随的流体出溶都促进了锂的富集。由于岩浆上升的减压作用,花岗岩岩席穹隆构造有利于晚期花岗岩岩浆中的大量流体出溶,从而在浅部形成钠长石锂辉石伟晶岩为主的矿体。

  • 图10 花岗岩熔体中H2O含量、Li含量和硼同位素组成随残余熔体相对分数的变化(a);δ11B与Li实验结果与平衡结晶模型和分离结晶模型曲线的比较(b);花岗质岩浆出溶流体过程Li含量和硼同位素变化,f表示残留在熔体中的Li的分数(c); JSD-1岩芯δ11B vs. Li实验数据与Rayleigh分馏模型计算流体出溶过程中Li含量和硼同位素的变化比较(d)(数据引自Huan Chun et al.,2023

  • Fig.10 Modelled curves for H2O content, Li contents, and boron isotope composition in granitic melts as a function of the fraction of melt remaining (a) ; comparison of the measured dataset of δ11B vs. Li to the modeled curves with the equilibrium fractionation model and the Rayleigh fractionation model (b) ; model curve illustrating the variation of Li content and boron isotope in fluid exsolved in granitic magma, f represents the fraction of Li remaining in the melt (c) ; plot of δ11B vs. Li in the exsolved fluid, the line is the modeled curve with the Rayleigh distillation model and symbols are measured data in in the Jiajika hole (JSD-1) (d) (data cited from Huan Chun et al., 2023)

  • 图11 甲基卡花岗伟晶岩中Li(a)、Cs(b)、Rb(c)、Nb(d)、Ta(e); B(f)与Zr/Hf的关系(数据引自Luo Xianglong et al.,2023

  • Fig.11 Variations of Li (a) , Cs (b) , Rb (c) , Nb (d) , Ta (e) and B (f) with respect to Zr/Hf in Jiajika granitic pegmatites (data cited from Luo Xianglong et al., 2023)

  • 参考文献

    • Bachmann O, Bergantz G W. 2004. On the origin of crystal-poor rhyolites extracted from batholithic crystal mushes. Journal of Petrology, 45: 1565~82.

    • Baker L L, Rutherford M J. 1996. The effect of dissolved water on the oxidation state of silicic melts. Geochimica et Cosmochimica Acta, 60: 2179~2187.

    • Billerot A, Duchene S, Vanderhaeghe O, de Sigoyer J. 2017. Gneiss domes of the Danba metamorphic complex, Songpan Ganze, eastern Tibet. Journal of Asian Earth Science, 140: 48~74.

    • Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems. Resource Geology, 54: 241~52.

    • Bradley D C, McCauley A D, Stillings L L. 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites. Scientific Investigations Report. Reston, VA.

    • Breiter K, Škoda R. 2017. Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineralogy and Petrology, 111: 435~57.

    • Bruguier O, Lancelot J R, Malavieille J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations. Earth and Planetary Science Letters, 152(1): 217~231.

    • Černý P. 1991. Rare-element granitic pegmatites. Part Ⅰ Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18: 49~67.

    • Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005~2026.

    • Černý P, London D, Novak M. 2012. Granitic pegmatites as reflections of their sources. Elements, 8: 289~294.

    • Cesare B, Meli S, Nodari L, Russo U. 2005. Fe3+ reduction during biotite melting in graphitic metapelites: Another origin of CO2 in granulites. Contributions to Mineralogy and Petrology, 149: 129~140.

    • Chen Bin, Huang Chao, Zhao Hui. 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551(1): 119769.

    • Codeço M S, Weis P, Trumbull R B, Glodny J, Wiedenbeck M, Romer R L. 2019. Boron isotope muscovite-tourmaline geothermometry indicates fluid cooling during magmatic-hydrothermal W-Sn ore formation. Economic Geology, 114 (1): 153~163.

    • Dauphas N, Roskosz M, Alp E E, Neuville D R, Hu M Y, Sio C K, Tissot F L H, Zhao J, Tissandier L, Médard E, Cordier C. 2014. Magma redox and structural controls on iron isotope variations in Earth's mantle and crust. Earth and Planetary Science Letters, 398: 127~140.

    • de Sigoyer J, Vanderhaeghe O, Duchêne S, Billerot A. 2014. Generation and emplacement of Triassic granitoids within the Songpan-Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China. Journal of Asian Earth Science, 88: 192~216.

    • Ding Lin, Yang D, Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H, Shi R D. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34~48.

    • Dittrich T, Seifert T, Schulz B, Hagemann S, Gerdes A, Pfänder J. 2019. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations. Springer.

    • Du Dehong, Wang Xiaolei, Yang Tao, Chen Xin, Li Junyong, Li Weiqiang. 2017. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective. Geochimica et Cosmochimica Acta, 218: 58~72.

    • Du Dehong, Li Weiqiang, Wang Xiaolei, Shu Xujie, Yang Tao, Sun Tao. 2019. Fe isotopic fractionation during the magmatic-hydrothermal stage of granitic magmatism. Lithos, 350~351.

    • Dutrow B L, Henry D J. 2018. Tourmaline compositions and textures: Reflections of the fluid phase. Journal of Geoscience, 63 (2): 99~110.

    • Eby G N, Woolley A R, Din V, Platt G. 1998. Geochemistry and petrogenesis of nepheline syenites: Kasungu-Chipala, Ilomba, and Ulindi nepheline syenite intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology, 39: 1405~1424.

    • Edmonds M, Woods A W. 2018. Exsolved volatiles in magma reservoirs. Journal of Volcanology & Geothermal Research, 368: 13~30.

    • Elliott T, Jeffcoate A, Bouman C. 2004. The terrestrial Li isotope cycle: Light-weight constraints on mantle convection. Earth & Planetary Science Letters, 220(3~4): 231~245.

    • Elliott T, Thomas A, Jeffcoate A, Niu Y L. 2006. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature, 443(7111): 565~568.

    • Fan Jingjing, Tang Gongjian, Wei Gangjian, Wang He, Xu Yigang, Wang Qiang, Zhou Jinsheng, Zhang Zhuoying, Huang Tongyu, Wang Zilong. 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos, 352~353.

    • Fan Jingjing, Wang Q, Wei G J, Li J, Ma L, Zhang X Z, Jiang Z Q, Ma J L, Zhou J S, Li Q W, Wang Z L, Liu X, Huang T Y, Zheng M Y. 2023. Boron and molybdenum isotope evidence for source-contrilled compositional diversity of Cenozoic granites in the eastern Tethyan Himalaya. Geochemistry, Geophysics, Geosystem, 24: e2022GC010629.

    • Foden J, Sossi P A, Wawryk C M. 2015. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos, 212~215, 32~44.

    • Fu Xiaofang, Wang Chenghong, Yuan Linping, Liang Bin, Hao Xuefeng, Pan Meng. 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China. Geological Survey of China, 1(3): 37~43 (in Chinese with English abstract).

    • Fu Xiaofang, Yuan Linping, Wang Denghong, Hou Liwei, Pan Meng, Liang Bin, Tang Yi. 2015. Mineralization charecteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan. Mineral Deposits, 34(6): 1172~1186 (in Chinese with English abstract).

    • Gao Jianguo, Wei Guangyi, Li Guangwei, Yin Yisheng, Zhang Rongqing, Ling Hongfei, Xu Zhiqin. 2023. Geochemical constraints on the origin of the rare metal mineralization in granite pegmatite, evidence from three-kilometer scientific drilling core in the Jiajika Li deposit, eastern Tibetan Plateau. Ore Geology Reviews (Revision in review).

    • Ghosh U, Upadhyay D, Abhinay K, Mishra B. 2021. Nature of the mineralizing fluids in the Balda and Motiya W-prospects, western India: Constraints from chemical and B-isotope composition of tourmaline. Chemical Geology, 582: 120439.

    • Gourcerol B, Gloaguen E, Melleton J, Tuduri J, Galiegue X. 2019. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geology Reviews. 109: 494~519.

    • Hamilton P J, O'Nions R K, Pankhurst R J. 1980. Isotopic evidence for the provenance of some Caledonian granites. Nature, 287: 279~284.

    • Harrowfield M J, Wilson C J L. 2005. Indosinian deformation of the Songpan-Garzê fold belt, northeast Tibetan Plateau. Journal of Structural Geology, 27: 101~117.

    • Heimann A, Beard B L, Johnson C M. 2008. The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochimica et Cosmochimica Acta, 72: 4379~4396.

    • Henry D J, Guidotti C V. 1985. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70: 1~15.

    • Hervig R L, Moore G M, Williams L B, Peacock S M, Holloway J R, Roggensack K. 2002. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. American Mineralogist, 87: 769~774.

    • Huan Chun, Wei Haizhen, Zhu Wenbin, Palmer M R, Lin Hefeng, Zheng Bihai, Cai Yue, Zhu Yuanfeng, Wang Junlin, Xu Zhiqin. 2023. Boron isotopes in tourmaline from drill core of the Jiajika granitic pegmatite type lithium deposit: Insights for granitic magma evolution and lithium enrichment. Ore Geology Reviews (Revision in review).

    • Huang M H, Buick I S, Hou L W. 2003. Tectonometamorphic evolution of the eastern Tibet Plateau: Evidence from the Central Songpan-Garzê orogenic belt, western China. Journal of Petrology, 44 (2): 255~278.

    • Huang Tao, Fu Xiaofang, Ge Liangquan, Zou Fuge, Hao Xuefeng, Yang Rong, Xiao Ruiqing, Fan Junbo. 2020. The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach. Ore Geology Reviews, 124: 103557.

    • Iveson A A, Webster J D, Rowe M C, Neill O K. 2019. Fluid-melt trace-element partitioning behavior between evolved melts and aqueous fluids: Experimental constraints on the magmatic-hydrothermal transport of metals. Chemical Geology, 516: 18~41.

    • Jian Xing, Weislogel A, Pullen A. 2019. Triassic sedimentary filling and closure of the eastern Paleo-Tethys Ocean: New insights from detrital zircon geochronology of Songpan-Ganzi, Yidun, and West Qinling flysch in eastern Tibet. Tectonics, 38 (2): 767~787.

    • Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer.

    • Johnson C, Beard B, Weyer S. 2020. Iron Geochemistry: An Isotopic Perspective. Advances in Isotope Geochemistry. Springer.

    • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180 km depth. Nature, 437: 724~727.

    • Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust. 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148: 193~205.

    • Li Jiankang, Wang Denghong, Zhang Dehui, Fu Xiaofang. 2006. The discovery of silicate daughter mineral-bearing inclusions in the Jiajika pegmatite deposit, western Sichuan, and its significance. Mineral Deposits, 25(S1): 131~134 (in Chinese with English abstract).

    • Li Jiankang, Wang Denghong, Chen Yuchuan. 2013. The ore-forming mechanism of the Jiajika pegmatite-type rare metal deposit in western Sichuan Province: Evidence from isotope dating. Acta Geologica Sinica (English Edition), 87(1): 91~101.

    • Li Jiankang, Chou I M. 2016. An occurrence of metastable cristobalite in spodumene-hosted crystal rich inclusions from Jiajika pegmatite deposit, China. Journal of Geochemical Exploration, 171: 29~36.

    • Li Mingze, Qin Yulong, Li Zheng, Xu Yunfeng, Wu Wenhui, Liu Wei, Ye Yakang, Zhou Xiong. 2018. Geochemical characteristics of two-mica granite and granite pegmatite in Jiajika area, western Sichuan, and their geological implications. Acta Petrologica et Mineralogica, 37 (3): 366~378 (in Chinese with English abstract).

    • Li Xianfang, Tian Shihong, Wang Denghong, Zhang Huijuan, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan, Yu Yang, Wang Hai. 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry. Mineral Deposits, 39: 273~304 (in Chinese with English abstract).

    • Li Yinchuan, Chen Hongwei, Wei Haizhen, Jiang Shaoyong, Palmer M R, van de Ven T G M, Hohl S, Lu Jianjun, Ma Jing. 2020. Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: A density functional theory study. Chemical Geology, 536: 119466.

    • Li Yinchuan, Wei Haizhen, Palmer M R, Jiang Shaoyong, Liu Xi, Williams-Jones A E, Ma Jing, Lu Jianjun, Lin Yibo, Dong Ge. 2021. Boron coordination and B/Si ordering controls over equilibrium boron isotope fractionation among minerals, melts, and fluids. Chemical Geology, 561: 120030.

    • Li Yinchuan, Wei Haizhen, Palmer M R, Ma Jing, Jiang Shaoyong, Chen Yixiang, Lu Jianjun, Liu Xi. 2022. Equilibrium boron isotope fractionation during serpentinization and applications in understanding subduction zone processes. Chemical Geology, 609: 121047.

    • Linnen R L, van Lichtervelde M, Cerny P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8: 275~280.

    • Liu Lijun, Fu Xiaofang, Wang Denghong, Hao Xuefang, Yuan Linping, Pan Meng. 2015. Geological characteristics and metallogeny of Jiajika-style rare metal deposits. Mineral Deposits, 34(6): 1187~1198 (in Chinese with English abstract).

    • Liu Lijun, Wang Denghong, Gao Juanqin, Yu Feng, Wang Wei. 2019. Breakthroughs of lithium exploration progress (2017~2018) and its significance to China's strategic key mineral exploration. Acta Geologica Sinica, 93: 1479~1488 (in Chinese with English abstract).

    • Liu Shengao, Teng Fangzhen, Yang Wei, Wu Fuyuan. 2011. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton. Earth and Planetary Science Letters, 308: 131~140.

    • London D. 2008. Pegmatites. Canadian Mineralogist Special Publication, 10: 1~368.

    • London D. 2015. Reading pegmatites: Part 1—What Beryl says. Rocks & Minerals, 90: 138~153.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • London D, Manning D A C. 1995. Chemical variation and significance of tourmaline from southwest England. Economy Geology, 90(3): 495~519.

    • London D, Evensen J E. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. In: Grew E S, eds. Beryllium: Mineralogy, Petrology, and Geochemistry. Mineralogical Society of America Reviews in Mineralogy and Geochemistry, 50: 445~486.

    • Luo Xianglong, Li Weiqiang, Du Dehong, An Shichao, Zheng Bihai, Zhu Wenbin, Xu Zhiqin. 2023. Iron isotope systematics of the Jiajika granitic-pegmatite lithium deposit, Sichuan, China. Ore Geology Reviews (Revision in review).

    • Martins T, Roda-Robles E, Lima A, de Parseval P. 2012. Geochemistry and evolution of micas in the Barroso-Alvao pegmatite field, northern Portugal. The Canadian Mineralogist, 50: 1117~1129.

    • Marschall H R, Jiang Shaoyong. 2011. Tourmaline isotopes: No element left behind. Elements, 7: 313~319.

    • Marschall H R, Foster G L. 2018. Boron Isotopes—The Fifth Element. Berlin Heidelberg: Springer-Verlag.

    • Nie N X, Dauphas N, Alp E E, Zeng Hao, Sio C K, Hu J Y, Chen Xi, Aarons S M, Zhang Zhe, Tian Hengci, Wang Da, Prissel K B, Greer J, Bi Wenli, Hu M Y, Zhao Jiyong, Shahar A, Roskosz M, Teng Fangzhen, Krawczynski M J, Heck P R, Spear F S. 2021. Iron, magnesium, and titanium isotopic fractionations between garnet, ilmenite, fayalite, biotite, and tourmaline: Results from NRIXS, ab initio, and study of mineral separates from the Moosilauke metapelite. Geochimica et Cosmochimica Acta, 302: 18~45.

    • Palmer M R, Slack J F. 1989. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contributions Mineralogy & Petrology, 103(4): 434~451.

    • Palmer M R, Swihart G H. 2002. Boron isotope geochemistry: An overview. In: Boron: Mineralogy, Petrology and Geochemistry, 2nd ed. Mineralogical Society of America, Washington DC, 709~744 (Reviews in Mineralogy, 33).

    • Penniston-Dorland S, Liu Xiaoming, Rudnick R L. 2017. Lithium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 165~217.

    • Pichavant M, Manning D. 1984. Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Physics of the Earth and Planetary Interiors, 35: 31~50.

    • Pistiner J S, Henderson G M. 2003. Lithium-isotope fractionation during continental weathering processes. Earth & Planetary Science Letters, 214(1~2): 327~339.

    • Qin Yulong, Hao Xuefeng, Xu Yunfeng, Wang Xianfeng. 2015. Metallogenic regularity and prospecting criteria of granite type rare metal deposits in Jiajika area, Sichuan Province. Geological Survey of China, 2(7): 35~39 (in Chinese with English abstract).

    • Raimbault L, Cuney M, Azencott C, Duthou J L, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology and the Bulletin of the Society of Economic Geologists, 90: 548~576.

    • Richter F M, Davis A M, Depaolo D J, Watson E B. 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905~3923.

    • Roger F, Malavieille J, Leloup P H, Calassou S, Xu Z. 2004. Timing of granite emplacement and cooling in the Songpan-Garzê fold belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Science, 22 (5): 465~481.

    • Roger F, Jolivet M, Malavieille J. 2008. Tectonic evolution of the Triassic fold belts of Tibet. Comptes Rendus-Geoscience, 340 (2~3): 180~189.

    • Roger F, Jolivet M, Malavieille J. 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis. Journal of Asian Earth Science, 39 (4): 254~269.

    • Rudnick R L, Gao S, Holland H D, Turekian K K. 2003. Composition of the continental crust. The Crust, 3: 1~64.

    • Scaillet B, Holtz F, Pichavamt M, Schmidt M. 1996. Viscosity of Himalayan leucogranites: Implications for mechanism of granitic magma ascent. Journal of Geophysical Research: Solid Earth, 101: 27691~27699.

    • Schuessler J A, Schoenberg R, Sigmarsson O. 2009. Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation. Chemical Geology, 258: 78~91.

    • Shi Qingshang, He Yongshang, Zhao Zhidan, Liu Dong, Harris N G, Zhu D C. 2021. Petrogenesis of Himalayan leucogranites: Perspective from a combined elemental and Fe-Sr-Nd isotope study. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB021839.

    • Simmons W B S, Foord E E, Falster A U, King V T. 1995. Evidence for an anatectic origin of granitic pegmatites, western Maine, USA. Geological Society of America Programs with Abstracts 27.

    • Simmons W B S, Webber K L. 2008. Pegmatite genesis: State of the art. European Journal of Mineralogy, 20: 421~438.

    • Slack J F. 1996. Tourmaline associations with hydrothermal ore deposits. In: Grew E S, Anovitz L M, eds. Boron: Mineralogy, Petrology and Geochemistry. Reviews in Mineralogy, 33: 559~644.

    • Smith M P, Yardley B W D. 1996. The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: An ion microprobe study. Geochimica et Cosmochimica Acta, 60 (8): 1415~1427.

    • Sossi P A, Foden J D, Halverson G P. 2012. Redox-controlled iron isotope fractionation during magmatic differentiation: An example from the Red Hill intrusion, S. Tasmania. Contributions to Mineralogy and Petrology, 164: 757~772.

    • Stepanov A A, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”. Geology, 41: 303~306.

    • Tang Ming, Lee C-T A, Costin G, Höfer H E. 2019. Recycling reduced iron at the base of magmatic orogens. Earth and Planetary Science Letters, 528: 115827.

    • Telus M, Dauphas N, Moynier F, Tissot F L H, Teng Fangzhen, Nabelek P I, Craddock P R, Groat L A. 2012. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites. Geochimica et Cosmochimica Acta, 97: 247~265.

    • Teng Fangzhen, McDonough W F, Rudnick R L, Walker R J. 2006. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243: 701~710.

    • Thomas R, Förster H J, Rickers K, Webster J D. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contributions to Mineralogy and Petrology, 148: 582~601.

    • Thomas R, Davidson P, Badanina E. 2009. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: Implications for pegmatite-forming melt systems. Mineralogy and Petrology, 96: 129~140.

    • Thomas R, Davidson P. 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state—Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088~1101.

    • Tian Hengci, Teng Fangzhen, Hou Zengqian, Tian Shihong, Yang Wei, Chen Xinyang, Song Yucai. 2020. Magnesium and lithium isotopic evidence for a remnant oceanic slab beneath Central Tibet. Journal of Geophysical Research: Solid Earth, 125(1): e2019JB018197.

    • Tomascak P B. 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Geochemistry of Non-Traditional Stable Isotopes, 55(1): 153~195.

    • Trumbull R B, Slack J F. 2018. Boron isotopes in the continental crust: Granites, pegmatites, felsic volcanic rocks, and related ore deposits, boron isotopes. Advances in Isotope Geochemistry, 249~272.

    • Van Hinsberg V J, Henry D J, Dutrow B L. 2011. Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7 (5): 327~332.

    • Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies. Chemical Geology, 210: 7~31.

    • Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Chen Zhenghui, Li Dexian, Qu Wenjun, Deng Maochun, Fu Xiaofang, Sun Yan, Zheng Guodong. 2013. The progress in the strategic reseach and survey of rare earth, rare metal and rare-scattered elements mineral resources. Geology in China, 40: 361~370 (in Chinese with English abstract).

    • Wang Denghong, Liu Lijun, Dai Hongzhang, Liu Shanbao, Hou Jianglong, Wu Xishun 2017. Discussion on particularity and prospecting direction of large and super-large spodumene deposits. Earth Science, 42 (12): 2243~2257 (in Chinese with English abstract).

    • Webster J D, Holloway J R, Hervig R L. 1989. Partitioning of lithophile trace elements between H2O and H2O+CO2 fluids and topaz rhyolite melt. Economic Geology, 84: 116~134.

    • Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G E. 2010. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production. Geological Society of American Bulletin, 122 (11~12): 2041~2062.

    • White W, Hofmann A. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296: 821~825.

    • Wu Hongjie, He Yongsheng, Bao Leier, Zhu Chuanwei, Li Shuguang. 2017. Mineral composition control on inter-mineral iron isotopic fractionation in granitoids. Geochimica et Cosmochimica Acta, 198: 208~217.

    • Wu Fuyuan, Liu Xiaochi, Liu Zhichao, Wang Rucheng, Xie Lei, Wang Jiamin, Ji Weiqiang, Yang Lei, Liu Chen, Khanal G P, He Shaoxiong. 2022. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 353-353: 105319.

    • Xia Ying, Li Shuangqing, Huang Fang. 2017. Iron and zinc isotope fractionation during magmatism in the continental crust: Evidence from bimodal volcanic rocks from Hailar basin, NE China. Geochimica et Cosmochimica Acta, 213: 35~46.

    • Xiao Long, Zhang Hongfei, Clemens J D, Wang Qiang, Kan Z Z, Wang K M, Ni P Z, Liu X M. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 96 (3-4): 436~452.

    • Xu Zhiqin, Ma Xuxuan. 2015. The Chinese Phanerozoic gneiss domes: subduction-related type, collision-related type and combination type of subduction-collision. Acta Petrologica Sinica, 31 (12): 3509~3523 (in Chinese with English abstract).

    • Xu Zhiqin, Fu Xiaofang, Ma Xuxuan, Qi Xuexiang, Wu Chan, Hou Liwei, Zhao Zhongbao. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting. Acta Geologica Sinica, 90 (11): 2971~2981 (in Chinese with English abstract).

    • Xu Zhiqin, Wang Rucheng, Zhao Zhongbao, Fu Xiaofang. 2018. On the structural back grounds of the large-scale “Hard-rock type” lithium ore belts in China. Acta Geologica Sinica, 92(6): 1091~1106 (in Chinese with English abstract).

    • Xu Zhiqin, Fu Xiaofang, Wang Rucheng, Li Guangwei, Zheng Yilong, Zhao Zhongbao, Lian Dongyan. 2020a. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354~355.

    • Xu Zhiqin, Wang Rucheng, Zhu Wenbin, Qin Yulong, Fu Xiaofang, Li Guangwei. 2020b. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: Scientific problems and significance. Acta Geologica Sinica, 94(8): 2177~2189 (in Chinese with English abstract).

    • Xu Zhiqin, Zhu Wenbin, Zheng Bihai, Shu Liangshu, Li Guangwei, Che Xudong, Qin Yulong. 2021. New energy strategy for lithium resource and the continental dynamics research—Celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10): 2937~2954 (in Chinese with English abstract).

    • Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau. Acta Geologica Sinica, 96(1): 65~94 (in Chinese with English abstract).

    • Xu Zhiqin, Zheng Bihai, Zhu Wenbin, Chen Yanjing, Li Guangwei, Gao Jianguo, Che Xudong, Zhang Rongqing, Wei Haizhen, Li Weiqiang, Wang Guoguang, Wei Guangyi, Yan Haoyu. 2023. Geologic Scenario from granite to Li-rich pegmatite uncovered by scientific drilling at the Jiajika lithium deposit in eastern Tibetan Plateau. Ore Geology Reviews, 161: 105636.

    • Ye Hui, Wu Changzhi, Brzozowski M J, Yang Tao, Zha Xiangping, Zhao Shugao, Gao Bingfei, Li Weiqiang. 2020. Calibrating equilibrium Fe isotope fractionation factors between magnetite, garnet, amphibole, and biotite. Geochimica et Cosmochimica Acta, 271: 78~95.

    • Yuan Chao, Zhou Meifu, Sun Min, Zhao Yongjiu, Wilde S, Long Xiaoping, Yan Danping. 2010. Triassic granitoids in the eastern Songpan-Ganze fold belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290 (3~4): 481~492.

    • Zambardi T, Lundstrom C C, Li Xiaoxiao, McCurry M. 2014. Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation. Earth and Planetary Science Letters, 405: 169~179.

    • Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33 (2): 106~111(in Chinese with English abstract).

    • Zhang Hongfei, Zhang Li, Harris N, Jin Lanlan, Yuan Honglin. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy Petrology, 152 (1): 75~88.

    • Zhang Hongfei, Parrish R, Zhang Li, Xu Wangchun, Yuan Honglin, Gao Shan, Crowley Q G. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97 (3~4): 323~335.

    • Zhang Huijuan, Tian Shihong, Wang Denghong, Li Xianfang, Liu Tao, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan. 2021. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China. Ore Geology Reviews, 134: 104~139.

    • Zhang Huijuan, Tian Shihong, Wang Denghong, Liu Tao, Li Xianfang, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan. 2022. Lithium isotopic constraints on the petrogenesis of the Jiajika two-mica granites and associated Li mineralization. Ore Geology Reviews, 150: 105174.

    • Zhao Hui, Chen Bin, Huang Chao, Bao Chuang, Yang Qian, Cao Rui. 2022. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: Implications for Li mineralization. Contributions to Mineralogy and Petrology, 177: 4.

    • Zhao Zhongbao, Du J X, Liang F H, Wu C, Liu X J. 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan Plateau and its implications for crustal thickening, metamorphism, and exhumation. Geochemistry, Geophysics, Geosystems, 20 (1): 24~45.

    • Zheng Yilong, Xu Zhiqin, Li Guangwei, Lian Dongyang, Zhao Zhongbao, Ma Zeliang, Gao Wenqi. 2020. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau. Lithos, 362~363.

    • 付小方. 2017. 甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型. 北京: 科学出版社.

    • 付小方, 侯立玮, 王登红, 袁蔺平, 梁斌, 郝雪峰, 潘蒙. 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果. 中国地质调查, 1(3): 37~43.

    • 付小方, 袁蔺平, 王登红, 侯立玮, 潘蒙, 郝雪峰, 梁斌, 唐屹. 2015. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘察模型. 矿床地质, 34(6): 1172~1186.

    • 李建康, 王登红, 张德会, 付小方. 2006. 川西甲基卡伟晶岩型矿床中含硅酸盐子矿物包裹体的发现及其意义. 矿床地质, 25(S1): 131~134.

    • 李建康, 王登红, 张德会, 付小方. 2007. 川西伟晶岩型矿床的形成机制及大陆动力学背景. 北京: 原子能出版社.

    • 李名则, 秦宇龙, 李峥, 徐云峰, 武文辉, 刘伟, 叶亚康, 周雄. 2018. 川西甲基卡二云母花岗岩与伟晶岩脉地球化学特征及其地质意义. 岩石矿物学杂志, 37(3): 366~378.

    • 李贤芳, 田世洪, 王登红, 张慧娟, 张玉洁, 付小方, 郝雪峰, 侯可君, 赵悦, 秦燕, 于扬, 王海. 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证. 矿床地质39(2): 273~304.

    • 刘丽君, 付小方, 王登红, 郝雪峰, 袁蔺平, 潘蒙. 2015. 甲基卡式稀有金属矿床的地质特征与成矿规. 矿床地质, 34(6): 1187~1198.

    • 刘丽君, 王登红, 高娟琴, 于沨, 王伟. 2019. 国外锂矿找矿的新突破(2017~2018年)及对我国关键矿产勘查的启示. 地质学报, 93(6): 1479~1488.

    • 秦宇龙, 郝雪峰, 徐云峰, 王显峰. 2015. 四川甲基卡地区花岗岩型稀有金属矿找矿规律及标志. 中国地质调查, 2(7): 35~39.

    • 王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361~370.

    • 王登红, 刘丽君, 代鸿章, 刘善宝, 侯江龙, 吴西顺. 2017. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向. 地球科学, 42(12): 2243~2257.

    • 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.

    • 许志琴, 马绪宣. 2015. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群). 岩石学报, 31(12): 3509~3523.

    • 许志琴, 付小方, 马绪宣, 戚学祥, 吴婵, 侯利伟, 赵中宝. 2016. 青藏高原片麻岩穹窿与找矿前景. 地质学报, 90(11): 2971~2981.

    • 许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背. 地质学报, 92(6): 1091~1106.

    • 许志琴, 王汝成, 朱文斌, 秦宇龙, 付小芳, 李广伟. 2020b. 川西花岗-伟晶岩型锂矿科学钻探: 科学问题和科学意. 地质学报, 94(8): 2177~2189.

    • 许志琴, 朱文斌, 郑碧海, 舒良树, 李广伟, 车旭东, 秦宇龙. 2021. 新能源锂矿战略与大陆动力学研究——纪念南京大学地球科学与工程学院100周年华诞. 地质学报, 95(10): 2937~2954.

    • 许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.

    • 翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106~111.

  • 参考文献

    • Bachmann O, Bergantz G W. 2004. On the origin of crystal-poor rhyolites extracted from batholithic crystal mushes. Journal of Petrology, 45: 1565~82.

    • Baker L L, Rutherford M J. 1996. The effect of dissolved water on the oxidation state of silicic melts. Geochimica et Cosmochimica Acta, 60: 2179~2187.

    • Billerot A, Duchene S, Vanderhaeghe O, de Sigoyer J. 2017. Gneiss domes of the Danba metamorphic complex, Songpan Ganze, eastern Tibet. Journal of Asian Earth Science, 140: 48~74.

    • Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems. Resource Geology, 54: 241~52.

    • Bradley D C, McCauley A D, Stillings L L. 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites. Scientific Investigations Report. Reston, VA.

    • Breiter K, Škoda R. 2017. Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineralogy and Petrology, 111: 435~57.

    • Bruguier O, Lancelot J R, Malavieille J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations. Earth and Planetary Science Letters, 152(1): 217~231.

    • Černý P. 1991. Rare-element granitic pegmatites. Part Ⅰ Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18: 49~67.

    • Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005~2026.

    • Černý P, London D, Novak M. 2012. Granitic pegmatites as reflections of their sources. Elements, 8: 289~294.

    • Cesare B, Meli S, Nodari L, Russo U. 2005. Fe3+ reduction during biotite melting in graphitic metapelites: Another origin of CO2 in granulites. Contributions to Mineralogy and Petrology, 149: 129~140.

    • Chen Bin, Huang Chao, Zhao Hui. 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551(1): 119769.

    • Codeço M S, Weis P, Trumbull R B, Glodny J, Wiedenbeck M, Romer R L. 2019. Boron isotope muscovite-tourmaline geothermometry indicates fluid cooling during magmatic-hydrothermal W-Sn ore formation. Economic Geology, 114 (1): 153~163.

    • Dauphas N, Roskosz M, Alp E E, Neuville D R, Hu M Y, Sio C K, Tissot F L H, Zhao J, Tissandier L, Médard E, Cordier C. 2014. Magma redox and structural controls on iron isotope variations in Earth's mantle and crust. Earth and Planetary Science Letters, 398: 127~140.

    • de Sigoyer J, Vanderhaeghe O, Duchêne S, Billerot A. 2014. Generation and emplacement of Triassic granitoids within the Songpan-Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China. Journal of Asian Earth Science, 88: 192~216.

    • Ding Lin, Yang D, Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H, Shi R D. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34~48.

    • Dittrich T, Seifert T, Schulz B, Hagemann S, Gerdes A, Pfänder J. 2019. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations. Springer.

    • Du Dehong, Wang Xiaolei, Yang Tao, Chen Xin, Li Junyong, Li Weiqiang. 2017. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective. Geochimica et Cosmochimica Acta, 218: 58~72.

    • Du Dehong, Li Weiqiang, Wang Xiaolei, Shu Xujie, Yang Tao, Sun Tao. 2019. Fe isotopic fractionation during the magmatic-hydrothermal stage of granitic magmatism. Lithos, 350~351.

    • Dutrow B L, Henry D J. 2018. Tourmaline compositions and textures: Reflections of the fluid phase. Journal of Geoscience, 63 (2): 99~110.

    • Eby G N, Woolley A R, Din V, Platt G. 1998. Geochemistry and petrogenesis of nepheline syenites: Kasungu-Chipala, Ilomba, and Ulindi nepheline syenite intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology, 39: 1405~1424.

    • Edmonds M, Woods A W. 2018. Exsolved volatiles in magma reservoirs. Journal of Volcanology & Geothermal Research, 368: 13~30.

    • Elliott T, Jeffcoate A, Bouman C. 2004. The terrestrial Li isotope cycle: Light-weight constraints on mantle convection. Earth & Planetary Science Letters, 220(3~4): 231~245.

    • Elliott T, Thomas A, Jeffcoate A, Niu Y L. 2006. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature, 443(7111): 565~568.

    • Fan Jingjing, Tang Gongjian, Wei Gangjian, Wang He, Xu Yigang, Wang Qiang, Zhou Jinsheng, Zhang Zhuoying, Huang Tongyu, Wang Zilong. 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos, 352~353.

    • Fan Jingjing, Wang Q, Wei G J, Li J, Ma L, Zhang X Z, Jiang Z Q, Ma J L, Zhou J S, Li Q W, Wang Z L, Liu X, Huang T Y, Zheng M Y. 2023. Boron and molybdenum isotope evidence for source-contrilled compositional diversity of Cenozoic granites in the eastern Tethyan Himalaya. Geochemistry, Geophysics, Geosystem, 24: e2022GC010629.

    • Foden J, Sossi P A, Wawryk C M. 2015. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos, 212~215, 32~44.

    • Fu Xiaofang, Wang Chenghong, Yuan Linping, Liang Bin, Hao Xuefeng, Pan Meng. 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China. Geological Survey of China, 1(3): 37~43 (in Chinese with English abstract).

    • Fu Xiaofang, Yuan Linping, Wang Denghong, Hou Liwei, Pan Meng, Liang Bin, Tang Yi. 2015. Mineralization charecteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan. Mineral Deposits, 34(6): 1172~1186 (in Chinese with English abstract).

    • Gao Jianguo, Wei Guangyi, Li Guangwei, Yin Yisheng, Zhang Rongqing, Ling Hongfei, Xu Zhiqin. 2023. Geochemical constraints on the origin of the rare metal mineralization in granite pegmatite, evidence from three-kilometer scientific drilling core in the Jiajika Li deposit, eastern Tibetan Plateau. Ore Geology Reviews (Revision in review).

    • Ghosh U, Upadhyay D, Abhinay K, Mishra B. 2021. Nature of the mineralizing fluids in the Balda and Motiya W-prospects, western India: Constraints from chemical and B-isotope composition of tourmaline. Chemical Geology, 582: 120439.

    • Gourcerol B, Gloaguen E, Melleton J, Tuduri J, Galiegue X. 2019. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geology Reviews. 109: 494~519.

    • Hamilton P J, O'Nions R K, Pankhurst R J. 1980. Isotopic evidence for the provenance of some Caledonian granites. Nature, 287: 279~284.

    • Harrowfield M J, Wilson C J L. 2005. Indosinian deformation of the Songpan-Garzê fold belt, northeast Tibetan Plateau. Journal of Structural Geology, 27: 101~117.

    • Heimann A, Beard B L, Johnson C M. 2008. The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochimica et Cosmochimica Acta, 72: 4379~4396.

    • Henry D J, Guidotti C V. 1985. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70: 1~15.

    • Hervig R L, Moore G M, Williams L B, Peacock S M, Holloway J R, Roggensack K. 2002. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. American Mineralogist, 87: 769~774.

    • Huan Chun, Wei Haizhen, Zhu Wenbin, Palmer M R, Lin Hefeng, Zheng Bihai, Cai Yue, Zhu Yuanfeng, Wang Junlin, Xu Zhiqin. 2023. Boron isotopes in tourmaline from drill core of the Jiajika granitic pegmatite type lithium deposit: Insights for granitic magma evolution and lithium enrichment. Ore Geology Reviews (Revision in review).

    • Huang M H, Buick I S, Hou L W. 2003. Tectonometamorphic evolution of the eastern Tibet Plateau: Evidence from the Central Songpan-Garzê orogenic belt, western China. Journal of Petrology, 44 (2): 255~278.

    • Huang Tao, Fu Xiaofang, Ge Liangquan, Zou Fuge, Hao Xuefeng, Yang Rong, Xiao Ruiqing, Fan Junbo. 2020. The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach. Ore Geology Reviews, 124: 103557.

    • Iveson A A, Webster J D, Rowe M C, Neill O K. 2019. Fluid-melt trace-element partitioning behavior between evolved melts and aqueous fluids: Experimental constraints on the magmatic-hydrothermal transport of metals. Chemical Geology, 516: 18~41.

    • Jian Xing, Weislogel A, Pullen A. 2019. Triassic sedimentary filling and closure of the eastern Paleo-Tethys Ocean: New insights from detrital zircon geochronology of Songpan-Ganzi, Yidun, and West Qinling flysch in eastern Tibet. Tectonics, 38 (2): 767~787.

    • Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer.

    • Johnson C, Beard B, Weyer S. 2020. Iron Geochemistry: An Isotopic Perspective. Advances in Isotope Geochemistry. Springer.

    • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180 km depth. Nature, 437: 724~727.

    • Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust. 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148: 193~205.

    • Li Jiankang, Wang Denghong, Zhang Dehui, Fu Xiaofang. 2006. The discovery of silicate daughter mineral-bearing inclusions in the Jiajika pegmatite deposit, western Sichuan, and its significance. Mineral Deposits, 25(S1): 131~134 (in Chinese with English abstract).

    • Li Jiankang, Wang Denghong, Chen Yuchuan. 2013. The ore-forming mechanism of the Jiajika pegmatite-type rare metal deposit in western Sichuan Province: Evidence from isotope dating. Acta Geologica Sinica (English Edition), 87(1): 91~101.

    • Li Jiankang, Chou I M. 2016. An occurrence of metastable cristobalite in spodumene-hosted crystal rich inclusions from Jiajika pegmatite deposit, China. Journal of Geochemical Exploration, 171: 29~36.

    • Li Mingze, Qin Yulong, Li Zheng, Xu Yunfeng, Wu Wenhui, Liu Wei, Ye Yakang, Zhou Xiong. 2018. Geochemical characteristics of two-mica granite and granite pegmatite in Jiajika area, western Sichuan, and their geological implications. Acta Petrologica et Mineralogica, 37 (3): 366~378 (in Chinese with English abstract).

    • Li Xianfang, Tian Shihong, Wang Denghong, Zhang Huijuan, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan, Yu Yang, Wang Hai. 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry. Mineral Deposits, 39: 273~304 (in Chinese with English abstract).

    • Li Yinchuan, Chen Hongwei, Wei Haizhen, Jiang Shaoyong, Palmer M R, van de Ven T G M, Hohl S, Lu Jianjun, Ma Jing. 2020. Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: A density functional theory study. Chemical Geology, 536: 119466.

    • Li Yinchuan, Wei Haizhen, Palmer M R, Jiang Shaoyong, Liu Xi, Williams-Jones A E, Ma Jing, Lu Jianjun, Lin Yibo, Dong Ge. 2021. Boron coordination and B/Si ordering controls over equilibrium boron isotope fractionation among minerals, melts, and fluids. Chemical Geology, 561: 120030.

    • Li Yinchuan, Wei Haizhen, Palmer M R, Ma Jing, Jiang Shaoyong, Chen Yixiang, Lu Jianjun, Liu Xi. 2022. Equilibrium boron isotope fractionation during serpentinization and applications in understanding subduction zone processes. Chemical Geology, 609: 121047.

    • Linnen R L, van Lichtervelde M, Cerny P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8: 275~280.

    • Liu Lijun, Fu Xiaofang, Wang Denghong, Hao Xuefang, Yuan Linping, Pan Meng. 2015. Geological characteristics and metallogeny of Jiajika-style rare metal deposits. Mineral Deposits, 34(6): 1187~1198 (in Chinese with English abstract).

    • Liu Lijun, Wang Denghong, Gao Juanqin, Yu Feng, Wang Wei. 2019. Breakthroughs of lithium exploration progress (2017~2018) and its significance to China's strategic key mineral exploration. Acta Geologica Sinica, 93: 1479~1488 (in Chinese with English abstract).

    • Liu Shengao, Teng Fangzhen, Yang Wei, Wu Fuyuan. 2011. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton. Earth and Planetary Science Letters, 308: 131~140.

    • London D. 2008. Pegmatites. Canadian Mineralogist Special Publication, 10: 1~368.

    • London D. 2015. Reading pegmatites: Part 1—What Beryl says. Rocks & Minerals, 90: 138~153.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • London D, Manning D A C. 1995. Chemical variation and significance of tourmaline from southwest England. Economy Geology, 90(3): 495~519.

    • London D, Evensen J E. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. In: Grew E S, eds. Beryllium: Mineralogy, Petrology, and Geochemistry. Mineralogical Society of America Reviews in Mineralogy and Geochemistry, 50: 445~486.

    • Luo Xianglong, Li Weiqiang, Du Dehong, An Shichao, Zheng Bihai, Zhu Wenbin, Xu Zhiqin. 2023. Iron isotope systematics of the Jiajika granitic-pegmatite lithium deposit, Sichuan, China. Ore Geology Reviews (Revision in review).

    • Martins T, Roda-Robles E, Lima A, de Parseval P. 2012. Geochemistry and evolution of micas in the Barroso-Alvao pegmatite field, northern Portugal. The Canadian Mineralogist, 50: 1117~1129.

    • Marschall H R, Jiang Shaoyong. 2011. Tourmaline isotopes: No element left behind. Elements, 7: 313~319.

    • Marschall H R, Foster G L. 2018. Boron Isotopes—The Fifth Element. Berlin Heidelberg: Springer-Verlag.

    • Nie N X, Dauphas N, Alp E E, Zeng Hao, Sio C K, Hu J Y, Chen Xi, Aarons S M, Zhang Zhe, Tian Hengci, Wang Da, Prissel K B, Greer J, Bi Wenli, Hu M Y, Zhao Jiyong, Shahar A, Roskosz M, Teng Fangzhen, Krawczynski M J, Heck P R, Spear F S. 2021. Iron, magnesium, and titanium isotopic fractionations between garnet, ilmenite, fayalite, biotite, and tourmaline: Results from NRIXS, ab initio, and study of mineral separates from the Moosilauke metapelite. Geochimica et Cosmochimica Acta, 302: 18~45.

    • Palmer M R, Slack J F. 1989. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contributions Mineralogy & Petrology, 103(4): 434~451.

    • Palmer M R, Swihart G H. 2002. Boron isotope geochemistry: An overview. In: Boron: Mineralogy, Petrology and Geochemistry, 2nd ed. Mineralogical Society of America, Washington DC, 709~744 (Reviews in Mineralogy, 33).

    • Penniston-Dorland S, Liu Xiaoming, Rudnick R L. 2017. Lithium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 165~217.

    • Pichavant M, Manning D. 1984. Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Physics of the Earth and Planetary Interiors, 35: 31~50.

    • Pistiner J S, Henderson G M. 2003. Lithium-isotope fractionation during continental weathering processes. Earth & Planetary Science Letters, 214(1~2): 327~339.

    • Qin Yulong, Hao Xuefeng, Xu Yunfeng, Wang Xianfeng. 2015. Metallogenic regularity and prospecting criteria of granite type rare metal deposits in Jiajika area, Sichuan Province. Geological Survey of China, 2(7): 35~39 (in Chinese with English abstract).

    • Raimbault L, Cuney M, Azencott C, Duthou J L, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology and the Bulletin of the Society of Economic Geologists, 90: 548~576.

    • Richter F M, Davis A M, Depaolo D J, Watson E B. 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905~3923.

    • Roger F, Malavieille J, Leloup P H, Calassou S, Xu Z. 2004. Timing of granite emplacement and cooling in the Songpan-Garzê fold belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Science, 22 (5): 465~481.

    • Roger F, Jolivet M, Malavieille J. 2008. Tectonic evolution of the Triassic fold belts of Tibet. Comptes Rendus-Geoscience, 340 (2~3): 180~189.

    • Roger F, Jolivet M, Malavieille J. 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis. Journal of Asian Earth Science, 39 (4): 254~269.

    • Rudnick R L, Gao S, Holland H D, Turekian K K. 2003. Composition of the continental crust. The Crust, 3: 1~64.

    • Scaillet B, Holtz F, Pichavamt M, Schmidt M. 1996. Viscosity of Himalayan leucogranites: Implications for mechanism of granitic magma ascent. Journal of Geophysical Research: Solid Earth, 101: 27691~27699.

    • Schuessler J A, Schoenberg R, Sigmarsson O. 2009. Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation. Chemical Geology, 258: 78~91.

    • Shi Qingshang, He Yongshang, Zhao Zhidan, Liu Dong, Harris N G, Zhu D C. 2021. Petrogenesis of Himalayan leucogranites: Perspective from a combined elemental and Fe-Sr-Nd isotope study. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB021839.

    • Simmons W B S, Foord E E, Falster A U, King V T. 1995. Evidence for an anatectic origin of granitic pegmatites, western Maine, USA. Geological Society of America Programs with Abstracts 27.

    • Simmons W B S, Webber K L. 2008. Pegmatite genesis: State of the art. European Journal of Mineralogy, 20: 421~438.

    • Slack J F. 1996. Tourmaline associations with hydrothermal ore deposits. In: Grew E S, Anovitz L M, eds. Boron: Mineralogy, Petrology and Geochemistry. Reviews in Mineralogy, 33: 559~644.

    • Smith M P, Yardley B W D. 1996. The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: An ion microprobe study. Geochimica et Cosmochimica Acta, 60 (8): 1415~1427.

    • Sossi P A, Foden J D, Halverson G P. 2012. Redox-controlled iron isotope fractionation during magmatic differentiation: An example from the Red Hill intrusion, S. Tasmania. Contributions to Mineralogy and Petrology, 164: 757~772.

    • Stepanov A A, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”. Geology, 41: 303~306.

    • Tang Ming, Lee C-T A, Costin G, Höfer H E. 2019. Recycling reduced iron at the base of magmatic orogens. Earth and Planetary Science Letters, 528: 115827.

    • Telus M, Dauphas N, Moynier F, Tissot F L H, Teng Fangzhen, Nabelek P I, Craddock P R, Groat L A. 2012. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites. Geochimica et Cosmochimica Acta, 97: 247~265.

    • Teng Fangzhen, McDonough W F, Rudnick R L, Walker R J. 2006. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243: 701~710.

    • Thomas R, Förster H J, Rickers K, Webster J D. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contributions to Mineralogy and Petrology, 148: 582~601.

    • Thomas R, Davidson P, Badanina E. 2009. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: Implications for pegmatite-forming melt systems. Mineralogy and Petrology, 96: 129~140.

    • Thomas R, Davidson P. 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state—Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088~1101.

    • Tian Hengci, Teng Fangzhen, Hou Zengqian, Tian Shihong, Yang Wei, Chen Xinyang, Song Yucai. 2020. Magnesium and lithium isotopic evidence for a remnant oceanic slab beneath Central Tibet. Journal of Geophysical Research: Solid Earth, 125(1): e2019JB018197.

    • Tomascak P B. 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Geochemistry of Non-Traditional Stable Isotopes, 55(1): 153~195.

    • Trumbull R B, Slack J F. 2018. Boron isotopes in the continental crust: Granites, pegmatites, felsic volcanic rocks, and related ore deposits, boron isotopes. Advances in Isotope Geochemistry, 249~272.

    • Van Hinsberg V J, Henry D J, Dutrow B L. 2011. Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7 (5): 327~332.

    • Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies. Chemical Geology, 210: 7~31.

    • Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Chen Zhenghui, Li Dexian, Qu Wenjun, Deng Maochun, Fu Xiaofang, Sun Yan, Zheng Guodong. 2013. The progress in the strategic reseach and survey of rare earth, rare metal and rare-scattered elements mineral resources. Geology in China, 40: 361~370 (in Chinese with English abstract).

    • Wang Denghong, Liu Lijun, Dai Hongzhang, Liu Shanbao, Hou Jianglong, Wu Xishun 2017. Discussion on particularity and prospecting direction of large and super-large spodumene deposits. Earth Science, 42 (12): 2243~2257 (in Chinese with English abstract).

    • Webster J D, Holloway J R, Hervig R L. 1989. Partitioning of lithophile trace elements between H2O and H2O+CO2 fluids and topaz rhyolite melt. Economic Geology, 84: 116~134.

    • Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G E. 2010. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production. Geological Society of American Bulletin, 122 (11~12): 2041~2062.

    • White W, Hofmann A. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296: 821~825.

    • Wu Hongjie, He Yongsheng, Bao Leier, Zhu Chuanwei, Li Shuguang. 2017. Mineral composition control on inter-mineral iron isotopic fractionation in granitoids. Geochimica et Cosmochimica Acta, 198: 208~217.

    • Wu Fuyuan, Liu Xiaochi, Liu Zhichao, Wang Rucheng, Xie Lei, Wang Jiamin, Ji Weiqiang, Yang Lei, Liu Chen, Khanal G P, He Shaoxiong. 2022. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 353-353: 105319.

    • Xia Ying, Li Shuangqing, Huang Fang. 2017. Iron and zinc isotope fractionation during magmatism in the continental crust: Evidence from bimodal volcanic rocks from Hailar basin, NE China. Geochimica et Cosmochimica Acta, 213: 35~46.

    • Xiao Long, Zhang Hongfei, Clemens J D, Wang Qiang, Kan Z Z, Wang K M, Ni P Z, Liu X M. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 96 (3-4): 436~452.

    • Xu Zhiqin, Ma Xuxuan. 2015. The Chinese Phanerozoic gneiss domes: subduction-related type, collision-related type and combination type of subduction-collision. Acta Petrologica Sinica, 31 (12): 3509~3523 (in Chinese with English abstract).

    • Xu Zhiqin, Fu Xiaofang, Ma Xuxuan, Qi Xuexiang, Wu Chan, Hou Liwei, Zhao Zhongbao. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting. Acta Geologica Sinica, 90 (11): 2971~2981 (in Chinese with English abstract).

    • Xu Zhiqin, Wang Rucheng, Zhao Zhongbao, Fu Xiaofang. 2018. On the structural back grounds of the large-scale “Hard-rock type” lithium ore belts in China. Acta Geologica Sinica, 92(6): 1091~1106 (in Chinese with English abstract).

    • Xu Zhiqin, Fu Xiaofang, Wang Rucheng, Li Guangwei, Zheng Yilong, Zhao Zhongbao, Lian Dongyan. 2020a. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354~355.

    • Xu Zhiqin, Wang Rucheng, Zhu Wenbin, Qin Yulong, Fu Xiaofang, Li Guangwei. 2020b. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: Scientific problems and significance. Acta Geologica Sinica, 94(8): 2177~2189 (in Chinese with English abstract).

    • Xu Zhiqin, Zhu Wenbin, Zheng Bihai, Shu Liangshu, Li Guangwei, Che Xudong, Qin Yulong. 2021. New energy strategy for lithium resource and the continental dynamics research—Celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10): 2937~2954 (in Chinese with English abstract).

    • Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau. Acta Geologica Sinica, 96(1): 65~94 (in Chinese with English abstract).

    • Xu Zhiqin, Zheng Bihai, Zhu Wenbin, Chen Yanjing, Li Guangwei, Gao Jianguo, Che Xudong, Zhang Rongqing, Wei Haizhen, Li Weiqiang, Wang Guoguang, Wei Guangyi, Yan Haoyu. 2023. Geologic Scenario from granite to Li-rich pegmatite uncovered by scientific drilling at the Jiajika lithium deposit in eastern Tibetan Plateau. Ore Geology Reviews, 161: 105636.

    • Ye Hui, Wu Changzhi, Brzozowski M J, Yang Tao, Zha Xiangping, Zhao Shugao, Gao Bingfei, Li Weiqiang. 2020. Calibrating equilibrium Fe isotope fractionation factors between magnetite, garnet, amphibole, and biotite. Geochimica et Cosmochimica Acta, 271: 78~95.

    • Yuan Chao, Zhou Meifu, Sun Min, Zhao Yongjiu, Wilde S, Long Xiaoping, Yan Danping. 2010. Triassic granitoids in the eastern Songpan-Ganze fold belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290 (3~4): 481~492.

    • Zambardi T, Lundstrom C C, Li Xiaoxiao, McCurry M. 2014. Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation. Earth and Planetary Science Letters, 405: 169~179.

    • Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33 (2): 106~111(in Chinese with English abstract).

    • Zhang Hongfei, Zhang Li, Harris N, Jin Lanlan, Yuan Honglin. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy Petrology, 152 (1): 75~88.

    • Zhang Hongfei, Parrish R, Zhang Li, Xu Wangchun, Yuan Honglin, Gao Shan, Crowley Q G. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97 (3~4): 323~335.

    • Zhang Huijuan, Tian Shihong, Wang Denghong, Li Xianfang, Liu Tao, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan. 2021. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China. Ore Geology Reviews, 134: 104~139.

    • Zhang Huijuan, Tian Shihong, Wang Denghong, Liu Tao, Li Xianfang, Zhang Yujie, Fu Xiaofang, Hao Xuefeng, Hou Kejun, Zhao Yue, Qin Yan. 2022. Lithium isotopic constraints on the petrogenesis of the Jiajika two-mica granites and associated Li mineralization. Ore Geology Reviews, 150: 105174.

    • Zhao Hui, Chen Bin, Huang Chao, Bao Chuang, Yang Qian, Cao Rui. 2022. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: Implications for Li mineralization. Contributions to Mineralogy and Petrology, 177: 4.

    • Zhao Zhongbao, Du J X, Liang F H, Wu C, Liu X J. 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan Plateau and its implications for crustal thickening, metamorphism, and exhumation. Geochemistry, Geophysics, Geosystems, 20 (1): 24~45.

    • Zheng Yilong, Xu Zhiqin, Li Guangwei, Lian Dongyang, Zhao Zhongbao, Ma Zeliang, Gao Wenqi. 2020. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau. Lithos, 362~363.

    • 付小方. 2017. 甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型. 北京: 科学出版社.

    • 付小方, 侯立玮, 王登红, 袁蔺平, 梁斌, 郝雪峰, 潘蒙. 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果. 中国地质调查, 1(3): 37~43.

    • 付小方, 袁蔺平, 王登红, 侯立玮, 潘蒙, 郝雪峰, 梁斌, 唐屹. 2015. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘察模型. 矿床地质, 34(6): 1172~1186.

    • 李建康, 王登红, 张德会, 付小方. 2006. 川西甲基卡伟晶岩型矿床中含硅酸盐子矿物包裹体的发现及其意义. 矿床地质, 25(S1): 131~134.

    • 李建康, 王登红, 张德会, 付小方. 2007. 川西伟晶岩型矿床的形成机制及大陆动力学背景. 北京: 原子能出版社.

    • 李名则, 秦宇龙, 李峥, 徐云峰, 武文辉, 刘伟, 叶亚康, 周雄. 2018. 川西甲基卡二云母花岗岩与伟晶岩脉地球化学特征及其地质意义. 岩石矿物学杂志, 37(3): 366~378.

    • 李贤芳, 田世洪, 王登红, 张慧娟, 张玉洁, 付小方, 郝雪峰, 侯可君, 赵悦, 秦燕, 于扬, 王海. 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证. 矿床地质39(2): 273~304.

    • 刘丽君, 付小方, 王登红, 郝雪峰, 袁蔺平, 潘蒙. 2015. 甲基卡式稀有金属矿床的地质特征与成矿规. 矿床地质, 34(6): 1187~1198.

    • 刘丽君, 王登红, 高娟琴, 于沨, 王伟. 2019. 国外锂矿找矿的新突破(2017~2018年)及对我国关键矿产勘查的启示. 地质学报, 93(6): 1479~1488.

    • 秦宇龙, 郝雪峰, 徐云峰, 王显峰. 2015. 四川甲基卡地区花岗岩型稀有金属矿找矿规律及标志. 中国地质调查, 2(7): 35~39.

    • 王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361~370.

    • 王登红, 刘丽君, 代鸿章, 刘善宝, 侯江龙, 吴西顺. 2017. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向. 地球科学, 42(12): 2243~2257.

    • 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.

    • 许志琴, 马绪宣. 2015. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群). 岩石学报, 31(12): 3509~3523.

    • 许志琴, 付小方, 马绪宣, 戚学祥, 吴婵, 侯利伟, 赵中宝. 2016. 青藏高原片麻岩穹窿与找矿前景. 地质学报, 90(11): 2971~2981.

    • 许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背. 地质学报, 92(6): 1091~1106.

    • 许志琴, 王汝成, 朱文斌, 秦宇龙, 付小芳, 李广伟. 2020b. 川西花岗-伟晶岩型锂矿科学钻探: 科学问题和科学意. 地质学报, 94(8): 2177~2189.

    • 许志琴, 朱文斌, 郑碧海, 舒良树, 李广伟, 车旭东, 秦宇龙. 2021. 新能源锂矿战略与大陆动力学研究——纪念南京大学地球科学与工程学院100周年华诞. 地质学报, 95(10): 2937~2954.

    • 许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.

    • 翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106~111.