en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

聂海宽,男,1982年生。博士,研究员,主要从事非常规油气地质研究。第十届黄汲清青年地质科学技术奖获奖者。E-mail:niehk.syky@sinopec.com。

参考文献
Bowker K A. 2007. Barnett shale gas production, Fort Worth basin: Issues and discussion. AAPG Bulletin, 91: 523~533.
参考文献
Cai Jingong, Song Mingshui, Lu Longfei, Bao Yujin, Ding Fei, Xu Jinli. 2013. Organo-clay complexes in source rocks: A natural material for hydrocarbon generation. Marine Geology & Quaternary Geology, 33(3): 123~131 (in Chinese with English abstract).
参考文献
Chen Shangbin, Zhu Yanming, Wang Hongyan, Liu Honglin, Wei Wei, Fang Junhua. 2011. Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan basin. Acta Petrolei Sinica, 32(5): 775~782 (in Chinese with English abstract).
参考文献
Cooles G P, Mackenzie A S, Quigley T M. 1986. Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 10: 235~245.
参考文献
Cui Jing. 2022. Evaluation of the adaptability of fracturing technology for wells in the central gas reservoir of Fuling gas field. Journal of Shengli College China University of Petroleum, 36(3): 60~65 (in Chinese with English abstract).
参考文献
Curtis J B. 2002. Fractured shale-gas systems. AAPG Bulletin, 86: 1921~1938.
参考文献
Dang Wei, Zhang Jinchuan, Wei Xiaoliang, Tang Xuan, Chen Qian, Li Zhongming, Zhang Muchen, Liu Jing. 2017. Geological controls on methane adsorption capacity of Lower Permian transitional black shales in the southern North China basin, Central China: Experimental results and geological implications. Journal of Petroleum Science and Engineering, 152: 456~470.
参考文献
Dang Wei, Zhang Jinchuan, Nie Haikuan, Wang Fengqin, Tang Xuan, Wu Nan, Chen Qian, Wei Xiaoliang, Wang Ruijing. 2020. Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chemical Engineering Journal, 383: 123191.
参考文献
Duan Guobin, Chen Chaogang, Yu Ping, Zhao Weijun, Liu Bin, Huang Weidong. 2020. Study of reservoir forming conditions of deep shale gas in the West Chongqing block. Acta Geologica Sichuan, 40(3): 402~405 (in Chinese with English abstract).
参考文献
Fang Zhixiong. 2019. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China. Reservoir Evaluation and Development, 9(5): 1~13.
参考文献
Gao Jian, He Sheng, Yi Jizheng. 2015. Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance. Oil & Gas Geology, 36(3): 472~480 (in Chinese with English abstract).
参考文献
Gao Jian, Zhang Jiankun, He Sheng, Zhao Jianxin, He Zhiliang, Wo Yujin, Feng Yuexing, Li Wen. 2019. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: Implications for shale gas accumulation. Marine and Petroleum Geology, 102: 844~859.
参考文献
Gao Jian, Li Huili, He Zhiliang, Li Shuangjian, Liu Guangxiang, Yuan Yusong, Li Yingqiang, Li Tianyi, He Sheng. 2022. Pressure evolution, enrichment and preservation of normal-pressure shale gas in the Pengshui area of eastern Chongqing. Natural Gas Industry, 42(8): 124~135 (in Chinese with English abstract).
参考文献
Guo Tonglou, Zhang Hanrong. 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin. Petroleum Exploration and Development, 41(1): 8~36 (in Chinese with English abstract).
参考文献
Guo Xusheng. 2014. Rules of two-factor enrichment for marine shale gas in southern China—Understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).
参考文献
Guo Xusheng, Li Yuping, Tenger, Wang Qiang, Yuan Tao, Shen Baojian, Ma Zhongliang, Wei Fubin. 2020. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan basin, China. Petroleum Exploration and Development, 47(1): 193~201 (in Chinese with English abstract).
参考文献
Guo Xusheng, Cai Xunyu, Liu Jinlian, Liu Chaoying, Cheng Zhe, Gao Bo, Shi Lei. 2021. Natural gas exploration progress of Sinopec during the 13th Five-Year Plan and prospect forecast during the 14th Five-Year Plan. Natural Gas Industry, 41(8): 12~22 (in Chinese with English abstract).
参考文献
Guo Xusheng, Tenger, Wei Xiangfeng, Yu Lingjie, Lu Xiancai, Sun Lei, Wei Fubin. 2022a. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan basin. Acta Petrolei Sinica, 43(4): 453~468 (in Chinese with English abstract).
参考文献
Guo Xusheng, Zhao Yongqiang, Shen Baojian, Wei Xiangfeng, Lu Longfei, Pan Anyang, Li Yuping. 2022b. Marine shale gas exploration theory in southern China: Review and prospects. Acta Geologica Sinica, 96(1): 172~182 (in Chinese with English abstract).
参考文献
He Xipeng, Gao Yuqiao, Tang Xianchun, Zhang Peixian, He Guisong. 2017. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing. Natural Gas Geoscience, 28(4): 654~664 (in Chinese with English abstract).
参考文献
He Zhiliang, Hu Zongquan, Nie Haikuan, Li Shuangjian, Xu Jin. 2017. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan basin and its evaluation of geological construction-transformation evolution sequence. Natural Gas Geoscience, 28(5): 724~733 (in Chinese with English abstract).
参考文献
He Zhiliang, Nie Haikuan, Hu Dongfeng, Jiang Tingxue, Wang Ruyue, Zhang Yuying, Zhang Guangrong, Lu Zhiyuan. 2020a. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan basin and its periphery. Acta Petrolei Sinica, 41(4): 379~391 (in Chinese with English abstract).
参考文献
He Zhiliang, Nie Haikuan, Li Shuangjian, Luo Jun, Wang Hu, Zhang Guangrong. 2020b. Differential enrichment of shale gas in upper Ordovician and lower Silurian controlled by the plate tectonics of the Middle-Upper Yangtze, South China. Marine and Petroleum Geology, 118: 104357.
参考文献
Hedberg H D. 1974. Relation of methane generation to undercompacted shales, shale diapirs, and mud volcanoes. AAPG Bulletin, 58: 661~673.
参考文献
Huang Changbing, Zhang Feng, Li Shunping, Yang Zhen, Zhang Xuerui, Hu Bo, Tong Shouqiang. 2020. Analysis and application of gas migration mechanism within shale. Science Technology and Engineering, 20(17): 6752~6759 (in Chinese with English abstract).
参考文献
Hunt J M. 1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 74: 1~12.
参考文献
Jia Chengzao. 2017. Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory. Petroleum Exploration and Development, 44(1): 1~11 (in Chinese with English abstract).
参考文献
Jia Chengzao, Pang Xiongqi, Song Yan. 2021. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces. Petroleum Exploration and Development, 48(3): 437~452 (in Chinese with English abstract).
参考文献
Jiang Shu, Zhang Tianyu, Guo Tonglou, He Xipeng, Gao Yuqiao, Xue Gang, Zhang Peixian, Chen Guohui. 2023. Comparison of enrichment characteristics of typical normally-pressured shale gas reservoirs in Lower Silurian shale in southeastern Sichuan basin and Devonian shales in Appalachian basin. Earth Science, 48: 77~91 (in Chinese with English abstract).
参考文献
Jiang Zhenxue, Song Yan, Tang Xianglu, Li Zhuo, Wang Xingmeng, Wang Guozhen, Xue Zixin, Li Xin, Zhang Kun, Chang Jiaqi, Qiu Hengyuan. 2020. Controlling factors of marine shale gas differential enrichment in southern China. Petroleum Exploration and Development, 47(3): 617~628 (in Chinese with English abstract).
参考文献
Jin Zhijun. 2019. Shale revolution and its significance. Economic Herald, (10): 49~52 (in Chinese with English abstract).
参考文献
Jin Zhijun, Zhang Yiwei, Wang Jie. 2003. The Accumulation Mechanism and Distribution Regularity of Oil and Gas. Beijing: Petroleum Industry Press (in Chinese with English abstract).
参考文献
Jin Zhijun, Yuan Yusong, Liu Quanyou, Wo Yujin. 2012. Controls of Late Jurassic-Early Cretaceous tectonic event on source rocks and seals in marine sequences, South China. Science China: Earth Sciences, 42(12): 1791~1801 (in Chinese with English abstract).
参考文献
Jin Zhijun, Nie Haikuan, Liu Quanyou, Zhao Jianhua, Jiang Tao. 2018. Source and seal coupling mechanism for shale gas enrichment in upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan basin and its periphery. Marine and Petroleum Geology, 97: 78~93.
参考文献
Jin Zhijun, Bai Zhenrui, Gao Bo, Li Maowen. 2019. Has China ushered in the shale oil and gas revolution? Oil & Gas Geology, 40(3): 451~458 (in Chinese with English abstract).
参考文献
Jin Zhijun, Zhang Jinchuan, Tang Xuan. 2021. Unconventional natural gas accumulation system. Natural Gas Industry, 41(8): 58~68 (in Chinese with English abstract).
参考文献
Keller J U, Staudt R. 2005. Gas adsorption equilibria: Experimental methods and adsorptive isotherms. Springer Science & Business Media.
参考文献
Knapp L J, Ardakani O H, Uchida S, Nanjo T, Otomo C, Hattori T. 2020. The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada. International Journal of Coal Geology, 227: 103525.
参考文献
Králik M. 2014. Adsorption, chemisorption, and catalysis. Chemical Papers, 68: 1625~1638.
参考文献
Li Donghui, Liu Guangxiang, Nie Haikuan, Hu Jianguo, Chen Gang, Li Qianwen. 2019. Development characteristics and influencing factors of upper gas reservoir in Jiaoshiba anticline. Earth Science, 44(11): 3653~3661 (in Chinese with English abstract).
参考文献
Li Jian, Yan Qituan, Zhang Ying, Liu Guangdi, Wang Xiaobo. 2007. The particularity of sealing mechanism of Quaternary biogas cap in Sanhu area of the Qaidam basin. Science in China, 37(SII): 36~42 (in Chinese with English abstract).
参考文献
Li Mingcheng. 2000. A review of oil and gas migration. Petroleum Exploration and Development, (4): 3~10+109~117 (in Chinese with English abstract).
参考文献
Li Mingcheng. 2004. Oil and Gas Migration. Beijing: Petroleum Industry Press (in Chinese with English abstract).
参考文献
Li Pei. 2021. Wettability of shale and its effect on methane adsorption: A case study of Shanxi and Taiyuan formations in southern North China basin. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Li Shuangjian, Xiao Kaihua, Wang Xinwei, Zhang Rongqiang, Wo Yujin, Zhou Yan, Cai Liguo. 2008. Thermochronology of detrital minerals in the Silurian strata from southern China and its geological implications. Acta Geologica Sinica, 82(8): 1068~1076 (in Chinese with English abstract).
参考文献
Li Shuangjian, Li Yingqiang, He Zhiliang, Chen Ke, Zhou Yan, Yan Detian. 2020. Differential deformation on two sides of Qiyueshan fault along the eastern margin of Sichuan basin, China, and its influence on shale gas preservation. Marine and Petroleum Geology, 121: 104602.
参考文献
Li Xiangfang, Feng Dong, Zhang Tao, Sun Zheng, He Minxia, Liu Qing, Liu Wenyuan, Zhao Wen, Li Jing. 2020. The role and its application of capillary force in the development of unconventional oil and gas reservoirs and its application. Acta Petrolei Sinica, 41(12): 1719~1733 (in Chinese with English abstract).
参考文献
Liu Quanyou, Jin Zhijun, Wang Xiaofeng, Yi Jizheng, Meng Qingqiang, Wu Xiaoqi, Gao Bo, Nie Haikuan, Zhu Dongya. 2018. Distinguishing kerogen and oil cracked shale gas using H, C-isotopic fractionation of alkane gases. Marine and Petroleum Geology, 91: 350~362.
参考文献
Liu Shugen, Deng Bin, Zhong Yong, Ran Bo, Yong Ziquan, Sun Wei, Yang Di, Jiang Lei, Ye Yuehao. 2016. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan basin and its periphery. Earth Science Frontiers, 23(1): 11~28 (in Chinese with English abstract).
参考文献
Liu Wenping, Zhou Zheng, Wu Juan, Luo Chao, Wu Wei, Jiang Lei, Jiao Kun, Ye Yuehao, Deng Bin. 2020. Hydrocarbon generation and shale gas accumulation in the Wufeng-Longmaxi formations, Changning shale-gas field, southern Sichuan basin. Journal of Nanjing University (Natural Sciences), 56(3): 393~404 (in Chinese with English abstract).
参考文献
Loucks R G, Ruppel S C. 2007. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worthbasin, Texas. AAPG Bulletin, 91: 579~601.
参考文献
Ma Zhongliang, Tan Jingqiang, Zheng Lunju, Shen Baojian, Wang Zhanghu, Shahzad A, Jan I U, Schulz H M. 2021. Evaluating gas generation and preservation of the Wufeng-Longmaxi Formation shale in southeastern Sichuan basin, China: Implications from semiclosed hydrous pyrolysis. Marine and Petroleum Geology, 129: 105102.
参考文献
Martini A M, Walter L M, Ku T C W, Budai J M, McIntosh J C, Schoell M. 2003. Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG Bulletin, 87: 1355~1375.
参考文献
Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoicintra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science, 35(2): 161~174 (in Chinese with English abstract).
参考文献
Metwally Y M, Chesnokov E M. 2012. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale. Applied Clay Science, 55: 138~150.
参考文献
Milliken K L, Ergene S M, Ozkan A. 2016. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339: 273~288.
参考文献
Milliken K L, Zhang Tongwei, Chen Jianping, Ni Yunyan. 2021. Mineral diagenetic control of expulsion efficiency in organic-rich mudrocks, Bakken Formation (Devonian-Mississippian), Willistonbasin, North Dakota, U. S. A. Marine and Petroleum Geology, 127: 104869.
参考文献
Nie Haikuan. 2010. Shale gas accumulation mechanism and its application. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Nie Haikuan, Xu Bo, Li Xuechao. 2007. Experimental study of the difference between fluid entry pressures. Petroleum Geology & Experiment, 29(5): 531~534 (in Chinese with English abstract).
参考文献
Nie Haikuan, Tang Xuan, Bian Ruikang. 2009. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China. Acta Petrolei Sinica, 30(4): 484~491 (in Chinese with English abstract).
参考文献
Nie Haikuan, Zhang Jinchuan, Xue Hui, Long Pengyu, Wang Guangyuan. 2010a. Continuous and discontinuous accumulations in hydrocarbon pooling and distribution sequence. Natural Gas Industry, 30(9): 9~14+117~118 (in Chinese with English abstract).
参考文献
Nie Haikuan, Zhang Jinchuan. 2010b. Control effect of fluid entry pressure on hydrocarbon accumulation. Journal of Central South University of Technology, 17: 1395~1402.
参考文献
Nie Haikuan, Zhang Jinchuan. 2012a. Shale gas accumulation conditions and gas content calculation: A case study of Sichuan basin and its periphery in the Lower Paleozoic. Acta Geologica Sinica, 86(2): 349~361 (in Chinese with English abstract).
参考文献
Nie Haikuan, Bao Shujing, Gao Bo, Bian Ruikang, Zhang Peixian, Wu Xiaoling, Ye Xin, Chen Xinjun. 2012b. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan basin and its periphery. Earth Science Frontiers, 19(3): 280~294 (in Chinese with English abstract).
参考文献
Nie Haikuan, Jin Zhijun, Bian Ruikang, Du Wei. 2016a. The “source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan basin and its periphery. Acta Petrolei Sinica, 37(5): 557~571 (in Chinese with English abstract).
参考文献
Nie Haikuan, Jin Zhijun. 2016b. Source rock and cap rock controls on the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation shale gas accumulation in the Sichuan basin and its peripheral areas. Acta Geologica Sinica (English Edition), 90: 1059~1060.
参考文献
Nie Haikuan, Wang Hu, He Zhiliang, Wang Ruyue, Zhang Peixian, Peng Yongmin. 2019. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: A case study of Wufeng Formation-Longmaxi Formation in Sichuan basin and its periphery. Acta Petrolei Sinica, 40(2): 131~143+164 (in Chinese with English abstract).
参考文献
Nie Haikuan, He Zhiliang, Wang Ruyue, Zhang Guangrong, Chen Qian, Li Donghui, Lu Zhiyuan, Sun Chuanxiang. 2020a. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi Formations, Sichuan basin, South China: Implications for shale gas preservation and enrichment. Journal of Petroleum Science and Engineering, 193: 107329.
参考文献
Nie Haikuan, Li Donghui, Liu Guangxiang, Lu Zhiyuan, Wang Hu, Wang Ruyue, Zhang Guangrong. 2020b. An overview of the geology and production of the Fuling shale gas field, Sichuan basin, China. Energy Geoscience, 1: 147~164.
参考文献
Nie Haikuan, He Zhiliang, Liu Guangxiang, Du Wei, Wang Ruyue, Zhang Guangrong. 2020c. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan basin. Natural Gas Industry, 40(6): 31~41 (in Chinese with English abstract).
参考文献
Nie Haikuan, Li Pei, Dang Wei, Ding Jianghui, Sun Chuanxiang, Liu Mi, Wang Jin, Du Wei, Zhang Peixian, Li Donghui, Su Haikun. 2022a. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan basin and its surrounding areas, China. Petroleum Exploration and Development, 49(4): 648~659 (in Chinese with English abstract).
参考文献
Nie Haikuan, Zhang Guangrong, Li Pei, Ding Jianghui, Dang Wei, Sun Chuanxiang, Zhang Peixian, Wang Jin, Yang Chao, Li Peng, Wang Pengwei, Su Haikun. 2022b. Research status and prospect on organic matter pores in shale. Acta Petrolei Sinica, 43(12): 1770~1787 (in Chinese with English abstract).
参考文献
Nie Haikuan, Sun Chuanxiang, Li Pei, Jin Zhijun, Liu Quanyou, Bao Hanyong, Shen Baojian, Dang Wei. 2023a. Carbon isotope evidence for shale gas preservation conditions and large methane release over million years: A case study of shale gas reservoirs of Wufeng and Longmaxi Formations in the Sichuan basin. Geoscience Frontiers, 14: 101642.
参考文献
Nie Haikuan, Jin Zhijun, Li Pei, Katz J B, Dang Wei, Liu Quanyou, Ding Jianghui, Jiang Shu, Li Donghui. 2023b. Deep shale gas in the Ordovician-Silurian Wufeng-Longmaxi formations of the Sichuan basin, SW China: Insights from reservoir characteristics, preservation conditions and development strategies. Journal of Asian Earth Sciences, 244: 105521.
参考文献
Peng Ping'an, Jia Chengzao. 2021. Evolution of deep source rock and resource potential of primary light oil and condensate. Acta Petrolei Sinica, 42(12): 1543~1555 (in Chinese with English abstract).
参考文献
Qin Jianzhong, Shen Baojian, Tenger, Zheng Lunju, Tao Guoliang, Fu Xiaodong, Zhang Linglong. 2013. Hydrocarbon generation and expulsion pattern of different types of excellent source rocks. Petroleum Geology & Experiment, 35(2): 179~186 (in Chinese with English abstract).
参考文献
Qiu Nansheng, Feng Qianqian, Tenger, Shen Baojian, Ma Zhongliang, Yu Lingjie, Cao Aiqiang. 2020. Yanshanian-Himalayan differential tectono-thermal evolution and shale gas preservation in Dingshan area, southeastern Sichuan basin. Acta Petrolei Sinica, 41(12): 1610~1622 (in Chinese with English abstract).
参考文献
Qiu Zhen, Zou Caineng, Wang Hongyan, Dong Dazhong, Lu Bin, Chen Zhenhong, Liu Dexun, Li Guizhong, Liu Hanlin, He Jianglin, Wei Lin. 2020. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China. Natural Gas Geoscience, 31(2): 163~175 (in Chinese with English abstract)
参考文献
Rahman H M, Kennedy M, Lohr S, Dewhurst D N, Sherwood N, Yang Shengyu, Horsfield B. 2018. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis. Geochimica et Cosmochimica Acta, 220: 429~448.
参考文献
Schlegel M E, Zhou Zheng, McIntosh J C, Ballentine C J, Person M A. 2011. Constraining the timing of microbial methane generation in an organic-rich shale using noble gases, Illinoisbasin, USA. Chemical Geology, 287: 27~40.
参考文献
Schulz H M, Yang Shengyu, Schovsbo N H, Rybacki E, Ghanizadeh A, Bernard S, Mahlstedt N, Kruger M, Amann-Hildebrandt A, Krooss B M, Meier T, Reinicke A. 2021. The Furongian to Lower Ordovician Alum Shale Formation in conventional and unconventional petroleum systems in the Balticbasin—A review. Earth-Science Reviews, 218.
参考文献
Thommes M, Cychosz K A. 2014. Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption, 20: 233~250.
参考文献
Tian Hui, Xiao Xianming, Li Xianqing, Xiao Zhongyao, Shen Jiagui, Liu Dehan. 2007. Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases. Geochimica, 36(1): 71~77 (in Chinese with English abstract).
参考文献
Wang Hongyan, Shi Zhensheng, Sun Shasha. 2021. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan basin and surrounding areas, China. Petroleum Exploration and Development, 48(5): 879~890 (in Chinese with English abstract).
参考文献
Wang Mingyan, Guo Jianhua, Kuang Lixiong, Zhu Rui. 2010. Geochemical characteristics and evolution of the hydrocarbon source rocks from Lianyuan depression in the middle of Hunan Province. Natural Gas Geoscience, 21(5): 721~726 (in Chinese with English abstract).
参考文献
Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Cretaceous transportation of eastern Sichuan arcuate fold belt in three dimensions: Insights from AFT analysis. Chinese Journal of Geophysics, 55(5): 1662~1673 (in Chinese with English abstract).
参考文献
Wang Xiangzeng, Hao Jin, Jiang Zhenxue, Guo Chao, Xing Jinyan, Li Zhuo, Tang Xianglu. 2015. Influencing factors and distributions of the oil dissolved shale gas content of member Chang 7 shale in Xiasiwan area, Ordos basin. Natural Gas Geoscience, 26(4): 744~753 (in Chinese with English abstract).
参考文献
Wang Xiaomei, Zhang Shuichang, Wang Huajian, Su Jin, He Kun, Wang Yu, Wang Xiaoqi. 2017. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China. Petroleum Exploration and Development, 44(1): 32~39 (in Chinese with English abstract).
参考文献
Wei Xiangfeng, Liu Zhujiang, Wang Qiang, Wei Fubin, Yuan Tao. 2020. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan basin. Natural Gas Geoscience, 31(8): 1041~1051 (in Chinese with English abstract).
参考文献
Wu Liangliang, Wang Peng, Geng Ansong. 2019. Later stage gas generation in shale gas systems based on pyrolysis in closed and semi-closed systems. International Journal of Coal Geology, 206: 80-90.
参考文献
Xiao Xianming, Wei Qiang, Gai Haifeng, Li Tengfei, Wang Maolin, Pan Lei, Chen Ji, Tian Hui. 2015. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in South China. Petroleum Science, 12: 573~586.
参考文献
Xiong Liang, Zhao Yong, Wei Limin, Pang Heqing, Ci Jianfa. 2023. Enrichment mechanisms and key exploration and development technologies of shale gas in Weirong marine shale gas field. Acta Petrolei Sinica, 44(8): 1365~1381 (in Chinese with English abstract).
参考文献
Yang Shengyu, Horsfield B. 2016a. Some predicted effects of minerals on the generation of petroleum in nature. Energy & Fuels, 30: 6677~6687.
参考文献
Yang Shengyu, Horsfield B, Mahlstedt N, Stephenson M, Konitzer S. 2016b. On the primary and secondary petroleum generating characteristics of the Bowland Shale, northern England. Journal of the Geological Society, 173: 292~305.
参考文献
Yang Shengyu, Schulz H M, Horsfield B, Schovsbo N H, Grice K, Zhang Jinchuan. 2020. Geological alteration of organic macromolecules by irradiation: Implication for organic matter occurrence on Mars. Geology, 48: 713~717.
参考文献
Yao Chengpeng, Fu Haijiao, Ma Yingzhe, Yan Detian, Wang Hu, Li Yueguo, Wang Jiawei. 2022. Development characteristics of deep shale fractured veins and vein forming fluid activities in Luzhou block. Earth Science, 47(5): 1684~1693 (in Chinese with English abstract).
参考文献
Zhang Guangrong, Nie Haikuan, Tang Xuan, Zhang Peixian, Peng Yongmin. 2021. Evaluation of shale gas preservation conditions based on formation water index: A case study of Wufeng-Longmaxi Formation in southeastern Chongqing. Reservoir Evaluation and Development, 11(1): 47~55 (in Chinese with English abstract).
参考文献
Zhang Hui, Liu Yuewen, Wei Xiangfeng. 2018. Anatomy of typical shale gas wells in different regions of the complex structure surrounding Jiaoshiba. Mine Engineering, 6(3): 183~198 (in Chinese with English abstract).
参考文献
Zhang Jinchuan, Jin Zhijun, Yuan Mingsheng. 2004. Reservoiring mechanism of shale gas and its distribution. Natural Gas Industry, 24(7): 15~18+131~132 (in Chinese with English abstract).
参考文献
Zhang Jinchuan, Nie Haikuan, Xu Bo, Jiang Shengling, Zhang Peixian, Wang Zongyu. 2008. Geological condition of shale gas accumulation in Sichuan basin. Natural Gas Industry, 28(2): 151~156+179~180 (in Chinese with English abstract).
参考文献
Zhang Junfeng, Xu Xingyou, Bai Jing, Chen Shan, Liu Weibin, Li Yaohua. 2022. Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu fault depression, Songliao basin, NE China. Petroleum Exploration and Development, 49(3): 440~452 (in Chinese with English abstract).
参考文献
Zhang Li, Xiong Yongqiang, Chen Yuan, Li Yun, Jiang Wenmin, Lei Rui, Wu Zongyang. 2017. Mechanisms of shale gas generation from typically organic-rich marine shales. Earth Science, 42(7): 1092~1106 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Zhang Shuichang, He Kun, Zeng Hongliu, Hu Guoyi, Zhang Bin, Wang Zhaoyun, Li Yongxin. 2019. Origin of conventional and shale gas in Sinian-lower Paleozoic strata in the Sichuan basin: Relayed gas generation from liquid hydrocarbon cracking. AAPG Bulletin, 103: 1265~1296.
参考文献
Zhao Wenzhi, Wang Darui, Zhao Xia. 2021. Continental shale oil revolution in China. Petroleum Knowledge, (4): 14~15 (in Chinese with English abstract).
参考文献
Zhu Guangyou, Zhao Kun, Li Tingting, Fu Xiaodong, Zhang Zhiyao, Chen Zhiyong, Wang Pengju. 2020. Sedimentary environment, development model and distribution prediction of Lower Cambrian source rocks in South China. Acta Petrolei Sinica, 41: 1567~1586 (in Chinese with English abstract).
参考文献
Zou Caineng, Dong Dazhong, Wang Shejiao, Li Jianzhong, Li Xinjing, Wang Yuman, Li Denghua, Cheng Keming. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641~653 (in Chinese with English abstract).
参考文献
Zou Caineng, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Wang Shufang, Guan Quanzhong, Zhang Chenchen, Wang Hongyan, Liu Honglin, Bai Wenhua, Liang Feng, Lin Wen, Zhao Qun, Liu Dexun, Yang Zhi, Liang Pingping, Sun Shasha, Qiu Zhen. 2015. Shale gas in China: Characteristics, challenges and prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689~701 (in Chinese with English abstract).
参考文献
Zou Caineng, Pan Songqi, Jing Zhenhua, Gao Jinliang, Yang Zhi, Wu Songtao, Zhao Qun. 2020. Shale oil and gas revolution and its impact. Acta Petrolei Sinica, 41(1): 1~12 (in Chinese with English abstract).
参考文献
蔡进功, 宋明水, 卢龙飞, 包于进, 丁飞, 徐金鲤. 2013. 烃源岩中有机黏粒复合体——天然的生烃母质. 海洋地质与第四纪地质, 33(3): 123~131.
参考文献
陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 2011. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义. 石油学报, 32(5): 775~782.
参考文献
崔静. 2022. 涪陵气田中部气层井压裂工艺适应性评价. 中国石油大学胜利学院学报, 36(3): 60~65.
参考文献
段国彬, 陈朝刚, 余平, 赵卫军, 刘斌, 黄卫东. 2020. 渝西区块深层页岩气成藏条件研究. 四川地质学报, 40(3): 402~405.
参考文献
方志雄. 2019. 中国南方常压页岩气勘探开发面临的挑战及对策. 油气藏评价与开发, 9(5): 1~13.
参考文献
高键, 何生, 易积正. 2015. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义. 石油与天然气地质, 36(3): 472~480.
参考文献
高键, 李慧莉, 何治亮, 李双建, 刘光祥, 袁玉松, 李英强, 李天义, 何生. 2022. 渝东彭水地区常压页岩气压力演化与富集保存. 天然气工业, 42(8): 124~135.
参考文献
郭彤楼, 张汉荣. 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 8~36.
参考文献
郭旭升. 2014. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识. 地质学报, 88(7): 1209~1218.
参考文献
郭旭升, 李宇平, 腾格尔, 王强, 袁桃, 申宝剑, 马中良, 魏富彬. 2020. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨. 石油勘探与开发, 47(1): 193~201.
参考文献
郭旭升, 蔡勋育, 刘金连, 刘超英, 程喆, 高波, 石磊. 2021. 中国石化“十三五”天然气勘探进展与前景展望. 天然气工业, 41(8): 12~22.
参考文献
郭旭升, 腾格尔, 魏祥峰, 俞凌杰, 陆现彩, 孙磊, 魏富彬. 2022a. 四川盆地深层海相页岩气赋存机理与勘探潜力. 石油学报, 43(4): 453~468.
参考文献
郭旭升, 赵永强, 申宝剑, 魏祥峰, 卢龙飞, 潘安阳, 李宇平. 2022b. 中国南方海相页岩气勘探理论: 回顾与展望. 地质学报, 96(1): 172~182.
参考文献
何希鹏, 高玉巧, 唐显春, 张培先, 何贵松. 2017. 渝东南地区常压页岩气富集主控因素分析. 天然气地球科学, 28(4): 654~664.
参考文献
何治亮, 胡宗全, 聂海宽, 李双建, 许锦. 2017. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路. 天然气地球科学, 28(5): 724~733.
参考文献
何治亮, 聂海宽, 胡东风, 蒋廷学, 王濡岳, 张钰莹, 张光荣, 卢志远. 2020a. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 41(4): 379~391.
参考文献
黄长兵, 张峰, 李顺平, 杨震, 张雪锐, 胡泊, 童守强. 2020. 页岩气层内运移机理分析及应用. 科学技术与工程, 20(17): 6752~6759.
参考文献
贾承造. 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发, 44(1): 1~11.
参考文献
贾承造, 庞雄奇, 宋岩. 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437~452.
参考文献
姜振学, 宋岩, 唐相路, 李卓, 王幸蒙, 王国臻, 薛子鑫, 李鑫, 张昆, 常佳琦, 仇恒远. 2020. 中国南方海相页岩气差异富集的控制因素. 石油勘探与开发, 47(3): 617~628.
参考文献
蒋恕, 张天宇, 郭彤楼, 何希鹏, 高玉巧, 薛冈, 张培先, 陈国辉. 2023. 川东南下志留统与Appalachian泥盆系典型常压页岩气藏富集特征对比. 地球科学, 48: 77~91.
参考文献
金之钧. 2019. 页岩革命及其意义. 经济导刊, (10): 49~52.
参考文献
金之钧, 张一伟, 王捷. 2003. 油气成藏机理与分布规律. 北京: 石油工业出版社.
参考文献
金之钧, 袁玉松, 刘全有, 沃玉进. 2012. J3-K1构造事件对南方海相源盖成藏要素的控制作用. 中国科学: 地球科学, 42(12): 1791~1801.
参考文献
金之钧, 白振瑞, 高波, 黎茂稳. 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451~458.
参考文献
金之钧, 张金川, 唐玄. 2021. 非常规天然气成藏体系. 天然气工业, 41(8): 58~68.
参考文献
李东晖, 刘光祥, 聂海宽, 胡建国, 陈刚, 李倩文. 2019. 焦石坝背斜上部气层开发特征及影响因素分析. 地球科学, 44(11): 3653~3661.
参考文献
李剑, 严启团, 张英, 柳广弟, 王晓波. 2007. 柴达木盆地三湖地区第四系生物气盖层封闭机理的特殊性. 中国科学(D辑: 地球科学), 37(S2): 36~42.
参考文献
李明诚. 2000. 石油与天然气运移研究综述. 石油勘探与开发, (4): 3~10+109~117.
参考文献
李明诚. 2004. 石油与天然气运移. 北京: 石油工业出版社.
参考文献
李沛. 2021. 页岩润湿性及其对甲烷吸附的控制机理——以南华北盆地山西-太原组页岩为例. 中国地质大学(北京)博士学位论文.
参考文献
李双建, 肖开华, 汪新伟, 张荣强, 沃玉进, 周雁, 蔡立国. 2008. 南方志留系碎屑矿物热年代学分析及其地质意义. 地质学报, 82(8): 1068~1076.
参考文献
李相方, 冯东, 张涛, 孙政, 何敏侠, 刘庆, 刘文远, 赵文, 李靖. 2020. 毛细管力在非常规油气藏开发中的作用及应用. 石油学报, 41(12): 1719~1733.
参考文献
刘树根, 邓宾, 钟勇, 冉波, 雍自权, 孙玮, 杨迪, 姜磊, 叶玥豪. 2016. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 23(1): 11~28.
参考文献
刘文平, 周政, 吴娟, 罗超, 吴伟, 姜磊, 焦堃, 叶玥豪, 邓宾. 2020. 川南盆地长宁页岩气田五峰组-龙马溪组成藏动力学过程及其意义. 南京大学学报(自然科学), 56(3): 393~404.
参考文献
梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161~174.
参考文献
聂海宽. 2010. 页岩气聚集机理及其应用. 中国地质大学(北京) 博士学位论文.
参考文献
聂海宽, 徐波, 李雪超. 2007. 流体排驱压力差异性实验研究. 石油实验地质, 29(5): 531~534.
参考文献
聂海宽, 唐玄, 边瑞康. 2009. 页岩气成藏控制因素及中国南方页岩气发育有利区预测. 石油学报, 30(4): 484~491.
参考文献
聂海宽, 张金川, 薛会, 龙鹏宇, 王广源. 2010a. 油气成藏及分布序列的连续聚集和非连续聚集. 天然气工业, 30(9): 9~14+117~118.
参考文献
聂海宽, 张金川. 2012a. 页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例. 地质学报, 86(2): 349~361.
参考文献
聂海宽, 包书景, 高波, 边瑞康, 张培先, 武晓玲, 叶欣, 陈新军. 2012b. 四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 19(3): 280~294.
参考文献
聂海宽, 金之钧, 边瑞康, 杜伟. 2016a. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源-盖控藏”富集. 石油学报, 37(5): 557~571.
参考文献
聂海宽, 汪虎, 何治亮, 王濡岳, 张培先, 彭勇民. 2019. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 40(2): 131~143+164.
参考文献
聂海宽, 何治亮, 刘光祥, 杜伟, 王濡岳, 张光荣. 2020c. 四川盆地五峰组—龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31~41.
参考文献
聂海宽, 李沛, 党伟, 丁江辉, 孙川翔, 刘秘, 王进, 杜伟, 张培先, 李东晖, 苏海琨. 2022a. 四川盆地及周缘奥陶系-志留系深层页岩气富集特征与勘探方向. 石油勘探与开发, 49(4): 648~659.
参考文献
聂海宽, 张光荣, 李沛, 丁江辉, 党伟, 孙川翔, 张培先, 王进, 杨超, 李鹏, 王鹏威, 苏海琨. 2022b. 页岩有机孔研究现状和展望. 石油学报, 43(12): 1770~1787.
参考文献
彭平安, 贾承造. 2021. 深层烃源演化与原生轻质油/凝析油气资源潜力. 石油学报, 42(12): 1543~1555.
参考文献
秦建中, 申宝剑, 腾格尔, 郑伦举, 陶国亮, 付小东, 张玲珑. 2013. 不同类型优质烃源岩生排油气模式. 石油实验地质, 35(2): 179~186.
参考文献
邱楠生, 冯乾乾, 腾格尔, 申宝剑, 马中良, 俞凌杰, 曹爱强. 2020. 川东南丁山地区燕山期—喜马拉雅期差异构造-热演化与页岩气保存. 石油学报, 41(12): 1610~1622.
参考文献
邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 2020. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学, 31(2): 163~175.
参考文献
田辉, 肖贤明, 李贤庆, 肖中尧, 申家贵, 刘德汉. 2007. 海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究. 地球化学, 36(1): 71~77.
参考文献
王红岩, 施振生, 孙莎莎. 2021. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征. 石油勘探与开发, 48(5): 879~890.
参考文献
王明艳, 郭建华, 旷理雄, 朱锐. 2010. 湘中坳陷涟源凹陷烃源岩油气地球化学特征. 天然气地球科学, 21(5): 721~726.
参考文献
王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.
参考文献
王香增, 郝进, 姜振学, 郭超, 邢金艳, 李卓, 唐相路. 2015. 鄂尔多斯盆地下寺湾地区长7段油溶相页岩气量影响因素及其分布特征. 天然气地球科学, 26(4): 744~753.
参考文献
王晓梅, 张水昌, 王华建, 苏劲, 何坤, 王宇, 王晓琦. 2017. 烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例. 石油勘探与开发, 44(1): 32~39.
参考文献
魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 2020. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考. 天然气地球科学, 31(8): 1041~1051.
参考文献
熊亮, 赵勇, 魏力民, 庞河清, 慈建发. 2023. 威荣海相页岩气田页岩气富集机理及勘探开发关键技术. 石油学报, 44(8): 1365~1381.
参考文献
姚程鹏, 伏海蛟, 马英哲, 严德天, 汪虎, 李跃国, 王佳伟. 2022. 泸州区块深层页岩裂缝脉体发育特征及成脉流体活动. 地球科学, 47(5): 1684~1693.
参考文献
张光荣, 聂海宽, 唐玄, 张培先, 彭勇民. 2021. 基于地层水指标的页岩气保存条件评价——以渝东南地区五峰组—龙马溪组页岩气藏为例. 油气藏评价与开发, 11(1): 47~55.
参考文献
张晖, 刘月雯, 魏祥峰. 2018. 焦石坝外围构造复杂区不同地区页岩气典型井解剖. 矿山工程, 6(3): 183~198.
参考文献
张金川, 金之钧, 袁明生. 2004. 页岩气成藏机理和分布. 天然气工业, 24(7): 15~18+131~132.
参考文献
张金川, 聂海宽, 徐波, 姜生玲, 张培先, 汪宗余. 2008. 四川盆地页岩气成藏地质条件. 天然气工业, 28(2): 151~156+179~180.
参考文献
张君峰, 徐兴友, 白静, 陈珊, 刘卫彬, 李耀华. 2022. 松辽盆地梨树断陷白垩系沙河子组陆相页岩气形成条件与勘探突破. 石油勘探与开发, 49(3): 440~452.
参考文献
张莉, 熊永强, 陈媛, 李芸, 蒋文敏, 雷锐, 吴宗洋. 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092~1106.
参考文献
赵文智, 王大锐, 赵霞. 2021. 中国陆相页岩油革命. 石油知识, (4): 14~15.
参考文献
朱光有, 赵坤, 李婷婷, 付小东, 张志遥, 陈志勇, 王鹏举. 2020. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测. 石油学报, 41: 1567~1586.
参考文献
邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641~653.
参考文献
邹才能, 董大忠, 王玉满, 李新景, 黄金亮, 王淑芳, 管全中, 张晨晨, 王红岩, 刘洪林, 拜文华, 梁峰, 吝文, 赵群, 刘德勋, 杨智, 梁萍萍, 孙莎莎, 邱振. 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689~701.
参考文献
邹才能, 潘松圻, 荆振华, 高金亮, 杨智, 吴松涛, 赵群. 2020. 页岩油气革命及影响. 石油学报, 41(1): 1~12.
目录contents

    摘要

    深入探究页岩气富集机理是保障勘探开发高效推进的基础。本研究通过对四川盆地五峰组—龙马溪组页岩气勘探开发实践的系统分析,梳理总结前人研究成果,从生成机理、运移机理、赋存机理和保存机理四个方面对海相页岩气富集机理进行了深入分析,并讨论了深层和常压页岩气的勘探开发潜力。结果表明:在生成机理方面,埋藏史和热演化史控制了页岩生排烃史、生排烃量和现今含气量;页岩气运移机理涉及运移动力、运移相态、运移方式和运移通道四方面内容,页岩气运移主要是烃源岩内的初次运移,同时讨论了初次运移的影响因素;在赋存机理方面,甲烷—页岩间表现出单/多分子层吸附和微孔充填等多种赋存机制,组分润湿性和孔隙有效性是决定甲烷吸附赋存和解吸运移的关键;在保存机理方面,盖层和物性自封闭是主要的保存机理,构造运动引起的裂缝—流体活动是页岩气保存条件遭到破坏的主要原因,流体活动时间和期次研究是页岩气保存条件和含气量定量评价的重要内容。页岩气富集机理的系统分析和创新认识为页岩气勘探开发评价提供了重要依据,建议加强页岩气演化历史全过程的动态评价。结合深层和常压页岩气勘探实践,分析了深层和常压页岩气的成因机制及主要特征,指出了下一步攻关内容及勘探方向。

    Abstract

    An in-depth investigation of the shale gas enrichment mechanism is the basis for guaranteeing efficient exploration and development. Through a systematic analysis of shale gas exploration and development practices in the Wufeng Formation-Longmaxi Formation of the Sichuan basin, we have summarized previous research results and conducted an in-depth analysis of the shale gas enrichment mechanism from four aspects: generation mechanism, migration mechanism, occurrence mechanism, and preservation mechanism. Additionally, we have discussed the potential for exploration and development of deep and normal-pressure shale gas. The results show that, in terms of generation mechanism, the burial history and thermal evolution history control the generation and expulsion history of hydrocarbons, the expulsion amount, and the current gas content in shale. The migration mechanism of shale gas involves four aspects: migration dynamics, migration phase, migration mode, and migration pathway. Shale gas migration mainly presents the initial migration within the source rock, and the influencing factors of the initial migration were discussed. For the occurrence mechanism of shale gas, the interaction force between methane and shale exhibits a multi-molecular layer adsorption and microporous filling phenomenon. The component wettability and pore effectiveness are the key factors determining the adsorption occurrence and desorption migration of methane. Regarding the preservation mechanism of shale gas, the main preservation mechanism is the cap rock and self-sealing of reservoir properties, while the fracture-fluid activity caused by tectonic movement is the main reason for the destruction of shale gas preservation conditions. The study of the timing and duration of fluid activity is an important part of the quantitative evaluation of shale gas preservation conditions and gas content. The systematic analysis and innovative understanding of the shale gas enrichment mechanism provide an important basis for shale gas exploration and development evaluation. Combined with the practice of shale gas exploration, we analyzed the genesis mechanism and main characteristics of deep and normal-pressure shale gas and pointed out the next step of the research content and exploration direction.

  • 页岩油气和煤层气等非常规油气勘探开发突破是世界石油工业的重大变化,为石油天然气地质学创新带来了深刻影响和全新的发展机遇(贾承造,2017)。我国页岩气产业经过近20年发展,推动了页岩革命,工业产量与理论研究均取得了重大发展(金之钧,2019; 金之钧等,2019; 邹才能等,2020; 赵文智等,2021)。在工业方面,2022年我国页岩气产量达到240×108m3,约占当年天然气产量的10%,已经成为我国天然气的重要增长极;在富集理论方面,页岩气富集机理和主控因素等研究也取得重要进展,认识到页岩气具有复杂的多机理递变特点(张金川等,2004),指出有机质类型和含量、成熟度、裂缝、孔隙度和渗透率是控制页岩气差异富集的主要因素(聂海宽等,2009; 邹才能等,2010; Xiao Xianming et al.,2015),提出了复杂构造区海相页岩气“二元富集”规律(郭旭升,2014),建立了页岩气“构造型甜点”和“连续型甜点区”富集模式(邹才能等,2015)以及“建造—改造”评价思路(何治亮等,2017)。聂海宽等(2016a)Nie Haikuan et al.(2016b)Jin Zhijun et al.(2018)从“源盖控藏”角度提出了源-盖空间匹配关系的数量(静态匹配)和质量(动态匹配)控制着页岩气富集位置和富集程度等认识。进一步,姜振学等(2020)认为生-储-保有效综合匹配决定了页岩气成藏品质,有效生气量和时段、适度孔隙演化、良好保存条件在时空的良好匹配是页岩气富集的重要因素。这些理论认识和方法技术有效指导和支撑了我国页岩气产业快速发展,实现了四川盆地及其周缘五峰组—龙马溪组3500 m以浅页岩气藏的效益开发,正在进行深层和常压页岩气的勘探评价和开发探索。

  • 常规油气成藏机理是以圈闭富集保存油气及浮力成藏为核心,页岩气、煤层气等非常规油气则是以连续性聚集和非浮力成藏为特征(贾承造等,2021)。页岩气是连续聚集的一种非常规天然气藏,属于单源一位源内型成藏体系(金之钧等,20032021),位于成藏序列的“源端元”,是集烃源体、储集体和圈闭体等所有成藏要素于同一套页岩层的非常规天然气藏,表现为典型的“原地”富集模式(聂海宽,2010)。在页岩气研究中,常规油气评价的“生储盖运圈保”等要素可以简化为生、运、储和保,其中生是指页岩气的生成机理,包括生物成因、热成因以及两种成因的混合(Curtis,2002);运是指运移机理,主要是页岩气在页岩层系内部(包括层系内的粉砂岩、细砂岩以及碳酸盐岩等薄层)的初次运移,运移距离短或不运移,初次运移是控制页岩气聚集和分布的主要因素;储主要是指优质页岩储层成因机制和页岩气在微纳孔缝中的赋存机理,后者主要包括以游离态赋存于孔隙或裂缝中、以吸附态赋存在孔隙表面以及以溶解态赋存在干酪根、沥青质、孔隙水和液态烃中;保是指页岩气的封闭保存机理,包括盖层、岩性变化、物性变化、水力封闭、自封闭等。

  • 四川盆地五峰组—龙马溪组中浅层海相页岩气的成功勘探开发,证实了目前在构造相对稳定、埋深适中地区海相页岩气富集机理认识的一般规律,但同样需要指出,由于深层页岩气藏经历的构造运动和热演化史复杂,具有埋深大、高温、高压、高地应力等特征(郭旭升等,2022a),常压页岩气藏,具有地层能量较弱、中—低丰度、中—低品位、资源总量大等特征(蒋恕等,2023),这两类页岩气富集机理复杂,对其富集机理的认识还不够完善,导致有效勘探开发难度大,已有的钻井效果差异较大,亟需从页岩气富集机理角度开展针对性分析,明确上述两类页岩气藏富集控制因素和勘探潜力。本文从页岩气的生成机理、运移机理、赋存机理和保存机理四个方面出发,突出理论认识与勘探开发成效的一致性,对页岩气富集机理开展系统研究和论述,并分析了常压和深层页岩气的勘探开发潜力。

  • 1 页岩气富集机理

  • 1.1 生成机理

  • 页岩气的成因主要包括生物成因、热成因以及两种成因的混合(Curtis,2002; Martini et al.,2003; 张金川等,2004),其中,生物成因气是低温条件下厌氧微生物作用的结果,具有埋藏浅、开发成本低等特点,可以在成熟度较低的页岩中生成,也可以在成熟度较高的页岩中生成。显然,任何富含有机质的页岩层都是一个潜在的页岩气藏。在美国,密执安盆地Antrim页岩、伊利诺斯盆地Ohio页岩的生物成因页岩气藏来源于埋藏后抬升,经历淡水淋滤和微生物作用形成的二次生气(Martini et al.,2003; Schlegel et al.,2011)。由于生物成因页岩气藏的生烃量较低,一般含气量也较热成因页岩气藏低,多表现为常压页岩气藏。无论是生物成因还是热成因页岩气藏,都是天然气在源岩(页岩)内大量滞留的结果,因此,即使在常规油气研究中未达到排烃门限、被视为无效烃源岩的泥页岩,也可能有页岩气富集、成为页岩气的勘探目标。本文主要研究热成因页岩气的生成机理。热成因页岩气是有机质埋藏演化到高—过成熟阶段后,干酪根的短侧链直接热裂解成气,或/和干酪根上的长侧链所生成的液态油进一步裂解成气,是目前页岩气勘探开发的主体类型。与传统的热裂解、热降解理论一样,足够高的成熟度才能形成热成因页岩气并富集。

  • 生烃动力学模拟实验表明,页岩中甲烷的最大产率主要来自干酪根的初次裂解(占22.7%)、可排沥青(占57.6%)和残余沥青(占19.6%)的二次裂解,即干酪根和原油裂解气是甲烷的重要来源(田辉等,2007; 张莉等,2017)。这与涪陵页岩气藏气体组分和同位素分析结果一致,即认为页岩气是晚期干酪根裂解和残留石油裂解的气体混合物(Liu Quanyou et al.,2018)。由此可见,早期排烃后的页岩仍残留大量的可溶沥青、残留原油,在高—过成熟阶段的干酪根、可溶沥青裂解可以生成大量天然气,成为晚期主要的页岩生气母质。研究还发现,黏土矿物和放射性铀等无机矿物或元素也会影响页岩气的生成过程和效率。有机质-黏土复合体是页岩中有机质重要的赋存形式(蔡进功等,2013)。英国Bowland页岩的热模拟显示,黏土矿物的存在会造成产物气油比升高和生烃活化能增大等影响(Yang Shengyu et al.,2016b)。控制黏土矿物作用强度的主要因素包括黏土类型、黏土/有机质比例、黏土—矿物空间接触关系和实验升温速率等(Yang Shengyu et al.,2016a; Rahman et al.,2018)。北欧寒武系低成熟Alum页岩的研究表明,页岩中高放射性铀元素会通过阿尔法辐射(铀衰变所致)改变干酪根的分子结构(Schulz et al.,2021),使得页岩更倾向于生成短链和芳香型产物,而非典型的长链烷烃(Yang Shengyu et al.,2020)。

  • 页岩气生成机理的研究主要包括对富有机质页岩厚度、有机碳含量、氢指数和成熟度等评价内容(张金川等,2004; 邹才能等,2010),以及对生、排烃量的评价。在页岩生排烃方面,岩性对生排烃量具有重要的控制作用,一般认为硅质页岩的排烃效率低,而黏土质页岩的排烃效率高(秦建中等,2013; Ma Zhongliang et al.,2021),这已被时代较老的美国福特沃斯盆地Barnett页岩、中国四川盆地龙马溪组等海相页岩所证实(郭彤楼等,2014; 郭旭升,2014)。本质上页岩气是页岩生排烃以后残留在页岩内的烃类,因此残留量是评价的关键。传统生烃研究注重生烃高峰期,而非常规油气地质注重生烃全过程研究,烃源不仅关注有效烃源岩,也包括滞留烃源岩中的可能有机质生烃(贾承造,2017)。如果早期生、排烃量较大,后期残留原油裂解为天然气量则较小(Wu Liangliang et al.,2019; Ma Zhongliang et al.,2021),这不利于现今页岩气富集。在页岩气评价中,要加强页岩气动态演化的研究,即对页岩气生排烃史进行恢复,明确页岩埋藏史和生排烃史的差异以及地质历史时期的生—排—滞烃量是评价现今页岩含气量大小和商业开发价值的主要攻关方向(Nie Haikuan et al.,2023b)。虽然认识到烃源岩在生油窗阶段的排烃效率变化快、幅度大,Ⅰ型有机质比Ⅱ型有机质的排烃效率高,但页岩中排烃效率、排烃量的准确估算仍然是有机地球化学界的难题(彭平安等,2021),给页岩含气量和页岩气资源潜力评价带来挑战。

  • 对于四川盆地五峰组—龙马溪组页岩,加里东期的最大埋深、印支期的最大抬升量和燕山期以来的抬升时间与幅度是影响页岩生、排烃和页岩气保存的关键(聂海宽等,2012b; 刘树根等,2016)。具体表现为:① 加里东期的最大埋深控制了五峰组—龙马溪组页岩的初次生烃量,若志留纪末期至泥盆纪早期的埋深较大,生排烃较多,在二叠纪末期开始再次深埋时,干酪根和残留油的生烃能力则较低,后期页岩油气潜力较差。② 相比于加里东期(P/S不整合面)和海西期(P2/P1不整合面),印支期(T3/T2不整合面)的抬升幅度控制了烃类的散失量,对志留系生排烃影响较大,在抬升幅度较大、剥蚀较强的地区,液态烃散失量较大,导致残留烃较少。例如,川南泸州古隆起的奥陶系顶面在加里东期(志留纪末)页岩埋深超过2000 m,达到生油阶段(Ro=0.7%),是川南—川东南埋藏最深、成熟度最高、生烃量最大的区域(图1)。在加里东期和海西期,川南和川东南的抬升幅度差异较小,在印支期差异较大,泸州古隆起抬升幅度普遍超过400 m,最大剥蚀超过500 m,而川东地区普遍小于300 m(图2、3),这可能是导致川南泸州一带和川南长宁地区、川东涪陵地区页岩含气量存在差异的关键因素之一。③ 晚燕山期(J3—K1)是中国南方构造变形和油气成藏的关键时期(金之钧等,2012),这一时期页岩持续埋藏生烃的地区一般具有较好的页岩气富集条件(聂海宽等,2016a; 邱楠生等,2020)(图3)。如果这一时期的页岩最大埋深过大,成熟度过高,则会造成页岩生、排烃量和排烃效率较大,现今残留烃量较少,页岩气富集程度也较低。晚白垩世以来中国南方出现了差异隆升和拉张沉降,部分地区先隆升后沉降,如果二次埋藏最大深度未达到第一次的最大埋深,则没有二次生烃,现今页岩的含气性差,如湘中地区二叠系即是如此(王明艳等,2010)。因此,不同地区页岩的埋藏史和生排烃史导致了不同的生、排烃量,控制着页岩现今含气量的差异,这需要针对具体的地质背景开展详细的分析。

  • 1.2 运移机理

  • 与常规天然气和致密砂岩气不同,页岩气不存在从源岩到常规圈闭的运聚过程,没有二次运移,只存在页岩层系内部的初次运移(张金川等,2004),因此,初次运移是控制页岩气聚集和分布的主要因素。页岩气运移是天然气在某一动力的驱动下,以某种相态、方式经孔缝通道进行流动的过程,是动力与阻力之间相互制约的结果。当动力大于阻力时,天然气运移;当动力小于或者等于阻力时,天然气滞留页岩层系内聚集成藏。因此,页岩气运移机理研究主要涉及四个方面内容:运移动力、运移相态、运移方式和运移通道。页岩的构造形态、断裂和裂缝发育特征、生烃阶段和强度、储层类型和非均质性等共同影响了天然气的运移过程和运移效率。

  • 在运移动力方面,页岩气藏中天然气的运移动力主要包括正常压实产生的剩余压力、欠压实产生的异常高压、生烃膨胀增压、构造应力、渗透压力、浓度梯度、浮力、水动力等,其中欠压实和烃类生成所产生的异常高压和浓度梯度是页岩气初次运移的主要动力(李明诚,2004),浮力在埋藏较浅、孔隙水较多的生物成因气藏中更为普遍(Nie Haikuan et al.,2010b)。页岩气初次运移的阻力可能包括毛细管力、气体黏滞阻力等。但需要注意的是,毛细管力是动力还是阻力与润湿性密切有关(李相方等,2020),毛细管力对页岩气自封闭具有重要作用。由于生烃作用强,生烃膨胀形成的超压对于石油初次运移有着更为重要的意义。

  • 图1 四川盆地五峰组顶面志留纪末(加里东期)埋深图

  • Fig.1 Burial depth distribution of the top of the Wufeng Formation in the Sichuan basin during the Late Silurian (Caledonian) period

  • 在运移相态方面,页岩气的运移相态在不同的热演化/生排烃阶段会随孔隙流体类型发生变化。在生物化学生气阶段,由于埋藏比较浅,成熟度较低,地层含水较高,此时天然气在满足有机质和黏土矿物吸附之后,主要以水溶相、游离相发生短距离运移(李明诚,20002004)。对于偏生油的I型和II1型有机质,在未熟—低熟阶段泥页岩生成未熟—低熟油,因此部分页岩气还会以油溶相运移(李明诚,2004)。此外,生物气的生成导致泥页岩内外存在烃浓度梯度,必然引起天然气的扩散,因此分子扩散相也是页岩气初次运移的方式。如我国最大的生物气区——柴达木盆地三湖地区第四系陆相暗色泥页岩生物气(李剑等,2007)。热催化生油气阶段,页岩成熟度升高,油气开始大量生成,孔隙水大量排出。其中,偏生油型有机质开始生成大量的液态石油,生成的天然气较少且以重烃气为主,此时页岩气主要以油溶相进行运移,如鄂尔多斯盆地长7段油溶相页岩气(王香增等,2015)。对于偏生气型有机质而言,液态石油生成较少,生成的天然气相对较多,故此时页岩气以游离气相运移为主,油溶相次之(李明诚,2000)。在热催化生湿气阶段,无论是偏生油还是偏生气型的泥页岩,之前已经形成的液态石油开始大量裂解生气,孔隙水也基本排出,天然气占主导地位,此时天然气以游离相运移,如松辽盆地白垩系沙河子组陆相页岩气(张君峰等,2022)。进入深部高温生干气阶段,液态石油和重烃气都已裂解成干气甲烷,此时天然气主要以游离气相或扩散相运移为主(聂海宽等,2010),如四川盆地寒武系牛蹄塘组和奥陶系—志留系的五峰组—龙马溪组海相页岩气。

  • 图2 四川盆地印支期(T3/T2不整合面)剥蚀量平面图

  • Fig.2 Distribution of erosion thickness during the Indosinian period (T3/T2 unconformity) in the Sichuan basin

  • 在运移方式方面,页岩气体现了煤层气的不运移和根缘气的活塞式运移特点,甚至有短距离的置换式运移特点(张金川等,2004),这主要和页岩所处的热演化阶段有关。在生物气阶段,由于地层水的存在,页岩气主要以溶解态和吸附态存在,可能有短距离的置换式运移;在高成熟度时,生烃量增大,页岩中的游离水已消耗殆尽,天然气很难以水溶相运移,主要靠生烃膨胀力推动以活塞式整体推进为主要运移方式,不过由于后期裂缝的形成,可能存在短距离的置换式运移。

  • 在运移通道方面,页岩中的干酪根网络、微纳孔隙、微裂缝(包括构造微裂缝、层理缝、成岩缝等)、断裂以及页岩层系中的渗透性夹层(如粉细砂岩等)构成了页岩气初次运移的立体网络通道(黄长兵等,2020)。断裂和微裂缝是页岩气运移/散失的主要通道,这也是在大型断裂带附近页岩含气量较低、钻井效果较差的主要原因之一。在断裂和裂缝欠发育的地区,主要是页岩中发育的大量微纳米级别的孔隙和微裂缝形成的复杂的孔—缝系统储集并渗流页岩气。由于四川盆地五峰组—龙马溪组海相硅质页岩层理发育差,五峰组至龙马溪组底部页岩气主要在硅质页岩内部扩散运移、原地富集(焦石坝背斜下部气层,钻遇下部气层的井产量差别不大);在黏土质页岩中,由于层理较发育,页岩气生成后沿着孔—缝通道向外运移,沿层理面向上倾方向运移,页岩气富集受控于构造形态,在构造高部位富集(焦石坝背斜高部位的上部气层,气井的产量在背斜高部位较高、翼部较低)或散失(如武隆向斜和长宁向斜翼部、威远背斜高部位和盐志1井断裂发育区等)。通过对焦石坝背斜构造特征、页岩品质、储层类型和特征、裂缝特征以及气井产能等综合分析认为,该背斜上部气层存在页岩层系内部的初次运移(李东晖等,2019; Nie Haikuan et al.,2020b)(图4),导致页岩气主要富集在背斜高部位,因此该地区页岩气井具有较高产能,远离背斜高部位的气井产能较低。

  • 图3 四川盆地典型地区页岩气井埋藏史图(井埋藏史来源于He Zhiliang et al.,2020b; 段国彬等,2020; 刘文平等,2020; 姚程鹏等,2022; 熊亮等,2023

  • Fig.3 The burial history of shale gas wells in typical areas of the Sichuan basin (after He Zhiliang et al., 2020b; Duan Guobin et al., 2020; Liu Wenping et al., 2020; Yao Chengpeng et al., 2022; Xiong Liang et al., 2023)

  • 1.3 赋存机理

  • 在页岩气藏中,天然气主要包括三种赋存状态:游离态、吸附态和溶解态。根据已开发页岩气藏的研究,吸附态天然气可占页岩总含气量的20%~85%,游离态天然气占15%~80%(Curtis,2002),主要受控于有机碳含量、储集类型、储集物性、地层压力等因素(聂海宽,2010; 聂海宽等,2012a)。页岩气的赋存状态和富集特征是页岩含气性和可采性评价的重要内容,高孔渗优质页岩储层是页岩气富集的关键前提,因此页岩气的赋存机理主要涉及优质储层的形成和保持机理,以及天然气在页岩孔缝中的赋存机理。

  • 1.3.1 控制页岩气赋存的优质储层形成和保持机理

  • 以有机质孔为主要储集空间的优质页岩储层发育是页岩气富集的重要前提之一(陈尚斌等,2011; 郭旭升,2014; 聂海宽等,2022b)。在页岩气源储一体的背景下,优质的页岩储层应该具备生烃能力强、储集物性好、岩石脆性高等特征。针对四川盆地五峰组—龙马溪组海相页岩,优质储层成因机制可以概括为“多藻控烃源、生硅控格架、协同演化控储层”(聂海宽等,2020c)。其中,以多细胞藻类作为生烃母质的海相页岩不仅具有较强的生烃能力,也具有大量形成有机孔的能力。页岩中石英、尤其是生物成因石英对页岩优质储层形成具有重要的控制作用(Milliken et al.,2016)。作为刚性矿物,不同成因类型的石英均具有抗压实的能力,但是考虑到对干酪根保存、原油残留等起到的作用,石英形成的时间越早,形成的格架越早越有利于孔隙和流体保存。因此,即使相同石英含量的页岩,其不同的石英成因类型和形成时间也会影响孔隙的发育。生物成因石英在早成岩A期、B期形成,并以微晶聚集体的形式与陆源碎屑硅、黄铁矿一起形成颗粒支撑格架,可有效抑制压实作用,保存大量残留粒间孔隙,有利于页岩气优质储层的形成(郭旭升等,2020; 聂海宽等,2020c)。类似的现象也在北美阿尔伯塔盆地的泥盆系Duvernay页岩(Knapp et al.,2020)、Bakken组泥页岩等页岩油气藏中得到证实。在Bakken组泥页岩成岩历史早期存在硅质胶结的层段,泥页岩压实作用明显减弱,保留了更多的原生粒间孔隙和油气,储集物性明显优于其他未被硅质胶结的层位(Milliken et al.,2021)。因此,生物成因石英是页岩孔隙保护者而非破坏者,而蒙脱石向伊利石转化的石英在中成岩阶段A期形成,与干酪根生油属同一时期(Metwally et al.,2012),由于形成时间较晚,硅质充填孔隙,是孔隙破坏者而非保护者。因此,高生物成因石英含量、高有机质含量及其有利于生成有机质孔的成烃生物组合与页岩的储集能力密切相关,是页岩优质储层发育的关键因素,页岩优质储层为页岩气富集提供了丰富的储集空间。

  • 图4 四川盆地五峰组—龙马溪组硅质页岩气(下部气层)和黏土质页岩气(上部气层)运移富集模式图 (据Nie Haikuan et al.,2020b修改)

  • Fig.4 Migration and accumulation patterns of siliceous shale gas (lower shale gas layers) and argillaceous shale gas (upper shale gas layers) from the Wufeng-Longmaxi formations in the Sichuan basin

  • 1.3.2 页岩气赋存机理

  • 在赋存状态方面,页岩气介于煤层气(吸附气占比90%以上)和常规气(基本为游离气)之间(张金川等,2004),在油气成藏和分布序列上也介于煤层气和常规气之间(聂海宽,2010; 聂海宽等,2010a)。游离态页岩气主要依靠压力封闭赋存在页岩孔隙或裂缝中且可被压缩,这与常规天然气藏相似,研究较成熟,本文主要阐述吸附态页岩气的赋存机理。

  • 吸附是气固两相界面的一种普遍现象,是气体分子被固体分子所吸引而在固体表面黏附、累积的过程。根据吸附反应类型,可将吸附作用分为物理吸附和化学吸附(Keller et al.,2005)。其中,物理吸附是指吸附剂与吸附质之间通过分子间引力(范德华力)产生的吸附,在吸附过程中不改变吸附质和吸附剂的性质,吸附能小,吸附力也较小,被吸附的气体容易解吸(Thommes et al.,2014)。化学吸附是吸附质分子与吸附剂分子之间的化学键力或者两者发生了化学反应而形成的吸附,吸附能较大、吸附力较强,被吸附气体解吸困难或者无法解吸(Králik,2014)。前人对吸附热力学和动力学的研究表明,页岩气的吸附是自发、放热、可逆的物理吸附,而非化学吸附(Dang Wei et al.,2020)。

  • 一般认为,页岩气在孔隙表面的吸附是单分子层吸附,而分子动力学模拟发现,页岩气在固体表面的吸附存在两个吸附分子层,即多分子层吸附(图5)。其中,第一层吸附的气体分子堆积的较为紧密,为强吸附层,吸附相甲烷密度较高,而第二层吸附的分子通常堆积的较为松散,为弱吸附层,吸附相甲烷密度降低。上述两个吸附层共同构成了吸附气膜,气膜厚度通常为2个甲烷分子直径之和。因此,吸附气膜会占据孔隙空间,压缩游离气的储集空间,这对页岩游离气量评价具有重要参考。除了单层和多层吸附以外,微孔填充也是页岩气赋存的重要机理。在孔径小于2 nm的微孔中,由于甲烷受到两侧相邻孔壁自由力场的叠加和抵消作用,导致甲烷分子在微孔中的赋存更像是填充于孔隙空间而非覆盖在孔隙表面。孔径越小,这种填充现象越明显。需要注意的是,在实际储层温压条件下,甲烷已处于超临界状态,无论地层压力多大,甲烷也不会液化。因此,储层条件下页岩气的赋存不存在毛细凝聚现象。在吸附机理研究方面,高温高压吸附实验可以更客观地反映页岩的吸附能力(图6)。这些页岩气赋存机理的新认识比以往基于单分子层吸附机理计算的页岩含气量更逼近地质实际,因此其评价的页岩含气量和资源/储量更客观。

  • 图5 页岩-甲烷吸附分子动力学模拟及纳米孔中甲烷密度分布

  • Fig.5 Molecular dynamics simulation of methane adsorption and methane density distribution in nanopores of shale

  • 影响页岩气吸附的因素主要包括吸附机理(单分子层、多分子层或微孔充填)、吸附剂性质(孔径、比表面积、表面官能团等)、吸附质性质(分子量、极性、分子动力学直径、浓度等)、润湿性以及温压条件等。页岩吸附气量的大小与内部因素(页岩地球化学指标、矿物组成、孔隙结构、孔隙流体等)和外部因素(地层埋深、温度和压力等)等有关(Dang Wei et al.,2017)。最近的研究认为页岩润湿性与吸附性均受到有机—无机组分(化学非均质性)和孔缝结构(物理非均质性)的影响,二者在原位条件下存在一定的响应关系,页岩润湿性历史变化对于页岩气赋存具有重要指示作用,页岩组分润湿性和孔隙有效性可能是决定甲烷吸附赋存和解吸运移的关键(李沛,2021)。前人围绕上述因素与页岩气吸附能力的关系开展了大量研究,认识比较成熟,此处不再赘述。

  • 图6 四川盆地川东南DYS 1井龙马溪组深层页岩等温吸附曲线(135℃,0~80 MPa)

  • Fig.6 Isothermal adsorption curve of deep shale in the Longmaxi Formation of well DYS 1 in the southeast Sichuan basin (135℃, 0~80 MPa)

  • 1.4 保存机理

  • 从天然气的主要生成阶段和机理出发,可知页岩气的聚集过程主要包括两个阶段:初次聚集和二次聚集(张金川等,2004; 聂海宽,2010)。初次聚集是生物气作用阶段直接生成的天然气在页岩中的聚集,二次聚集则是页岩热演化阶段后期生成的天然气在页岩中的聚集。若想从赋存状态变为局部聚集再继续延伸为规模富集的页岩气藏,保存条件尤为重要(聂海宽等,2012b),需要重点评价。

  • 良好的保存条件是页岩气富集的重要保障。页岩层系主要以岩性变化、水力封闭、烃浓度封闭、超压封闭等机理实现天然气的封闭保存(张金川等,2004)。保存条件的优劣主要取决于页岩自身属性和构造活动的强度,其中前者主要与页岩的岩相、储集类型、物性特征和微观封盖能力等有关,而后者由构造运动所导致的裂缝发育及抬升、剥蚀程度来反映(聂海宽等,2012b)。另外,页岩和上覆、下伏地层的岩性、物性特征也是影响保存的主要因素(聂海宽等,2012b; 郭彤楼等,2014),如页岩本身的非均质性(王晓梅等,2017)、孔隙度、渗透率、孔径、排驱压力等差异能构成良好的物性封闭,形成多套不同含气量的立体富集区,如焦石坝的下部、上部和中部气层(李东晖等,2019; 崔静,2022)。另外,根据实验研究,由于粉砂质页岩的低孔低渗,在孔隙度小于4%~5%时,排驱压力过大,气体很难进入砂岩储层,聚集比较困难(聂海宽等,2007),如焦石坝底部灰岩的孔隙度为1.58%,上部致密粉砂质页岩的孔隙度为2.4%(张晖等,2018)。需要说明的是,由于气体的扩散作用(主要指页岩气散失作用)发生在页岩气聚集、破坏演化的全过程,包括“排气”和“排气间期”的扩散散失,并不专指页岩气藏破坏时的散失。散失作用和页岩的岩性、非均质性、裂缝的发育程度、构造强度和气藏压力等因素有关(聂海宽,2010; 姜振学等,2020)。页岩气保存机制以毛管压力和分子吸附力为主(贾承造等,2021),由于存在部分吸附态页岩气,页岩气藏抗破坏的能力比完全为游离态的常规气藏要强,因此,在常规油气保存条件较差的地方,也有可能形成页岩气藏(张金川等,2008)。关于页岩直接盖层和区域盖层的研究已较多(何希鹏等,2017; 郭旭升等,2022b),盖层主要通过物性差异形成封闭,取得的很多认识在页岩气选区评价和开发中得到应用。本文主要针对抬升过程中,页岩气保存机理和保存条件开展评价。

  • 如果没有强烈的构造运动,仅靠页岩有机质生烃膨胀力生成的裂缝,对页岩气藏造成的破坏作用较小(张金川等,2004)。在热演化阶段,伴随着成熟度增大,页岩的有机质和未排出的原油在热裂解的作用下生成大量天然气。在相对密闭的系统中,物质密度变小导致了体积膨胀和压力提高,随着天然气的生成,以溶解态和吸附态存在的天然气,不断逸出和解吸成为游离气,天然气的大量生成使原有的地层压力不断提高,从而产生以生烃膨胀作用为基本动力的天然气逃逸作用。由于压力升高,页岩内部沿应力集中面、岩性接触过渡面或脆性薄弱面产生裂缝,天然气聚集其中形成以裂缝游离相为主的页岩气藏,主体上表现为由生气膨胀力所推动的聚集过程,天然气原地或就近分布,构成了挤压造隙式的运聚特征(张金川等,2004)。页岩本身就是烃源岩,就能生成甲烷,不存在充注难的问题;因此,页岩气的富集与否只跟排烃有关,排烃效率高的不易于页岩气聚集,排烃效率低的易于页岩气聚集,当然还与页岩的生排烃史阶段、生排烃量有关。按照“幕式排烃”理论,在裂缝没有发育到一定规模,没有达到排气之前,天然气就一直聚集在页岩中(Hedberg,1974; Hunt,1990)。在该阶段,天然气主要以吸附态赋存在页岩中,富余的天然气则以游离态赋存在孔隙或裂隙中,页岩平均含气量达到较高水平(张金川等,2004)。如果生烃增压达到一定程度、裂缝大量发育,达到排气门限,天然气排出,页岩层中的压力迅速降低,原有裂缝闭合,从而完成一次幕式排烃,前一阶段形成的页岩气藏主体遭受破坏。伴随着继续生气,再一次的天然气聚集发生,新一轮的页岩气藏正在形成,直至再次排气,这主要适用于持续埋藏的页岩气藏类型。经历了抬升的页岩气藏类型,由于抬升过程中的构造运动导致应力释放、压力降低,导致不同级别的裂缝发育,对页岩气藏造成破坏。页岩的润湿性也对保存条件具有影响作用,在页岩气藏抬升过程中,页岩孔渗性一般得到改善,水容易进入页岩层,偏水湿页岩中水易附着在孔壁,烃类须克服毛管力,因此难运移,页岩气保存条件较难遭到破坏;而偏油湿页岩则相反。

  • 抬升过程中页岩气藏的破坏和保存机理主要通过裂缝—流体活动来研究,裂缝多依据规模来判断,一般认为靠近大型断裂、微裂缝较发育的地区,页岩气藏的保存条件较差,例如在Barnett页岩气藏和焦石坝页岩气藏中,断裂发育区域的井一般较远离断裂的井的天然气产量低,高产井基本上都分布在大断裂不发育的地区(Bowker,2007; Nie Haikuan et al.,2020b)。通常区域性大断裂由于多期次、长时间的活动,微裂缝比较发育,且存在大气水下渗的影响,导致其附近区域的页岩气保存条件较差(聂海宽等,2012b)。在大型断裂欠发育或不发育的地区,页岩的排烃受阻,排烃较少,页岩残留烃较多,页岩气保存条件总体较为有利,有利于页岩气聚集;但微裂缝的大量发育会对页岩气藏造成破坏,导致页岩含气量不同程度的降低,影响页岩气藏的经济性。

  • 裂缝—流体的活动时间可以通过裂缝中充填的脉体的形成时间来分析,主要借助脉体类型、包裹体均一温度、捕获烃类特征等参数。研究认为来源于页岩内部流体形成的脉体对气藏的破坏作用小,而来源于外部的流体(如深部热液、大气淡水等)对页岩气藏的破坏作用较大(Nie Haikuan et al.,2020a),这些脉体的存在一般反映了较强的断裂活动,对页岩气藏的破坏作用较大。例如在焦石坝背斜两翼,存在热液脉体的页岩含气量较低,反映保存条件较差。进一步,可以根据包裹体均一温度和埋藏史来判断脉体的形成和封闭时间(Nie Haikuan et al.,2020a; 高键等,2022),根据包裹体拉曼参数计算包裹体的密度、捕获压力,进一步可以判断捕获时间和恢复页岩含气量演化史(高键等,20152022)。一般认为脉体形成越早、越深,越有利于页岩气藏保存,而脉体期次多(流体活动期次多)、活动时间晚,并且包裹体均一温度范围增大、温度低,则表明页岩气藏的破坏越严重。在四川盆地及其周缘构造活动强烈的地区,裂缝—流体活动期次多的地区,页岩气藏的压力系数、孔隙度和含气量等均比盆内超压页岩气藏低,甚至演化为常压页岩气藏或不含气页岩。虽然已经认识到裂缝—流体活动时间和期次对页岩气藏保存条件具有重要的指示作用,但定量的研究还处在起步阶段。

  • 2 深层和常压页岩气成藏特征与勘探潜力

  • 目前在四川盆地及其周缘五峰组—龙马溪组页岩气藏已实现3500 m以浅中浅层页岩气藏的开发建产,正在进行深层和常压页岩气藏的勘探开发探索,估算深层页岩气资源量约是中浅层的两倍(何治亮等,2020a);四川盆地及其周缘发育大量常压页岩气藏,如武隆向斜页岩气地质资源量近5000×108 m3,桑柘坪向斜页岩气地质资源量700×108 m3方志雄,2019)。深层和常压页岩气藏资源量大、发展前景广阔,是页岩气增储上产的主要接替阵地。

  • 2.1 深层页岩气

  • 原始沉积条件控制的页岩品质是页岩气发育的物质基础(Loucks et al.,2007; 朱光有等,2020),在页岩品质与中浅层页岩气藏相当的前提下,深层页岩气的富集程度主要与生排烃史、生排烃量、后期抬升幅度以及构造变形的差异有关(何治亮等,2017)。深层页岩经历的较大埋深(高温和高压效应)和强压实导致更高的排烃量,从而使页岩地层中保留的碳氢化合物较少(Cooles et al.,1986),如何确定页岩经历的最大埋深及其生排烃史、生排烃量是深层页岩含气量评价的关键。如果页岩经历的埋藏深度较大,压实强烈、排烃效率较高,页岩中残留烃量变小,导致现今页岩含气量较低,此类深层页岩气的勘探开发潜力较小。四川盆地及其周缘下寒武统页岩属于此类情况,最大埋深超过了8000~10000 m(Zhao Wenzhi et al.,2019),导致个别地区页岩的排烃量大,加之深层页岩较低的孔隙度降低了滞留烃的赋存能力,均可能导致现今含气量较低,页岩气勘探开发潜力较低。如果深层页岩和中—浅层页岩经历的最大埋藏深度相当,仅是后期抬升幅度存在差异,此类深层页岩气的勘探开发潜力较大。五峰组—龙马溪组深层页岩气藏的最大埋深与中浅层均为6000~7000 m(Gao Jian et al.,2019; Zhao Wenzhi et al.,2019),与中浅层页岩气藏仅仅是后期抬升幅度的差异。由于深层页岩气的抬升幅度较小,因此这种类型的深层页岩可能更有利于页岩气富集,潜力更大。如川东南地区丁山断背斜五峰组—龙马溪组页岩,由露头区向深埋区,经历浅层、中深层、深层、超深层等深度段,其总含气量和压力系数由低逐渐增高(魏祥峰等,2020; 郭旭升等,2022a)。后期构造变形的差异也会导致含气量的不同,如四川盆地宽缓背斜型和向斜型深层页岩的保存条件和含气性也一般高于盆内高陡型和盆缘斜坡型深层页岩(聂海宽等,2022a)。在保存条件较好的地区,生成的甲烷在其整个地质历史上都得到了很好的保存,L203井和DYS1井证实了深层页岩具有较高的含气量(邱振等,2020; 郭旭升等,2021)。仅就页岩气富集机理角度来看,深层页岩气的评价主要从页岩厚度、埋藏史、生烃演化史、含气量等方面开展,但由于深层页岩气增加了工程改造的难度,因此在高效开发方面,需同时加强对优质页岩储层厚度、脆性矿物含量和地应力特征等影响压裂改造的因素分析。

  • 2.2 常压页岩气

  • 由于四川盆地及其周缘在燕山期—喜马拉雅期强烈的构造运动,五峰组—龙马溪组页岩遭受不同程度的抬升剥蚀,早期形成的超压页岩气藏遭到破坏,导致这一区域以常压页岩气藏为主要类型。研究表明,燕山期—喜马拉雅期的晚侏罗世—早白垩世(J3—K1)是南方海相油气富集的关键时期(金之钧等,2012),也是页岩气的主要富集期,研究区最后一期抬升早于J3—K1的地区,由于抬升时间早,生烃过程在J3—K1期间终止(或中止)、且压力卸载较早,导致页岩气藏中天然气散失时间较早、且持续时间较长,而J3—K1期间持续沉降埋藏的地区,页岩长期持续生烃,生烃结束时间相对较晚(Jin Zhijun et al.,2018)。以鄂西—渝东地区为例,抬升时间自东向西逐渐变晚(何治亮等,2017; Li Shuangjian et al.,2020)。以齐岳山断裂为界,东部主体在140~165 Ma(J3—K1)开始抬升,西部最早在85~100 Ma(K2)开始抬升(何治亮等,2017)。从湘鄂西向四川盆地内部,燕山期构造抬升时间越来越晚,桑植-石门复向斜在165 Ma开始抬升,恩施-利川复向斜在145 Ma开始抬升,PY1井所在的桑柘坪向斜在137 Ma左右开始抬升,武隆向斜约100 Ma开始抬升,而在四川盆地内的涪陵地区(焦石坝背斜、平桥背斜、白涛向斜和白马向斜等)抬升时间约为85 Ma,华蓥山地区抬升时间最晚,约为65 Ma(李双建等,2008; 梅廉夫等,2010; 王平等,2012),抬升时间越晚,页岩气藏的保存条件越好。越靠近四川盆地、残留向斜面积越大、抬升时间越晚,越有利于页岩气藏保存,武隆向斜和白马向斜均属于此种类型(聂海宽等,2019)。

  • 残留向斜型页岩气藏的保存除受抬升时间、自身断裂和裂缝发育程度影响外,天然气主要沿层理面逸散。由于层理和粉砂纹层发育(王红岩等,2021),页岩水平渗透率远高于垂向渗透率,平均为垂向渗透率的40.37倍(何希鹏等,2017),地层倾角越大,层理越发育,天然气逸散越强烈,反之天然气逸散强度弱、利于页岩气富集。残留向斜地层水的向心流对边部的页岩气藏破坏作用较强,在向心流停滞带,页岩气保存条件较为有利(张光荣等,2021),通常也具有相对较高的压力系数和含气量,例如白马、武隆等向斜中心部位页岩含气量较高,钻井通常具有较好的效果。

  • 残留向斜型常压页岩气形成机制和评价方法主要包括抬升时间、抬升幅度、每百万年的页岩气散失量、现今的含气量等。Nie Haikuan et al.(2023a)根据页岩气藏甲烷碳同位素差值,定性评价了页岩气的保存条件,并估算了每百万年页岩气的散失量,在残留向斜区,可以根据这一散失量,通过生排烃模拟的页岩气生成量来计算现今的含气量。总之,由于常压页岩气藏的资源品位偏低,降低钻井、压裂和开采等开发成本是实现有效开发的关键。

  • 3 结论

  • (1)从页岩气生成机理、运移机理、赋存机理和保存机理等四个方面深入分析了页岩气富集机理,指出埋藏史和热演化史控制了页岩生排烃和现今含气量,页岩气运移主要表现为源内的初次运移,存在单/多分子层吸附和微孔充填等多种赋存机制,组分润湿性和孔隙有效性可能是决定甲烷吸附赋存和解吸运移的关键。构造运动引起的裂缝—流体活动可能破坏页岩气保存条件,流体活动时间和期次是页岩气保存条件和含气量评价的重要内容。建议加强页岩气演化历史全过程的动态评价。

  • (2)运用页岩气富集机理的新认识,结合四川盆地及其周缘五峰组—龙马溪组深层和常压页岩气勘探实践,指出地质历史时期的生排烃史、排烃量、埋藏深度和地应力特征等是深层页岩气藏评价的主要内容,考虑工程改造难度和高效开发需求,建议加强优质页岩储层厚度、脆性矿物含量、地应力特征等影响压裂改造因素的研究。燕山期—喜马拉雅期的抬升时间和幅度、断裂—流体活动特征是控制常压页岩气藏品质的主要因素,考虑到常压页岩气藏的低资源品位特征,降本增效是有效开发的关键。

  • 注释

  • ❶ 孙冬胜,李双建,袁玉松,朱东亚,张殿伟,林娟华,孙炜,张荣强,金晓辉,朱虹,邱登峰,李天义,叶丽琴,刘晶.2014. 四川盆地关键构造运动及其控油气作用. 中国石油化工股份有限公司石油勘探开发研究院,内部报告.

  • 参考文献

    • Bowker K A. 2007. Barnett shale gas production, Fort Worth basin: Issues and discussion. AAPG Bulletin, 91: 523~533.

    • Cai Jingong, Song Mingshui, Lu Longfei, Bao Yujin, Ding Fei, Xu Jinli. 2013. Organo-clay complexes in source rocks: A natural material for hydrocarbon generation. Marine Geology & Quaternary Geology, 33(3): 123~131 (in Chinese with English abstract).

    • Chen Shangbin, Zhu Yanming, Wang Hongyan, Liu Honglin, Wei Wei, Fang Junhua. 2011. Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan basin. Acta Petrolei Sinica, 32(5): 775~782 (in Chinese with English abstract).

    • Cooles G P, Mackenzie A S, Quigley T M. 1986. Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 10: 235~245.

    • Cui Jing. 2022. Evaluation of the adaptability of fracturing technology for wells in the central gas reservoir of Fuling gas field. Journal of Shengli College China University of Petroleum, 36(3): 60~65 (in Chinese with English abstract).

    • Curtis J B. 2002. Fractured shale-gas systems. AAPG Bulletin, 86: 1921~1938.

    • Dang Wei, Zhang Jinchuan, Wei Xiaoliang, Tang Xuan, Chen Qian, Li Zhongming, Zhang Muchen, Liu Jing. 2017. Geological controls on methane adsorption capacity of Lower Permian transitional black shales in the southern North China basin, Central China: Experimental results and geological implications. Journal of Petroleum Science and Engineering, 152: 456~470.

    • Dang Wei, Zhang Jinchuan, Nie Haikuan, Wang Fengqin, Tang Xuan, Wu Nan, Chen Qian, Wei Xiaoliang, Wang Ruijing. 2020. Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chemical Engineering Journal, 383: 123191.

    • Duan Guobin, Chen Chaogang, Yu Ping, Zhao Weijun, Liu Bin, Huang Weidong. 2020. Study of reservoir forming conditions of deep shale gas in the West Chongqing block. Acta Geologica Sichuan, 40(3): 402~405 (in Chinese with English abstract).

    • Fang Zhixiong. 2019. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China. Reservoir Evaluation and Development, 9(5): 1~13.

    • Gao Jian, He Sheng, Yi Jizheng. 2015. Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance. Oil & Gas Geology, 36(3): 472~480 (in Chinese with English abstract).

    • Gao Jian, Zhang Jiankun, He Sheng, Zhao Jianxin, He Zhiliang, Wo Yujin, Feng Yuexing, Li Wen. 2019. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: Implications for shale gas accumulation. Marine and Petroleum Geology, 102: 844~859.

    • Gao Jian, Li Huili, He Zhiliang, Li Shuangjian, Liu Guangxiang, Yuan Yusong, Li Yingqiang, Li Tianyi, He Sheng. 2022. Pressure evolution, enrichment and preservation of normal-pressure shale gas in the Pengshui area of eastern Chongqing. Natural Gas Industry, 42(8): 124~135 (in Chinese with English abstract).

    • Guo Tonglou, Zhang Hanrong. 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin. Petroleum Exploration and Development, 41(1): 8~36 (in Chinese with English abstract).

    • Guo Xusheng. 2014. Rules of two-factor enrichment for marine shale gas in southern China—Understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).

    • Guo Xusheng, Li Yuping, Tenger, Wang Qiang, Yuan Tao, Shen Baojian, Ma Zhongliang, Wei Fubin. 2020. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan basin, China. Petroleum Exploration and Development, 47(1): 193~201 (in Chinese with English abstract).

    • Guo Xusheng, Cai Xunyu, Liu Jinlian, Liu Chaoying, Cheng Zhe, Gao Bo, Shi Lei. 2021. Natural gas exploration progress of Sinopec during the 13th Five-Year Plan and prospect forecast during the 14th Five-Year Plan. Natural Gas Industry, 41(8): 12~22 (in Chinese with English abstract).

    • Guo Xusheng, Tenger, Wei Xiangfeng, Yu Lingjie, Lu Xiancai, Sun Lei, Wei Fubin. 2022a. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan basin. Acta Petrolei Sinica, 43(4): 453~468 (in Chinese with English abstract).

    • Guo Xusheng, Zhao Yongqiang, Shen Baojian, Wei Xiangfeng, Lu Longfei, Pan Anyang, Li Yuping. 2022b. Marine shale gas exploration theory in southern China: Review and prospects. Acta Geologica Sinica, 96(1): 172~182 (in Chinese with English abstract).

    • He Xipeng, Gao Yuqiao, Tang Xianchun, Zhang Peixian, He Guisong. 2017. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing. Natural Gas Geoscience, 28(4): 654~664 (in Chinese with English abstract).

    • He Zhiliang, Hu Zongquan, Nie Haikuan, Li Shuangjian, Xu Jin. 2017. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan basin and its evaluation of geological construction-transformation evolution sequence. Natural Gas Geoscience, 28(5): 724~733 (in Chinese with English abstract).

    • He Zhiliang, Nie Haikuan, Hu Dongfeng, Jiang Tingxue, Wang Ruyue, Zhang Yuying, Zhang Guangrong, Lu Zhiyuan. 2020a. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan basin and its periphery. Acta Petrolei Sinica, 41(4): 379~391 (in Chinese with English abstract).

    • He Zhiliang, Nie Haikuan, Li Shuangjian, Luo Jun, Wang Hu, Zhang Guangrong. 2020b. Differential enrichment of shale gas in upper Ordovician and lower Silurian controlled by the plate tectonics of the Middle-Upper Yangtze, South China. Marine and Petroleum Geology, 118: 104357.

    • Hedberg H D. 1974. Relation of methane generation to undercompacted shales, shale diapirs, and mud volcanoes. AAPG Bulletin, 58: 661~673.

    • Huang Changbing, Zhang Feng, Li Shunping, Yang Zhen, Zhang Xuerui, Hu Bo, Tong Shouqiang. 2020. Analysis and application of gas migration mechanism within shale. Science Technology and Engineering, 20(17): 6752~6759 (in Chinese with English abstract).

    • Hunt J M. 1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 74: 1~12.

    • Jia Chengzao. 2017. Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory. Petroleum Exploration and Development, 44(1): 1~11 (in Chinese with English abstract).

    • Jia Chengzao, Pang Xiongqi, Song Yan. 2021. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces. Petroleum Exploration and Development, 48(3): 437~452 (in Chinese with English abstract).

    • Jiang Shu, Zhang Tianyu, Guo Tonglou, He Xipeng, Gao Yuqiao, Xue Gang, Zhang Peixian, Chen Guohui. 2023. Comparison of enrichment characteristics of typical normally-pressured shale gas reservoirs in Lower Silurian shale in southeastern Sichuan basin and Devonian shales in Appalachian basin. Earth Science, 48: 77~91 (in Chinese with English abstract).

    • Jiang Zhenxue, Song Yan, Tang Xianglu, Li Zhuo, Wang Xingmeng, Wang Guozhen, Xue Zixin, Li Xin, Zhang Kun, Chang Jiaqi, Qiu Hengyuan. 2020. Controlling factors of marine shale gas differential enrichment in southern China. Petroleum Exploration and Development, 47(3): 617~628 (in Chinese with English abstract).

    • Jin Zhijun. 2019. Shale revolution and its significance. Economic Herald, (10): 49~52 (in Chinese with English abstract).

    • Jin Zhijun, Zhang Yiwei, Wang Jie. 2003. The Accumulation Mechanism and Distribution Regularity of Oil and Gas. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Jin Zhijun, Yuan Yusong, Liu Quanyou, Wo Yujin. 2012. Controls of Late Jurassic-Early Cretaceous tectonic event on source rocks and seals in marine sequences, South China. Science China: Earth Sciences, 42(12): 1791~1801 (in Chinese with English abstract).

    • Jin Zhijun, Nie Haikuan, Liu Quanyou, Zhao Jianhua, Jiang Tao. 2018. Source and seal coupling mechanism for shale gas enrichment in upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan basin and its periphery. Marine and Petroleum Geology, 97: 78~93.

    • Jin Zhijun, Bai Zhenrui, Gao Bo, Li Maowen. 2019. Has China ushered in the shale oil and gas revolution? Oil & Gas Geology, 40(3): 451~458 (in Chinese with English abstract).

    • Jin Zhijun, Zhang Jinchuan, Tang Xuan. 2021. Unconventional natural gas accumulation system. Natural Gas Industry, 41(8): 58~68 (in Chinese with English abstract).

    • Keller J U, Staudt R. 2005. Gas adsorption equilibria: Experimental methods and adsorptive isotherms. Springer Science & Business Media.

    • Knapp L J, Ardakani O H, Uchida S, Nanjo T, Otomo C, Hattori T. 2020. The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada. International Journal of Coal Geology, 227: 103525.

    • Králik M. 2014. Adsorption, chemisorption, and catalysis. Chemical Papers, 68: 1625~1638.

    • Li Donghui, Liu Guangxiang, Nie Haikuan, Hu Jianguo, Chen Gang, Li Qianwen. 2019. Development characteristics and influencing factors of upper gas reservoir in Jiaoshiba anticline. Earth Science, 44(11): 3653~3661 (in Chinese with English abstract).

    • Li Jian, Yan Qituan, Zhang Ying, Liu Guangdi, Wang Xiaobo. 2007. The particularity of sealing mechanism of Quaternary biogas cap in Sanhu area of the Qaidam basin. Science in China, 37(SII): 36~42 (in Chinese with English abstract).

    • Li Mingcheng. 2000. A review of oil and gas migration. Petroleum Exploration and Development, (4): 3~10+109~117 (in Chinese with English abstract).

    • Li Mingcheng. 2004. Oil and Gas Migration. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Li Pei. 2021. Wettability of shale and its effect on methane adsorption: A case study of Shanxi and Taiyuan formations in southern North China basin. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Li Shuangjian, Xiao Kaihua, Wang Xinwei, Zhang Rongqiang, Wo Yujin, Zhou Yan, Cai Liguo. 2008. Thermochronology of detrital minerals in the Silurian strata from southern China and its geological implications. Acta Geologica Sinica, 82(8): 1068~1076 (in Chinese with English abstract).

    • Li Shuangjian, Li Yingqiang, He Zhiliang, Chen Ke, Zhou Yan, Yan Detian. 2020. Differential deformation on two sides of Qiyueshan fault along the eastern margin of Sichuan basin, China, and its influence on shale gas preservation. Marine and Petroleum Geology, 121: 104602.

    • Li Xiangfang, Feng Dong, Zhang Tao, Sun Zheng, He Minxia, Liu Qing, Liu Wenyuan, Zhao Wen, Li Jing. 2020. The role and its application of capillary force in the development of unconventional oil and gas reservoirs and its application. Acta Petrolei Sinica, 41(12): 1719~1733 (in Chinese with English abstract).

    • Liu Quanyou, Jin Zhijun, Wang Xiaofeng, Yi Jizheng, Meng Qingqiang, Wu Xiaoqi, Gao Bo, Nie Haikuan, Zhu Dongya. 2018. Distinguishing kerogen and oil cracked shale gas using H, C-isotopic fractionation of alkane gases. Marine and Petroleum Geology, 91: 350~362.

    • Liu Shugen, Deng Bin, Zhong Yong, Ran Bo, Yong Ziquan, Sun Wei, Yang Di, Jiang Lei, Ye Yuehao. 2016. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan basin and its periphery. Earth Science Frontiers, 23(1): 11~28 (in Chinese with English abstract).

    • Liu Wenping, Zhou Zheng, Wu Juan, Luo Chao, Wu Wei, Jiang Lei, Jiao Kun, Ye Yuehao, Deng Bin. 2020. Hydrocarbon generation and shale gas accumulation in the Wufeng-Longmaxi formations, Changning shale-gas field, southern Sichuan basin. Journal of Nanjing University (Natural Sciences), 56(3): 393~404 (in Chinese with English abstract).

    • Loucks R G, Ruppel S C. 2007. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worthbasin, Texas. AAPG Bulletin, 91: 579~601.

    • Ma Zhongliang, Tan Jingqiang, Zheng Lunju, Shen Baojian, Wang Zhanghu, Shahzad A, Jan I U, Schulz H M. 2021. Evaluating gas generation and preservation of the Wufeng-Longmaxi Formation shale in southeastern Sichuan basin, China: Implications from semiclosed hydrous pyrolysis. Marine and Petroleum Geology, 129: 105102.

    • Martini A M, Walter L M, Ku T C W, Budai J M, McIntosh J C, Schoell M. 2003. Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG Bulletin, 87: 1355~1375.

    • Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoicintra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science, 35(2): 161~174 (in Chinese with English abstract).

    • Metwally Y M, Chesnokov E M. 2012. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale. Applied Clay Science, 55: 138~150.

    • Milliken K L, Ergene S M, Ozkan A. 2016. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339: 273~288.

    • Milliken K L, Zhang Tongwei, Chen Jianping, Ni Yunyan. 2021. Mineral diagenetic control of expulsion efficiency in organic-rich mudrocks, Bakken Formation (Devonian-Mississippian), Willistonbasin, North Dakota, U. S. A. Marine and Petroleum Geology, 127: 104869.

    • Nie Haikuan. 2010. Shale gas accumulation mechanism and its application. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Nie Haikuan, Xu Bo, Li Xuechao. 2007. Experimental study of the difference between fluid entry pressures. Petroleum Geology & Experiment, 29(5): 531~534 (in Chinese with English abstract).

    • Nie Haikuan, Tang Xuan, Bian Ruikang. 2009. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China. Acta Petrolei Sinica, 30(4): 484~491 (in Chinese with English abstract).

    • Nie Haikuan, Zhang Jinchuan, Xue Hui, Long Pengyu, Wang Guangyuan. 2010a. Continuous and discontinuous accumulations in hydrocarbon pooling and distribution sequence. Natural Gas Industry, 30(9): 9~14+117~118 (in Chinese with English abstract).

    • Nie Haikuan, Zhang Jinchuan. 2010b. Control effect of fluid entry pressure on hydrocarbon accumulation. Journal of Central South University of Technology, 17: 1395~1402.

    • Nie Haikuan, Zhang Jinchuan. 2012a. Shale gas accumulation conditions and gas content calculation: A case study of Sichuan basin and its periphery in the Lower Paleozoic. Acta Geologica Sinica, 86(2): 349~361 (in Chinese with English abstract).

    • Nie Haikuan, Bao Shujing, Gao Bo, Bian Ruikang, Zhang Peixian, Wu Xiaoling, Ye Xin, Chen Xinjun. 2012b. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan basin and its periphery. Earth Science Frontiers, 19(3): 280~294 (in Chinese with English abstract).

    • Nie Haikuan, Jin Zhijun, Bian Ruikang, Du Wei. 2016a. The “source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan basin and its periphery. Acta Petrolei Sinica, 37(5): 557~571 (in Chinese with English abstract).

    • Nie Haikuan, Jin Zhijun. 2016b. Source rock and cap rock controls on the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation shale gas accumulation in the Sichuan basin and its peripheral areas. Acta Geologica Sinica (English Edition), 90: 1059~1060.

    • Nie Haikuan, Wang Hu, He Zhiliang, Wang Ruyue, Zhang Peixian, Peng Yongmin. 2019. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: A case study of Wufeng Formation-Longmaxi Formation in Sichuan basin and its periphery. Acta Petrolei Sinica, 40(2): 131~143+164 (in Chinese with English abstract).

    • Nie Haikuan, He Zhiliang, Wang Ruyue, Zhang Guangrong, Chen Qian, Li Donghui, Lu Zhiyuan, Sun Chuanxiang. 2020a. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi Formations, Sichuan basin, South China: Implications for shale gas preservation and enrichment. Journal of Petroleum Science and Engineering, 193: 107329.

    • Nie Haikuan, Li Donghui, Liu Guangxiang, Lu Zhiyuan, Wang Hu, Wang Ruyue, Zhang Guangrong. 2020b. An overview of the geology and production of the Fuling shale gas field, Sichuan basin, China. Energy Geoscience, 1: 147~164.

    • Nie Haikuan, He Zhiliang, Liu Guangxiang, Du Wei, Wang Ruyue, Zhang Guangrong. 2020c. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan basin. Natural Gas Industry, 40(6): 31~41 (in Chinese with English abstract).

    • Nie Haikuan, Li Pei, Dang Wei, Ding Jianghui, Sun Chuanxiang, Liu Mi, Wang Jin, Du Wei, Zhang Peixian, Li Donghui, Su Haikun. 2022a. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan basin and its surrounding areas, China. Petroleum Exploration and Development, 49(4): 648~659 (in Chinese with English abstract).

    • Nie Haikuan, Zhang Guangrong, Li Pei, Ding Jianghui, Dang Wei, Sun Chuanxiang, Zhang Peixian, Wang Jin, Yang Chao, Li Peng, Wang Pengwei, Su Haikun. 2022b. Research status and prospect on organic matter pores in shale. Acta Petrolei Sinica, 43(12): 1770~1787 (in Chinese with English abstract).

    • Nie Haikuan, Sun Chuanxiang, Li Pei, Jin Zhijun, Liu Quanyou, Bao Hanyong, Shen Baojian, Dang Wei. 2023a. Carbon isotope evidence for shale gas preservation conditions and large methane release over million years: A case study of shale gas reservoirs of Wufeng and Longmaxi Formations in the Sichuan basin. Geoscience Frontiers, 14: 101642.

    • Nie Haikuan, Jin Zhijun, Li Pei, Katz J B, Dang Wei, Liu Quanyou, Ding Jianghui, Jiang Shu, Li Donghui. 2023b. Deep shale gas in the Ordovician-Silurian Wufeng-Longmaxi formations of the Sichuan basin, SW China: Insights from reservoir characteristics, preservation conditions and development strategies. Journal of Asian Earth Sciences, 244: 105521.

    • Peng Ping'an, Jia Chengzao. 2021. Evolution of deep source rock and resource potential of primary light oil and condensate. Acta Petrolei Sinica, 42(12): 1543~1555 (in Chinese with English abstract).

    • Qin Jianzhong, Shen Baojian, Tenger, Zheng Lunju, Tao Guoliang, Fu Xiaodong, Zhang Linglong. 2013. Hydrocarbon generation and expulsion pattern of different types of excellent source rocks. Petroleum Geology & Experiment, 35(2): 179~186 (in Chinese with English abstract).

    • Qiu Nansheng, Feng Qianqian, Tenger, Shen Baojian, Ma Zhongliang, Yu Lingjie, Cao Aiqiang. 2020. Yanshanian-Himalayan differential tectono-thermal evolution and shale gas preservation in Dingshan area, southeastern Sichuan basin. Acta Petrolei Sinica, 41(12): 1610~1622 (in Chinese with English abstract).

    • Qiu Zhen, Zou Caineng, Wang Hongyan, Dong Dazhong, Lu Bin, Chen Zhenhong, Liu Dexun, Li Guizhong, Liu Hanlin, He Jianglin, Wei Lin. 2020. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China. Natural Gas Geoscience, 31(2): 163~175 (in Chinese with English abstract)

    • Rahman H M, Kennedy M, Lohr S, Dewhurst D N, Sherwood N, Yang Shengyu, Horsfield B. 2018. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis. Geochimica et Cosmochimica Acta, 220: 429~448.

    • Schlegel M E, Zhou Zheng, McIntosh J C, Ballentine C J, Person M A. 2011. Constraining the timing of microbial methane generation in an organic-rich shale using noble gases, Illinoisbasin, USA. Chemical Geology, 287: 27~40.

    • Schulz H M, Yang Shengyu, Schovsbo N H, Rybacki E, Ghanizadeh A, Bernard S, Mahlstedt N, Kruger M, Amann-Hildebrandt A, Krooss B M, Meier T, Reinicke A. 2021. The Furongian to Lower Ordovician Alum Shale Formation in conventional and unconventional petroleum systems in the Balticbasin—A review. Earth-Science Reviews, 218.

    • Thommes M, Cychosz K A. 2014. Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption, 20: 233~250.

    • Tian Hui, Xiao Xianming, Li Xianqing, Xiao Zhongyao, Shen Jiagui, Liu Dehan. 2007. Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases. Geochimica, 36(1): 71~77 (in Chinese with English abstract).

    • Wang Hongyan, Shi Zhensheng, Sun Shasha. 2021. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan basin and surrounding areas, China. Petroleum Exploration and Development, 48(5): 879~890 (in Chinese with English abstract).

    • Wang Mingyan, Guo Jianhua, Kuang Lixiong, Zhu Rui. 2010. Geochemical characteristics and evolution of the hydrocarbon source rocks from Lianyuan depression in the middle of Hunan Province. Natural Gas Geoscience, 21(5): 721~726 (in Chinese with English abstract).

    • Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Cretaceous transportation of eastern Sichuan arcuate fold belt in three dimensions: Insights from AFT analysis. Chinese Journal of Geophysics, 55(5): 1662~1673 (in Chinese with English abstract).

    • Wang Xiangzeng, Hao Jin, Jiang Zhenxue, Guo Chao, Xing Jinyan, Li Zhuo, Tang Xianglu. 2015. Influencing factors and distributions of the oil dissolved shale gas content of member Chang 7 shale in Xiasiwan area, Ordos basin. Natural Gas Geoscience, 26(4): 744~753 (in Chinese with English abstract).

    • Wang Xiaomei, Zhang Shuichang, Wang Huajian, Su Jin, He Kun, Wang Yu, Wang Xiaoqi. 2017. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China. Petroleum Exploration and Development, 44(1): 32~39 (in Chinese with English abstract).

    • Wei Xiangfeng, Liu Zhujiang, Wang Qiang, Wei Fubin, Yuan Tao. 2020. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan basin. Natural Gas Geoscience, 31(8): 1041~1051 (in Chinese with English abstract).

    • Wu Liangliang, Wang Peng, Geng Ansong. 2019. Later stage gas generation in shale gas systems based on pyrolysis in closed and semi-closed systems. International Journal of Coal Geology, 206: 80-90.

    • Xiao Xianming, Wei Qiang, Gai Haifeng, Li Tengfei, Wang Maolin, Pan Lei, Chen Ji, Tian Hui. 2015. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in South China. Petroleum Science, 12: 573~586.

    • Xiong Liang, Zhao Yong, Wei Limin, Pang Heqing, Ci Jianfa. 2023. Enrichment mechanisms and key exploration and development technologies of shale gas in Weirong marine shale gas field. Acta Petrolei Sinica, 44(8): 1365~1381 (in Chinese with English abstract).

    • Yang Shengyu, Horsfield B. 2016a. Some predicted effects of minerals on the generation of petroleum in nature. Energy & Fuels, 30: 6677~6687.

    • Yang Shengyu, Horsfield B, Mahlstedt N, Stephenson M, Konitzer S. 2016b. On the primary and secondary petroleum generating characteristics of the Bowland Shale, northern England. Journal of the Geological Society, 173: 292~305.

    • Yang Shengyu, Schulz H M, Horsfield B, Schovsbo N H, Grice K, Zhang Jinchuan. 2020. Geological alteration of organic macromolecules by irradiation: Implication for organic matter occurrence on Mars. Geology, 48: 713~717.

    • Yao Chengpeng, Fu Haijiao, Ma Yingzhe, Yan Detian, Wang Hu, Li Yueguo, Wang Jiawei. 2022. Development characteristics of deep shale fractured veins and vein forming fluid activities in Luzhou block. Earth Science, 47(5): 1684~1693 (in Chinese with English abstract).

    • Zhang Guangrong, Nie Haikuan, Tang Xuan, Zhang Peixian, Peng Yongmin. 2021. Evaluation of shale gas preservation conditions based on formation water index: A case study of Wufeng-Longmaxi Formation in southeastern Chongqing. Reservoir Evaluation and Development, 11(1): 47~55 (in Chinese with English abstract).

    • Zhang Hui, Liu Yuewen, Wei Xiangfeng. 2018. Anatomy of typical shale gas wells in different regions of the complex structure surrounding Jiaoshiba. Mine Engineering, 6(3): 183~198 (in Chinese with English abstract).

    • Zhang Jinchuan, Jin Zhijun, Yuan Mingsheng. 2004. Reservoiring mechanism of shale gas and its distribution. Natural Gas Industry, 24(7): 15~18+131~132 (in Chinese with English abstract).

    • Zhang Jinchuan, Nie Haikuan, Xu Bo, Jiang Shengling, Zhang Peixian, Wang Zongyu. 2008. Geological condition of shale gas accumulation in Sichuan basin. Natural Gas Industry, 28(2): 151~156+179~180 (in Chinese with English abstract).

    • Zhang Junfeng, Xu Xingyou, Bai Jing, Chen Shan, Liu Weibin, Li Yaohua. 2022. Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu fault depression, Songliao basin, NE China. Petroleum Exploration and Development, 49(3): 440~452 (in Chinese with English abstract).

    • Zhang Li, Xiong Yongqiang, Chen Yuan, Li Yun, Jiang Wenmin, Lei Rui, Wu Zongyang. 2017. Mechanisms of shale gas generation from typically organic-rich marine shales. Earth Science, 42(7): 1092~1106 (in Chinese with English abstract).

    • Zhao Wenzhi, Zhang Shuichang, He Kun, Zeng Hongliu, Hu Guoyi, Zhang Bin, Wang Zhaoyun, Li Yongxin. 2019. Origin of conventional and shale gas in Sinian-lower Paleozoic strata in the Sichuan basin: Relayed gas generation from liquid hydrocarbon cracking. AAPG Bulletin, 103: 1265~1296.

    • Zhao Wenzhi, Wang Darui, Zhao Xia. 2021. Continental shale oil revolution in China. Petroleum Knowledge, (4): 14~15 (in Chinese with English abstract).

    • Zhu Guangyou, Zhao Kun, Li Tingting, Fu Xiaodong, Zhang Zhiyao, Chen Zhiyong, Wang Pengju. 2020. Sedimentary environment, development model and distribution prediction of Lower Cambrian source rocks in South China. Acta Petrolei Sinica, 41: 1567~1586 (in Chinese with English abstract).

    • Zou Caineng, Dong Dazhong, Wang Shejiao, Li Jianzhong, Li Xinjing, Wang Yuman, Li Denghua, Cheng Keming. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641~653 (in Chinese with English abstract).

    • Zou Caineng, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Wang Shufang, Guan Quanzhong, Zhang Chenchen, Wang Hongyan, Liu Honglin, Bai Wenhua, Liang Feng, Lin Wen, Zhao Qun, Liu Dexun, Yang Zhi, Liang Pingping, Sun Shasha, Qiu Zhen. 2015. Shale gas in China: Characteristics, challenges and prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689~701 (in Chinese with English abstract).

    • Zou Caineng, Pan Songqi, Jing Zhenhua, Gao Jinliang, Yang Zhi, Wu Songtao, Zhao Qun. 2020. Shale oil and gas revolution and its impact. Acta Petrolei Sinica, 41(1): 1~12 (in Chinese with English abstract).

    • 蔡进功, 宋明水, 卢龙飞, 包于进, 丁飞, 徐金鲤. 2013. 烃源岩中有机黏粒复合体——天然的生烃母质. 海洋地质与第四纪地质, 33(3): 123~131.

    • 陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 2011. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义. 石油学报, 32(5): 775~782.

    • 崔静. 2022. 涪陵气田中部气层井压裂工艺适应性评价. 中国石油大学胜利学院学报, 36(3): 60~65.

    • 段国彬, 陈朝刚, 余平, 赵卫军, 刘斌, 黄卫东. 2020. 渝西区块深层页岩气成藏条件研究. 四川地质学报, 40(3): 402~405.

    • 方志雄. 2019. 中国南方常压页岩气勘探开发面临的挑战及对策. 油气藏评价与开发, 9(5): 1~13.

    • 高键, 何生, 易积正. 2015. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义. 石油与天然气地质, 36(3): 472~480.

    • 高键, 李慧莉, 何治亮, 李双建, 刘光祥, 袁玉松, 李英强, 李天义, 何生. 2022. 渝东彭水地区常压页岩气压力演化与富集保存. 天然气工业, 42(8): 124~135.

    • 郭彤楼, 张汉荣. 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 8~36.

    • 郭旭升. 2014. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识. 地质学报, 88(7): 1209~1218.

    • 郭旭升, 李宇平, 腾格尔, 王强, 袁桃, 申宝剑, 马中良, 魏富彬. 2020. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨. 石油勘探与开发, 47(1): 193~201.

    • 郭旭升, 蔡勋育, 刘金连, 刘超英, 程喆, 高波, 石磊. 2021. 中国石化“十三五”天然气勘探进展与前景展望. 天然气工业, 41(8): 12~22.

    • 郭旭升, 腾格尔, 魏祥峰, 俞凌杰, 陆现彩, 孙磊, 魏富彬. 2022a. 四川盆地深层海相页岩气赋存机理与勘探潜力. 石油学报, 43(4): 453~468.

    • 郭旭升, 赵永强, 申宝剑, 魏祥峰, 卢龙飞, 潘安阳, 李宇平. 2022b. 中国南方海相页岩气勘探理论: 回顾与展望. 地质学报, 96(1): 172~182.

    • 何希鹏, 高玉巧, 唐显春, 张培先, 何贵松. 2017. 渝东南地区常压页岩气富集主控因素分析. 天然气地球科学, 28(4): 654~664.

    • 何治亮, 胡宗全, 聂海宽, 李双建, 许锦. 2017. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路. 天然气地球科学, 28(5): 724~733.

    • 何治亮, 聂海宽, 胡东风, 蒋廷学, 王濡岳, 张钰莹, 张光荣, 卢志远. 2020a. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 41(4): 379~391.

    • 黄长兵, 张峰, 李顺平, 杨震, 张雪锐, 胡泊, 童守强. 2020. 页岩气层内运移机理分析及应用. 科学技术与工程, 20(17): 6752~6759.

    • 贾承造. 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发, 44(1): 1~11.

    • 贾承造, 庞雄奇, 宋岩. 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437~452.

    • 姜振学, 宋岩, 唐相路, 李卓, 王幸蒙, 王国臻, 薛子鑫, 李鑫, 张昆, 常佳琦, 仇恒远. 2020. 中国南方海相页岩气差异富集的控制因素. 石油勘探与开发, 47(3): 617~628.

    • 蒋恕, 张天宇, 郭彤楼, 何希鹏, 高玉巧, 薛冈, 张培先, 陈国辉. 2023. 川东南下志留统与Appalachian泥盆系典型常压页岩气藏富集特征对比. 地球科学, 48: 77~91.

    • 金之钧. 2019. 页岩革命及其意义. 经济导刊, (10): 49~52.

    • 金之钧, 张一伟, 王捷. 2003. 油气成藏机理与分布规律. 北京: 石油工业出版社.

    • 金之钧, 袁玉松, 刘全有, 沃玉进. 2012. J3-K1构造事件对南方海相源盖成藏要素的控制作用. 中国科学: 地球科学, 42(12): 1791~1801.

    • 金之钧, 白振瑞, 高波, 黎茂稳. 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451~458.

    • 金之钧, 张金川, 唐玄. 2021. 非常规天然气成藏体系. 天然气工业, 41(8): 58~68.

    • 李东晖, 刘光祥, 聂海宽, 胡建国, 陈刚, 李倩文. 2019. 焦石坝背斜上部气层开发特征及影响因素分析. 地球科学, 44(11): 3653~3661.

    • 李剑, 严启团, 张英, 柳广弟, 王晓波. 2007. 柴达木盆地三湖地区第四系生物气盖层封闭机理的特殊性. 中国科学(D辑: 地球科学), 37(S2): 36~42.

    • 李明诚. 2000. 石油与天然气运移研究综述. 石油勘探与开发, (4): 3~10+109~117.

    • 李明诚. 2004. 石油与天然气运移. 北京: 石油工业出版社.

    • 李沛. 2021. 页岩润湿性及其对甲烷吸附的控制机理——以南华北盆地山西-太原组页岩为例. 中国地质大学(北京)博士学位论文.

    • 李双建, 肖开华, 汪新伟, 张荣强, 沃玉进, 周雁, 蔡立国. 2008. 南方志留系碎屑矿物热年代学分析及其地质意义. 地质学报, 82(8): 1068~1076.

    • 李相方, 冯东, 张涛, 孙政, 何敏侠, 刘庆, 刘文远, 赵文, 李靖. 2020. 毛细管力在非常规油气藏开发中的作用及应用. 石油学报, 41(12): 1719~1733.

    • 刘树根, 邓宾, 钟勇, 冉波, 雍自权, 孙玮, 杨迪, 姜磊, 叶玥豪. 2016. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 23(1): 11~28.

    • 刘文平, 周政, 吴娟, 罗超, 吴伟, 姜磊, 焦堃, 叶玥豪, 邓宾. 2020. 川南盆地长宁页岩气田五峰组-龙马溪组成藏动力学过程及其意义. 南京大学学报(自然科学), 56(3): 393~404.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161~174.

    • 聂海宽. 2010. 页岩气聚集机理及其应用. 中国地质大学(北京) 博士学位论文.

    • 聂海宽, 徐波, 李雪超. 2007. 流体排驱压力差异性实验研究. 石油实验地质, 29(5): 531~534.

    • 聂海宽, 唐玄, 边瑞康. 2009. 页岩气成藏控制因素及中国南方页岩气发育有利区预测. 石油学报, 30(4): 484~491.

    • 聂海宽, 张金川, 薛会, 龙鹏宇, 王广源. 2010a. 油气成藏及分布序列的连续聚集和非连续聚集. 天然气工业, 30(9): 9~14+117~118.

    • 聂海宽, 张金川. 2012a. 页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例. 地质学报, 86(2): 349~361.

    • 聂海宽, 包书景, 高波, 边瑞康, 张培先, 武晓玲, 叶欣, 陈新军. 2012b. 四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 19(3): 280~294.

    • 聂海宽, 金之钧, 边瑞康, 杜伟. 2016a. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源-盖控藏”富集. 石油学报, 37(5): 557~571.

    • 聂海宽, 汪虎, 何治亮, 王濡岳, 张培先, 彭勇民. 2019. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 40(2): 131~143+164.

    • 聂海宽, 何治亮, 刘光祥, 杜伟, 王濡岳, 张光荣. 2020c. 四川盆地五峰组—龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31~41.

    • 聂海宽, 李沛, 党伟, 丁江辉, 孙川翔, 刘秘, 王进, 杜伟, 张培先, 李东晖, 苏海琨. 2022a. 四川盆地及周缘奥陶系-志留系深层页岩气富集特征与勘探方向. 石油勘探与开发, 49(4): 648~659.

    • 聂海宽, 张光荣, 李沛, 丁江辉, 党伟, 孙川翔, 张培先, 王进, 杨超, 李鹏, 王鹏威, 苏海琨. 2022b. 页岩有机孔研究现状和展望. 石油学报, 43(12): 1770~1787.

    • 彭平安, 贾承造. 2021. 深层烃源演化与原生轻质油/凝析油气资源潜力. 石油学报, 42(12): 1543~1555.

    • 秦建中, 申宝剑, 腾格尔, 郑伦举, 陶国亮, 付小东, 张玲珑. 2013. 不同类型优质烃源岩生排油气模式. 石油实验地质, 35(2): 179~186.

    • 邱楠生, 冯乾乾, 腾格尔, 申宝剑, 马中良, 俞凌杰, 曹爱强. 2020. 川东南丁山地区燕山期—喜马拉雅期差异构造-热演化与页岩气保存. 石油学报, 41(12): 1610~1622.

    • 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 2020. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学, 31(2): 163~175.

    • 田辉, 肖贤明, 李贤庆, 肖中尧, 申家贵, 刘德汉. 2007. 海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究. 地球化学, 36(1): 71~77.

    • 王红岩, 施振生, 孙莎莎. 2021. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征. 石油勘探与开发, 48(5): 879~890.

    • 王明艳, 郭建华, 旷理雄, 朱锐. 2010. 湘中坳陷涟源凹陷烃源岩油气地球化学特征. 天然气地球科学, 21(5): 721~726.

    • 王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.

    • 王香增, 郝进, 姜振学, 郭超, 邢金艳, 李卓, 唐相路. 2015. 鄂尔多斯盆地下寺湾地区长7段油溶相页岩气量影响因素及其分布特征. 天然气地球科学, 26(4): 744~753.

    • 王晓梅, 张水昌, 王华建, 苏劲, 何坤, 王宇, 王晓琦. 2017. 烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例. 石油勘探与开发, 44(1): 32~39.

    • 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 2020. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考. 天然气地球科学, 31(8): 1041~1051.

    • 熊亮, 赵勇, 魏力民, 庞河清, 慈建发. 2023. 威荣海相页岩气田页岩气富集机理及勘探开发关键技术. 石油学报, 44(8): 1365~1381.

    • 姚程鹏, 伏海蛟, 马英哲, 严德天, 汪虎, 李跃国, 王佳伟. 2022. 泸州区块深层页岩裂缝脉体发育特征及成脉流体活动. 地球科学, 47(5): 1684~1693.

    • 张光荣, 聂海宽, 唐玄, 张培先, 彭勇民. 2021. 基于地层水指标的页岩气保存条件评价——以渝东南地区五峰组—龙马溪组页岩气藏为例. 油气藏评价与开发, 11(1): 47~55.

    • 张晖, 刘月雯, 魏祥峰. 2018. 焦石坝外围构造复杂区不同地区页岩气典型井解剖. 矿山工程, 6(3): 183~198.

    • 张金川, 金之钧, 袁明生. 2004. 页岩气成藏机理和分布. 天然气工业, 24(7): 15~18+131~132.

    • 张金川, 聂海宽, 徐波, 姜生玲, 张培先, 汪宗余. 2008. 四川盆地页岩气成藏地质条件. 天然气工业, 28(2): 151~156+179~180.

    • 张君峰, 徐兴友, 白静, 陈珊, 刘卫彬, 李耀华. 2022. 松辽盆地梨树断陷白垩系沙河子组陆相页岩气形成条件与勘探突破. 石油勘探与开发, 49(3): 440~452.

    • 张莉, 熊永强, 陈媛, 李芸, 蒋文敏, 雷锐, 吴宗洋. 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092~1106.

    • 赵文智, 王大锐, 赵霞. 2021. 中国陆相页岩油革命. 石油知识, (4): 14~15.

    • 朱光有, 赵坤, 李婷婷, 付小东, 张志遥, 陈志勇, 王鹏举. 2020. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测. 石油学报, 41: 1567~1586.

    • 邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641~653.

    • 邹才能, 董大忠, 王玉满, 李新景, 黄金亮, 王淑芳, 管全中, 张晨晨, 王红岩, 刘洪林, 拜文华, 梁峰, 吝文, 赵群, 刘德勋, 杨智, 梁萍萍, 孙莎莎, 邱振. 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689~701.

    • 邹才能, 潘松圻, 荆振华, 高金亮, 杨智, 吴松涛, 赵群. 2020. 页岩油气革命及影响. 石油学报, 41(1): 1~12.

  • 参考文献

    • Bowker K A. 2007. Barnett shale gas production, Fort Worth basin: Issues and discussion. AAPG Bulletin, 91: 523~533.

    • Cai Jingong, Song Mingshui, Lu Longfei, Bao Yujin, Ding Fei, Xu Jinli. 2013. Organo-clay complexes in source rocks: A natural material for hydrocarbon generation. Marine Geology & Quaternary Geology, 33(3): 123~131 (in Chinese with English abstract).

    • Chen Shangbin, Zhu Yanming, Wang Hongyan, Liu Honglin, Wei Wei, Fang Junhua. 2011. Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan basin. Acta Petrolei Sinica, 32(5): 775~782 (in Chinese with English abstract).

    • Cooles G P, Mackenzie A S, Quigley T M. 1986. Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 10: 235~245.

    • Cui Jing. 2022. Evaluation of the adaptability of fracturing technology for wells in the central gas reservoir of Fuling gas field. Journal of Shengli College China University of Petroleum, 36(3): 60~65 (in Chinese with English abstract).

    • Curtis J B. 2002. Fractured shale-gas systems. AAPG Bulletin, 86: 1921~1938.

    • Dang Wei, Zhang Jinchuan, Wei Xiaoliang, Tang Xuan, Chen Qian, Li Zhongming, Zhang Muchen, Liu Jing. 2017. Geological controls on methane adsorption capacity of Lower Permian transitional black shales in the southern North China basin, Central China: Experimental results and geological implications. Journal of Petroleum Science and Engineering, 152: 456~470.

    • Dang Wei, Zhang Jinchuan, Nie Haikuan, Wang Fengqin, Tang Xuan, Wu Nan, Chen Qian, Wei Xiaoliang, Wang Ruijing. 2020. Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chemical Engineering Journal, 383: 123191.

    • Duan Guobin, Chen Chaogang, Yu Ping, Zhao Weijun, Liu Bin, Huang Weidong. 2020. Study of reservoir forming conditions of deep shale gas in the West Chongqing block. Acta Geologica Sichuan, 40(3): 402~405 (in Chinese with English abstract).

    • Fang Zhixiong. 2019. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China. Reservoir Evaluation and Development, 9(5): 1~13.

    • Gao Jian, He Sheng, Yi Jizheng. 2015. Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance. Oil & Gas Geology, 36(3): 472~480 (in Chinese with English abstract).

    • Gao Jian, Zhang Jiankun, He Sheng, Zhao Jianxin, He Zhiliang, Wo Yujin, Feng Yuexing, Li Wen. 2019. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: Implications for shale gas accumulation. Marine and Petroleum Geology, 102: 844~859.

    • Gao Jian, Li Huili, He Zhiliang, Li Shuangjian, Liu Guangxiang, Yuan Yusong, Li Yingqiang, Li Tianyi, He Sheng. 2022. Pressure evolution, enrichment and preservation of normal-pressure shale gas in the Pengshui area of eastern Chongqing. Natural Gas Industry, 42(8): 124~135 (in Chinese with English abstract).

    • Guo Tonglou, Zhang Hanrong. 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin. Petroleum Exploration and Development, 41(1): 8~36 (in Chinese with English abstract).

    • Guo Xusheng. 2014. Rules of two-factor enrichment for marine shale gas in southern China—Understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).

    • Guo Xusheng, Li Yuping, Tenger, Wang Qiang, Yuan Tao, Shen Baojian, Ma Zhongliang, Wei Fubin. 2020. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan basin, China. Petroleum Exploration and Development, 47(1): 193~201 (in Chinese with English abstract).

    • Guo Xusheng, Cai Xunyu, Liu Jinlian, Liu Chaoying, Cheng Zhe, Gao Bo, Shi Lei. 2021. Natural gas exploration progress of Sinopec during the 13th Five-Year Plan and prospect forecast during the 14th Five-Year Plan. Natural Gas Industry, 41(8): 12~22 (in Chinese with English abstract).

    • Guo Xusheng, Tenger, Wei Xiangfeng, Yu Lingjie, Lu Xiancai, Sun Lei, Wei Fubin. 2022a. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan basin. Acta Petrolei Sinica, 43(4): 453~468 (in Chinese with English abstract).

    • Guo Xusheng, Zhao Yongqiang, Shen Baojian, Wei Xiangfeng, Lu Longfei, Pan Anyang, Li Yuping. 2022b. Marine shale gas exploration theory in southern China: Review and prospects. Acta Geologica Sinica, 96(1): 172~182 (in Chinese with English abstract).

    • He Xipeng, Gao Yuqiao, Tang Xianchun, Zhang Peixian, He Guisong. 2017. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing. Natural Gas Geoscience, 28(4): 654~664 (in Chinese with English abstract).

    • He Zhiliang, Hu Zongquan, Nie Haikuan, Li Shuangjian, Xu Jin. 2017. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan basin and its evaluation of geological construction-transformation evolution sequence. Natural Gas Geoscience, 28(5): 724~733 (in Chinese with English abstract).

    • He Zhiliang, Nie Haikuan, Hu Dongfeng, Jiang Tingxue, Wang Ruyue, Zhang Yuying, Zhang Guangrong, Lu Zhiyuan. 2020a. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan basin and its periphery. Acta Petrolei Sinica, 41(4): 379~391 (in Chinese with English abstract).

    • He Zhiliang, Nie Haikuan, Li Shuangjian, Luo Jun, Wang Hu, Zhang Guangrong. 2020b. Differential enrichment of shale gas in upper Ordovician and lower Silurian controlled by the plate tectonics of the Middle-Upper Yangtze, South China. Marine and Petroleum Geology, 118: 104357.

    • Hedberg H D. 1974. Relation of methane generation to undercompacted shales, shale diapirs, and mud volcanoes. AAPG Bulletin, 58: 661~673.

    • Huang Changbing, Zhang Feng, Li Shunping, Yang Zhen, Zhang Xuerui, Hu Bo, Tong Shouqiang. 2020. Analysis and application of gas migration mechanism within shale. Science Technology and Engineering, 20(17): 6752~6759 (in Chinese with English abstract).

    • Hunt J M. 1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 74: 1~12.

    • Jia Chengzao. 2017. Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory. Petroleum Exploration and Development, 44(1): 1~11 (in Chinese with English abstract).

    • Jia Chengzao, Pang Xiongqi, Song Yan. 2021. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces. Petroleum Exploration and Development, 48(3): 437~452 (in Chinese with English abstract).

    • Jiang Shu, Zhang Tianyu, Guo Tonglou, He Xipeng, Gao Yuqiao, Xue Gang, Zhang Peixian, Chen Guohui. 2023. Comparison of enrichment characteristics of typical normally-pressured shale gas reservoirs in Lower Silurian shale in southeastern Sichuan basin and Devonian shales in Appalachian basin. Earth Science, 48: 77~91 (in Chinese with English abstract).

    • Jiang Zhenxue, Song Yan, Tang Xianglu, Li Zhuo, Wang Xingmeng, Wang Guozhen, Xue Zixin, Li Xin, Zhang Kun, Chang Jiaqi, Qiu Hengyuan. 2020. Controlling factors of marine shale gas differential enrichment in southern China. Petroleum Exploration and Development, 47(3): 617~628 (in Chinese with English abstract).

    • Jin Zhijun. 2019. Shale revolution and its significance. Economic Herald, (10): 49~52 (in Chinese with English abstract).

    • Jin Zhijun, Zhang Yiwei, Wang Jie. 2003. The Accumulation Mechanism and Distribution Regularity of Oil and Gas. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Jin Zhijun, Yuan Yusong, Liu Quanyou, Wo Yujin. 2012. Controls of Late Jurassic-Early Cretaceous tectonic event on source rocks and seals in marine sequences, South China. Science China: Earth Sciences, 42(12): 1791~1801 (in Chinese with English abstract).

    • Jin Zhijun, Nie Haikuan, Liu Quanyou, Zhao Jianhua, Jiang Tao. 2018. Source and seal coupling mechanism for shale gas enrichment in upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan basin and its periphery. Marine and Petroleum Geology, 97: 78~93.

    • Jin Zhijun, Bai Zhenrui, Gao Bo, Li Maowen. 2019. Has China ushered in the shale oil and gas revolution? Oil & Gas Geology, 40(3): 451~458 (in Chinese with English abstract).

    • Jin Zhijun, Zhang Jinchuan, Tang Xuan. 2021. Unconventional natural gas accumulation system. Natural Gas Industry, 41(8): 58~68 (in Chinese with English abstract).

    • Keller J U, Staudt R. 2005. Gas adsorption equilibria: Experimental methods and adsorptive isotherms. Springer Science & Business Media.

    • Knapp L J, Ardakani O H, Uchida S, Nanjo T, Otomo C, Hattori T. 2020. The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada. International Journal of Coal Geology, 227: 103525.

    • Králik M. 2014. Adsorption, chemisorption, and catalysis. Chemical Papers, 68: 1625~1638.

    • Li Donghui, Liu Guangxiang, Nie Haikuan, Hu Jianguo, Chen Gang, Li Qianwen. 2019. Development characteristics and influencing factors of upper gas reservoir in Jiaoshiba anticline. Earth Science, 44(11): 3653~3661 (in Chinese with English abstract).

    • Li Jian, Yan Qituan, Zhang Ying, Liu Guangdi, Wang Xiaobo. 2007. The particularity of sealing mechanism of Quaternary biogas cap in Sanhu area of the Qaidam basin. Science in China, 37(SII): 36~42 (in Chinese with English abstract).

    • Li Mingcheng. 2000. A review of oil and gas migration. Petroleum Exploration and Development, (4): 3~10+109~117 (in Chinese with English abstract).

    • Li Mingcheng. 2004. Oil and Gas Migration. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Li Pei. 2021. Wettability of shale and its effect on methane adsorption: A case study of Shanxi and Taiyuan formations in southern North China basin. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Li Shuangjian, Xiao Kaihua, Wang Xinwei, Zhang Rongqiang, Wo Yujin, Zhou Yan, Cai Liguo. 2008. Thermochronology of detrital minerals in the Silurian strata from southern China and its geological implications. Acta Geologica Sinica, 82(8): 1068~1076 (in Chinese with English abstract).

    • Li Shuangjian, Li Yingqiang, He Zhiliang, Chen Ke, Zhou Yan, Yan Detian. 2020. Differential deformation on two sides of Qiyueshan fault along the eastern margin of Sichuan basin, China, and its influence on shale gas preservation. Marine and Petroleum Geology, 121: 104602.

    • Li Xiangfang, Feng Dong, Zhang Tao, Sun Zheng, He Minxia, Liu Qing, Liu Wenyuan, Zhao Wen, Li Jing. 2020. The role and its application of capillary force in the development of unconventional oil and gas reservoirs and its application. Acta Petrolei Sinica, 41(12): 1719~1733 (in Chinese with English abstract).

    • Liu Quanyou, Jin Zhijun, Wang Xiaofeng, Yi Jizheng, Meng Qingqiang, Wu Xiaoqi, Gao Bo, Nie Haikuan, Zhu Dongya. 2018. Distinguishing kerogen and oil cracked shale gas using H, C-isotopic fractionation of alkane gases. Marine and Petroleum Geology, 91: 350~362.

    • Liu Shugen, Deng Bin, Zhong Yong, Ran Bo, Yong Ziquan, Sun Wei, Yang Di, Jiang Lei, Ye Yuehao. 2016. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan basin and its periphery. Earth Science Frontiers, 23(1): 11~28 (in Chinese with English abstract).

    • Liu Wenping, Zhou Zheng, Wu Juan, Luo Chao, Wu Wei, Jiang Lei, Jiao Kun, Ye Yuehao, Deng Bin. 2020. Hydrocarbon generation and shale gas accumulation in the Wufeng-Longmaxi formations, Changning shale-gas field, southern Sichuan basin. Journal of Nanjing University (Natural Sciences), 56(3): 393~404 (in Chinese with English abstract).

    • Loucks R G, Ruppel S C. 2007. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worthbasin, Texas. AAPG Bulletin, 91: 579~601.

    • Ma Zhongliang, Tan Jingqiang, Zheng Lunju, Shen Baojian, Wang Zhanghu, Shahzad A, Jan I U, Schulz H M. 2021. Evaluating gas generation and preservation of the Wufeng-Longmaxi Formation shale in southeastern Sichuan basin, China: Implications from semiclosed hydrous pyrolysis. Marine and Petroleum Geology, 129: 105102.

    • Martini A M, Walter L M, Ku T C W, Budai J M, McIntosh J C, Schoell M. 2003. Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG Bulletin, 87: 1355~1375.

    • Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoicintra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science, 35(2): 161~174 (in Chinese with English abstract).

    • Metwally Y M, Chesnokov E M. 2012. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale. Applied Clay Science, 55: 138~150.

    • Milliken K L, Ergene S M, Ozkan A. 2016. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339: 273~288.

    • Milliken K L, Zhang Tongwei, Chen Jianping, Ni Yunyan. 2021. Mineral diagenetic control of expulsion efficiency in organic-rich mudrocks, Bakken Formation (Devonian-Mississippian), Willistonbasin, North Dakota, U. S. A. Marine and Petroleum Geology, 127: 104869.

    • Nie Haikuan. 2010. Shale gas accumulation mechanism and its application. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Nie Haikuan, Xu Bo, Li Xuechao. 2007. Experimental study of the difference between fluid entry pressures. Petroleum Geology & Experiment, 29(5): 531~534 (in Chinese with English abstract).

    • Nie Haikuan, Tang Xuan, Bian Ruikang. 2009. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China. Acta Petrolei Sinica, 30(4): 484~491 (in Chinese with English abstract).

    • Nie Haikuan, Zhang Jinchuan, Xue Hui, Long Pengyu, Wang Guangyuan. 2010a. Continuous and discontinuous accumulations in hydrocarbon pooling and distribution sequence. Natural Gas Industry, 30(9): 9~14+117~118 (in Chinese with English abstract).

    • Nie Haikuan, Zhang Jinchuan. 2010b. Control effect of fluid entry pressure on hydrocarbon accumulation. Journal of Central South University of Technology, 17: 1395~1402.

    • Nie Haikuan, Zhang Jinchuan. 2012a. Shale gas accumulation conditions and gas content calculation: A case study of Sichuan basin and its periphery in the Lower Paleozoic. Acta Geologica Sinica, 86(2): 349~361 (in Chinese with English abstract).

    • Nie Haikuan, Bao Shujing, Gao Bo, Bian Ruikang, Zhang Peixian, Wu Xiaoling, Ye Xin, Chen Xinjun. 2012b. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan basin and its periphery. Earth Science Frontiers, 19(3): 280~294 (in Chinese with English abstract).

    • Nie Haikuan, Jin Zhijun, Bian Ruikang, Du Wei. 2016a. The “source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan basin and its periphery. Acta Petrolei Sinica, 37(5): 557~571 (in Chinese with English abstract).

    • Nie Haikuan, Jin Zhijun. 2016b. Source rock and cap rock controls on the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation shale gas accumulation in the Sichuan basin and its peripheral areas. Acta Geologica Sinica (English Edition), 90: 1059~1060.

    • Nie Haikuan, Wang Hu, He Zhiliang, Wang Ruyue, Zhang Peixian, Peng Yongmin. 2019. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: A case study of Wufeng Formation-Longmaxi Formation in Sichuan basin and its periphery. Acta Petrolei Sinica, 40(2): 131~143+164 (in Chinese with English abstract).

    • Nie Haikuan, He Zhiliang, Wang Ruyue, Zhang Guangrong, Chen Qian, Li Donghui, Lu Zhiyuan, Sun Chuanxiang. 2020a. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi Formations, Sichuan basin, South China: Implications for shale gas preservation and enrichment. Journal of Petroleum Science and Engineering, 193: 107329.

    • Nie Haikuan, Li Donghui, Liu Guangxiang, Lu Zhiyuan, Wang Hu, Wang Ruyue, Zhang Guangrong. 2020b. An overview of the geology and production of the Fuling shale gas field, Sichuan basin, China. Energy Geoscience, 1: 147~164.

    • Nie Haikuan, He Zhiliang, Liu Guangxiang, Du Wei, Wang Ruyue, Zhang Guangrong. 2020c. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan basin. Natural Gas Industry, 40(6): 31~41 (in Chinese with English abstract).

    • Nie Haikuan, Li Pei, Dang Wei, Ding Jianghui, Sun Chuanxiang, Liu Mi, Wang Jin, Du Wei, Zhang Peixian, Li Donghui, Su Haikun. 2022a. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan basin and its surrounding areas, China. Petroleum Exploration and Development, 49(4): 648~659 (in Chinese with English abstract).

    • Nie Haikuan, Zhang Guangrong, Li Pei, Ding Jianghui, Dang Wei, Sun Chuanxiang, Zhang Peixian, Wang Jin, Yang Chao, Li Peng, Wang Pengwei, Su Haikun. 2022b. Research status and prospect on organic matter pores in shale. Acta Petrolei Sinica, 43(12): 1770~1787 (in Chinese with English abstract).

    • Nie Haikuan, Sun Chuanxiang, Li Pei, Jin Zhijun, Liu Quanyou, Bao Hanyong, Shen Baojian, Dang Wei. 2023a. Carbon isotope evidence for shale gas preservation conditions and large methane release over million years: A case study of shale gas reservoirs of Wufeng and Longmaxi Formations in the Sichuan basin. Geoscience Frontiers, 14: 101642.

    • Nie Haikuan, Jin Zhijun, Li Pei, Katz J B, Dang Wei, Liu Quanyou, Ding Jianghui, Jiang Shu, Li Donghui. 2023b. Deep shale gas in the Ordovician-Silurian Wufeng-Longmaxi formations of the Sichuan basin, SW China: Insights from reservoir characteristics, preservation conditions and development strategies. Journal of Asian Earth Sciences, 244: 105521.

    • Peng Ping'an, Jia Chengzao. 2021. Evolution of deep source rock and resource potential of primary light oil and condensate. Acta Petrolei Sinica, 42(12): 1543~1555 (in Chinese with English abstract).

    • Qin Jianzhong, Shen Baojian, Tenger, Zheng Lunju, Tao Guoliang, Fu Xiaodong, Zhang Linglong. 2013. Hydrocarbon generation and expulsion pattern of different types of excellent source rocks. Petroleum Geology & Experiment, 35(2): 179~186 (in Chinese with English abstract).

    • Qiu Nansheng, Feng Qianqian, Tenger, Shen Baojian, Ma Zhongliang, Yu Lingjie, Cao Aiqiang. 2020. Yanshanian-Himalayan differential tectono-thermal evolution and shale gas preservation in Dingshan area, southeastern Sichuan basin. Acta Petrolei Sinica, 41(12): 1610~1622 (in Chinese with English abstract).

    • Qiu Zhen, Zou Caineng, Wang Hongyan, Dong Dazhong, Lu Bin, Chen Zhenhong, Liu Dexun, Li Guizhong, Liu Hanlin, He Jianglin, Wei Lin. 2020. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China. Natural Gas Geoscience, 31(2): 163~175 (in Chinese with English abstract)

    • Rahman H M, Kennedy M, Lohr S, Dewhurst D N, Sherwood N, Yang Shengyu, Horsfield B. 2018. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis. Geochimica et Cosmochimica Acta, 220: 429~448.

    • Schlegel M E, Zhou Zheng, McIntosh J C, Ballentine C J, Person M A. 2011. Constraining the timing of microbial methane generation in an organic-rich shale using noble gases, Illinoisbasin, USA. Chemical Geology, 287: 27~40.

    • Schulz H M, Yang Shengyu, Schovsbo N H, Rybacki E, Ghanizadeh A, Bernard S, Mahlstedt N, Kruger M, Amann-Hildebrandt A, Krooss B M, Meier T, Reinicke A. 2021. The Furongian to Lower Ordovician Alum Shale Formation in conventional and unconventional petroleum systems in the Balticbasin—A review. Earth-Science Reviews, 218.

    • Thommes M, Cychosz K A. 2014. Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption, 20: 233~250.

    • Tian Hui, Xiao Xianming, Li Xianqing, Xiao Zhongyao, Shen Jiagui, Liu Dehan. 2007. Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases. Geochimica, 36(1): 71~77 (in Chinese with English abstract).

    • Wang Hongyan, Shi Zhensheng, Sun Shasha. 2021. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan basin and surrounding areas, China. Petroleum Exploration and Development, 48(5): 879~890 (in Chinese with English abstract).

    • Wang Mingyan, Guo Jianhua, Kuang Lixiong, Zhu Rui. 2010. Geochemical characteristics and evolution of the hydrocarbon source rocks from Lianyuan depression in the middle of Hunan Province. Natural Gas Geoscience, 21(5): 721~726 (in Chinese with English abstract).

    • Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Cretaceous transportation of eastern Sichuan arcuate fold belt in three dimensions: Insights from AFT analysis. Chinese Journal of Geophysics, 55(5): 1662~1673 (in Chinese with English abstract).

    • Wang Xiangzeng, Hao Jin, Jiang Zhenxue, Guo Chao, Xing Jinyan, Li Zhuo, Tang Xianglu. 2015. Influencing factors and distributions of the oil dissolved shale gas content of member Chang 7 shale in Xiasiwan area, Ordos basin. Natural Gas Geoscience, 26(4): 744~753 (in Chinese with English abstract).

    • Wang Xiaomei, Zhang Shuichang, Wang Huajian, Su Jin, He Kun, Wang Yu, Wang Xiaoqi. 2017. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China. Petroleum Exploration and Development, 44(1): 32~39 (in Chinese with English abstract).

    • Wei Xiangfeng, Liu Zhujiang, Wang Qiang, Wei Fubin, Yuan Tao. 2020. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan basin. Natural Gas Geoscience, 31(8): 1041~1051 (in Chinese with English abstract).

    • Wu Liangliang, Wang Peng, Geng Ansong. 2019. Later stage gas generation in shale gas systems based on pyrolysis in closed and semi-closed systems. International Journal of Coal Geology, 206: 80-90.

    • Xiao Xianming, Wei Qiang, Gai Haifeng, Li Tengfei, Wang Maolin, Pan Lei, Chen Ji, Tian Hui. 2015. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in South China. Petroleum Science, 12: 573~586.

    • Xiong Liang, Zhao Yong, Wei Limin, Pang Heqing, Ci Jianfa. 2023. Enrichment mechanisms and key exploration and development technologies of shale gas in Weirong marine shale gas field. Acta Petrolei Sinica, 44(8): 1365~1381 (in Chinese with English abstract).

    • Yang Shengyu, Horsfield B. 2016a. Some predicted effects of minerals on the generation of petroleum in nature. Energy & Fuels, 30: 6677~6687.

    • Yang Shengyu, Horsfield B, Mahlstedt N, Stephenson M, Konitzer S. 2016b. On the primary and secondary petroleum generating characteristics of the Bowland Shale, northern England. Journal of the Geological Society, 173: 292~305.

    • Yang Shengyu, Schulz H M, Horsfield B, Schovsbo N H, Grice K, Zhang Jinchuan. 2020. Geological alteration of organic macromolecules by irradiation: Implication for organic matter occurrence on Mars. Geology, 48: 713~717.

    • Yao Chengpeng, Fu Haijiao, Ma Yingzhe, Yan Detian, Wang Hu, Li Yueguo, Wang Jiawei. 2022. Development characteristics of deep shale fractured veins and vein forming fluid activities in Luzhou block. Earth Science, 47(5): 1684~1693 (in Chinese with English abstract).

    • Zhang Guangrong, Nie Haikuan, Tang Xuan, Zhang Peixian, Peng Yongmin. 2021. Evaluation of shale gas preservation conditions based on formation water index: A case study of Wufeng-Longmaxi Formation in southeastern Chongqing. Reservoir Evaluation and Development, 11(1): 47~55 (in Chinese with English abstract).

    • Zhang Hui, Liu Yuewen, Wei Xiangfeng. 2018. Anatomy of typical shale gas wells in different regions of the complex structure surrounding Jiaoshiba. Mine Engineering, 6(3): 183~198 (in Chinese with English abstract).

    • Zhang Jinchuan, Jin Zhijun, Yuan Mingsheng. 2004. Reservoiring mechanism of shale gas and its distribution. Natural Gas Industry, 24(7): 15~18+131~132 (in Chinese with English abstract).

    • Zhang Jinchuan, Nie Haikuan, Xu Bo, Jiang Shengling, Zhang Peixian, Wang Zongyu. 2008. Geological condition of shale gas accumulation in Sichuan basin. Natural Gas Industry, 28(2): 151~156+179~180 (in Chinese with English abstract).

    • Zhang Junfeng, Xu Xingyou, Bai Jing, Chen Shan, Liu Weibin, Li Yaohua. 2022. Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu fault depression, Songliao basin, NE China. Petroleum Exploration and Development, 49(3): 440~452 (in Chinese with English abstract).

    • Zhang Li, Xiong Yongqiang, Chen Yuan, Li Yun, Jiang Wenmin, Lei Rui, Wu Zongyang. 2017. Mechanisms of shale gas generation from typically organic-rich marine shales. Earth Science, 42(7): 1092~1106 (in Chinese with English abstract).

    • Zhao Wenzhi, Zhang Shuichang, He Kun, Zeng Hongliu, Hu Guoyi, Zhang Bin, Wang Zhaoyun, Li Yongxin. 2019. Origin of conventional and shale gas in Sinian-lower Paleozoic strata in the Sichuan basin: Relayed gas generation from liquid hydrocarbon cracking. AAPG Bulletin, 103: 1265~1296.

    • Zhao Wenzhi, Wang Darui, Zhao Xia. 2021. Continental shale oil revolution in China. Petroleum Knowledge, (4): 14~15 (in Chinese with English abstract).

    • Zhu Guangyou, Zhao Kun, Li Tingting, Fu Xiaodong, Zhang Zhiyao, Chen Zhiyong, Wang Pengju. 2020. Sedimentary environment, development model and distribution prediction of Lower Cambrian source rocks in South China. Acta Petrolei Sinica, 41: 1567~1586 (in Chinese with English abstract).

    • Zou Caineng, Dong Dazhong, Wang Shejiao, Li Jianzhong, Li Xinjing, Wang Yuman, Li Denghua, Cheng Keming. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641~653 (in Chinese with English abstract).

    • Zou Caineng, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Wang Shufang, Guan Quanzhong, Zhang Chenchen, Wang Hongyan, Liu Honglin, Bai Wenhua, Liang Feng, Lin Wen, Zhao Qun, Liu Dexun, Yang Zhi, Liang Pingping, Sun Shasha, Qiu Zhen. 2015. Shale gas in China: Characteristics, challenges and prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689~701 (in Chinese with English abstract).

    • Zou Caineng, Pan Songqi, Jing Zhenhua, Gao Jinliang, Yang Zhi, Wu Songtao, Zhao Qun. 2020. Shale oil and gas revolution and its impact. Acta Petrolei Sinica, 41(1): 1~12 (in Chinese with English abstract).

    • 蔡进功, 宋明水, 卢龙飞, 包于进, 丁飞, 徐金鲤. 2013. 烃源岩中有机黏粒复合体——天然的生烃母质. 海洋地质与第四纪地质, 33(3): 123~131.

    • 陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 2011. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义. 石油学报, 32(5): 775~782.

    • 崔静. 2022. 涪陵气田中部气层井压裂工艺适应性评价. 中国石油大学胜利学院学报, 36(3): 60~65.

    • 段国彬, 陈朝刚, 余平, 赵卫军, 刘斌, 黄卫东. 2020. 渝西区块深层页岩气成藏条件研究. 四川地质学报, 40(3): 402~405.

    • 方志雄. 2019. 中国南方常压页岩气勘探开发面临的挑战及对策. 油气藏评价与开发, 9(5): 1~13.

    • 高键, 何生, 易积正. 2015. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义. 石油与天然气地质, 36(3): 472~480.

    • 高键, 李慧莉, 何治亮, 李双建, 刘光祥, 袁玉松, 李英强, 李天义, 何生. 2022. 渝东彭水地区常压页岩气压力演化与富集保存. 天然气工业, 42(8): 124~135.

    • 郭彤楼, 张汉荣. 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 8~36.

    • 郭旭升. 2014. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识. 地质学报, 88(7): 1209~1218.

    • 郭旭升, 李宇平, 腾格尔, 王强, 袁桃, 申宝剑, 马中良, 魏富彬. 2020. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨. 石油勘探与开发, 47(1): 193~201.

    • 郭旭升, 蔡勋育, 刘金连, 刘超英, 程喆, 高波, 石磊. 2021. 中国石化“十三五”天然气勘探进展与前景展望. 天然气工业, 41(8): 12~22.

    • 郭旭升, 腾格尔, 魏祥峰, 俞凌杰, 陆现彩, 孙磊, 魏富彬. 2022a. 四川盆地深层海相页岩气赋存机理与勘探潜力. 石油学报, 43(4): 453~468.

    • 郭旭升, 赵永强, 申宝剑, 魏祥峰, 卢龙飞, 潘安阳, 李宇平. 2022b. 中国南方海相页岩气勘探理论: 回顾与展望. 地质学报, 96(1): 172~182.

    • 何希鹏, 高玉巧, 唐显春, 张培先, 何贵松. 2017. 渝东南地区常压页岩气富集主控因素分析. 天然气地球科学, 28(4): 654~664.

    • 何治亮, 胡宗全, 聂海宽, 李双建, 许锦. 2017. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路. 天然气地球科学, 28(5): 724~733.

    • 何治亮, 聂海宽, 胡东风, 蒋廷学, 王濡岳, 张钰莹, 张光荣, 卢志远. 2020a. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 41(4): 379~391.

    • 黄长兵, 张峰, 李顺平, 杨震, 张雪锐, 胡泊, 童守强. 2020. 页岩气层内运移机理分析及应用. 科学技术与工程, 20(17): 6752~6759.

    • 贾承造. 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发, 44(1): 1~11.

    • 贾承造, 庞雄奇, 宋岩. 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437~452.

    • 姜振学, 宋岩, 唐相路, 李卓, 王幸蒙, 王国臻, 薛子鑫, 李鑫, 张昆, 常佳琦, 仇恒远. 2020. 中国南方海相页岩气差异富集的控制因素. 石油勘探与开发, 47(3): 617~628.

    • 蒋恕, 张天宇, 郭彤楼, 何希鹏, 高玉巧, 薛冈, 张培先, 陈国辉. 2023. 川东南下志留统与Appalachian泥盆系典型常压页岩气藏富集特征对比. 地球科学, 48: 77~91.

    • 金之钧. 2019. 页岩革命及其意义. 经济导刊, (10): 49~52.

    • 金之钧, 张一伟, 王捷. 2003. 油气成藏机理与分布规律. 北京: 石油工业出版社.

    • 金之钧, 袁玉松, 刘全有, 沃玉进. 2012. J3-K1构造事件对南方海相源盖成藏要素的控制作用. 中国科学: 地球科学, 42(12): 1791~1801.

    • 金之钧, 白振瑞, 高波, 黎茂稳. 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451~458.

    • 金之钧, 张金川, 唐玄. 2021. 非常规天然气成藏体系. 天然气工业, 41(8): 58~68.

    • 李东晖, 刘光祥, 聂海宽, 胡建国, 陈刚, 李倩文. 2019. 焦石坝背斜上部气层开发特征及影响因素分析. 地球科学, 44(11): 3653~3661.

    • 李剑, 严启团, 张英, 柳广弟, 王晓波. 2007. 柴达木盆地三湖地区第四系生物气盖层封闭机理的特殊性. 中国科学(D辑: 地球科学), 37(S2): 36~42.

    • 李明诚. 2000. 石油与天然气运移研究综述. 石油勘探与开发, (4): 3~10+109~117.

    • 李明诚. 2004. 石油与天然气运移. 北京: 石油工业出版社.

    • 李沛. 2021. 页岩润湿性及其对甲烷吸附的控制机理——以南华北盆地山西-太原组页岩为例. 中国地质大学(北京)博士学位论文.

    • 李双建, 肖开华, 汪新伟, 张荣强, 沃玉进, 周雁, 蔡立国. 2008. 南方志留系碎屑矿物热年代学分析及其地质意义. 地质学报, 82(8): 1068~1076.

    • 李相方, 冯东, 张涛, 孙政, 何敏侠, 刘庆, 刘文远, 赵文, 李靖. 2020. 毛细管力在非常规油气藏开发中的作用及应用. 石油学报, 41(12): 1719~1733.

    • 刘树根, 邓宾, 钟勇, 冉波, 雍自权, 孙玮, 杨迪, 姜磊, 叶玥豪. 2016. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 23(1): 11~28.

    • 刘文平, 周政, 吴娟, 罗超, 吴伟, 姜磊, 焦堃, 叶玥豪, 邓宾. 2020. 川南盆地长宁页岩气田五峰组-龙马溪组成藏动力学过程及其意义. 南京大学学报(自然科学), 56(3): 393~404.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161~174.

    • 聂海宽. 2010. 页岩气聚集机理及其应用. 中国地质大学(北京) 博士学位论文.

    • 聂海宽, 徐波, 李雪超. 2007. 流体排驱压力差异性实验研究. 石油实验地质, 29(5): 531~534.

    • 聂海宽, 唐玄, 边瑞康. 2009. 页岩气成藏控制因素及中国南方页岩气发育有利区预测. 石油学报, 30(4): 484~491.

    • 聂海宽, 张金川, 薛会, 龙鹏宇, 王广源. 2010a. 油气成藏及分布序列的连续聚集和非连续聚集. 天然气工业, 30(9): 9~14+117~118.

    • 聂海宽, 张金川. 2012a. 页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例. 地质学报, 86(2): 349~361.

    • 聂海宽, 包书景, 高波, 边瑞康, 张培先, 武晓玲, 叶欣, 陈新军. 2012b. 四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 19(3): 280~294.

    • 聂海宽, 金之钧, 边瑞康, 杜伟. 2016a. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源-盖控藏”富集. 石油学报, 37(5): 557~571.

    • 聂海宽, 汪虎, 何治亮, 王濡岳, 张培先, 彭勇民. 2019. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例. 石油学报, 40(2): 131~143+164.

    • 聂海宽, 何治亮, 刘光祥, 杜伟, 王濡岳, 张光荣. 2020c. 四川盆地五峰组—龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31~41.

    • 聂海宽, 李沛, 党伟, 丁江辉, 孙川翔, 刘秘, 王进, 杜伟, 张培先, 李东晖, 苏海琨. 2022a. 四川盆地及周缘奥陶系-志留系深层页岩气富集特征与勘探方向. 石油勘探与开发, 49(4): 648~659.

    • 聂海宽, 张光荣, 李沛, 丁江辉, 党伟, 孙川翔, 张培先, 王进, 杨超, 李鹏, 王鹏威, 苏海琨. 2022b. 页岩有机孔研究现状和展望. 石油学报, 43(12): 1770~1787.

    • 彭平安, 贾承造. 2021. 深层烃源演化与原生轻质油/凝析油气资源潜力. 石油学报, 42(12): 1543~1555.

    • 秦建中, 申宝剑, 腾格尔, 郑伦举, 陶国亮, 付小东, 张玲珑. 2013. 不同类型优质烃源岩生排油气模式. 石油实验地质, 35(2): 179~186.

    • 邱楠生, 冯乾乾, 腾格尔, 申宝剑, 马中良, 俞凌杰, 曹爱强. 2020. 川东南丁山地区燕山期—喜马拉雅期差异构造-热演化与页岩气保存. 石油学报, 41(12): 1610~1622.

    • 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 2020. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学, 31(2): 163~175.

    • 田辉, 肖贤明, 李贤庆, 肖中尧, 申家贵, 刘德汉. 2007. 海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究. 地球化学, 36(1): 71~77.

    • 王红岩, 施振生, 孙莎莎. 2021. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征. 石油勘探与开发, 48(5): 879~890.

    • 王明艳, 郭建华, 旷理雄, 朱锐. 2010. 湘中坳陷涟源凹陷烃源岩油气地球化学特征. 天然气地球科学, 21(5): 721~726.

    • 王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.

    • 王香增, 郝进, 姜振学, 郭超, 邢金艳, 李卓, 唐相路. 2015. 鄂尔多斯盆地下寺湾地区长7段油溶相页岩气量影响因素及其分布特征. 天然气地球科学, 26(4): 744~753.

    • 王晓梅, 张水昌, 王华建, 苏劲, 何坤, 王宇, 王晓琦. 2017. 烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例. 石油勘探与开发, 44(1): 32~39.

    • 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 2020. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考. 天然气地球科学, 31(8): 1041~1051.

    • 熊亮, 赵勇, 魏力民, 庞河清, 慈建发. 2023. 威荣海相页岩气田页岩气富集机理及勘探开发关键技术. 石油学报, 44(8): 1365~1381.

    • 姚程鹏, 伏海蛟, 马英哲, 严德天, 汪虎, 李跃国, 王佳伟. 2022. 泸州区块深层页岩裂缝脉体发育特征及成脉流体活动. 地球科学, 47(5): 1684~1693.

    • 张光荣, 聂海宽, 唐玄, 张培先, 彭勇民. 2021. 基于地层水指标的页岩气保存条件评价——以渝东南地区五峰组—龙马溪组页岩气藏为例. 油气藏评价与开发, 11(1): 47~55.

    • 张晖, 刘月雯, 魏祥峰. 2018. 焦石坝外围构造复杂区不同地区页岩气典型井解剖. 矿山工程, 6(3): 183~198.

    • 张金川, 金之钧, 袁明生. 2004. 页岩气成藏机理和分布. 天然气工业, 24(7): 15~18+131~132.

    • 张金川, 聂海宽, 徐波, 姜生玲, 张培先, 汪宗余. 2008. 四川盆地页岩气成藏地质条件. 天然气工业, 28(2): 151~156+179~180.

    • 张君峰, 徐兴友, 白静, 陈珊, 刘卫彬, 李耀华. 2022. 松辽盆地梨树断陷白垩系沙河子组陆相页岩气形成条件与勘探突破. 石油勘探与开发, 49(3): 440~452.

    • 张莉, 熊永强, 陈媛, 李芸, 蒋文敏, 雷锐, 吴宗洋. 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092~1106.

    • 赵文智, 王大锐, 赵霞. 2021. 中国陆相页岩油革命. 石油知识, (4): 14~15.

    • 朱光有, 赵坤, 李婷婷, 付小东, 张志遥, 陈志勇, 王鹏举. 2020. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测. 石油学报, 41: 1567~1586.

    • 邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641~653.

    • 邹才能, 董大忠, 王玉满, 李新景, 黄金亮, 王淑芳, 管全中, 张晨晨, 王红岩, 刘洪林, 拜文华, 梁峰, 吝文, 赵群, 刘德勋, 杨智, 梁萍萍, 孙莎莎, 邱振. 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689~701.

    • 邹才能, 潘松圻, 荆振华, 高金亮, 杨智, 吴松涛, 赵群. 2020. 页岩油气革命及影响. 石油学报, 41(1): 1~12.