en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高俊,男,1966年生。研究员,构造地质专业。第六届黄汲清青年地质科学技术奖获奖者。E-mail:gaojun@mail.iggcas.ac.cn。

参考文献
Ague J J. 2003. Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist, Connecticut, USA. American Journal of Science, 303: 753~816.
参考文献
Ague J J. 2014. Fluid flow in the deep crust. Treatise on Geochmemistry, 4: 203~247.
参考文献
Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7: 355~360.
参考文献
Alt J C. 1995. Sulfur isotopic profile through the oceanic crust: Sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology, 23: 585~588.
参考文献
Alt J C, Teagle D A H. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63: 1527~1535.
参考文献
Alt J C, Schwarzenbach E M, Früh-Green G L, Shanks W C, Bernasconi S M, Garrido C J, Crispini L, Gaggero L, Padrón-Navarta J A, Marchesi C. 2013. The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism. Lithos, 178: 40~54.
参考文献
Altherr R, Topuz G, Marschall H, Zack T, Ludwig T. 2004. Evolution of a tourmaline-bearing lawsonite eclogite from the Elekdağ area (Central Pontides, N Turkey): Evidence for infiltration of slab-derived B-rich fluids during exhumation. Contributions to Mineralogy and Petrology, 148: 409~425.
参考文献
Angiboust S, Agard P, Yamato P, Raimbourg H. 2012. Eclogite breccias in a subducted ophiolite: A record of intermediate depth earthquakes? Geology, 40: 707~710.
参考文献
Antignano A, Manning C E. 2008. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0. 7-2. 0 GPa and 700-1000℃: Implications for mobility of nominally insoluble elements. Chemical Geology, 255: 283~293.
参考文献
Austrheim H, Dunkel K G, Plümper O, Ildefonse B, Liu Y, Jamtveit B. 2017. Fragmentation of wall rock garnets during deep crustal earthquakes. Science Advance, 3: e1602067.
参考文献
Bang Y, Hwang H, Kim T, Cynn H, Park Y, Jung H, Park C, Popov D, Prakapenka V B, Wang Lin, Liermann H P, Irifune T, Mao Ho-Kwang, Lee Y. 2021. The stability of subducted glaucophane with the Earth's secular cooling. Nature Communications, 12: 1496.
参考文献
Bebout G E. 1991. Field-based evidence for devolatilization in subduction zones: Implications for arc magmatism. Science, 251: 413~416.
参考文献
Bebout G E. 1995. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chemical Geology, 126: 191~218.
参考文献
Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260: 373~393.
参考文献
Bebout G E. 2014. Chemical and isotopic cycling in subduction zones. Treatise on Geochmemistry, 4: 703~748.
参考文献
Bebout G E, Barton M D. 1993. Metasomatism during subduction: Products and possible paths in the Catalina Schist, California. Chemical Geology, 108: 61~92.
参考文献
Bebout G E, Ryan J G, Leeman W P, Bebout A E. 1999. Fractionation of trace elements during subduction-zone metamorphism: Impact of convergent margin thermal evolution. Earth and Planetary Science Letters, 171: 63~81.
参考文献
Bebout G E, Nakamura E. 2003. Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology, 31: 407~410.
参考文献
Bebout G E, Penniston-Dorland S C. 2016. Fluid and mass transfer at subduction interface--The field metamorphic record. Lithos, 240-243: 228~258.
参考文献
Becker H, Jochum K P, Carlson R W. 1999. Constrains from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chemical Geology, 160: 291~308.
参考文献
Beinlich A, Klemd R, John T, Gao Jun. 2010. Trace-element mobilization during Ca metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock interaction. Geochimica et Cosmochimica Acta, 74: 1892~1922.
参考文献
Bekaert D V, Turner S J, Broadley M W, Barnes J D, Halldorsson S A, Labidi J, Wade J, Walowski K J, Barry P H. 2021. Subduction-driven volatile recycling: A global mass balance. Annual Review of Earth and Planetary Sciences, 49: 37~70.
参考文献
Bénard A, Klimm K, Woodland A B, Arculus R J, Wilke M, Botcharnikov R E, Shimizu N, Nebel O, Rivard C, Ionov D A. 2018. Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas. Nature Communications, 9: 3500.
参考文献
Bodner R J, Binns P R, Hall D L. 1989. Synthetic fluid inclusions. VI. Quantitative evaluation of the description behavior of fluid inclusions in quartz at one atmosphere confining pressure. Journal of Metamorphic Geology, 7: 229~242.
参考文献
Brenan J M, Shaw H F, Ryerson R J. 1995a. Experimental evidence for the origin of lead enrichment in convergent margin magmas. Nature, 378: 54~56.
参考文献
Brenan J M, Shaw H F, Ryerson F J, Phinney D L. 1995b. Mineral-aqueous fluid partitioning of trace elements at 900℃ and 2. 0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59: 3331~3350.
参考文献
Brovarone A V, Sverjensky D A, Piccoli F, Ressico F, Giovannelli D, Daniel I. 2020. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nature Communications, 11: 3880.
参考文献
Brown J L, Christy A G, Ellis D J, Arculus R J. 2014. Prograde sulfide metamorphism in blueschist and eclogite, New Caledonia. Journal of Petrology, 55: 643~670.
参考文献
Brunsmann A, Franz G, Erzinger J, Landwehr D. 2000. Zoisite- and clinozoisite-segregations in metabasites (Tauern Window, Austria) as evidence for high-pressure fluid-rock interaction. Journal of Metamorphic Geology, 18: 1~21.
参考文献
Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS, 106: 8123~8127.
参考文献
Carswell D A. 1990. Eclogite Facies Rocks. London: England Blackie.
参考文献
Carswell D A, Compagnoni R. 2003. Ultrahigh Pressure Metamorphism. EMU Notes in Mineralogy, vol. 5. Budapest: Eötvös University Press.
参考文献
Cervantes P, Wallace P J. 2003. Role of H2O in subduction-zone magmatism: New insights from melt inclusions in high-Mg basalts from central Mexico. Geology, 31: 235~238.
参考文献
Chan L H, Edmond J M, Thompson G, Gillis K. 1992. Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in ocean. Earth and Planetary Science Letters, 108: 151~160.
参考文献
Chan L H, Leeman W P, You G F. 1999. Lithium isotopic composition of central American Volcanic Arc Lavas: Implications for modifications of subarc mantle by slab-derived fluids. Chemocal Geology, 160: 255~280.
参考文献
Chen Shuo, Hin R C, John T, Brooker R, Bryan B, Niu Yaoling, Elliot T. 2019. Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration. Nature Communications, 10: 1~9.
参考文献
Chiaradia M. 2020. Howmuch water in basaltic melts parental to porphyry copper deposits? Frontier Earth Science, 8: 138.
参考文献
Connolly J A D. 1997. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. Journal of Geophysical Research, 102: 18149~18173.
参考文献
Cook-Kollars J, Bebout G E, Collins N C, Angiboust S, Agard P. 2014. Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chemical Geology, 386: 31~48.
参考文献
Crossley R J, Evans K A, Jeon H, Kilburn M R. 2018. Insights into sulfur cycling at subduction zones from in-situ isotopic analysis of sulfides in high-pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chemical Geology, 493: 359~378.
参考文献
Davies J H. 1999. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature, 398: 142~145.
参考文献
Debret B, Andreani M, Delacour A, Rouméjon S, Trcera N, Williams H. 2017. Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy. Earth and Planetary Science Letters, 466: 1~11.
参考文献
De Hoog J C M, Mason P R D, van Bergen M J. 2001. Sulfur and chalcophile elements in subduction zones: Constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochimica et Cosmochimica Acta, 65: 3147~3164.
参考文献
De Hoog J C M, Savov I P. 2018. Boron isotopes as a tracer of subduction zone processes. In: Marschall H, Foster G, eds. Boron Isotopes. Advances in Isotope Geochemistry. Cham: Springer, 217~247.
参考文献
Dragovic B, Samanta L M, Baxter E F, Selverstone J. 2012. Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: An example from Sifnos, Greece. Chemcal Geology, 314~317: 9~22.
参考文献
Edwards C M H, Morris J D, Thirlwall M F. 1993. Separating mantle from slab signature in arc lavas using B/Be and radiogenic isotope systematics. Nature, 362: 530~533.
参考文献
Evans K A, Tomkins A G, Cliff J, Fiorentini M L. 2014. Insights into subduction zone sulfur recycling from isotopic analysis of eclogite-hosted sulfides. Chemical Geology, 365: 1~19.
参考文献
Evans K A, Reddy S M, Tomkins A G, Crossley R J, Fros B R. 2017. Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. Lithos, 278: 26~42.
参考文献
Frezzotti M L, Ferrando S. 2015. The chemical behavior of fluids released during deep subduction based on fluid inclusions. American Mineralogist, 100: 352~377.
参考文献
Fryer P, Wheat C G, Mottl M J. 1999. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone. Geology, 27: 103~106.
参考文献
Galvez M E, Connolly J A D, Manning C E. 2016. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature, 539: 420~424.
参考文献
Gao Jun, Klemd R, Liu Shengwei. 2000. Eclogitization of glaucophanites by fluid infiltration. Science in China (D), 43 (supplement): 144~155.
参考文献
Gao Jun, Klemd R. 2001. Primary fluids entrapped at blueschist to eclogite transition: Evidence from the Tianshan metasubduction complex in northwestern China. Contributions to Mineralogy and Petrology, 142: 1~14.
参考文献
Gao Jun, John T, Klemd R, Xiong Xianming. 2007. Mobilisation of Ti-Nb-Ta during subduction: Evidence from rutile-bearing segregations and veins hosted in eclogites, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71: 4974~4996.
参考文献
Gerrits A R, Inglis E C, Dragovic B, Starr P G, Baxter E F, Burton K W. 2019. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet. Nature Geoscience, 12: 1029~1033.
参考文献
Giacometti F, Evans K A, Rebay G, Cliff J, Tomkins A G, Rossetti P, Vaggelli G, Adams D T. 2014. Sulfur isotope evolution in sulfide ores from Western Alps: Assessing the influence of subduction-related metamorphism. Geochemistry Geophysics Geosystems, 15: 3808~3829.
参考文献
Giaramita M J, Sorensen S S. 1994. Primary fluids in low-temperature eclogites: Evidence from two subduction complexes (Dominican Republic and California, USA). Contributions to Mineralogy and Petrology, 117: 279~292.
参考文献
Griffin W L, Begg G C, O'Reilly S Y. 2013. Continental-root control on the genesis of magmatic ore deposits. Nature Geoscience, 6: 905~910.
参考文献
Guo Shun. 2021. Boron cycling in subduction-collision zones. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1049~1060 (in Chinese with English abstract).
参考文献
Hacker B R, Peacock S M, Abers G A, Holloway S D. 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research, 108(B1): 2030.
参考文献
Halama R, John T, Herms P, Hauff F, Schenk V. 2011. A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab. Chemical Geology, 281: 151~166.
参考文献
Hawkesworth C J, Turner S P, McDermott F, Peate D W, Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.
参考文献
Hedenquist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519~527.
参考文献
Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399~417.
参考文献
Hernández-Uribe D, Hernández-Montenegro J D, Cone K A, Palin R M. 2020. Oceanic slab-top melting during subduction: Implications for trace element recycling and adakite petrogenesis. Geology, 48: 216~220.
参考文献
Holland T J B. 1979. High water activities in the generation of high pressure kyanite eclogites in the Tauern Window, Austria. Journal of Geology, 87: 1~27.
参考文献
Huang Dezhi, Gao Jun, Dai Tageng. 2001. Geochemical tracking of the fluids in subduction zones. Earth Science Frontiers, 8(3): 131~140 (in Chinese with English abstract).
参考文献
Huang Dezhi, Gao Jun, Dai Tageng, Zou Haiyang, Xiong Xianming, Klemd R. 2004. The source of fluids in the depth of the western Tianshan paleo-subduction. Science China Earth Sciences, 34(9): 835~844 (in Chinese).
参考文献
Huang Dezhi, Gao Jun, Zhang Jinfu, Zhang Dexian, Dai Tageng. 2006. Study on oxygen isotope of high-pressure veins and host-rocks from western Tianshan in China: Implications for deep fluids flow and the characteristic of subduction. Acta Petrologica Sinica, 22(1): 74~82 (in Chinese with English abstract).
参考文献
Ishikawa T, Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370: 205~208.
参考文献
Jégo S, Dasgupta R. 2013. Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge. Geochimica et Cosmochimica Acta, 110: 106~134.
参考文献
Jin Deshi, Xiao Yilin, Tan Dongbo, Wang Yangyang, Wang Xiaoxia, Li Wancai, Su Wen, Li Xiaoguang. 2023. Supercritical fluid in deep subduction zones as revealed by multiphase fluid inclusions in an ultrahigh-pressure metamorphic vein. PNAS, 120: e2219083120.
参考文献
John T, Schenk V. 2006. Interrelations between intermediate depth earthquakes and fluid flow within subducting oceanic plates: Constraints from eclogite-facies pseudotachylytes. Geology, 34: 557~560.
参考文献
John T, Klemd R, Gao Jun, Garbe-Schonberg C D. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos, 103: 1~24.
参考文献
John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geoscience, 5: 489~492.
参考文献
Jung H, Green H W, Dobrzhinetskaya L F. 2004. Intermediate depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428: 545~549.
参考文献
Kastner M, Elderfield H, Martin J B. 1991. Fluids in convergent margins: What do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Philosophical Transactions of the Royal Society, Series A, 335: 243~259.
参考文献
Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H T, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. PNAS, 110: 9663~9668.
参考文献
Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. PNAS, 112: 3997~4006.
参考文献
Kelemen P B, Rilling J L, Parmentier Plank T, Manning G E. 2019. Subducting carbon. Nature, 574: 343~352.
参考文献
Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237~240.
参考文献
Kerrick D M, Connolly J A D. 1998. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 26: 375~378.
参考文献
Kerrick D M, Connolly J A D. 2001a. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism an volatile recycling. Earth and Planetary Science Letters, 189: 19~29.
参考文献
Kerrick D M, Connolly J A D. 2001b. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 411: 293~296.
参考文献
Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180 km depth. Nature, 437: 724~727.
参考文献
King R L, Bebout G E, Moriguti T, Nakamura E. 2006. Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation: Obstacles to identification of fluid sources to arc volcanics. Earth and Planetary Science Letters, 246: 288~304.
参考文献
Klemd R. 1989. P-T evolution and fluid inclusion characteristics of retrograded eclogites, Münchberg gneiss complex, Germany. Contributions to Mineralogy and Petrology, 102: 221~229.
参考文献
Klemd R. 2004. Fluid inclusions in epidote minerals and fluid development in epidote-bearing rocks. Reviews in Mineralogy and Geochemistry, 56: 197~234.
参考文献
König S, Rosca C, Kurzawa T, Varas-Reus M I, Dragovic B, Schoenberg R, John T. 2021. Selenium isotope evidence for pulsed flow of oxidative slab fluids. Geochemcal Perspectives Letters, 17: 27~32.
参考文献
Konzett J, Krenn K, Hauzenberger C, Whitehouse M, Hoinkes G. 2012. High-pressure tourmaline formation and fluid activity in Fe-Ti-rich eclogites from the Kreuzeck Mountains, Eastern Alps, Austria. Journal of Petrology, 53: 99~125.
参考文献
Krenn K, Konzett J, Hoinkes G. 2014. Re-equilibration of a high-pressure metamorphic fluid: Evidence from tourmaline-, apatite- and quartz-hosted fluid inclusions in an Eoalpine eclogite from the Eastern Alps. European Journal of Mineralogy, 26: 231~244.
参考文献
Lan Chunyuan, Tao Renbiao, Zhang Lifei, Guo Shun. 2022. Carbon realsing mechanisms and flux estimation in subducting slabs: Problems and progress. Acta Petrologica Sinica, 38(5): 1523~1540 (in Chinese with English abstract).
参考文献
Langseth M G, Moore J G. 1990. Introduction to special section on the role of fluids in sediment accretion, deformation, diagenesis and metamorphism in subduction zones. Journal of Geophysical Research, 95: 8737~8741.
参考文献
Li Jilei, Gao Jun, John T, Klemd R, Su Wen. 2013. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits: Constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China). Geochimica et Cosmochimica Acta, 120: 326~362.
参考文献
Li Jilei, Gao Jun, Klemd R, John T, Wang Xinshui. 2016. Redox processes in subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and veins (SW Tianshan, China). Contributions to Mineralogy and Petrology, 171(8-9): 72.
参考文献
Li Jilei, Schwarzenbach E M, John T, Ague J J, Huang Fang, Gao Jun, Klemd R, Whitehouse M J, Wang Xinshui. 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, 11: 260.
参考文献
Li Jilei, Schwarzenbach E M, John T, Ague J J, Tassara S, Gao Jun, Konecke B A. 2021a. Subduction zone sulfur mobilization and redistribution by intraslab fluid-rock interaction. Geochimica et Cosmochimica Acta, 297: 40~64.
参考文献
Li Jilei, Klemd R, Huang Gaofeng, Ague J J, Gao Jun. 2021b. Unravelling slab δ34S compositions from in-situ sulphide δ34S studies of high-pressure metamorphic rocks. International Geology Review, 63: 109~129.
参考文献
Li Jilei, Gao Jun, Huang Gaofeng, Ma Zhipei, Wang Xinshui. 2022. Geochemical behavior and recycling of sulfur in subduction zones. Acta Petrologica Sinica, 38(5): 1345~1359 (in Chinese with English abstract).
参考文献
Li Wancai, Ni Huaiwei. 2020. Dehydration at subduction zones and the geochemistry of slab fluids. Science China Earth Sciences, 63(12): 1925~1937.
参考文献
Liu Shengao. 2022. Tracking volatile recycling in subduction zones using metal stable isotopes. Acta Petrologica Sinica, 38(5): 1512~1522 (in Chinese with English abstract).
参考文献
Locatelli M, Verlaguet A, Agard P, Federico L, Angiboust S. 2018. Intermediate-depth brecciation along the subduction plate interface (Monviso eclogite, W. Alps). Lithos, 320-321: 378~402.
参考文献
Manning C E. 1998. Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Swiss Bulletin of Mineralogy and Petrology, 78: 225~242.
参考文献
Manning C E. 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223: 1~16.
参考文献
Manning C E, Frezzotti M L. 2020. Subduction-zone fluids. Elements, 16: 395~400.
参考文献
Marschall H R. 2018. Boron isotopes in the ocean floor realm and the mantle. In: Marschall H, Foster G, eds. Boron Isotopes. Advances in Isotope Geochemistry. Cham: Springer, 191~217.
参考文献
Marschall H R, Ludwig T, Altherr R, Kalt A, Tonarini S. 2006. Syros metasomatic tourmaline: Evidence for very high-δ11B fluids in subduction zones. Journal of Petrology, 47: 1915~1942.
参考文献
Martin L A J, Hermann J. 2018. Experimental phase relations in altered oceanic crust: Implications for carbon recycling at subduction zones. Journal of Petrology, 59: 299~320.
参考文献
Maury R C, Defant M J, Joron J L. 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature, 360: 661~663.
参考文献
McCulloch M T, Gamble A J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102: 358~374.
参考文献
Menzel M D, Garrido C J, Sánchez-Vizcaíno V L, Hidas K, Marchesi C. 2019. Subduction metamorphism of serpentinite-hosted carbonates beyond antigorite-serpentinite dehydration (Nevado-Filábride Complex, Spain). Journal of Metamorphic Geology, 37: 681~715.
参考文献
Mibe K, Yoshino T, Ono S, Yasuda A, Fujii T. 2003. Connectivity of aqueous fluid in eclogite and its implications for fluid migration in the Earth's interior. Journal of Geophysical Research, 108: 2295~3006.
参考文献
Mibe K, Kawamoto T, Matsukage K N, Fei Y W, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. PNAS, 108: 8177~8182.
参考文献
Morris J D, Leeman W P, Tera F. 1990. The subducted component in island arc lavas: Constraints from Be isotopes and B-Be systematics. Nature, 344: 31~36.
参考文献
Nadeau S, Philippot P, Pineau F. 1993. Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogitic rocks as tracers of local fluid migration during high-pressure metamorphism. Earth and Planetary Science Letters, 114: 431~44.
参考文献
Nelson B K. 1991. Sediment-derived fluids in subduction zones: Isotopic evidence from veins in blueschist and eclogite of the Franciscan complex, California. Geology, 19: 1033~1036.
参考文献
Nelson B K. 1995. Fluid flow in subduction zones: Evidence from Nd- and Sr-isotope variations in metabasalts of the Franciscan complex, California. Contributions to Mineralogy and Petrology, 119: 247~262.
参考文献
Newton R C. 1986. Metamorphic temperatures and pressures of Group B and C eclogites. Geological Society of America Memoir, 164: 17~30.
参考文献
Ni Huaiwei, Zhang Li, Xiong Xiaolin, Mao Zhu, Wang Jingyun. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167: 62~71.
参考文献
Peacock S M. 1990. Fluid processes in subduction zones. Science, 260: 664~667.
参考文献
Peacock S M. 1993. The importance of blueschist to eclogite dehydration reactions in subducting oceanic crust. Geological Society of American Bulletins, 105: 684~694.
参考文献
Peacock S M, Wang K L. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwester and Northeast Japan. Science, 286: 937~939.
参考文献
Peng Weigang, Zhang Lifei, Tumiati S, Brovarone A V, Hu Han, Cai Yachun, Shen Tingting. 2021. Abiotic methane generation through reduction of serpentinite-hosted dolomite: Implications for carbon mobility in subduction zones. Geochimica et Cosmochimica Acta, 311: 119~140.
参考文献
Philippot P. 1993. Fluid-melt-rock interaction in mafic eclogites and coesite-bearing metasediments: Constraints on volatile recycling during subduction. Chemcal Geology, 108: 93~112.
参考文献
Philippot P, Selverstone J. 1991. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction. Contributions to Mineralogy and Petrology, 106: 417~430.
参考文献
Philippot P, Agrinier P, Scambelluri M. 1998. Chlorite cycling during subduction of altered oceanic crust. Earth and Planetary Science Letters, 161: 33~44.
参考文献
Piccoli F, Brovarone A V, Beyssac O, Martinez I, Ague J J, Chaduteau C. 2016. Carbonation by fluid-rock interaction at high-pressure conditions: Implications for carbon cycling in subduction zones. Earth and Planetary Science Letters, 445: 146~159.
参考文献
Piccoli F, Hermann J, Pettke T, Connolly J A D, Kempf E D, Vieira-Duarte J F. 2019. Subducting serpentinites release reduced, not oxidized, aqueous fluids. Scientific Reports, 9: 1~7.
参考文献
Pirard C, Hermann J. 2015. Focused fluid transfer through the mantle above subduction zones. Geology, 43: 915~918.
参考文献
Plank T, Manning C E. 2019. Subducting carbon. Nature, 574: 343~352.
参考文献
Plumper O, John T, Podladchikov Y Y, Vrijmoed J C, Scambelluri M. 2017. Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geoscience, 10: 150~155.
参考文献
Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences, 30: 207~235.
参考文献
Rawley A R, Holloway J R. 1993. Water sources for subduction zone volcanism: New experimental constraints. Science, 260: 664~667.
参考文献
Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40: 1~26.
参考文献
Rubatto D, Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67: 2173~2187.
参考文献
Rustioni G, Audetat A, Keppler H. 2021. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contributions to Mineralogy and Petrology, 176: 51.
参考文献
Ryan J G, Langmuir C H. 1993. The systematics of boron abudances in young volcanic rocks. Geochimica et Cosmochimica Acta, 57: 1489~1498.
参考文献
Ryan J G, Morris J, Tera F, Leeman W P, Tsvetkov A. 1995. Cross-arc geochemical variations in the Lurile Arc as a function of slab depth. Science, 270: 625~627.
参考文献
Scambelluri M, Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55: 213~227.
参考文献
Scambelluri M, Muntener O, Ottolini L, Pettke T T, Vannucci R. 2004. The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 222: 217~234.
参考文献
Scambelluri M, Bebout G E, Belmonte D, Gilio M, Campomenosi N, Collins N, Crispini L. 2016. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling. Earth Planetary Science Letters, 441: 155~166.
参考文献
Scambelluri M, Pennacchioni G, Gilio M, Bestmann M, Plumer O, Nestola F. 2017. Fossil intermediate depth earthquakes in subducting slabs linked to differential stress release. Nature Geoscience, 10: 960~966.
参考文献
Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927~1930.
参考文献
Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163: 361~379.
参考文献
Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treatise on Geochemistry, 4: 669~701.
参考文献
Schwarzenbach E M, Caddick M J, Petroff M, Gill B C, Cooperdock E H G, Barnes J D. 2018a. Sulphur and carbon cycling in the subduction zone mélange. Scientific Reports, 8: 15517.
参考文献
Schwarzenbach E M, Gill B C, Johnston D T. 2018b. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere. Geochimica et Cosmochimica Acta, 223: 279~299.
参考文献
Selverstone J, Franz G, Thomas S, Getty S. 1992. Fluid variability in 2 GPa eclogites as an indicator of fluid behaviour during subduction. Contributions to Mineralogy and Petrology, 112: 341~357.
参考文献
Shen Ji, Wang Shuijiong, Qin Liping, Ni Huaiwei, Li Shuguang, Du Jinxuec, Shen Tingting, Zhang Lifei, Yu Huimin. 2021. Tracing serpentinite dehydration in a subduction channel: Chromium element and isotope evidence from subducted oceanic crust. Geochimica et Cosmochimica Acta, 313: 1~20.
参考文献
Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184~197.
参考文献
Smith H J, Spivack A J, Staugigel H, Hart S R. 1995. The boron isotopic composition of alter oceanic crust. Chemical Geology, 126: 119~135.
参考文献
Sorensen S S, Barton M D. 1987. Metasomatism and partial melting in a subduction complex: Catalina Schist, southern California. Geology, 15: 115~118.
参考文献
Spandler C, Hermann J. 2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos, 89: 135~153.
参考文献
Spandler C, Pettke T, Rubatto D. 2011. Internal and external fluid sources for eclogite facies veins in the Monviso meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones. Journal of Petrology, 52: 1207~1236.
参考文献
Staudigel H. 2003. Hydrothermal alteration processes in the oceanic crust. Treatise on Geochemistry, 3: 511~536.
参考文献
Stewart E M, Ague J J. 2020. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nature Communications, 11: 6220.
参考文献
Stolper E, Newman S. 1994. The role of water in the petrogenesis of Marina trough magmas. Earth and Planetary Science Letters, 121: 293~325.
参考文献
Su Wen, Schwarzenbach E M, Chen Lei, Li Yibing, John T, Gao Jun, Chen Fei, Hu Xinmeng. 2019. Sulfur isotope compositions of pyrite from high-pressure metamorphic rocks and related veins (SW Tianshan, China): Implications for the sulfur cycle in subduction zones. Lithos, 348-349: 105212.
参考文献
Svensen H, Jamtveit B, Yardley B, Engvik A K, Austrhein H, Broman C. 1999. Lead and bromine enrichment in eclogite-facies fluids extreme fractionation during lower-crustal hydration. Geology, 27: 467~470.
参考文献
Sverjensky D A, Stagno V, Huang F. 2014. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nature Geoscience, 7: 909~913.
参考文献
Taetz S, John T, Bröcker M, Spandler C, Stracke A. 2018. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth and Planetary Science Letters, 482: 33~43.
参考文献
Tamblyn R, Zack T, Schmitt A K, Hand M, Kelsey D, Morrissey L, Pabste S, Savovf I P. 2019. Blueschist from the Mariana forearc records long-lived residence of material in the subduction channel. Earth and Planetary Science Letters, 519: 171~181.
参考文献
Tao Renbiao, Zhang Lifei, Tian Meng, Zhu Jianjiang, Liu X, Liu Jinzhong, Hofer H E, Stagno V, Fei Yingwei. 2018. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochimica et Cosmochimica Acta, 239: 390~408.
参考文献
Tatsumi Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research, 94: 4697~4707.
参考文献
Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science.
参考文献
Tollan P, Hermann J. 2019. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene. Nature Geoscience, 12: 667~671.
参考文献
Tomkins A G, Evans K A. 2015. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth and Planetary Sciences Letters, 428: 73~83.
参考文献
Touret J L R. 1992. Fluid inclusions in subducted rocks. Proc. Koninklijke Nederlandse van Wetenschappen, 95: 385~403.
参考文献
Tribuzio R, Messiga B, Vannucc R, Bottazzi P. 1996. Rare earth element redistribution during high-pressure-low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): Implications for light REE mobility in subduction zones. Geology, 24: 711~714.
参考文献
Tsay A, Zajacz Z, Ulmer P, Sanchez-Valle C. 2017. Mobility of major and trace elements in the eclogite-fluid system and element fluxes upon slab dehydration. Geochimica et Cosmochimica Acta, 198: 70~91.
参考文献
Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858~861.
参考文献
Walters J B, Cruz-Uribe A M, Marschall H R. 2019. Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones. Geochemistry Geophysics Geosystems, 20: 3347~3374.
参考文献
Walters J B, Cruz-Uribe A M, Marschall H R. 2020. Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation. Geochemical Perspectives Letters, 13: 36~41.
参考文献
Wang Chao, Tao Renbiao, Walters J B, Höfer H E, Zhang Lifei. 2022. Favorable P-T-fo2 conditions for abiotic CH4 production in subducted oceanic crusts: A comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite. Geochimica et Cosmochimica Acta, 336: 269~290.
参考文献
Wang Shuijiong, Teng Fangzhen, Li Shuguang, Zhang Lifei, Du Jinxue, He Yongsheng, Niu Yaoling. 2017. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 290~291: 94~103.
参考文献
Watson E B, Brenan J M. 1987. Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth and Planetary Sciences Letters, 85: 497~515.
参考文献
Widmer T, Thompson A B. 2001. Local origin of high pressure vein material in eclogite facies rocks of the Zermatt-Saas zone, Switzerland. American Journal of Science, 301: 627~656.
参考文献
Wu Shengying, Xiao Yuanyuan. 2023. Various fluids and complex geochemical processes in the subduction channel: Constraints from the ultrahigh pressure metamorphic belt of Southwestern Tianshan, China. Lithos, 442-443: 107077.
参考文献
Xia Qiongxia, Zheng Yongfei, Hu Zhaochu. 2010. Trace elements in zircon and coexisting minerals from low-T/UHP matagranite in the Dabie orogen: Implications for acrtion of supercritical fluid dueing continental subduction-zone metamorphism. Lithos, 114: 385~412.
参考文献
Xiong Xianming, Gao Jun, Klemd R, Huang Dezhi. 2006a. Composition of hydrous fluids released by dehydration of oceanic island basalts during subduction: Constraints from the eclogite-facies high-pressure veins in the western Tianshan, NW China. Acta Petrologica Sinica, 22(1): 103~114 (in Chinese with English abstract).
参考文献
Xiong Xianming, John T, Gao Jun, Klemd R, Huang Dezhi. 2006b. Trace element moblization in subducted slabs: Constraints on an eclogite-facies transprot vein from the western Tianshan, NW China. Acta Geologica Sinica, 80(1): 53~60 (in Chinese with English abstract).
参考文献
Xiong Xiaolin, Liu Xingcheng, Li Li, Wang Jingtuan, Chen Wei, Ruan Mengfei, Xu Ting, Sun Zhongxing, Huang Fangfang, Li Jianping, Zhang Lei. 2020. The partitioning behavior of trace elements in subduction zones: Advances and prospects. Science China Earth Sciences, 63(12): 1938~1951.
参考文献
Yang Jianjun, Huang Mengxi, Wu Qianyi, Zhang Haoran. 2014. Coesite-bearing eclogite breccia: Implication for coseismic ultrahigh-pressure metamorphism and the rate of the process. Contributions to Mineralogy and Petrology, 167: 1013~1030.
参考文献
Zack T, Foley S F, Rivers T. 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). Journal of Petrology, 43: 1947~1974.
参考文献
Zack T, John T. 2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chemical Geology, 239: 199~216.
参考文献
Zhang Jianxin. 2020. The study of subduction channels: Progress, controversies and challenges. Science China Earth Sciences, 63(12): 1831~1851.
参考文献
Zhang Lifei, Tao Renbiao, Zhu Jianjiang. 2017. Some problems of deep carbon cycle in subduction zone. Bulletin of Mineralogy, Petrology and Geochemistry, 36(2): 185~196 (in Chinese with English abstract).
参考文献
Zhang Lijuan, Zhang Lifei, Tang Ming, Wang Xiao, Tao Renbiao, Xu Cheng, Bader T. 2023. Massive abiotic methane production in eclogite during cold subduction. National Science Review, 10: nwac207.
参考文献
Zhang Yuxiang, Gazel E, Gaetani G A, Klein F. 2021. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7: eabj2515.
参考文献
Zhang Zeming, Shen Kun, Sun Weidong, Liu Yongsheng, Liou J G, Shi Cao, Wang Jinli. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72: 3200~3228.
参考文献
Zheng Yongfei. 2004. Fluid activity during exhumation process of deep-subducted continental plate. Science Bulletin, 49(10): 917~929 (in Chinese).
参考文献
Zheng Yongfei. 2019. Subduction zone geochemistry. Geoscience Frontiers, 10: 1223~1254.
参考文献
Zheng Yongfei, Chen Renxu, Xu Zheng, Zhang Shaobing. 2016. The transport of water in subduction zones. Science China Earth Sciences, 59: 651~681.
参考文献
Zhu Jianjiang, Zhang Lifei, Tao Renbiao, Fei Yingwei. 2020. The formation of graphite-rich eclogite vein in S. W. Tianshan (China) and its implication for deep carbon cycling in subduction zone. Chemcal Geology, 533: 119430.
参考文献
高俊, Klemd R, 刘圣伟. 2000. 流体渗透下蓝闪石岩的榴辉岩化作用. 中国科学, 30(增刊): 29~37.
参考文献
郭顺. 2021. 俯冲—碰撞带硼循环. 矿物岩石地球化学通报, 40(5): 1049~1060.
参考文献
黄德志, 高俊, 戴塔根. 2001. 俯冲带流体作用的地球化学示踪. 地学前缘, 8(3): 131~140.
参考文献
黄德志, 高俊, 戴塔根, 邹海洋, 熊贤明, Klemd R. 2004. 西天山古俯冲带深部体来源. 中国科学(D辑), 34(9): 835~844.
参考文献
黄德志, 高俊, 张进富, 张德贤, 戴塔根, Klemd R. 2006. 西天山高压脉及主岩的氧同位素研究——古俯冲带深部流体及俯冲带特征的启示. 岩石学报, 22(1): 74~82.
参考文献
兰春元, 陶仁彪, 张立飞, 郭顺. 2022. 俯冲板片的脱碳机制及通量估算: 问题与进展. 岩石学报, 38(5): 1523~1540.
参考文献
李继磊, 高俊, 黄高风, 马智佩, 王信水. 2022. 俯冲带硫的地球化学行为及硫循环. 岩石学报, 38(5): 1345~1359.
参考文献
李万财, 倪怀玮. 2020. 俯冲带脱水作用与板片流体地球化学. 中国科学: 地球科学, 50(12): 1770~1784.
参考文献
刘盛遨. 2022. 金属稳定同位素示踪俯冲带挥发分循环. 岩石学报, 38(5): 1512~1522.
参考文献
熊贤明, 高俊, Klemd R, 黄德志. 2006a. 俯冲洋岛玄武岩脱水释放的水流体成分: 来自西天山榴辉岩相高压脉的约束. 岩石学报, 22(1): 103~144.
参考文献
熊贤明, John T, 高俊, Klemd R, 黄德志. 2006b. 俯冲板片中微量元素的活动性: 西天山榴辉岩相运输脉的制约. 地质学报, 80(1): 53~60.
参考文献
熊小林, 刘星成, 李立, 王锦团, 陈伟, 阮梦飞, 许婷, 孙众星, 黄芳芳, 李建平, 张磊. 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 1785~1798.
参考文献
张建新. 2020. 俯冲隧道研究: 进展、问题及其挑战. 中国科学: 地球科学, 50(12): 1671~1691.
参考文献
张立飞, 陶仁彪, 朱建江. 2017. 俯冲带深部碳循环: 问题与探讨. 矿物岩石地球化学通报, 36(2): 185~196.
参考文献
郑永飞. 2004. 深俯冲大陆板块折返过程中的流体活动. 科学通报, 49(10): 917~929.
参考文献
郑永飞, 陈仁旭, 徐峥, 张少兵. 2016. 俯冲带中的水迁移. 中国科学: 地球科学, 46(3): 253~286.
目录contents

    摘要

    俯冲带是地球上岩浆活动、高压—超高压变质作用、中深源地震、壳幔物质交换、元素循环和铜金大规模成矿的集中发生场所。富水流体不仅调控了这些地质作用,而且也深刻影响了全球C、S等挥发分的循环。当蚀变大洋岩石圈及上覆沉积物进入俯冲带中深部(15~300 km),伴随由葡萄石-绿纤石相至超高压榴辉岩相的递进变质作用,含水矿物在不同深度的分解造成流体释放为一连续过程。除极端高地温梯度环境之外,大多数俯冲带洋壳释放的流体为富水流体。但,俯冲带不同深度所产生的流体特征有明显差异。出露于全球造山带的高压—超高压变质地体保存了分凝体、脉体、水压致裂角砾岩等流体作用的有力证据,绿辉石、石榴子石、绿帘石等矿物中原生流体包裹体为流体的直接记录。在俯冲带中等深度(<65 km),流体是溶质含量很低的含卤化物水溶液,可含CO2-3、SO2-4、HS-等组分,其所含Si、Al、Ca、Mg、Fe、Na主量元素溶质相当于海水中固化物量的2~3倍,并具大离子亲石元素(LILE)、轻元素(B、Li)富集和高场强元素(HFSE)亏损的特点。当深度≥65 km时,流体转化为类似于超临界性质的溶液,含CH4、C2H6、H2S等挥发分,其所含主量元素溶质显著增加,微量元素除LILE等外,还负载相当量的HFSE和过渡族成矿元素。俯冲带65~100 km深度,为富水流体向超临界流体转变的区间。这种流体具有“亚超临界”性质,发生了氧化还原性质和元素溶解能力的渐变,并伴随硬柱石和角闪石的最终耗尽。高压变质岩石及相关脉体的O、Sr、Nd和金属同位素示踪研究表明俯冲带流体的源区多样,有蚀变基性洋壳、地幔橄榄岩和沉积物,并保存了海底热液蚀变作用的印迹。流体以脉冲方式沿网络状裂隙呈隧道式运移和传输,规模可达千米级,时间尺度在数月至数百年。目前通过高压—超高压变质岩的研究对俯冲带流体已经有了深入的了解,但展望未来,该领域依然有诸多争议和科学问题值得探索。

    Abstract

    The oceanic subduction zone is the locality where the magmatic activity, the high-to ultra-high-pressure metamorphism, the intermediate-depth earthquake, mass transfer between crust and mantle, the element recycling and the large-scale mineralization of copper and gold occur concentratedly on the earth. The H2O-rich fluid not only controls these geological processes but also deeply influences the global recycling of volatiles such as carbon, sulfur and etc. After the altered oceanic lithosphere and the overlying sediments are subducted into the intermediate to the deep depth to a subduction zone (15~300 km), the fluid is continuously released by the breakdown of hydrous minerals at different depths, accompanied by the prograde metamorphism from the prehnite-pumpellyite facies to ultra-high-pressure eclogite facies. The fluid released by the subducted oceanic crust is mainly aqueous in most subduction zones, except in an ultra-high geothermal environment. However, the characteristics of fluids obviously vary with the depth at which the fluid is generated. The high-pressure to ultra-high-pressure terranes exposed in global orogens have preserved robust evidence of the fluid activity, such as segregations, veins, hydro-breccias and etc. The primary fluid inclusion entrapped in omphacite, garnet, epidote and other minerals is a direct record of fluids. This fluid is a type of chloride-bearing dilute aqueous solution containing the components, such as CO2-3, SO2-4, HS- and etc. at the intermediate depth (<65 km) in a subduction zone. Furthermore, the major element solute (Si, Al, Ca, Mg, Fe, Na) content of fluids has two to three times the total dissolved solids of seawater and the trace element concentration displays the enrichment of large ion lithophileelements (LILEs) and light elements (B and Li), and the depletion of high field strength elements (HFSEs). Moreover, the fluid will change to the volatile (CH4, C2H6, H2S and etc.)-bearing solution with a character resembling the supercritical fluid when the subduction depth is over 65 km. The content of major element solutes has remarkably increased and has also loaded considerable concentrations of HFSEs and transitional metallogenic elements besides LILEs. The depth between 65~100 km in a subduction zone is the interval where the aqueous fluid has been gradually transformed to the supercritical one. This fluid displays a “sub-supercritical” character. The redox property and the element dissolving capacity have transformed gradually, accompanied by the final consumption of lawsonites and amphiboles. The O, Sr, Nd and metal isotopic tracking studies of high-pressure metamorphic rocks and related veins indicate that the various fluid sources have included altered basic oceanic crusts, altered mantle peridotites and sediments and have also preserved the imprint of seafloor hydrothermal alterations. The channelized fluid is transferred and episodically transported along the networking fractures. The scale of fluid flow can reach up to a km-scale. The duration time of fluid activity varies from several months to several hundred years. Although considerable understanding of subduction-zone fluids has been achieved up to now, many controversies and scientific problems remain to be explored in the future.

  • 以水为主体、含C-S-N等挥发分的流体参与了大洋俯冲带软流圈、岩石圈、水圈、大气圈和生物圈间的物质交换和循环过程,是各种地质作用、生物作用和化学循环过程的重要介质(Tatsumi et al.,1995Bebout,2007郑永飞等,2016Plank et al.,2019Bekaert et al.,2021)。蚀变大洋岩石圈及上覆沉积物进入俯冲带的初期,沉积物经历大量的压实作用和变形,迫使岩石所含大部分孔隙水在浅部(<15 km)被机械性排出而流向地表(Langseth et al.,1990Bebout,1995)。增生楔前缘海沟发育的泥底辟体、增生楔浅表流体排泄口生物群落和蛇纹岩底辟体均记录了俯冲带浅表流体的溢出作用(Kastner et al.,1991)。随着俯冲深度的增加,蚀变大洋岩石圈及上覆沉积物在15~300 km深度将经历一系列递进变质作用,并伴随连续的脱挥发分过程(Schmidt et al.,1998郑永飞等,2016)。所释放的板片流体(图1)可渗透、运移至上覆地幔楔,促进地幔橄榄岩发生交代、水化、蚀变,诱发部分熔融,产生弧岩浆(Tatsumi,1989),局部生成富矿中性-长英质岩浆(Chiaradia,2020);脱水还能造成岩石发生水压断裂、孕育俯冲带中等深度地震(Davies,1999Scambelluri et al.,2017)。广义上,俯冲带流体包括富水流体、含水熔体和超临界流体(Manning,2004Kessel et al.,2005Hermann et al.,2006Ni Huaiwei et al.,2017)。流体的类型受控于俯冲带的热结构(Peacock,1990Bebout et al.,2016;李万财等;2020)。地温梯度<5℃/km的超冷俯冲带,板片岩石中的硬柱石可以把水带到300 km深度,弧前弧下无大规模流体释放(郑永飞等,2016)。高地温梯度(>25℃/km)俯冲带,弧前深度环境下,变质玄武岩则已发生完全脱水,弧前至弧下深度板片发生熔融,产生埃达克质岩浆(Kerrick et al.,2001aHernández-Uribe et al.,2020)。然而,对发育钙碱性岩浆岩、地温梯度中等(~10℃/km)的冷俯冲带而言,俯冲板片从葡萄石-绿纤石相、蓝片岩相至榴辉岩相进变质过程中逐步脱水,持续释放富水流体(Schmidt et al.,1998Bebout et al.,1999)。

  • 图1 俯冲带板片流体、弧岩浆、地震震源及斑岩矿床相互关系示意图 (据Tatsumi et al.,1995Hacker et al.,2003Zheng Yongfei,2019修改)

  • Fig.1 The cartoon illustrating the relationship among the slab fluid, the arc magma, the earthquake focus and the porphyry-type deposit within a subduction zone (modified after Tatsumi et al., 1995; Hacker et al., 2003; Zheng Yongfei, 2019)

  • 俯冲带浅部排出的流体性质可通过深潜器直接观测和增生楔前缘发育的泥质-蛇纹岩底辟体研究来限定(Kastner et al.,1991)。迄今为止,记录了现代俯冲带流体作用的最大深度样品为来自25 km深度的马里亚纳海沟增生楔中含蓝片岩物质的泥火山(Fryer et al.,1999Tamblyn et al.,2019)。而更深的俯冲带流体作用过程无法直接获取研究样品。前人基于岛弧火山岩及蚀变地幔岩包体的地球化学特征示踪(McCulloch et al.,1991Maury et al.,1992Edwards et al.,1993Ryan et al.,1995Tollan et al.,2019Zhang Yuxiang et al.,2021)、热模拟和相平衡计算反演(Peacock,1993Hermann et al.,2006Sverjensky et al.,2014)、高温高压岩石-流体实验(Keppler,1996Schmidt,1996Kessel et al.,2005Bang et al.,2021)等间接途径的研究,形成了地质学家和地球化学家普遍接受的共识,认为俯冲带流体为富大离子亲石元素(LILE)、贫高场强元素(HFSE)的氧化性流体。弧火山岩中橄榄岩包体的橄榄石斑晶所含CO2三相流体包裹体证实了弧下地幔确实被源自俯冲板片的氧化性卤水交代(Kawamoto et al.,2013)。此外,出露于造山带的高压—超高压变质岩石不仅历经了俯冲至地幔深处(~100 km)、随后又折返到地表的地球动力学过程,而且最有可能记录了俯冲带不同深度的流体作用特征(Touret,1992Carswell et al.,2003Frezzotti et al.,2015)。20世纪90年代以来,对代表俯冲板片的高压—超高压变质岩所蕴含流体信息的解剖成果更进一步直接揭示了俯冲带流体性质。本文拟对典型俯冲杂岩(如北美Santa Catalina、西阿尔卑斯Monviso、西阿尔卑斯Zermatt-Saas、希腊Cycladic、西太平洋New Caledonia和中国西南天山)相关流体作用研究成果进行综合分析,从而探讨俯冲带流体特征。

  • 俯冲带包括大洋俯冲带和大陆俯冲带,但大陆俯冲过程中流体活动相对有限,也普遍缺乏同俯冲期弧岩浆作用(郑永飞,2004郑永飞等,2016)。大洋俯冲板块的表层是薄的泥质沉积物,中间是4~7 km玄武质洋壳,下部是厚的橄榄岩地幔(Poli et al.,2002)。在俯冲之前的海水蚀变导致各种岩石发生水化,形成含水矿物和孔隙水丰富的水化板块(Poli et al.,2002郑永飞等,2016Zheng Yongfei,2019)。广泛的海底蚀变作用往往发生于上部洋壳的席状岩墙层和熔岩层(Tomkins et al.,2015),只有上覆洋壳很薄或深断裂发育的洋中脊地带,如转换断层、大洋核杂岩、超慢扩张脊、挠曲所产生的张性断层或裂隙等,海水方可循环至岩石圈地幔,诱发橄榄岩发生强烈蛇纹石化(Staudigel,2003Evans et al.,2017)。俯冲沉积物厚度较小且所携带的水大部分在俯冲带浅部(<15 km),已被机械性排出。在高地温梯度俯冲带环境,沉积物可在达到弧岩浆产生深度之前完全脱挥发分,而在中低地温梯度俯冲带,则不发生实质性脱挥发分(Kerrick et al.,2001b)。因此,俯冲带流体应以蚀变基性洋壳经历进变质作用释放的脱水流体为主(Peacock et al.,1993)。因此,本文重点聚焦于地温梯度中等冷大洋俯冲带基性洋壳所释放的流体性质等相关科学问题。

  • 1 流体的地质证据

  • 高压—超高压变质蛇绿混杂岩记录了大洋岩石圈碎块历经海底热液蚀变、俯冲变质脱水及折返过程中后期叠加交代等不同性质流体作用的综合信息。其中,与进变质过程相伴随的脱挥发分作用产生了俯冲带不同深度的多种性质流体。出露于造山带的高压—超高压岩石中保存了多种类型的流体活动证据,如分凝体(segregation)、脉体(vein)、水压致裂角砾岩(hydraulic breccia)、不同岩性界面之间的交代蚀变带(selvage)、包裹小岩块的蚀变外壳层(blackwall)等(Bebout,1991Philippot et al.,1991Brunsmann et al.,2000)。其中以脉体的相关研究最为详尽。脉中高压矿物内所含原生流体包裹体为俯冲带深部流体相的直接记录(Touret,1992Scambelluri et al.,2001)。

  • 1.1 分凝体

  • 分凝体常产出于块状变基性岩块的内部,呈不规则团块状,规模以数厘米至数分米居多,通常不与任何贯穿主岩的裂隙相联,与主岩之间也不发育蚀变晕圈结构,二者之间界线清晰,但通常含垂直于分凝体壁的纤维状矿物。分凝体团块的中心往往发育晶洞构造,并充填放射状生长、自形数厘米的巨晶(Gao Jun et al.,2007)。不同变质程度地体的分凝体矿物组成变化较大,绿片岩相—蓝片岩相俯冲杂岩中常见石英、白云石、菱镁矿、方解石、钠长石、绿帘石等矿物(Bebout,1991),而榴辉岩相变基性岩中则可见石榴子石、绿辉石、黝帘石、斜黝帘石、多硅白云母、磷灰石和金红石等分凝体,并被解释为内部流体局部渗透的结果(Brunsmann et al.,2000Gao Jun et al.,2007)。黝帘石和金红石晶体的巨型颗粒和自形扇状晶形表明了在一充满流体晶洞内的自由生长历程。流体过压(失稳条件为流体压力大于最小主应力+剪应力,即Pfσ3+τ0)造成水压致裂过程中,张开的裂隙和晶洞为流体相提高了可用空间体积、降低了直接围岩区域的流体压力,并在围岩高流体压力区域和晶洞(裂隙)之间建立起了压力梯度,促成流体流向低压区,进而充填开放空间(Holland,1979Selverstone et al.,1992)。

  • 1.2 脉体

  • 脉体代表主岩脱挥发分产生流体中的矿物沉淀物,为流体相逃逸后的残存溶质(Bebout,1991Becker et al.,1999)。不同空间规模(微米至米级)的脉体构成的网络暗示流体以隧道化方式大规模逃逸出俯冲板块(Plumper et al.,2017)。水和基性硅酸盐之间的二面角超过60°,富水流体不能沿矿物颗粒边界形成相互联通的网络(Watson et al.,1987Davies,1999)。但,若足够量的流体被释放,则可产生脱水脆化和水压致裂,形成相贯通的网状脉体系统,允许流体长距离运移(Hacker et al.,2003Mibe et al.,2003Jung et al.,2004)。这种流体隧道化过程将导致高压脉体的形成,俯冲带深部的高岩石静压会促成流体幕式脉冲式流动,产生多期张裂和封塞构造(Philippot et al.,1991Connolly,1997Davies,1999John et al.,2006)。

  • 峰期变质温压条件不同的高压—超高压变质地体保存了矿物组合多样的脉体,标志着俯冲带不同深度的流体活动印迹。此外,峰期变质温压条件相似的同一高压变质地体中也常产出矿物组合不同的多种脉体,可能指示不同类型原岩释放流体的差异性。代表俯冲带中等深度(<50 km)的Santa Catalina蓝片岩相变质杂砂岩中钠闪石+黑硬绿泥石脉切割石英脉和绿帘角闪岩中绿帘石+白云母+钠长石脉密集网络揭示了相当于蓝片岩相变质条件对应俯冲带深度的流体运移和蚀变交代情形(Bebout et al.,1993)。Franciscan俯冲杂岩蓝片岩和榴辉岩则含白云母+蓝闪石+绿泥石+文石+榍石+绿帘石脉体,表明流体释放的深度更深(Nelson,1991)。Monviso榴辉岩中产出绿辉石脉和石榴子石+绿辉石+滑石+金红石+锆石+磷灰石脉(Philippot et al.,1991Rubatto et al.,2003)。Zermatt-Saas榴辉岩中脉的矿物组合有石英+绿辉石+铁白云石、石英+绿辉石、绿辉石、石英+滑石、硬绿泥石+石英、蓝晶石+石英等多种类型(Widmer et al.,2001)。New Caledonia俯冲杂岩Pouebo榴辉岩、含绿辉石蓝片岩中发育石榴子石-石英-多硅白云母脉(Spandler et al.,2006)。我国西南天山蓝片岩和榴辉岩中产出的脉体的矿物组合更加丰富多样,有绿辉石+石英+榍石+金红石+黄铁矿、绿辉石+金红石+白云母+磷灰石+石英+铁白云石、绿辉石+白云石+黝帘石+石英+黄铁矿+磷灰石+金红石、绿辉石+磷灰石+石英+绿帘石+白云母、石榴子石+绿辉石+石英+蓝闪石+冻蓝闪石+榍石、石榴子石+绿辉石、石榴子石+绿辉石+蓝闪石+白云石+石英+斜黝帘石+榍石、石墨+绿帘石+石英+白云石+绿辉石+石榴子石+金红石等(高俊等,2000Gao Jun et al.,20012007熊贤明等,2006a2006bBeinlich et al.,2010Li Jilei et al.,2013201620202021aZhu Jianjiang et al.,2020)。高压脉体的矿物组合往往在狭长状延伸的裂隙内呈放射状、纤维状垂直于脉壁展布,常在脉体中间出现晶洞构造(Nelson,1991Selverstone et al.,1992Gao Jun et al.,2001)。

  • 脉体的空间展布规模变化较大,宽度从薄片尺度(数毫米)至露头尺度(数厘米至数十厘米)、长度可从数厘米至数米。Zack et al.(2007)John et al.(2008)基于对成脉流体的来源认识,将脉分为 “脱水型”和“传输型”两种类型。结合近年来高压—超高压变质岩中脉体研究的新进展,在该基础之上,本文将脉体识别为三类(图2a):① 原地脱水型;② 外来传输型;③ 混合型。原地脱水型脉(图2b)的流体源自主岩内部,运移的距离很短;与主岩之间接触界线模糊,脉内纤维放射状矿物纤维扎根主岩之中,并往往发育进变质脱水晕圈(Gao Jun et al.,2001),构成脉的矿物为脉壁的矿物组合之一,为流体局部沉淀产物。外来传输型脉(图2c)的流体来自主岩之外远端,经历了长距离传输运移;脉体与主岩脉壁的界线清晰、截然,脉体可横切主岩的叶理面,脉体和主岩的矿物组合虽然相似,但脉内矿物往往呈纤维状垂直脉壁(Gao Jun et al.,2007);脉体还可出现多次世代的交切穿插。混合型脉(图2d)的流体为外来和原地脱水流体的混合,沿裂隙侵入的外来流体与主岩发生溶蚀、淋漓作用,混合释放出新流体;脉体和未蚀变主岩之间出现宽数厘米至数十厘米的单一极细颗粒矿物富集的淋漓蚀变脉壁;脉、脉壁与主岩之间均呈过渡接触关系。

  • 1.3 水压致裂角砾岩

  • 弧前部位,俯冲隧道内流体聚集部位往往是地震发生的震源位置;俯冲板片表层和深部脱水流体聚集的部位构成两个近于平行板片界面、深浅差异数千米至数十千米的震源分布带(双地震带;Hacker et al.,2003)。折返大陆碰撞带的榴辉岩相高压角砾岩和假玄武玻璃曾被视为与流体活动相关的古地震标志性证据(Austrheim et al.,2017;Yang et al.,2014)。代表大洋俯冲带的西阿尔卑斯Monviso变蛇绿岩和西南天山变质俯冲杂岩也发现了类似水压致裂高压角砾岩(Angiboust et al.,2012Locatelli et al.,2018Wu Shengying et al.,2023)。

  • Monviso榴辉质角砾岩形成于俯冲带大约80 km深处,呈米级尺度的岩块夹于30~150 m宽榴辉岩相剪切带的蛇纹岩中产出。角砾为1~10 cm大小的榴辉质糜棱岩,胶结物为绿辉石+硬柱石+石榴子石组合(Angiboust et al.,2012Locatelli et al.,2018;图3a)。角砾中穿插有宽数毫米至2 cm绿辉石为主、含硬柱石(绿帘石)的脉体,并与胶结基质贯通。绿辉石为主构成的脉体和石榴子石的环带特征指示了与流体活动相关的多期张裂-封塞事件。外来流体的加入诱发流体过压,促成榴辉岩的地震角砾岩化作用(Spandler et al.,2011)。石榴子石的Mn、Mg成分扫面发现石榴子石显示几个愈合的古裂隙网络。该榴辉角砾岩标志着板片内部~80 km深度与流体活动相关的古地震带位置。阿尔卑斯Corsica高压变质地体San Petrone单元的蛇纹岩与大陆基底变沉积岩的接触带也发育榴辉岩相大理岩相关的高压角砾岩,角砾大小数厘米,由透辉石+硬柱石为主要组成矿物,基质颗粒很细,为钙质碳酸盐矿物和绿辉石,局部可见文石+绿辉石脉体穿插(Piccoli et al.,2016;图3b)。西南天山高压角砾岩以数米大小的岩块产出在石榴石英云母片岩中,其角砾为蓝闪石、绿帘石类、石榴子石、绿辉石、白云石、榍石等构成的蓝片岩相-榴辉岩相矿物组合,基质(榴辉质脉体)含绿辉石、绿帘石类、石榴子石、绿泥石、蓝闪石、白云母、石英、榍石。角砾与基质之间的界线截然。Sr-Nd同位素研究表明角砾岩形成受到外来深海沉积物和蚀变洋壳源的流体影响(Wu Shengying et al.,2023)。

  • 图2 三种类型的高压脉体示意图

  • Fig.2 The illustrating figure showing three types of high-pressure veins

  • (a)—原地脱水型、外来传输型和混合型脉的示意卡通图;(b)—西南天山榴辉岩中的原地脱水型绿辉石脉;(c)—西南天山含绿辉石石榴蓝片岩中相互交切的外来传输型榴辉岩脉(V1)和绿辉石脉(V2);(d)—New Caledonia含绿辉石石榴蓝片岩(主岩)中的混合型石榴子石-石英-白云母脉和分凝绿辉石脉壁(据Spandler et al.,2006

  • (a) —the cartoon illustrating the “in-situ dehydration”, “external transport” and “mingled” types of veins; (b) —the “in-situ dehydration” omphacite vein in eclogites, southwestern Tianshan; (c) —the crosscutting “external transport” eclogite (V1) and omphacite (V2) veins in omphacite-bearing garnet blueschists, southwestern Tianshan; (d) —the “mingled” garnet-quartz-phengite vein in omphacite-bearing garnet blueschists and the selvage of omphacite segregations occurring around the vein, New Caledonia (after Spandler et al.,2006)

  • 1.4 流体包裹体

  • 高压—超高压变质矿物中保存的流体包裹体提供了俯冲带变质进程中的流体相成分和岩石流体相互作用的直接信息(Touret,1992Scambelluri et al.,2001)。这些流体包裹体捕获于矿物生长过程中,能揭示高压—超高压岩石在俯冲、折返过程中经历的流体性质演变(Frezzotti et al.,2015)。俯冲带中浅部绿片岩至蓝片岩变质阶段,流体主要以矿物分子水形式储存在绿泥石、硬绿泥石、硬柱石、帘石类(黝帘石、斜黝帘石、绿帘石)、云母类(多硅白云母、钠云母)和角闪石(蓝闪石、透闪石、nybonite)等含水矿物中(Poli et al.,2002)。这些矿物往往不发育流体包裹体。当达到俯冲带中深部榴辉岩相变质条件之后,伴随强烈脱水作用生长的高压—超高压变质矿物(如石榴子石、绿辉石、黝帘石、绿帘石、蓝晶石、柯石英、石英)会捕获流体包裹体。以绿辉石内的流体包裹体研究最为详实(Scambelluri et al.,2001),其次为帘石类矿物(绿帘石和黝帘石;Klemd,2004)。

  • 流体包裹体具有固、液、气三相,为C-H-O 组分组成的盐水溶液(Manning,2004)。气相和固相组分的类型复杂多样。来自不同高压—超高压变质地体或同一地体不同出露地点的样品所呈现出的流体包裹体气相和固相组分差异明显,概括起来可分为五种类型:① 气液两相水流体,多呈管状出现在主岩石榴子石斑晶中的绿辉石包体内(图4a)、基质绿辉石或脉绿辉石颗粒内(图4b);② 气液+单晶子矿物(方解石)三相水流体,主要出现在绿辉石(图4c)和黝帘石核部;③ CO2+H2O气液两相,呈现在与绿辉石、石榴子石共生的白云石颗粒内(图4d);④ CH4/C2H6+H2O气液两相或三相,出现在绿辉石和绿帘石斑晶内(图4e、f);⑤ 气液+多晶子矿物(石盐、钾盐、方解石、白云石、钠长石、硬石膏、石膏、重晶石、斜锆石、金红石、榍石、铁氧化物、黄铁矿和重晶石),出现在具振荡环带的绿辉石斑晶内(Philippot et al.,1991)。这些流体包裹体以管状形态平行于绿辉石或帘石斑晶的c轴方向展布,可认定为与高压矿物生长同步的原生流体包裹体(Scambelluri et al.,2001Gao Jun et al.,2001)。①和②类包裹体的显微测温结果表明它们为低盐度水流体(Touret,1992Giaramita et al.,1994Gao Jun et al.,20012007);③和④类包裹体缺乏显微测温研究,但从包裹体的气液体积比推测它们亦为低盐度富水流体;⑤类包裹体的显微测温结果表明其为高盐度含水流体(Philippot et al.,1991)。尽管岩相学结构证实榴辉岩相岩石的流体包裹体捕获在高压条件之下,但包裹体等容线确定的温压条件往往低于矿物温压计限定的峰期变质条件,一般要低几百个兆帕(Klemd,1989Touret,1992)。Münchberg榴辉岩石英中流体包裹体显微测温得到的流体等容线远低于榴辉岩相峰期温压条件,表明明显受到后期角闪岩相退变质作用再平衡的影响(Klemd,1989)。高压岩石折返过程中,流体包裹体的密度再平衡受包裹体的体积和几何形态控制,小体积包体更易保存高的内部压力(Bodnar et al.,1989)。虽然大多数流体包裹体的密度都发生改变,但再平衡过程并不改变原生流体成分。主岩和脉矿物中的榴辉岩相流体包裹体仍是约束俯冲带中深部流体相成分的可靠直接证据(Scambelluri et al.,2001Frezzotti et al.,2015)。

  • 图3 西阿尔卑斯Monviso蛇纹岩剪切带中的榴辉质角砾岩(a,据Angiboust et al.,2012)和Corsica高压变质地体 San Petrone单元的高压角砾岩(b,据Piccoli et al.,2016

  • Fig.3 The sketch showing the eclogitic breccia occurring in the Monviso serpentinite shear zone (a, after Angiboust et al.,2012) and the high-pressure breccia in the San Petrone unit of the Corsica high-pressure metamorphic terrane in the Western Alps (b, after Piccoli et al.,2016

  • B—榴辉质糜棱岩构成的岩块;M—绿辉石+硬柱石+石榴子石组合构成的基质;HB—水压致裂角砾岩

  • B—the block composed of eclogitic mylonites; M—the marix consisting of omphacite, lawsonite and garnet; HB—hydraulicbreccia

  • 大陆俯冲形成的榴辉岩及脉体超高压矿物内的流体包裹体比上述洋壳榴辉岩相关流体包裹体类型更为复杂多样(Frezzotti et al.,2015)。如挪威西片麻岩区榴辉岩绿辉石斑晶内流体包裹体含方铅矿、Pb-Cl相、Pb-Cl-Br相等子矿物(Svensen et al.,1999)。中国苏鲁南部超高压榴辉岩脉体黝帘石、蓝晶石和绿辉石颗粒内原生多相流体包裹体含白云母、方解石、硬石膏、磁铁矿、黄铁矿、磷灰石、天青石等子矿物(Zhang Zeming et al.,2008)。中国大别山碧溪岭超高压榴辉质脉体石榴子石和绿辉石中均含大量流体包裹体,出现方解石、硬石膏、韭闪石、重晶石、白云母、赤铁矿、铁锂闪石等子矿物(Jin Deshi et al.,2023)。虽然这些包裹体不能直接指示大洋俯冲带深部的流体性质,但它们代表的成分和形成温压条件对理解大洋俯冲带有一定的借鉴意义。此外,菲律宾吕宋岛弧英安岩中方辉橄榄岩包体的橄榄石斑晶含有大量三相流体包裹体,液相为低盐度卤水,固相为菱镁矿子晶,气相为CO2,也表明交代弧地幔楔的俯冲板片流体含CO2Kawamoto et al.,2013)。

  • 2 流体相性质

  • 蚀变基性洋壳进入俯冲带深度超过15 km以后,将经历由葡萄石-绿纤石相、葡萄石-阳起石相、硬柱石-蓝片岩相、绿帘石-蓝片岩相、角闪石-榴辉岩相、黝帘石-榴辉岩相至含柯石英超高压榴辉岩相的进变质作用(Hacker,2003),伴随含水矿物的分解和脱挥发分过程,在15~300 km深度连续释放以水为主体的流体(Schmidt,2014)。流体-岩石相平衡热力学模拟和高温高压实验岩石学研究表明蚀变洋壳岩石产生的流体pH值为弱碱性,高于中性标准2~2.5,由其挥发分和氯化物含量调节(Manning,1998Galvez et al.,2016)。Hermann et al.(2006)李万财等(2020)结合天然高压—超高压岩石蕴含的流体作用信息,明确指出俯冲带中浅部流体为溶质含量很低的富水流体,只有当俯冲板片的温压条件超过岩石体系的第二临界端点之后才出现溶质浓度较高的超临界流体。最近,Manning et al.(2020)进一步提出俯冲带以80±5 km深度为界可区分出两种不同性质的流体,浅部流体富水,流体的密度、介电常数、pH值和Si溶解度等指标随着俯冲带热结构的差别展示出较大幅度变化,而深部流体具较高溶解Si、盐及非极性气体的能力,而且不因俯冲带热结构的差异发生明显波动。

  • 图4 西南天山榴辉岩主岩及脉体矿物内的原生流体包裹体

  • Fig.4 Primary fluid inclusions in the mineral of eclogite hosts and veins from southwestern Tianshan Mountains

  • (a)—主岩榴辉岩石榴子石斑晶中绿辉石包体内的气液两相包裹体(据Gao Jun et al.,2007);(b)—脉内纤维状绿辉石颗粒内的气液两相包裹体(据Gao Jun et al.,2007);(c)—脉内纤维状绿辉石颗粒内的三相包裹体,子矿物为方解石(据Gao Jun et al.,2007);(d)—白云石内含CO2两相包裹体(据Wang Chao et al.,2022);(e)—绿辉石内含CH4两相包裹体(据Zhang Lijuan et al.,2023);(f)—绿帘石内三相包裹体(据Zhu Jianjiang et al.,2020

  • (a) —two-phase tubular fluid inclusions in an omphacite inclusion in a garnet porphyroblast of the host eclogite (after Gao Jun et al., 2007) ; (b) —two-phase tubular fluid inclusions in fibrous omphacites in the vein (after Gao Jun et al., 2007) ; (c) —three phase fluid inclusions preserved in omphacite fibers in the vein and the calcaite occurring as a daughter mineral (after Gao Jun et al., 2007) ; (d) —CO2-bearing two phase fluid inclusion in dolomites (after Wang Chao et al., 2022) ; (e) —CH4-bearing two phase fluid inclusion in omphacites (after Zhang Lijuan et al., 2023) ; (f) —three phase fluid inclusion in epidotes (after Zhu Jianjiang et al., 2020)

  • 相对流体-岩石相平衡热力学模拟和高温高压实验岩石学研究,高压—超高压变质矿物内流体包裹体仍是俯冲带流体相性质的最直接证据(Touret,1992Scambelluri et al.,2001)。俯冲带中浅部(<50 km),流体为富水、低盐度(1%~2%NaCleq)的H2O+CO2流体(Sorensen et al.,1987Peacock,1990Bebout et al.,19932014)。当俯冲深度超过50 km之后,不同深度的榴辉岩所揭示的流体性质有所差异。低温高压榴辉岩(T<600±50℃、P<2.5±0.5 GPa)含角闪石(蓝闪石、透闪石等)、云母类(多硅白云母、钠云母)、硬柱石、黝帘石-绿帘石、绿泥石和硬绿泥石等含水矿物(Newton,1986Carswell,1990)。这些矿物的分解会释放可观量的流体。Franciscan、Samana、西南天山等低温高压榴辉岩绿辉石所含二相和三相流体包裹体显微测温显示流体相为低盐度水流体,盐度介于1%~7%NaCleq(Giaramita et al.,1994Gao Jun et al.,20012007),与通过热力学模拟推测俯冲带中等深度流体的溶质含量很低,相当于海水所溶固化物量2~3倍的结论吻合(Manning,2004)。然而,Monviso榴辉岩绿辉石斑晶所含三相(B+L+多晶子矿物)流体包裹体显微测温却指示盐度变化从32%~45%NaCleq、17%~21%NaCleq至类似海水的低盐度(Philippot et al.,1998)。鉴于Monviso榴辉岩的高温蚀变辉长岩层原岩、毫米级尺度流体O同位素平衡、局部流体运移等特征(Nadeau et al.,1993),其蕴含的流体信息并不能代表蚀变基性洋壳在俯冲带中深部大规模释放流体的主体。

  • 三相(B+L+方解石子矿物、CO2+L+方解石子矿物)流体包裹体出现在Cycladic俯冲杂岩变质碳酸盐岩中流体通道附近的榴辉岩相岩石绿帘石颗粒内,表明流体相为CO2+H2O(Ague et al.,2014)。Cycladic榴辉岩的峰期温压条件为500~550℃、2.0±0.2 GPa(Dragovic et al.,2012),表明俯冲带~65 km深度的流体具氧化性。西南天山高压榴辉岩峰期温压条件下(2.6 GPa、500℃)的氧逸度△FMQ介于 0~+1时,石墨和富CO2流体均稳定,也说明流体相为氧化性含CO2富水流体;而超高压榴辉岩峰期温压(2.8 GPa、525℃)条件下的氧逸度(fO2)降至△FMQ值-3,石墨饱和C-H-O流体中形成CH4,揭示流体相转变为还原性质(Wang Chao et al.,2022)。来自西南天山不同露头的超高压榴辉岩石榴子石、绿辉石中含大量CH4+H2O管状流体包裹体、铁白云石中含CO2+H2O包裹体,结合DEW模拟和重建的P-T-fO2-流体轨迹,可以得出超高压峰期阶段(2.7~3.2 GPa、~550℃),流体相为CH4+H2O;退变质早期(约2.6~2.25 GPa),流体相为CO2+CH4+H2O;退变质晚期(<2.25 GPa),流体相为CO2+ H2O(Zhang Lijuan et al.,2023)。西南天山含硫化物榴辉岩及相关两期脉体的研究表明,峰期榴辉岩相流体含硫化物,而退变质流体则含磁铁矿;进变质过程中,随着俯冲深度的增加,俯冲洋壳的氧逸度在逐渐降低,60~80 km深度区间,流体性质从氧化性转变为还原性;折返过程中遭受退变质氧化性流体叠加(Li Jilei et al.,2016)。基于Cycladic和西南天山榴辉岩及脉体研究结果,可以推定俯冲带75±10 km深部的富水流体氧化还原性质发生了转变,由中浅部氧化性变化为深部的还原性。该深度也与角闪石集中分解和消失的区间相当(Rawley et al.,1993Schmidt et al.,1998)。绿片岩和榴辉岩黄铁矿颗粒内重晶石包体的出现(Su Wen et al.,2019Li Jilei et al.,2021a)也表明俯冲带浅部进变质过程应伴随高氧化性流体。利用DEW模型计算的俯冲基性洋壳释放流体中的硫种型比例显示,在俯冲带深部流体中硫已是以HS-和H2S为主(Li Jilei et al.,2020)。希腊Cycladic带Sifnos榴辉岩相变玄武岩石榴子石的Fe同位素和石榴子石-绿帘石氧压计研究还揭示了俯冲带的氧化性变化过程与机理;石榴子石核部在相对氧化条件下生长,而边部则记录了更还原环境,氧逸度的降低转变发生在硬柱石分解、脱水和消失过程中,其脱水伴随着硫酸盐等氧化性物质的释放,其耗尽、消失使体系变还原(Gerrits et al.,2019)。硬柱石分解、消失发生在550℃、2.2 GPa(Dragovic et al.,2012)温压条件之下,相当于俯冲带~65 km深部流体会开启由氧化性逐渐变还原的转换。

  • 流体相氧化还原性质发生转变的深度与Manning et al.(2020)提出的俯冲带两种不同性质流体的认识近于一致。值得注意的是,流体相性质的变化并非截然发生于部分学者认为的高压榴辉岩与超高压榴辉岩之间的转变界线(Wang Chao et al.,2022),温压条件也远低于含水玄武岩体系的第二临界点(图5)。实验岩石学确定的玄武岩体系第二临界点温压条件为770℃、3.4 GPa(Mibe et al.,2011)或1050℃、5.5 GPa(Kessel et al.,2005)。俯冲带流体达到第二临界点进入超临界状态的最小深度也在100 km。而俯冲带中浅部的氧化性低盐度富水流体在75±10 km已发生了性质转变,成为还原性水流体。65~100 km深度区间的流体相性质可能介于富水流体与超临界流体之间,可称之为“亚超临界”流体(图5)。当然,苏鲁和大别山榴辉岩及脉体记录了在第二临界点(770℃、3.4 GPa)附近峰期超高压变质条件下俯冲大陆壳深部流体性质为氧化性高盐度超临界流体(Zhang Zeming et al.,2008Jin Deshi et al.,2023),与洋壳俯冲带深部流体性质不同。

  • 图5 玄武岩+H2O体系富水流体、亚超临界流体和超临界流体与温度、压力及俯冲带深度关系示意简图 (据Ni Huaiwei et al.,2017修改)

  • Fig.5 The sketch map illustrating the relationships among the aqueous fluid, the sub-supercritical fluid and the supercritical fluid and the temperature, pressure and the depth of subduction zones in the basalt+H2O system (modified after Ni Huaiwei et al.,2017)

  • 3 流体化学成分

  • 3.1 主量元素

  • 高压变质岩石中的脉体矿物是从循环流体中沉淀而形成,可能由邻近主岩中元素溶解后经短距离搬运而来,也可能是沿裂隙通道长距离外来搬运至沉淀位置(Bebout et al.,1993Zack et al.,2007)。脉的全岩成分为流体累积作用的结果,并不直接等同于流体本身成分(Rubatto et al.,2003)。但,脉为产生其流体的分馏残余,可定性监测流体的主微量元素成分(Bebout et al.,1993Becker et al.,1999)。Santa Catalina脉矿物学及全岩成分就表明俯冲带中浅部(<50 km)的流体为含Si、Al、Na、K的低盐度水流体;三种不同裂隙中的脉体指示了三种富集不同主量元素的交代蚀变:① 富石英脉代表硅化;② 白云母+石英脉预示钾化;③ 钠长石+钠闪石脉则提示Na和Si化(Bebout et al.,1993)。出露于造山带的榴辉岩相岩石中常产出以富含绿辉石为特征的多种矿物脉体,表明俯冲带中深部流体含Si、Al、Ca、Mg、Na等主量元素(Philippot et al.,1991Becker,1999Gao Jun et al.,2001Widmer et al.,2001)。该认识也得到实验岩石学结果的验证(Manning,19982004)。Tsay et al.(2017)报道的590~800℃、2.4~2.6 GPa温压条件下含褐帘石榴辉岩中石英合成流体包裹体成分实验不仅支持与榴辉岩平衡的富水流体含Si、Mg、Ca、Na、Fe、Al等元素,还定量估算流体为轻度过铝质成分(ASI值为~1.15)。不过,榴辉岩相脉体只代表流体逃逸后的残余物,难以限定流体相与主量元素溶质之间的比例。这就制约了定量估算流体中各主量元素含量的可行性。最新研究成果通过拉曼光谱扫描手段建立了多相流体包裹体的3D模型,进而定量确定了流体的主量元素成分,得出大别山碧溪岭超高压榴辉岩脉体石榴子石和绿辉石所捕获的流体含12.0%~50.2%的H2O、12.9%~31.5% SiO2、1.1%~10.8%Al2O3、1.6%~18.7% MgO、8.8%~25.5% CaO(Jin Deshi et al.,2023)。来自该俯冲大陆壳的研究成果对大洋俯冲带也有一定指示意义。但大洋俯冲带中深部流体的水含量更高,元素含量更低,确切定量成分尚有待今后的研究来限定。

  • 3.2 微量元素

  • 高压—超高压变质岩石的某一组成矿物往往是特定微量元素的载体,如白云母是B、Rb、Cs和Ba的寄主矿物(Zack et al.,2002Bebout et al.,2007),硬柱石、绿帘石类、榍石主宰Sr、LREE、Pb、Th(Tribuzio et al.,1996),金红石和锆石负载HFSE(Ti、Nb、Ta、Zr、Hf;Rubatto et al.,2003),石榴子石具高HREE含量(Spandler et al.,2006)。当这些矿物出现在主岩和脉体中时,它们的指示意义截然不同。如主岩榴辉岩中金红石、锆石一直与其他矿物组合稳定共生,那么与榴辉岩平衡的流体就贫HFSE;而当它们作为主要矿物出现在榴辉岩相脉体中时,成脉原始流体就富集HFSE(Rubatto et al.,2003Gao Jun et al.,2007Xia Qiongxia et al.,2010)。

  • 基性蓝片岩中白云母+石英脉的出现预示俯冲带中浅部(<50 km)流体含有一定量LILE(Rb、Cs、Ba),但俯冲杂岩基质沉积岩含大量白云母、并一直稳定,也表明流体中这些元素的丰度可能较低,白云母可携带它们进入俯冲带更深部(Bebout et al.,19932007)。俯冲带中深部(>50 km)流体的微量元素成分特点则可通过榴辉岩相脉体和绿辉石等矿物中流体包裹体研究来限定。榴辉岩相岩石中的脉体系代表了俯冲带广泛流体-岩石相互作用的累积和沉淀产物,脉的微量元素成分并不直接代表流体的成分(Philipport,1993;Rubatto et al.,2003)。脉从流体中沉淀,但并不是流体中全部溶质,相当量溶质随流体已从脉中逃逸。Becker et al.(1999)提出可以通过脉体的微量元素成分,结合高温高压实验测定的矿物与流体之间分配系数,来推算包含脉体作为溶质的原始流体成分和与脉平衡流体的成分;中阿尔卑斯Trescolmen榴辉岩中脉体的结果表明,与脉体平衡的流体富含LILE(Cs、Rb、K、Ba、Pb),贫HFSE(Nb、Zr、Ti)、HREE和Y。西南天山榴辉岩相脉体的估算结果也证实流体富集Li、Be、Cs、Rb、Ba、Pb,亏损HFSE、HREE和Y(熊贤明等,2006a)。上述俯冲带流体富集LILE、贫HFSE的微量元素地球化学特点也与高温高压实验研究榴辉岩与流体之间微量元素分配系数(Brenan et al.,1995a1995bRustioni et al.,2021)和金红石等矿物溶解度(Antignano et al.,2008)的结论相吻合。

  • 脉内矿物是从循环流体中沉淀形成,代表流体累积作用的结果,而这种循环流体处于一开放体系之中,当穿过裂隙网络运移时,流体的成分会被改造,流体与脉及围岩处于化学不平衡状态,微量元素的活动性不是由矿物组合和平衡分配系数控制,因此不适宜采用脉体成分和分配系数来模拟流体微量元素成分(Zack et al.,2007John et al.,2008)。Monviso变蛇绿杂岩榴辉质脉体绿辉石中流体包裹体含斜锆石、金红石、榍石等子矿物(Philippot et al.,1991)和脉体产出可观的金红石、锆石,这虽然表明HFSE可以被流体活化,但它们在流体中的浓度很低,需要大量流体活动的累积,方能沉淀出厘米级金红石柱状晶体(Rubatto et al.,2003)。

  • Ague(2003)建立的蚀变岩石相对于其原岩的质量平衡法可以用来判定岩石-流体相互作用过程中微量元素的活动性。西南天山含厘米级金红石分凝体的主岩榴辉岩的Ti、Nb、Ta含量和石榴子石、绿辉石变斑晶的Ti含量都随着距离分凝体脉壁由远至近而逐渐降低,在10 cm尺度范围内可呈现明显规律性变化(Gao Jun et al.,2007),质量平衡计算证实主岩HFSE(Ti、Nb、Ta)、LILE(K、Rb、Ba、Cs)和REE最大丢失率达60%~80%(图6)。该结果表明俯冲带流体既可富含大离子亲石元素(LILE),也能溶解高场强元素(HFSE)。此外,沿“混合型”脉体代表的流体通道,流体与主岩相互作用过程中会促进脉壁矿物组合的转变,也同时活化释放一定微量元素到流体中去。切穿含绿辉石蓝片岩主岩的数厘米宽绿辉石脉揭示了外来流体与主岩相互作用,致使蓝片岩蚀变带发生榴辉岩化,并造成LILE、REE、HFSE从主岩中活动释放,LILE、LREE的质量丢失效率(~80%)是HFSE、HREE(~40%)约两倍(John et al.,2008Beinlich et al.,2010)。New Caledonia俯冲杂岩榴辉岩主岩及相关石榴子石-石英-多硅白云母脉(图2d)的质量平衡估算也表明进变质过程中释放了富含HFSEs和HREEs的流体(Spandler et al.,2006)。

  • 图6 分凝体主岩榴辉岩的微量元素质量丢失率示意图(据Gao Jun et al.,2007修改)

  • Fig.6 The illustrating diagram showing the mass loss of trace elements of the segregation host eclogite (modified after Gao Jun et al.,2007)

  • 俯冲带中深部榴辉岩相温压条件下流体可活化和运移HFSE和HREE的原因多被解释为超临界流体具超强元素溶解能力(Xia Qiongxia et al.,2010熊小林等,2020)。大陆碰撞带苏鲁南部和大别山碧溪岭含金红石、锆石超高压榴辉岩脉体(Zhang Zeming et al.,2008Jin Deshi et al.,2023)的形成温压条件(700~800℃、3.0~4.5 GPa)与湿玄武岩体系的第二临界点接近(770℃、3.4 GPa;Mibe et al.,2011),可以判定大陆碰撞带深部~100 km出现可以溶解HSFE和HREE的超临界流体。但,西南天山、New Caledonia和Monviso蓝片岩、榴辉岩主岩及相关榴辉岩相脉体岩石-流体相互作用的温压条件分别为510~590℃、2.0~2.3 GPa(John et al.,2008Beinlich et al.,2010Li Jilei et al.,2013)、500~550℃、1.9~2.4 GPa(Taetz et al.,2018)和500~550℃、2.2~2.6 GPa(Angiboust et al.,2012),显著低于第二临界点。可见,大洋俯冲带中等深度65~75 km蚀变基性岩可释放含HFSE和HREE的流体,也与由氧化性低盐度富水流体向还原性流体转变过程的时空基本吻合。因此,俯冲带中浅部(<65 km),流体为微量元素溶解能力很有限的富水流体,深部(>100 km)是具超强溶解力的超临界流体,而我们推测在这二者之间存在一种过渡性“亚超临界”流体,既能活化和运移LILE,也可溶解相当量的HFSE和HREE。当然,其对微量元素的溶解、运移潜能可能要低于超临界流体。

  • 3.3 过渡金属元素

  • 大洋岩石圈板块俯冲变质过程中所释放氧化性流体的渗入不仅有效促进了地幔楔部分熔融,产生弧岩浆,同时也向岩浆源区不断输送成矿相关的过渡金属元素和硫(Sillitoe,1972Hedenquist et al.,1994Richards,2011Griffin et al.,2013)。尽管来自弧火山岩及其熔融包裹体的研究指出过渡金属Cu可有效分配进俯冲板片流体中,富化岩浆源区,并最终造就斑岩铜矿(Stolper et al.,1994De Hoog et al.,2001)),但并没有得到来自俯冲基性洋壳的证据支撑。

  • 近年来,对西南天山、New Caledonia和Monviso榴辉岩相岩石中以黄铁矿为主的硫化物开展了较为详细研究(Li Jilei et al.,2013Brown et al.,2014Evans et al.,2014)。西南天山含硫化物榴辉岩主岩中穿插一条宽约2~5 cm、延伸数米、含黄铁矿和黄铜矿等硫化物的榴辉岩相脉体,脉体与主岩之间由宽约6~10 cm的过渡带(脉壁)相隔。脉由绿辉石+石英+铁白云石+绿帘石+黄铁矿(黄铜矿)组成。主岩矿物组合为石榴子石+绿辉石+铁白云石+绿帘石/黝帘石+多硅白云母+金红石+硫化物;脉壁矿物含量沿由主岩向脉的方向上具有递渐变化的规律,石榴子石由10%递减为0.5%、绿辉石由55%递减为45%、云母由5%递减为0.1%、帘石由10%递增为25%、而硫化物由2%递增为6%。脉壁黄铁矿斑晶含硬柱石、绿辉石、铁白云石、金红石、绿帘石、钠云母、榍石、石英、方解石、石榴子石、绿泥石、蓝闪石、冻蓝闪石和黄铜矿等包体矿物,证实其经历了硬柱石-蓝片岩相至榴辉岩相的进变质脱水进程,经历了流体-岩石相互作用。相对于主岩榴辉岩,质量平衡计算模拟得出脉壁的大离子亲石元素LILE(K、Rb、Ba)质量丢失高达100%,过渡族金属元素(Fe、Cu、Ni、Zn、Mn、Co和Cr)丢失约10%~40%(图7;Li Jilei et al.,2013)。脉壁是主岩矿物在受流体交代过程中发生矿物溶解-再沉淀作用形成的。流体是沿裂隙外来和原地基性洋壳进变质脱水流体构成的混合型流体,石榴子石和多硅白云母的分解、绿辉石和硫化物的溶解-再沉淀作用促使一定量的过渡金属元素(如Fe、Cu、Ni和Zn)被淋滤到流体中并随流体发生迁移(Li Jilei et al.,2013)。可见,俯冲带流体可有效地将成矿金属元素从俯冲板片转移出来,并可能被运移至上覆地幔楔的弧岩浆产生源区,进而对岛弧矿床的金属元素富集做出贡献。全球大型斑岩铜矿相关成矿母岩浆的含水量系统研究证实,含水量2%~6%的弧玄武质岩浆最有利于演化形成斑岩Cu成矿相关的中性-长英质岩浆(Chiaradia,2020),也暗示俯冲带流体可以携带Cu等过渡金属元素,富化地幔楔源区(Hedenquist et al.,1994)。

  • 3.4 轻元素B和Li

  • 轻元素B和Li在水流体中易活动,并与它们同位素(δ11B和δ7Li)一道被视为俯冲带流体的有效示踪剂(Morris et al.,1990Chan et al.,19921999Bebout et al.,1993)。亏损地幔岩具低的B(<0.05×10-6)和Li(1.1×10-6~2×10-6)含量,低的~11B值(~-7‰)和较高δ6Li(-4‰~3.0‰)(Chan et al.,1999Marschall,2018)。而大洋沉积物、蚀变基性洋壳和蛇纹石化地幔橄榄岩比新鲜地幔岩具高得多的B、Li含量和~11B值及低的δ6Li值。深海沉积物、蚀变洋壳和蛇纹石的~11B值分别为-7‰~+11‰(Ishikawa et al.,1994)、-5‰~+25‰(Smith et al.,1995)和+40‰(Marschall,2018)。Li在蚀变洋壳和沉积物中丰度为5.5×10-6~75×10-6Chan et al.,1992)、10×10-6~150×10-6Ishikawa et al.,1994),δ6Li值在-20‰~-8‰(Chan et al.,1999)。此外,新鲜MORB和OIB的B/Be比值恒定(3~5),海底蚀变MORB和沉积物具高得多的B/Be比值(分别为5~200和50~200;Ryan et al.,1993)。在水流体介质中,B比Be活动性强得多,水流体/岩石间分配系数比值DB/Be远大于5,可能高达400(Bebout et al.,1993)。因此弧岩浆岩的高B/Be值(10~170)特征被解释为源区受到来自俯冲带流体交代(Morris et al.,1990)。全球代表性弧火山岩的~11B值和B/Nb值系统研究也表明弧岩浆源区受到蛇纹石(±蚀变洋壳)释放的高氧逸度流体的交代(Zhang Yuxiang et al.,2021)。弧火山岩的高Li含量和低δ6Li值也被解释为岩浆源区受到来自蚀变洋壳和沉积物脱水释放流体的交代(Chan et al.,1999)。

  • 图7 西南天山含硫化物榴辉岩相脉体相关脉壁的过渡金属元素质量平衡模拟结果示意图(据Li Jilei et al.,2013

  • Fig.7 The figure illustrating the mass balance modelling of transition metal elements across the selvage related to a sulfide-bearing eclogite facies vein from the southwestern Tianshan (after Li Jilei et al.,2013)

  • 蚀变洋壳、沉积物和蛇纹石化地幔橄榄岩进入俯冲带后,在脱挥发分作用过程中会逐步释放富B、Li、高~11B和低δ6Li的流体(Chan et al.,1999De Hoog et al.,2018),白云母和蛇纹石是B和Li的主要载体矿物(Scambelluri et al.,2004Bebout et al.,2007)。俯冲沉积物和蚀变洋壳中的绝大部分富重硼的B在弧前被释放,俯冲的蛇纹岩可以保留相当多的B(且富集重硼)进入弧下地幔(De Hoog et al.,2018郭顺,2021)。多硅白云母在俯冲过程中可稳定至300 km深度(Schmidt,1996),叶蛇纹石可稳定至150~200 km(Ulmer et al.,1995),表明俯冲沉积物和蚀变大洋岩石圈也可携带一定量的B和Li进入弧下、弧后地幔。

  • 土耳其Central Pontides 变质蛇绿岩带中6 cm长的电气石晶体出现在硬柱石榴辉岩岩块的外壳边部,被视为折返过程中经历了来自蛇纹石富B流体交代的证据(Altherr et al.,2004)。希腊Syros岛含绿辉石高压变基性岩块被含厘米级电气石晶体的黑色外壳包裹,基于电气石原位~11B研究,推测变基性岩块折返过程中遭受高B(100×10-6~300 ×10-6)和高~11B 值(18‰~28‰)流体的蚀变(Marschall et al.,2006)。东阿尔卑斯Kreuzeck榴辉岩中电气石斑晶含绿辉石和钾长石包体表明富B流体活跃在榴辉岩相变质条件之下;电气石和共生石英内流体包裹体原位LA-ICP-MS分析结果显示流体富Ca(1.6%~2.7%)、K(3500×10-6~4900×10-6)、B(250×10-6~370×10-6)、Sr(490×10-6~1080×10-6)和Pb(8×10-6~16×10-6);支持来自围岩变沉积岩的富B、Li、K和Sr流体在峰期榴辉岩相及退变质早期与变基性岩发生了相互作用(Konzett et al.,2012)。东阿尔卑斯Polinik榴辉岩电气石中的富水流体包裹体(H2O-NaCl-CaCl2-MgCl2)也支持高压变质作用下富B流体活动(Krenn et al.,2014)。高压变质沉积物中电气石斑晶原位微区~11B研究揭示进变质脱水过程中伴随云母的分解,电气石的δ11 B 持续降低至-16‰,释放高~11B值流体;而退变质水化过程中,受到外来流体交代,δ11 B则会升高达+4‰(Bebout et al.,2003)。蓝片岩相变质杂砂岩中的白云母+石英脉(Bebout et al.,1993)和榴辉岩、含绿辉石蓝片岩中发育石榴子石-石英-多硅白云母脉(图2d;Spandler et al.,2006)也证实B、Li、K等轻元素在俯冲带流体中的含量可观。以绿辉石为主要组成矿物的混合型脉的脉壁在外来流体与主岩相互作用过程中造成~60%的Li被淋滤、释放到流体中去(Beinlich et al.,2010)。该绿辉石脉的δ7Li值为-2.5‰,而从脉壁向主岩方向1.8 m距离内δ7Li值由-2.5‰升至+2.0‰(John et al.,2012),表明岩石-流体相互作用过程中会造成重Li的流失,也就是说脉中分馏逃逸的流体具更低的δ6Li值。上述这些来自高压变质岩及相关脉体的研究结果说明蓝片岩至榴辉岩相条件下的俯冲带流体可以活化、运移轻元素B和Li,并具比主岩更高~11B和更低的δ6Li 值。

  • 4 碳循环

  • 含碳酸盐矿物的岩石是将碳输入俯冲带的主要载体,海底沉积岩、蚀变基性洋壳和蛇纹石化超基性岩则是俯冲岩石圈碳的主要储库(Alt et al.,1999Kelemen et al.,20152019Piccoli et al.,2016张立飞等,2017)。它们在俯冲带经历的变质演变过程控制了C的命运,决定着浅部和深部储库之间流通量。俯冲C既可通过去碳酸盐岩化脱挥发分、流体溶解、熔融脱碳和氧化还原脱碳等作用机制在高压条件下被运移至上覆地幔楔,也可在碳酸盐矿物稳定的情况下保存于俯冲板片中进入弧下至弧后地幔(Kerrick et al.,2001a2001bCook-Kollars et al.,2014Kelemen et al.,2015兰春元等,2022)。高温高压岩石学实验和DEW模型计算得到方解石和文石在400℃、1 GPa至800℃、4 GPa条件下,在俯冲带流体中的溶解度为50×10-6~5000×10-6Kelemen et al.,2015);高温高压实验确定含白云石或菱镁矿绿帘石榴辉岩体系共存流体中CO2的摩尔比X(CO2)在700℃、3 GPa为0.059(Martin et al.,2018);均表明碳酸盐矿物和CO2在流体中的溶解度不高,70%~90%的C以碳酸盐矿物保存在被俯冲的蚀变洋壳中(Martin et al.,2018)。

  • 硅质灰岩和泥灰岩代表的两种海相沉积物体系相平衡模拟结果表明在高地温梯度俯冲带环境下它们可在弧前发生完全脱挥发分;而在正常中低地温梯度俯冲带它们的脱挥发分作用可忽略不计,只有外来富水流体的渗透才可促使它们出现脱碳作用,在缺乏富水流体渗透的情形下,挥发分将保存在海相沉积物中,碳随俯冲板片返回地幔深处(Kerrick et al.,2001b)。高地温梯度俯冲带环境相当于日本西南南海海沟,俯冲板片与地幔楔界线的温度在50 km深度达800℃,俯冲板片发生部分熔融,相应的Sambe弧出现埃达克岩(Peacock et al.,1999Kerrick et al.,2001b)。来自希腊Cycladic俯冲杂岩中变质碳酸盐岩和穿插其中高压脉体的岩石学、流体包裹体和O-C稳定同位素研究结果也支持这一认识(Ague et al.,2014Stewart et al.,2020)。变质碳酸盐岩沿数厘米宽的流体通道两侧发生明显交代反应,钙质碳酸盐矿物含量显著降低,而硅酸盐矿物含量增加,脉壁转化为富绿辉石的榴辉岩相岩石,纤维状绿辉石和绿帘石颗粒核部出现含CO2三相流体包裹体,脉壁变质碳酸盐岩中60%~90% CO2被释放,伴有硅酸盐矿物的沉淀,O同位素表明来自围岩富轻氧水流体渗透促进了交代蚀变(Ague et al.,2014)。变质含碳酸盐矿物的硅质碎屑岩、灰岩、高度蚀变玄武质火山岩和轻度蚀变玄武质洋壳C-O同位素和热力学模拟研究进一步证实,在开放体系流体渗滤的情况下,俯冲洋壳变质脱挥发分反应导致~65%的碳在弧前被释放,仅剩~35%的碳进入到弧下深度(Stewart et al.,2020)。

  • 蚀变玄武岩体系的早期相平衡模拟显示中低地温梯度俯冲带弧前至弧下深度可发生脱水,而脱碳作用几乎可忽略不计(Kerrick et al.,2001a)。高温高压实验也表明含多硅白云母绿帘石榴辉岩与共生白云石和菱镁矿在低于亚固相线下是稳定的,流体相主要为俯冲岩石脱水产生的富水流体,而C则被储藏在碳酸盐矿物中(Martin et al.,2018)。利用Deep Earth Water模型计算得到在600℃、低氧逸度条件下,与榴辉岩平衡的流体中的碳种型在压力<3 GPa时以CH4、CO2、HCO3-、CO32- 为主,而当压力>3 GPa时则出现乙酸根CH3COO-Sverjensky et al.,2014)。近年来,通过对西南天山俯冲杂岩中含碳酸盐矿物榴辉岩及相关脉体的岩石学、流体包裹体和C-O稳定同位素详细研究,对榴辉岩相条件下流体中的碳种型取得了突出创新成果。榴辉岩绿辉石中含石墨和轻烃流体包裹体(CH4、C2H6、C3H8),表明低氧逸度下碳酸盐矿物的还原是无机烃生成的重要机制(Tao Renbiao et al.,2018)。切穿榴辉岩主岩的宽数厘米至20 cm富石墨榴辉质脉中绿帘石斑晶含三相包裹体及管状石墨包体,结合相平衡模拟,发现碳酸盐岩化榴辉岩经历从2.65 GPa、487℃至2.06 GPa、565℃退变质折返过程中释放了约0.92%~2.03% CO2,从而提供了榴辉质脉内石墨沉淀所需的碳源(Zhu Jianjiang et al.,2020)。后续研究还证实与超高压和高压榴辉岩平衡的流体所含C种型有明显差别,超高压榴辉岩石榴子石和绿辉石中含富CH4流体包裹体,榴辉岩峰期温压(2.8 GPa、525℃)条件下的氧逸度(fO2)降至△FMQ值约-3,CH4形成于石墨饱和C-H-O流体中;而高压榴辉岩绿辉石含富H2O包裹体,白云石含富CO2包裹体,峰期温压条件下(2.6 GPa、500℃)的氧逸度△FMQ值介于0~+1,石墨和富CO2流体均稳定(Wang Chao et al.,2022)。最新成果还表明超高压榴辉岩中具很好成分环带的石榴子石斑晶核部和绿辉石斑晶内均含富CH4流体包裹体,结合DEW模拟和重建的P-T-fO2-流体轨迹,发现进变质(510~530℃、2.1~2.3 GPa)及峰期(540~560℃、3.2~3.4 GPa)过程中,蚀变基性岩可以产生大量无机CH4;折返过程(570~590℃、2.1~2.5 GPa)中,则释放CO2Zhang Lijuan et al.,2023)。

  • 早期相平衡模拟指示蚀变地幔橄榄岩俯冲过程中释放H2O,却不伴随CO2流失,C可以在俯冲板片中保存至200 km深度(Kerrick et al.,1998)。西班牙Nevado-Filábride杂岩高压变质蛇纹碳酸盐岩的研究也证实弧下深度C并没有显著被释放,而是循环进深部地幔(Menzel et al.,2019)。不过,来自其他经历俯冲的蛇纹石化地幔橄榄岩的研究结果却表明其不仅发生实质性脱挥发分,而且不同高压变质带的岩块所产生流体中C的种型也明显不同。阿尔卑斯蓝片岩相、榴辉岩相蛇纹石化橄榄岩的岩相学、流体包裹体和拉曼光谱研究揭示俯冲带40~80 km深部蛇纹石化可产生可观的H2和无机CH4,以及H2S和 NH3Piccoli et al.,2019Brovarone et al.,2020)。西南天山蛇绿白云石岩(ophidolomite)在退变质(410~430℃、0.70~0.99 GPa)过程中发生还原反应,释放CH4Peng Weigang et al.,2021)。而西阿尔卑斯Ligurian蛇绿碳酸盐岩(ophicarbonate)在550℃、2.0~2.5 GPa温压条件下白云石分解向方解石转变,释放CO2,形成C-H-O流体(Scambelluri et al.,2016)。C的种型差异和流体氧逸度区别可能与俯冲前地幔橄榄岩的蛇纹石化程度有关;对于未完全蛇纹石化的岩石,由于橄榄石、水镁石和铁镍矿的存在,脱挥发分产生含CH4、H2的还原性流体;而对于完全蛇纹石化的岩石,如洋中脊直接暴露在海水中的地幔橄榄岩,体系中不含铁镍矿,含有磁铁矿和富硫相,脱出含CO2氧化性流体(Evans et al.,2017)。

  • 5 硫循环

  • 弧火山岩方辉橄榄岩包体内尖晶石玻璃质熔体包裹体之中结晶硬石膏(CaSO4)和溶解硫酸根(SO2-4)的发现表明弧下地幔橄榄岩含硫酸盐流体;包裹体的U/Th、Pb/Ce、Sr/Nd比值和高~34S值(+7‰~+11‰)特征支持来自俯冲板片的富重硫同位素氧化性流体交代了弧火山岩的源区地幔橄榄岩(Bénard et al.,2018)。硫化物和硫酸盐广泛分布于海底沉积物、蚀变基性洋壳和蚀变大洋岩石圈地幔之中(Alt et al.,19952013Canfield et al.,2009Debret et al.,2017Schwarzenbach et al.,2018a)。进入俯冲带发生高压变质作用过程中,它们可释放S至脱水流体中,并将硫运移至弧下地幔(Tomkins et al.,2015)。蚀变玄武岩体系相平衡模拟结果表明俯冲板片基性洋壳在蓝片岩向榴辉岩转变阶段(T介于450~650℃),通过硬石膏分解释放不同比例SO2、HSO4-和H2S,与硅酸盐矿物平衡的流体具氧化性;而达到榴辉岩相阶段(T>750℃),通过黄铁矿向磁黄铁矿转变来释放H2S(Tomkins et al.,2015)。但,Walters et al.(2020)通过含硫蚀变洋壳体系相平衡模拟却发现磁黄铁矿在低于650℃、1.8 GPa温压下稳定,高于该条件转化为黄铁矿;而黄铁矿在650℃、>2.3 GPa时变为硬石膏;压力大于2.8~3.3 GPa时,硬石膏是唯一的含硫相;同时也确认低地温梯度冷俯冲带中硬柱石分解的82~85 km深度,硫主要呈氧化态被释放到流体中。最近,陆续出现了有关高压变质地体中硫化物研究成果的报道,为上述相平衡模拟提供了印证和补充。

  • 构成高压变质地体的不同岩性(变质沉积岩、变基性蓝片岩-榴辉岩、蛇纹岩)中均产出一定量的硫化物(Walters et al.,2019李继磊等,2022)。Zermatt-Saas、Cycladic、New Caledonia和西南天山等榴辉岩中,以黄铁矿为主体的硫化物既可作为石榴子石和硬柱石斑晶的包体,也可以斑晶颗粒与基质峰期榴辉岩相矿物组合共生,还有少数与后期退变质绿泥石等平衡接触,个别情况下甚至可以保存海底热液蚀变成因的硫化物(Li et al.,2013;Brown et al.,2014Evans et al.,2014Schwarzenbach et al.,2018bSu Wen et al.,2019)。不同期硫化物往往具显著的~34S值差异,如西南天山榴辉岩的第一期硫化物为洋底蚀变相关的磁黄铁矿、黄铜矿、斑铜矿和重晶石,δ34S值从-3.8‰至+2.7‰(平均-0.6‰± 0.9‰);第二期为石榴子石核部与金红石、蓝闪石、绿辉石共生的黄铁矿,因粒度小,未获得可靠δ34S值;第三期为基质中与绿辉石、蓝闪石、绿帘石、金红石和硬柱石等共生的黄铁矿,δ34S值从+3.6‰至+13.2‰(平均9.7‰±2.8‰),保持了海底蚀变硬石膏的S同位素特征;第四期硫化物为第一期和第三期硫化物颗粒周围的不规则、半自形至自形颗粒,与磁铁矿和钛铁矿共生,δ34S值从-24.7‰至-3.9‰(平均-5.0‰± 2.1‰),表明退变质过程中来自富32S深海沉积物流体的交代(Su Wen et al.,2019)。Zermatt-Saas和New Caledonia榴辉岩硫化物的δ34S值在单个黄铁矿颗粒内就有较大变化幅度(-13.7‰~+13.6‰),表明黄铁矿的S同位素经历了很轻微或没有后结晶的再平衡,保存了海底蚀变硫酸盐的同位素特征(Evans et al.,2014)。硫的自扩散缓慢阻止了硫化物分解过程中的硫分馏,与俯冲板片流体平衡的硫化物继承源区S同位素成分(Walters et al.,2019)。西南天山榴辉岩高压脉体的个别黄铁矿富集重硫同位素(δ34S=+25‰),更说明海水蚀变产生的硫酸盐源硫同位素可以被运输和保存至俯冲带深部(Li Jilei et al.,2021a)。西阿尔卑斯蓝片岩相Beth-Ghinivert硫化物矿床和榴辉岩相Servett硫化物矿床没有记录强烈流体循环或变质过程中的硫释放,在样品尺度上黄铁矿没有发生S同位素均一,δ34S值可从-2.0‰至+7.6‰(Giacometti et al.,2014)。阿尔卑斯Corsica俯冲蛇纹岩硫化物具高δ34S值(1.9‰~15.5‰),也说明地幔源S(~0.1‰)不是硫的唯一来源,高δ34S值是海底高温热液硫源的印迹(Alt et al.,2013Crossley et al.,2018)。全球8个高压变质地体变沉积岩和变基性岩中的硫化物分两类:①“变质型”,为流体封闭体系下原岩继承硫的重结晶,变质基性岩的δ34S值为-4.3‰~+13.5‰,变沉积岩为-32.4‰~-11.0‰;②“交代型”,是开放体系下外来氧化硫流体产物,δ34S值变化范围大(-21.7‰~+13.9‰),估算的板片流体δ34S值为-11.0‰~+8.0‰,小于交代硫化物的变化范围(Walters et al.,2019)。由上可见,高压变质地体的硫化物的类型多样,海底热液蚀变、进变质、峰期变质和退变质阶段的硫化物均有产出,而且硫化物的S同位素变化范围大,很不均一,甚至在一个黄铁矿颗粒内δ34S值变化幅度高达30‰(Evans et al.,2014)。硫化物S同位素的这种特点也给定量约束俯冲板片释放流体的S通量和δ34S值造成了很大的不确定性。为此,Li Jilei et al.(2021b)综合已知的全球高压—超高压变质地体中硫化物原位δ34S数据,归纳出代表性洋壳剖面岩石的硫同位素特点,发现变质沉积岩的δ34S值总体在-6‰~-3‰,变质基性岩的δ34S值在-4‰~+4‰,变质蛇纹岩的δ34S值在+2‰~+18‰。因此,高压—超高压变质过程中俯冲岩石基本保留了其原岩的S含量(后文用[S]表示)和δ34S特征,暗示在板片俯冲过程中并未发生明显的硫同位素分馏现象(Li Jilei et al.,2021b)。

  • 玄武岩体系高温高压实验和质量平衡计算获得与俯冲洋壳熔体相平衡流体的[S]约为2.5%(Jégo et al.,2013);岛弧熔融包裹体的质量平衡模型估算板片沉积物脱水流体的[S]在1.5%~6.0% (Cervantes et al.,2003)。迄今为止,尚没有俯冲蚀变玄武岩体系释放流体中S摩尔浓度的高温高压实验或热力学模拟计算结果的报道。为进一步厘定俯冲带硫循环,Li Jilei et al.(2020)李继磊等(2022)通过系统数据收集建立了大洋岩石圈剖面的S含量和δ34S同位素成分模型,结合西南天山高压—超高压变质岩中硫化物研究和蚀变玄武岩体系的DEW模型计算,确认板片流体中S含量总体较低,俯冲带<70 km及>100 km的深度,流体的[S]小于0.05%;但在俯冲板片~90 km处流体的[S]出现一个峰值(0.5%~1.0%),释放流体的δ34S值为-2.1‰±3.0‰;S多以HS-及H2S种型存在,不含大量的SO2-4及硫酸盐。中硫逸度流体有利于S迁移出俯冲板片,从而促进俯冲带大规模S循环;高压榴辉岩脉体中与黄铁矿共生的磷灰石的S近边吸收结构(S-XANES)无S6+的谱峰特征,支持流体中的S为还原态。可见,俯冲板片循环的S可能不是弧下地幔的氧化剂,也与弧火山岩的正δ34S值特征无直接因果联系。该认识与前期相平衡模拟结果(Tomkins et al.,2015Walters et al.,2020)和其他高压变质地体硫化物的研究成果之间尚存不一致性。

  • 6 流体源区示踪

  • 全球代表大洋俯冲岩石圈的高压变质岩石几乎均来自汇聚板块边界上下板片之间具有独立运动学特征的俯冲隧道薄弱带(Bebout et al.,2016),主要由低密度、低黏度、高度剪切变形的基质(沉积物或蛇纹岩)和少量相对能干的块体所组成,具有典型混杂岩特征(张建新,2020),其中岩块可由不同来源、不同时代、经历不同变质变形历史的岩石构成,但最主要的是蚀变基性洋壳和大洋岩石圈地幔的各类岩石。这些混杂岩的不同岩性单元在俯冲带不同深度释放流体的性质会有所差异,形成不同性质流体的源区,如沉积物、低温蚀变洋壳、高温蚀变洋壳、蛇纹石化地幔橄榄岩等。O-H稳定同位素和Sr-Nd-Pb放射性同位素常常是示踪流体源区端元的主要手段(Bebout,19912014King et al.,2006)。近年来,镁、锂、钼、铁、铬等金属稳定同位素方法也在示踪俯冲带流体源区方面展示出巨大潜力(刘盛遨,2022)。

  • 以Santa Catalina代表的沉积物为基质、形成深度<50 km的俯冲杂岩的O-H同位素成分表明流体源区主要为低级变质沉积物(Bebout et al.,1993)。同样形成深度在~50 km的Franciscan俯冲杂岩蓝片岩中白云母-蓝闪石-绿泥石-文石-榍石-绿帘石脉内矿物Sr-Nd同位素特征却揭示了源自俯冲蚀变洋中脊玄武岩和沉积物的流体混合(Nelson,19911995)。西南天山榴辉岩内石英-绿辉石脉的O同位素特征显示成脉流体的δ18O为+10.5‰~+10.8‰,源区为海水低温蚀变的大洋玄武岩(Gao Jun et al.,2001黄德志等,20012006)。不过,蓝片岩-榴辉岩主岩及其中穿插脉体的Sr-Pb同位素特征却表明源区除蚀变大洋玄武岩之外,也包括俯冲沉积物,为两个流体源区的混合(黄德志等,2004)。少数榴辉岩样品的87Sr/86Sr比值高达0.7117,超过奥陶纪—石炭纪的海水值,证实这种榴辉岩与来自俯冲沉积物源区的流体发生了相互作用(Wang Shuijiong et al.,2017)。厄瓜多尔Raspas 榴辉岩矿物O同位素(石榴子石:+4.1‰~+9.8‰,绿辉石+6.1‰~+11.0‰,多硅白云母+8.7‰~+10.4‰)、全岩87Sr/86Sr比值(0.7037~0.7063)和εNd(130 Ma)值(+8.3~+11.0)表明流体源区为原地蚀变洋中脊玄武岩的脱水(Halama et al.,2011)。上述成果表明传统O、H稳定同位素和Sr、Nd、Pb放射性同位素在示踪蚀变大洋岩石圈源流体方面存在非特异性。新兴金属稳定同位素方法会对传统同位素手段作出有益的补充。

  • 厄瓜多尔Raspas蓝片岩-榴辉岩的δ98/95Mo值和Mo/Ce比值变化范围大,可从典型近地幔值(-0.2‰,0.03)降至很低值(-1‰,0.002),并呈现正相关性,表明变质过程中有外来氧化性流体的大量加入,推测流体源区为下伏板片蛇纹石化地幔橄榄岩的脱水(Chen Shuo et al.,2019)。该高压变质蛇绿岩的Se同位素(δ82/76Se)系统研究表明Se同位素随岩石流体活动元素含量的升高而上升,其值变化范围较大(-1.89‰~+0.48‰),比地幔和蚀变洋壳的值(-0.13‰+0.12‰,-0.35‰~-0.07‰)变化幅度更宽,结合黄铁矿单颗粒原位δ82/76Se值具振荡式成分环带的特点,推测源自下伏蚀变地幔岩的氧化性流体幕式脉冲造成硫化物重复再造和相关Se同位素再分配(König et al.,2021)。西南天山榴辉岩和蓝片岩的Cr含量和δ53Cr同位素组成与烧失量(LOI)和CO2呈现良好的正相关,表明峰期变质过程中有不同比例的蛇纹岩来源流体及含沉积碳酸盐流体的加入,碳酸盐化变玄武岩相关流体为洋壳玄武岩、蛇纹岩和沉积碳酸盐岩三个不同源区脱挥发分的混合(Shen Ji et al.,2021)。此外,金属稳定同位素研究也能揭示高压变质岩石遭受的退变质叠加流体的性质。西南天山榴辉岩的Mg同位素(δ26Mg)介于-0.37‰~0.26‰,高于蚀变洋中脊玄武岩的值(-0.25‰±0.07‰),δ26Mg值也与岩石的MgO含量呈负相关性,不是海底热液蚀变或进变质作用所致,而是被源自俯冲隧道内富Mg云母或滑石脱水释放流体交代的结果(Wang Shuijiong et al.,2017)。

  • 7 流体来源、规模、运移机制和活动时间尺度

  • 俯冲隧道内不同岩性源区岩石在变质过程中释放的流体既可渗透聚集在原地岩石内部形成分凝体或脉体,也可沿先存裂隙和水压致裂空间聚焦式脉冲流动,离开原流体产生之处(Ague,2014Bebout,2014),因此常用“流体来源”来论述脉体(分凝体)与形成它们的流体之间相对空间关系,如“内部流体源(Internal fluid)”和“外来流体源(External fluid)”(John et al.,2008Spandler et al.,2011)。基于本文对高压—超高压岩石中脉体的“原地脱水型”、“外来传输型”和“混合型”的划分(图2a),流体来源也相对应有三种类型,分别为“内部”、“外来”和“混合”型。

  • 俯冲杂岩中“内部”来源的流体由近原地含水矿物分解释放,运移规模较小,常常在毫米级至厘米级尺度;流体通过渗透、扩散在主岩内部聚集,形成分凝体或脉体。Tauern构造窗块状榴辉岩中含厘米至分米尺度绿辉石脉和分凝体(Selverstone et al.,1992),西阿尔卑斯Monviso榴辉岩中产出厘米级绿辉石脉(Nadeau et al.,1993),西南天山蓝片岩脱水形成厘米级绿辉石脉(Gao Jun et al.,2001)。对这些脉体和主岩的O同位素研究均表明同位素平衡尺度在毫米至厘米级尺度,证实充填脉体的榴辉岩质矿物和流体来源自局部主岩。New Caledonia含绿辉石蓝片岩中含水矿物分解释放流体形成了宽1 cm的同变质期“内部型”石榴子石-石英-白云母脉,根据平均俯冲速率、矿物脱水的变质条件和流体流动特点估算流体活动的时间尺度为100~1000 ka(Taetz et al.,2018)。Widmer et al.(2001)也推测Zermatt-Saas带榴辉岩中长数米、宽20 cm的蓝晶石+石英+绿辉石+硬绿泥石“内部”脱水脉体的扩散流体渗透成脉需要1000 ka时长。

  • 脱水反应产生的流体并不能渗透穿过巨量围岩,但可通过裂隙网络逃离脱水原地,到达新的沉淀处(Zack et al.,2007)。这种“外来”流体的运移规模较大,可达米级至千米级尺度;流体呈幕式脉冲聚集快速流动,脉冲间歇期可沉淀脉体矿物。因流体以每秒数米的速度快速流动,流体与主岩之间缺乏缓冲和相互作用(Spandler et al.,2011),“外来传输型”脉与主岩之间界线截然(图2c)。因难以用可靠同位素技术限定流体成脉的持续时间,借鉴高温高压实验高压矿物结晶所需时间,推测成脉流体作用的时间维度最少可在数十小时(Antignano et al.,2008)。Fransciscan杂岩Catalina榴辉岩、蓝片岩和绿片岩主岩及相关脉体的H-O稳定同位素和Nd-Sr同位素特征就说明源自沉积物的外来富水流体沿局部断裂或剪切带发生千米级规模的运移,并催生复杂交代作用(Nelson,1991Bebout et al.,1993)。西南天山宽数厘米由绿辉石-金红石-白云母-磷灰石-石英-铁白云石构成的“外来传输型”脉体也表明富Nb-Ta-Ti流体至少沿裂隙通道运移了数米(Gao Jun et al.,2007)。形成Monviso榴辉质脉的外来流体可能距其原始释放处数十米远(Spandler et al.,2011)。

  • 流体穿过脉网络隧道化运移过程中,当高流体压力有所减弱时,长距离运移的流体会滞留,与主岩发生交代、蚀变作用,形成“混合型”脉体。成脉流体既有“外来”流体,也有主岩分解释放的脱水流体,呈现“混合”相特点。外来流体到达成脉处历经了长距离的运移,至少沿野外露头可追踪数米(John et al.,2008),而主岩释放的流体仅仅渗透数厘米(图2d;Spandler et al.,2006)。Li同位素扩散研究证实该宽2 cm石榴子石-石英-白云母脉体与~5 cm主岩绿辉石脉壁的岩石流体相互作用尺度为1~4个月(Taetz et al.,2018)。西南天山含绿辉石蓝片岩主岩、宽~10 cm榴辉质脉壁和榴辉质脉体的Li、Ca、Sr同位素和Li同位素扩散模拟综合研究也表明岩石-流体相互作用持续时间大约为200 a,脱挥发分释放的流体以脉冲方式在板片内沿裂隙通道快速运移(John et al.,2012)。

  • 实验岩石学研究还揭示当俯冲带流体在封闭体系内呈孔隙式渗透流运移时,含水矿物将形成,并保存了流体活动元素,从而使得残余流体具与典型弧熔岩不一致的微量元素配分型式;而当在开放体系中以聚集流沿隧道运移时,主岩脉壁反应带内无含水矿物形成,从板片抽取流体过程中获得典型弧熔岩微量元素配分型式(Pirard et al.,2015)。这也进一步辅证只有沿裂隙隧道式运移的板片流体方能为上地幔楔的弧岩浆源区输送交代营力(Ague,2014Bebout,2014)。岛弧火山岩的U-Th同位素研究推测流体从俯冲板片、穿越地幔楔至形成火山喷发一个周期的时间约30~120 ka(Hawkesworth et al.,1997)。

  • 8 结论与展望

  • 来自全球典型古俯冲隧道内的高压—超高压变质岩石相关流体记录研究成果有效揭示了中等地温梯度(5~10℃/km)冷俯冲带不同深度的流体性质。尽管目前已确定的流体活动温压条件低于含水玄武岩体系的第二临界点(770℃、3.4 GPa;Mibe et al.,2011),但65~100 km深度区间与榴辉岩相矿物组合平衡的流体已具较强的HFSE活化和运移能力,流体相性质可能介于富水流体与超临界流体之间,呈“亚超临界”状态。俯冲带浅部(<15 km),增生楔岩石历经压实和成岩作用将孔隙水挤出和排逸。而俯冲带中深部(15~300 km),伴随高压—超高压递进变质作用,含水矿物在不同深度的分解造成流体释放为一连续过程。达到俯冲带65 km深度开始,流体可能发生了氧化还原性质和元素溶解能力的渐变,从溶质含量很低的富水流体转化为亚超临界流体(图8),并伴随硬柱石和角闪石的最终耗尽。俯冲带中等深度(15~65 km),流体是溶质含量很低的含卤化物水溶液,具LILE、B、Li富集、HFSE亏损的微量元素成分特点,并可能含CO32-、SO2-4、HS-等组分。当深度≥65 km后,亚超临界流体所含Si等主量元素溶质显著增加,微量元素除LILE等外,还负载相当量的HFSE和过渡族成矿元素,并含CH4、C2H6、H2S等挥发分。逃离俯冲板片的流体主要以幕式脉冲方式沿网络状裂隙遂道式运移和传输,规模可达千米级,时间尺度在数月至数百年。尽管实验岩石学研究表明当温压条件高于第二临界点时,俯冲带流体会呈现出超临界状态,具与熔体相似甚至超过熔体的微量元素迁移能力(Kessel et al.,2005),但变质基性洋壳的含金刚石或柯石英榴辉岩体系的整体含水量很低(<0.1%),难以向产生弧岩浆的上地幔楔源区大量输送交代、蚀变所需的流体(Hacker et al.,2003)。所以,冷俯冲带蚀变基性洋壳俯冲过程中硬柱石和角闪石分解释放的流体可能对弧岩浆源区贡献最大。脱离俯冲板片、渗入地幔楔的流体交代地幔橄榄岩,形成含富水矿物的蚀变岩石,并随地幔楔内的角流运动,从65~100 km深度运移至弧岩浆源区的熔融深度(110~130 km;Tasumi,1989)。

  • 图8 冷俯冲带不同深度释放的流体性质示意图(据Schmidt et al.,1998修改)

  • Fig.8 The cartoon illustrating the characteristic of the fluid released at the different depths of a cold subduction zone (modified after Schmidt et al.,1998

  • LILE—大离子亲石元素;HFSE—高场强元素;TME—过渡金属元素

  • LILE—large ion lithophile elements; HFSE—high field strength elements; TME—transition metal elements

  • 近二十余年来,俯冲带流体领域取得了许多突出进展,丰富和发展了板块构造理论相关分支学科。俯冲带流体参与了行星地球多圈层之间物质交换和相互作用,调节着各种地质事件、生物演化和化学循环过程。展望未来,该领域仍将是自然科学的前沿热点课题,蕴含着许多潜在创新突破源头。譬如:俯冲隧道构造对流体多样性的影响和制约、流体性质与变质温压条件之间的内在关联性、从俯冲板片逃逸至地幔楔流体的综合特征、俯冲带C和S循环之间的协同性、流体诱发俯冲带中等深度破坏性地震的机制等。

  • 致谢:谨以此文纪念地质学大师黄汲清先生诞辰120周年。很荣幸得到任纪舜院士的邀请,为本专辑撰稿!第一作者曾在黄汲清先生创立的中国地质科学院构造地质研究室学习和工作近十年,深得先生“扎根野外和理论创新并重”的学风指引和熏陶,在此感谢研究室的全体同仁!第一作者还要特别感谢中国人民解放军总医院纪文斌和北京大学第一医院邹英华、关海涛和侯凤琴大夫的精心救治,确保了第一作者得以在科学道路上继续前进!最后,感谢编辑和两位审稿人对本文的认真评阅和建设性修改意见!

  • 参考文献

    • Ague J J. 2003. Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist, Connecticut, USA. American Journal of Science, 303: 753~816.

    • Ague J J. 2014. Fluid flow in the deep crust. Treatise on Geochmemistry, 4: 203~247.

    • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7: 355~360.

    • Alt J C. 1995. Sulfur isotopic profile through the oceanic crust: Sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology, 23: 585~588.

    • Alt J C, Teagle D A H. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63: 1527~1535.

    • Alt J C, Schwarzenbach E M, Früh-Green G L, Shanks W C, Bernasconi S M, Garrido C J, Crispini L, Gaggero L, Padrón-Navarta J A, Marchesi C. 2013. The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism. Lithos, 178: 40~54.

    • Altherr R, Topuz G, Marschall H, Zack T, Ludwig T. 2004. Evolution of a tourmaline-bearing lawsonite eclogite from the Elekdağ area (Central Pontides, N Turkey): Evidence for infiltration of slab-derived B-rich fluids during exhumation. Contributions to Mineralogy and Petrology, 148: 409~425.

    • Angiboust S, Agard P, Yamato P, Raimbourg H. 2012. Eclogite breccias in a subducted ophiolite: A record of intermediate depth earthquakes? Geology, 40: 707~710.

    • Antignano A, Manning C E. 2008. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0. 7-2. 0 GPa and 700-1000℃: Implications for mobility of nominally insoluble elements. Chemical Geology, 255: 283~293.

    • Austrheim H, Dunkel K G, Plümper O, Ildefonse B, Liu Y, Jamtveit B. 2017. Fragmentation of wall rock garnets during deep crustal earthquakes. Science Advance, 3: e1602067.

    • Bang Y, Hwang H, Kim T, Cynn H, Park Y, Jung H, Park C, Popov D, Prakapenka V B, Wang Lin, Liermann H P, Irifune T, Mao Ho-Kwang, Lee Y. 2021. The stability of subducted glaucophane with the Earth's secular cooling. Nature Communications, 12: 1496.

    • Bebout G E. 1991. Field-based evidence for devolatilization in subduction zones: Implications for arc magmatism. Science, 251: 413~416.

    • Bebout G E. 1995. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chemical Geology, 126: 191~218.

    • Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260: 373~393.

    • Bebout G E. 2014. Chemical and isotopic cycling in subduction zones. Treatise on Geochmemistry, 4: 703~748.

    • Bebout G E, Barton M D. 1993. Metasomatism during subduction: Products and possible paths in the Catalina Schist, California. Chemical Geology, 108: 61~92.

    • Bebout G E, Ryan J G, Leeman W P, Bebout A E. 1999. Fractionation of trace elements during subduction-zone metamorphism: Impact of convergent margin thermal evolution. Earth and Planetary Science Letters, 171: 63~81.

    • Bebout G E, Nakamura E. 2003. Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology, 31: 407~410.

    • Bebout G E, Penniston-Dorland S C. 2016. Fluid and mass transfer at subduction interface--The field metamorphic record. Lithos, 240-243: 228~258.

    • Becker H, Jochum K P, Carlson R W. 1999. Constrains from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chemical Geology, 160: 291~308.

    • Beinlich A, Klemd R, John T, Gao Jun. 2010. Trace-element mobilization during Ca metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock interaction. Geochimica et Cosmochimica Acta, 74: 1892~1922.

    • Bekaert D V, Turner S J, Broadley M W, Barnes J D, Halldorsson S A, Labidi J, Wade J, Walowski K J, Barry P H. 2021. Subduction-driven volatile recycling: A global mass balance. Annual Review of Earth and Planetary Sciences, 49: 37~70.

    • Bénard A, Klimm K, Woodland A B, Arculus R J, Wilke M, Botcharnikov R E, Shimizu N, Nebel O, Rivard C, Ionov D A. 2018. Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas. Nature Communications, 9: 3500.

    • Bodner R J, Binns P R, Hall D L. 1989. Synthetic fluid inclusions. VI. Quantitative evaluation of the description behavior of fluid inclusions in quartz at one atmosphere confining pressure. Journal of Metamorphic Geology, 7: 229~242.

    • Brenan J M, Shaw H F, Ryerson R J. 1995a. Experimental evidence for the origin of lead enrichment in convergent margin magmas. Nature, 378: 54~56.

    • Brenan J M, Shaw H F, Ryerson F J, Phinney D L. 1995b. Mineral-aqueous fluid partitioning of trace elements at 900℃ and 2. 0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59: 3331~3350.

    • Brovarone A V, Sverjensky D A, Piccoli F, Ressico F, Giovannelli D, Daniel I. 2020. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nature Communications, 11: 3880.

    • Brown J L, Christy A G, Ellis D J, Arculus R J. 2014. Prograde sulfide metamorphism in blueschist and eclogite, New Caledonia. Journal of Petrology, 55: 643~670.

    • Brunsmann A, Franz G, Erzinger J, Landwehr D. 2000. Zoisite- and clinozoisite-segregations in metabasites (Tauern Window, Austria) as evidence for high-pressure fluid-rock interaction. Journal of Metamorphic Geology, 18: 1~21.

    • Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS, 106: 8123~8127.

    • Carswell D A. 1990. Eclogite Facies Rocks. London: England Blackie.

    • Carswell D A, Compagnoni R. 2003. Ultrahigh Pressure Metamorphism. EMU Notes in Mineralogy, vol. 5. Budapest: Eötvös University Press.

    • Cervantes P, Wallace P J. 2003. Role of H2O in subduction-zone magmatism: New insights from melt inclusions in high-Mg basalts from central Mexico. Geology, 31: 235~238.

    • Chan L H, Edmond J M, Thompson G, Gillis K. 1992. Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in ocean. Earth and Planetary Science Letters, 108: 151~160.

    • Chan L H, Leeman W P, You G F. 1999. Lithium isotopic composition of central American Volcanic Arc Lavas: Implications for modifications of subarc mantle by slab-derived fluids. Chemocal Geology, 160: 255~280.

    • Chen Shuo, Hin R C, John T, Brooker R, Bryan B, Niu Yaoling, Elliot T. 2019. Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration. Nature Communications, 10: 1~9.

    • Chiaradia M. 2020. Howmuch water in basaltic melts parental to porphyry copper deposits? Frontier Earth Science, 8: 138.

    • Connolly J A D. 1997. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. Journal of Geophysical Research, 102: 18149~18173.

    • Cook-Kollars J, Bebout G E, Collins N C, Angiboust S, Agard P. 2014. Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chemical Geology, 386: 31~48.

    • Crossley R J, Evans K A, Jeon H, Kilburn M R. 2018. Insights into sulfur cycling at subduction zones from in-situ isotopic analysis of sulfides in high-pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chemical Geology, 493: 359~378.

    • Davies J H. 1999. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature, 398: 142~145.

    • Debret B, Andreani M, Delacour A, Rouméjon S, Trcera N, Williams H. 2017. Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy. Earth and Planetary Science Letters, 466: 1~11.

    • De Hoog J C M, Mason P R D, van Bergen M J. 2001. Sulfur and chalcophile elements in subduction zones: Constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochimica et Cosmochimica Acta, 65: 3147~3164.

    • De Hoog J C M, Savov I P. 2018. Boron isotopes as a tracer of subduction zone processes. In: Marschall H, Foster G, eds. Boron Isotopes. Advances in Isotope Geochemistry. Cham: Springer, 217~247.

    • Dragovic B, Samanta L M, Baxter E F, Selverstone J. 2012. Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: An example from Sifnos, Greece. Chemcal Geology, 314~317: 9~22.

    • Edwards C M H, Morris J D, Thirlwall M F. 1993. Separating mantle from slab signature in arc lavas using B/Be and radiogenic isotope systematics. Nature, 362: 530~533.

    • Evans K A, Tomkins A G, Cliff J, Fiorentini M L. 2014. Insights into subduction zone sulfur recycling from isotopic analysis of eclogite-hosted sulfides. Chemical Geology, 365: 1~19.

    • Evans K A, Reddy S M, Tomkins A G, Crossley R J, Fros B R. 2017. Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. Lithos, 278: 26~42.

    • Frezzotti M L, Ferrando S. 2015. The chemical behavior of fluids released during deep subduction based on fluid inclusions. American Mineralogist, 100: 352~377.

    • Fryer P, Wheat C G, Mottl M J. 1999. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone. Geology, 27: 103~106.

    • Galvez M E, Connolly J A D, Manning C E. 2016. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature, 539: 420~424.

    • Gao Jun, Klemd R, Liu Shengwei. 2000. Eclogitization of glaucophanites by fluid infiltration. Science in China (D), 43 (supplement): 144~155.

    • Gao Jun, Klemd R. 2001. Primary fluids entrapped at blueschist to eclogite transition: Evidence from the Tianshan metasubduction complex in northwestern China. Contributions to Mineralogy and Petrology, 142: 1~14.

    • Gao Jun, John T, Klemd R, Xiong Xianming. 2007. Mobilisation of Ti-Nb-Ta during subduction: Evidence from rutile-bearing segregations and veins hosted in eclogites, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71: 4974~4996.

    • Gerrits A R, Inglis E C, Dragovic B, Starr P G, Baxter E F, Burton K W. 2019. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet. Nature Geoscience, 12: 1029~1033.

    • Giacometti F, Evans K A, Rebay G, Cliff J, Tomkins A G, Rossetti P, Vaggelli G, Adams D T. 2014. Sulfur isotope evolution in sulfide ores from Western Alps: Assessing the influence of subduction-related metamorphism. Geochemistry Geophysics Geosystems, 15: 3808~3829.

    • Giaramita M J, Sorensen S S. 1994. Primary fluids in low-temperature eclogites: Evidence from two subduction complexes (Dominican Republic and California, USA). Contributions to Mineralogy and Petrology, 117: 279~292.

    • Griffin W L, Begg G C, O'Reilly S Y. 2013. Continental-root control on the genesis of magmatic ore deposits. Nature Geoscience, 6: 905~910.

    • Guo Shun. 2021. Boron cycling in subduction-collision zones. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1049~1060 (in Chinese with English abstract).

    • Hacker B R, Peacock S M, Abers G A, Holloway S D. 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research, 108(B1): 2030.

    • Halama R, John T, Herms P, Hauff F, Schenk V. 2011. A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab. Chemical Geology, 281: 151~166.

    • Hawkesworth C J, Turner S P, McDermott F, Peate D W, Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.

    • Hedenquist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519~527.

    • Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399~417.

    • Hernández-Uribe D, Hernández-Montenegro J D, Cone K A, Palin R M. 2020. Oceanic slab-top melting during subduction: Implications for trace element recycling and adakite petrogenesis. Geology, 48: 216~220.

    • Holland T J B. 1979. High water activities in the generation of high pressure kyanite eclogites in the Tauern Window, Austria. Journal of Geology, 87: 1~27.

    • Huang Dezhi, Gao Jun, Dai Tageng. 2001. Geochemical tracking of the fluids in subduction zones. Earth Science Frontiers, 8(3): 131~140 (in Chinese with English abstract).

    • Huang Dezhi, Gao Jun, Dai Tageng, Zou Haiyang, Xiong Xianming, Klemd R. 2004. The source of fluids in the depth of the western Tianshan paleo-subduction. Science China Earth Sciences, 34(9): 835~844 (in Chinese).

    • Huang Dezhi, Gao Jun, Zhang Jinfu, Zhang Dexian, Dai Tageng. 2006. Study on oxygen isotope of high-pressure veins and host-rocks from western Tianshan in China: Implications for deep fluids flow and the characteristic of subduction. Acta Petrologica Sinica, 22(1): 74~82 (in Chinese with English abstract).

    • Ishikawa T, Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370: 205~208.

    • Jégo S, Dasgupta R. 2013. Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge. Geochimica et Cosmochimica Acta, 110: 106~134.

    • Jin Deshi, Xiao Yilin, Tan Dongbo, Wang Yangyang, Wang Xiaoxia, Li Wancai, Su Wen, Li Xiaoguang. 2023. Supercritical fluid in deep subduction zones as revealed by multiphase fluid inclusions in an ultrahigh-pressure metamorphic vein. PNAS, 120: e2219083120.

    • John T, Schenk V. 2006. Interrelations between intermediate depth earthquakes and fluid flow within subducting oceanic plates: Constraints from eclogite-facies pseudotachylytes. Geology, 34: 557~560.

    • John T, Klemd R, Gao Jun, Garbe-Schonberg C D. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos, 103: 1~24.

    • John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geoscience, 5: 489~492.

    • Jung H, Green H W, Dobrzhinetskaya L F. 2004. Intermediate depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428: 545~549.

    • Kastner M, Elderfield H, Martin J B. 1991. Fluids in convergent margins: What do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Philosophical Transactions of the Royal Society, Series A, 335: 243~259.

    • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H T, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. PNAS, 110: 9663~9668.

    • Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. PNAS, 112: 3997~4006.

    • Kelemen P B, Rilling J L, Parmentier Plank T, Manning G E. 2019. Subducting carbon. Nature, 574: 343~352.

    • Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237~240.

    • Kerrick D M, Connolly J A D. 1998. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 26: 375~378.

    • Kerrick D M, Connolly J A D. 2001a. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism an volatile recycling. Earth and Planetary Science Letters, 189: 19~29.

    • Kerrick D M, Connolly J A D. 2001b. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 411: 293~296.

    • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180 km depth. Nature, 437: 724~727.

    • King R L, Bebout G E, Moriguti T, Nakamura E. 2006. Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation: Obstacles to identification of fluid sources to arc volcanics. Earth and Planetary Science Letters, 246: 288~304.

    • Klemd R. 1989. P-T evolution and fluid inclusion characteristics of retrograded eclogites, Münchberg gneiss complex, Germany. Contributions to Mineralogy and Petrology, 102: 221~229.

    • Klemd R. 2004. Fluid inclusions in epidote minerals and fluid development in epidote-bearing rocks. Reviews in Mineralogy and Geochemistry, 56: 197~234.

    • König S, Rosca C, Kurzawa T, Varas-Reus M I, Dragovic B, Schoenberg R, John T. 2021. Selenium isotope evidence for pulsed flow of oxidative slab fluids. Geochemcal Perspectives Letters, 17: 27~32.

    • Konzett J, Krenn K, Hauzenberger C, Whitehouse M, Hoinkes G. 2012. High-pressure tourmaline formation and fluid activity in Fe-Ti-rich eclogites from the Kreuzeck Mountains, Eastern Alps, Austria. Journal of Petrology, 53: 99~125.

    • Krenn K, Konzett J, Hoinkes G. 2014. Re-equilibration of a high-pressure metamorphic fluid: Evidence from tourmaline-, apatite- and quartz-hosted fluid inclusions in an Eoalpine eclogite from the Eastern Alps. European Journal of Mineralogy, 26: 231~244.

    • Lan Chunyuan, Tao Renbiao, Zhang Lifei, Guo Shun. 2022. Carbon realsing mechanisms and flux estimation in subducting slabs: Problems and progress. Acta Petrologica Sinica, 38(5): 1523~1540 (in Chinese with English abstract).

    • Langseth M G, Moore J G. 1990. Introduction to special section on the role of fluids in sediment accretion, deformation, diagenesis and metamorphism in subduction zones. Journal of Geophysical Research, 95: 8737~8741.

    • Li Jilei, Gao Jun, John T, Klemd R, Su Wen. 2013. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits: Constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China). Geochimica et Cosmochimica Acta, 120: 326~362.

    • Li Jilei, Gao Jun, Klemd R, John T, Wang Xinshui. 2016. Redox processes in subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and veins (SW Tianshan, China). Contributions to Mineralogy and Petrology, 171(8-9): 72.

    • Li Jilei, Schwarzenbach E M, John T, Ague J J, Huang Fang, Gao Jun, Klemd R, Whitehouse M J, Wang Xinshui. 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, 11: 260.

    • Li Jilei, Schwarzenbach E M, John T, Ague J J, Tassara S, Gao Jun, Konecke B A. 2021a. Subduction zone sulfur mobilization and redistribution by intraslab fluid-rock interaction. Geochimica et Cosmochimica Acta, 297: 40~64.

    • Li Jilei, Klemd R, Huang Gaofeng, Ague J J, Gao Jun. 2021b. Unravelling slab δ34S compositions from in-situ sulphide δ34S studies of high-pressure metamorphic rocks. International Geology Review, 63: 109~129.

    • Li Jilei, Gao Jun, Huang Gaofeng, Ma Zhipei, Wang Xinshui. 2022. Geochemical behavior and recycling of sulfur in subduction zones. Acta Petrologica Sinica, 38(5): 1345~1359 (in Chinese with English abstract).

    • Li Wancai, Ni Huaiwei. 2020. Dehydration at subduction zones and the geochemistry of slab fluids. Science China Earth Sciences, 63(12): 1925~1937.

    • Liu Shengao. 2022. Tracking volatile recycling in subduction zones using metal stable isotopes. Acta Petrologica Sinica, 38(5): 1512~1522 (in Chinese with English abstract).

    • Locatelli M, Verlaguet A, Agard P, Federico L, Angiboust S. 2018. Intermediate-depth brecciation along the subduction plate interface (Monviso eclogite, W. Alps). Lithos, 320-321: 378~402.

    • Manning C E. 1998. Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Swiss Bulletin of Mineralogy and Petrology, 78: 225~242.

    • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223: 1~16.

    • Manning C E, Frezzotti M L. 2020. Subduction-zone fluids. Elements, 16: 395~400.

    • Marschall H R. 2018. Boron isotopes in the ocean floor realm and the mantle. In: Marschall H, Foster G, eds. Boron Isotopes. Advances in Isotope Geochemistry. Cham: Springer, 191~217.

    • Marschall H R, Ludwig T, Altherr R, Kalt A, Tonarini S. 2006. Syros metasomatic tourmaline: Evidence for very high-δ11B fluids in subduction zones. Journal of Petrology, 47: 1915~1942.

    • Martin L A J, Hermann J. 2018. Experimental phase relations in altered oceanic crust: Implications for carbon recycling at subduction zones. Journal of Petrology, 59: 299~320.

    • Maury R C, Defant M J, Joron J L. 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature, 360: 661~663.

    • McCulloch M T, Gamble A J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102: 358~374.

    • Menzel M D, Garrido C J, Sánchez-Vizcaíno V L, Hidas K, Marchesi C. 2019. Subduction metamorphism of serpentinite-hosted carbonates beyond antigorite-serpentinite dehydration (Nevado-Filábride Complex, Spain). Journal of Metamorphic Geology, 37: 681~715.

    • Mibe K, Yoshino T, Ono S, Yasuda A, Fujii T. 2003. Connectivity of aqueous fluid in eclogite and its implications for fluid migration in the Earth's interior. Journal of Geophysical Research, 108: 2295~3006.

    • Mibe K, Kawamoto T, Matsukage K N, Fei Y W, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. PNAS, 108: 8177~8182.

    • Morris J D, Leeman W P, Tera F. 1990. The subducted component in island arc lavas: Constraints from Be isotopes and B-Be systematics. Nature, 344: 31~36.

    • Nadeau S, Philippot P, Pineau F. 1993. Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogitic rocks as tracers of local fluid migration during high-pressure metamorphism. Earth and Planetary Science Letters, 114: 431~44.

    • Nelson B K. 1991. Sediment-derived fluids in subduction zones: Isotopic evidence from veins in blueschist and eclogite of the Franciscan complex, California. Geology, 19: 1033~1036.

    • Nelson B K. 1995. Fluid flow in subduction zones: Evidence from Nd- and Sr-isotope variations in metabasalts of the Franciscan complex, California. Contributions to Mineralogy and Petrology, 119: 247~262.

    • Newton R C. 1986. Metamorphic temperatures and pressures of Group B and C eclogites. Geological Society of America Memoir, 164: 17~30.

    • Ni Huaiwei, Zhang Li, Xiong Xiaolin, Mao Zhu, Wang Jingyun. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167: 62~71.

    • Peacock S M. 1990. Fluid processes in subduction zones. Science, 260: 664~667.

    • Peacock S M. 1993. The importance of blueschist to eclogite dehydration reactions in subducting oceanic crust. Geological Society of American Bulletins, 105: 684~694.

    • Peacock S M, Wang K L. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwester and Northeast Japan. Science, 286: 937~939.

    • Peng Weigang, Zhang Lifei, Tumiati S, Brovarone A V, Hu Han, Cai Yachun, Shen Tingting. 2021. Abiotic methane generation through reduction of serpentinite-hosted dolomite: Implications for carbon mobility in subduction zones. Geochimica et Cosmochimica Acta, 311: 119~140.

    • Philippot P. 1993. Fluid-melt-rock interaction in mafic eclogites and coesite-bearing metasediments: Constraints on volatile recycling during subduction. Chemcal Geology, 108: 93~112.

    • Philippot P, Selverstone J. 1991. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction. Contributions to Mineralogy and Petrology, 106: 417~430.

    • Philippot P, Agrinier P, Scambelluri M. 1998. Chlorite cycling during subduction of altered oceanic crust. Earth and Planetary Science Letters, 161: 33~44.

    • Piccoli F, Brovarone A V, Beyssac O, Martinez I, Ague J J, Chaduteau C. 2016. Carbonation by fluid-rock interaction at high-pressure conditions: Implications for carbon cycling in subduction zones. Earth and Planetary Science Letters, 445: 146~159.

    • Piccoli F, Hermann J, Pettke T, Connolly J A D, Kempf E D, Vieira-Duarte J F. 2019. Subducting serpentinites release reduced, not oxidized, aqueous fluids. Scientific Reports, 9: 1~7.

    • Pirard C, Hermann J. 2015. Focused fluid transfer through the mantle above subduction zones. Geology, 43: 915~918.

    • Plank T, Manning C E. 2019. Subducting carbon. Nature, 574: 343~352.

    • Plumper O, John T, Podladchikov Y Y, Vrijmoed J C, Scambelluri M. 2017. Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geoscience, 10: 150~155.

    • Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences, 30: 207~235.

    • Rawley A R, Holloway J R. 1993. Water sources for subduction zone volcanism: New experimental constraints. Science, 260: 664~667.

    • Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40: 1~26.

    • Rubatto D, Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67: 2173~2187.

    • Rustioni G, Audetat A, Keppler H. 2021. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contributions to Mineralogy and Petrology, 176: 51.

    • Ryan J G, Langmuir C H. 1993. The systematics of boron abudances in young volcanic rocks. Geochimica et Cosmochimica Acta, 57: 1489~1498.

    • Ryan J G, Morris J, Tera F, Leeman W P, Tsvetkov A. 1995. Cross-arc geochemical variations in the Lurile Arc as a function of slab depth. Science, 270: 625~627.

    • Scambelluri M, Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55: 213~227.

    • Scambelluri M, Muntener O, Ottolini L, Pettke T T, Vannucci R. 2004. The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 222: 217~234.

    • Scambelluri M, Bebout G E, Belmonte D, Gilio M, Campomenosi N, Collins N, Crispini L. 2016. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling. Earth Planetary Science Letters, 441: 155~166.

    • Scambelluri M, Pennacchioni G, Gilio M, Bestmann M, Plumer O, Nestola F. 2017. Fossil intermediate depth earthquakes in subducting slabs linked to differential stress release. Nature Geoscience, 10: 960~966.

    • Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927~1930.

    • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163: 361~379.

    • Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treatise on Geochemistry, 4: 669~701.

    • Schwarzenbach E M, Caddick M J, Petroff M, Gill B C, Cooperdock E H G, Barnes J D. 2018a. Sulphur and carbon cycling in the subduction zone mélange. Scientific Reports, 8: 15517.

    • Schwarzenbach E M, Gill B C, Johnston D T. 2018b. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere. Geochimica et Cosmochimica Acta, 223: 279~299.

    • Selverstone J, Franz G, Thomas S, Getty S. 1992. Fluid variability in 2 GPa eclogites as an indicator of fluid behaviour during subduction. Contributions to Mineralogy and Petrology, 112: 341~357.

    • Shen Ji, Wang Shuijiong, Qin Liping, Ni Huaiwei, Li Shuguang, Du Jinxuec, Shen Tingting, Zhang Lifei, Yu Huimin. 2021. Tracing serpentinite dehydration in a subduction channel: Chromium element and isotope evidence from subducted oceanic crust. Geochimica et Cosmochimica Acta, 313: 1~20.

    • Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184~197.

    • Smith H J, Spivack A J, Staugigel H, Hart S R. 1995. The boron isotopic composition of alter oceanic crust. Chemical Geology, 126: 119~135.

    • Sorensen S S, Barton M D. 1987. Metasomatism and partial melting in a subduction complex: Catalina Schist, southern California. Geology, 15: 115~118.

    • Spandler C, Hermann J. 2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos, 89: 135~153.

    • Spandler C, Pettke T, Rubatto D. 2011. Internal and external fluid sources for eclogite facies veins in the Monviso meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones. Journal of Petrology, 52: 1207~1236.

    • Staudigel H. 2003. Hydrothermal alteration processes in the oceanic crust. Treatise on Geochemistry, 3: 511~536.

    • Stewart E M, Ague J J. 2020. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nature Communications, 11: 6220.

    • Stolper E, Newman S. 1994. The role of water in the petrogenesis of Marina trough magmas. Earth and Planetary Science Letters, 121: 293~325.

    • Su Wen, Schwarzenbach E M, Chen Lei, Li Yibing, John T, Gao Jun, Chen Fei, Hu Xinmeng. 2019. Sulfur isotope compositions of pyrite from high-pressure metamorphic rocks and related veins (SW Tianshan, China): Implications for the sulfur cycle in subduction zones. Lithos, 348-349: 105212.

    • Svensen H, Jamtveit B, Yardley B, Engvik A K, Austrhein H, Broman C. 1999. Lead and bromine enrichment in eclogite-facies fluids extreme fractionation during lower-crustal hydration. Geology, 27: 467~470.

    • Sverjensky D A, Stagno V, Huang F. 2014. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nature Geoscience, 7: 909~913.

    • Taetz S, John T, Bröcker M, Spandler C, Stracke A. 2018. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth and Planetary Science Letters, 482: 33~43.

    • Tamblyn R, Zack T, Schmitt A K, Hand M, Kelsey D, Morrissey L, Pabste S, Savovf I P. 2019. Blueschist from the Mariana forearc records long-lived residence of material in the subduction channel. Earth and Planetary Science Letters, 519: 171~181.

    • Tao Renbiao, Zhang Lifei, Tian Meng, Zhu Jianjiang, Liu X, Liu Jinzhong, Hofer H E, Stagno V, Fei Yingwei. 2018. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochimica et Cosmochimica Acta, 239: 390~408.

    • Tatsumi Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research, 94: 4697~4707.

    • Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science.

    • Tollan P, Hermann J. 2019. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene. Nature Geoscience, 12: 667~671.

    • Tomkins A G, Evans K A. 2015. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth and Planetary Sciences Letters, 428: 73~83.

    • Touret J L R. 1992. Fluid inclusions in subducted rocks. Proc. Koninklijke Nederlandse van Wetenschappen, 95: 385~403.

    • Tribuzio R, Messiga B, Vannucc R, Bottazzi P. 1996. Rare earth element redistribution during high-pressure-low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): Implications for light REE mobility in subduction zones. Geology, 24: 711~714.

    • Tsay A, Zajacz Z, Ulmer P, Sanchez-Valle C. 2017. Mobility of major and trace elements in the eclogite-fluid system and element fluxes upon slab dehydration. Geochimica et Cosmochimica Acta, 198: 70~91.

    • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858~861.

    • Walters J B, Cruz-Uribe A M, Marschall H R. 2019. Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones. Geochemistry Geophysics Geosystems, 20: 3347~3374.

    • Walters J B, Cruz-Uribe A M, Marschall H R. 2020. Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation. Geochemical Perspectives Letters, 13: 36~41.

    • Wang Chao, Tao Renbiao, Walters J B, Höfer H E, Zhang Lifei. 2022. Favorable P-T-fo2 conditions for abiotic CH4 production in subducted oceanic crusts: A comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite. Geochimica et Cosmochimica Acta, 336: 269~290.

    • Wang Shuijiong, Teng Fangzhen, Li Shuguang, Zhang Lifei, Du Jinxue, He Yongsheng, Niu Yaoling. 2017. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 290~291: 94~103.

    • Watson E B, Brenan J M. 1987. Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth and Planetary Sciences Letters, 85: 497~515.

    • Widmer T, Thompson A B. 2001. Local origin of high pressure vein material in eclogite facies rocks of the Zermatt-Saas zone, Switzerland. American Journal of Science, 301: 627~656.

    • Wu Shengying, Xiao Yuanyuan. 2023. Various fluids and complex geochemical processes in the subduction channel: Constraints from the ultrahigh pressure metamorphic belt of Southwestern Tianshan, China. Lithos, 442-443: 107077.

    • Xia Qiongxia, Zheng Yongfei, Hu Zhaochu. 2010. Trace elements in zircon and coexisting minerals from low-T/UHP matagranite in the Dabie orogen: Implications for acrtion of supercritical fluid dueing continental subduction-zone metamorphism. Lithos, 114: 385~412.

    • Xiong Xianming, Gao Jun, Klemd R, Huang Dezhi. 2006a. Composition of hydrous fluids released by dehydration of oceanic island basalts during subduction: Constraints from the eclogite-facies high-pressure veins in the western Tianshan, NW China. Acta Petrologica Sinica, 22(1): 103~114 (in Chinese with English abstract).

    • Xiong Xianming, John T, Gao Jun, Klemd R, Huang Dezhi. 2006b. Trace element moblization in subducted slabs: Constraints on an eclogite-facies transprot vein from the western Tianshan, NW China. Acta Geologica Sinica, 80(1): 53~60 (in Chinese with English abstract).

    • Xiong Xiaolin, Liu Xingcheng, Li Li, Wang Jingtuan, Chen Wei, Ruan Mengfei, Xu Ting, Sun Zhongxing, Huang Fangfang, Li Jianping, Zhang Lei. 2020. The partitioning behavior of trace elements in subduction zones: Advances and prospects. Science China Earth Sciences, 63(12): 1938~1951.

    • Yang Jianjun, Huang Mengxi, Wu Qianyi, Zhang Haoran. 2014. Coesite-bearing eclogite breccia: Implication for coseismic ultrahigh-pressure metamorphism and the rate of the process. Contributions to Mineralogy and Petrology, 167: 1013~1030.

    • Zack T, Foley S F, Rivers T. 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). Journal of Petrology, 43: 1947~1974.

    • Zack T, John T. 2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chemical Geology, 239: 199~216.

    • Zhang Jianxin. 2020. The study of subduction channels: Progress, controversies and challenges. Science China Earth Sciences, 63(12): 1831~1851.

    • Zhang Lifei, Tao Renbiao, Zhu Jianjiang. 2017. Some problems of deep carbon cycle in subduction zone. Bulletin of Mineralogy, Petrology and Geochemistry, 36(2): 185~196 (in Chinese with English abstract).

    • Zhang Lijuan, Zhang Lifei, Tang Ming, Wang Xiao, Tao Renbiao, Xu Cheng, Bader T. 2023. Massive abiotic methane production in eclogite during cold subduction. National Science Review, 10: nwac207.

    • Zhang Yuxiang, Gazel E, Gaetani G A, Klein F. 2021. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7: eabj2515.

    • Zhang Zeming, Shen Kun, Sun Weidong, Liu Yongsheng, Liou J G, Shi Cao, Wang Jinli. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72: 3200~3228.

    • Zheng Yongfei. 2004. Fluid activity during exhumation process of deep-subducted continental plate. Science Bulletin, 49(10): 917~929 (in Chinese).

    • Zheng Yongfei. 2019. Subduction zone geochemistry. Geoscience Frontiers, 10: 1223~1254.

    • Zheng Yongfei, Chen Renxu, Xu Zheng, Zhang Shaobing. 2016. The transport of water in subduction zones. Science China Earth Sciences, 59: 651~681.

    • Zhu Jianjiang, Zhang Lifei, Tao Renbiao, Fei Yingwei. 2020. The formation of graphite-rich eclogite vein in S. W. Tianshan (China) and its implication for deep carbon cycling in subduction zone. Chemcal Geology, 533: 119430.

    • 高俊, Klemd R, 刘圣伟. 2000. 流体渗透下蓝闪石岩的榴辉岩化作用. 中国科学, 30(增刊): 29~37.

    • 郭顺. 2021. 俯冲—碰撞带硼循环. 矿物岩石地球化学通报, 40(5): 1049~1060.

    • 黄德志, 高俊, 戴塔根. 2001. 俯冲带流体作用的地球化学示踪. 地学前缘, 8(3): 131~140.

    • 黄德志, 高俊, 戴塔根, 邹海洋, 熊贤明, Klemd R. 2004. 西天山古俯冲带深部体来源. 中国科学(D辑), 34(9): 835~844.

    • 黄德志, 高俊, 张进富, 张德贤, 戴塔根, Klemd R. 2006. 西天山高压脉及主岩的氧同位素研究——古俯冲带深部流体及俯冲带特征的启示. 岩石学报, 22(1): 74~82.

    • 兰春元, 陶仁彪, 张立飞, 郭顺. 2022. 俯冲板片的脱碳机制及通量估算: 问题与进展. 岩石学报, 38(5): 1523~1540.

    • 李继磊, 高俊, 黄高风, 马智佩, 王信水. 2022. 俯冲带硫的地球化学行为及硫循环. 岩石学报, 38(5): 1345~1359.

    • 李万财, 倪怀玮. 2020. 俯冲带脱水作用与板片流体地球化学. 中国科学: 地球科学, 50(12): 1770~1784.

    • 刘盛遨. 2022. 金属稳定同位素示踪俯冲带挥发分循环. 岩石学报, 38(5): 1512~1522.

    • 熊贤明, 高俊, Klemd R, 黄德志. 2006a. 俯冲洋岛玄武岩脱水释放的水流体成分: 来自西天山榴辉岩相高压脉的约束. 岩石学报, 22(1): 103~144.

    • 熊贤明, John T, 高俊, Klemd R, 黄德志. 2006b. 俯冲板片中微量元素的活动性: 西天山榴辉岩相运输脉的制约. 地质学报, 80(1): 53~60.

    • 熊小林, 刘星成, 李立, 王锦团, 陈伟, 阮梦飞, 许婷, 孙众星, 黄芳芳, 李建平, 张磊. 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 1785~1798.

    • 张建新. 2020. 俯冲隧道研究: 进展、问题及其挑战. 中国科学: 地球科学, 50(12): 1671~1691.

    • 张立飞, 陶仁彪, 朱建江. 2017. 俯冲带深部碳循环: 问题与探讨. 矿物岩石地球化学通报, 36(2): 185~196.

    • 郑永飞. 2004. 深俯冲大陆板块折返过程中的流体活动. 科学通报, 49(10): 917~929.

    • 郑永飞, 陈仁旭, 徐峥, 张少兵. 2016. 俯冲带中的水迁移. 中国科学: 地球科学, 46(3): 253~286.

  • 参考文献

    • Ague J J. 2003. Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist, Connecticut, USA. American Journal of Science, 303: 753~816.

    • Ague J J. 2014. Fluid flow in the deep crust. Treatise on Geochmemistry, 4: 203~247.

    • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7: 355~360.

    • Alt J C. 1995. Sulfur isotopic profile through the oceanic crust: Sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology, 23: 585~588.

    • Alt J C, Teagle D A H. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63: 1527~1535.

    • Alt J C, Schwarzenbach E M, Früh-Green G L, Shanks W C, Bernasconi S M, Garrido C J, Crispini L, Gaggero L, Padrón-Navarta J A, Marchesi C. 2013. The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism. Lithos, 178: 40~54.

    • Altherr R, Topuz G, Marschall H, Zack T, Ludwig T. 2004. Evolution of a tourmaline-bearing lawsonite eclogite from the Elekdağ area (Central Pontides, N Turkey): Evidence for infiltration of slab-derived B-rich fluids during exhumation. Contributions to Mineralogy and Petrology, 148: 409~425.

    • Angiboust S, Agard P, Yamato P, Raimbourg H. 2012. Eclogite breccias in a subducted ophiolite: A record of intermediate depth earthquakes? Geology, 40: 707~710.

    • Antignano A, Manning C E. 2008. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0. 7-2. 0 GPa and 700-1000℃: Implications for mobility of nominally insoluble elements. Chemical Geology, 255: 283~293.

    • Austrheim H, Dunkel K G, Plümper O, Ildefonse B, Liu Y, Jamtveit B. 2017. Fragmentation of wall rock garnets during deep crustal earthquakes. Science Advance, 3: e1602067.

    • Bang Y, Hwang H, Kim T, Cynn H, Park Y, Jung H, Park C, Popov D, Prakapenka V B, Wang Lin, Liermann H P, Irifune T, Mao Ho-Kwang, Lee Y. 2021. The stability of subducted glaucophane with the Earth's secular cooling. Nature Communications, 12: 1496.

    • Bebout G E. 1991. Field-based evidence for devolatilization in subduction zones: Implications for arc magmatism. Science, 251: 413~416.

    • Bebout G E. 1995. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chemical Geology, 126: 191~218.

    • Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260: 373~393.

    • Bebout G E. 2014. Chemical and isotopic cycling in subduction zones. Treatise on Geochmemistry, 4: 703~748.

    • Bebout G E, Barton M D. 1993. Metasomatism during subduction: Products and possible paths in the Catalina Schist, California. Chemical Geology, 108: 61~92.

    • Bebout G E, Ryan J G, Leeman W P, Bebout A E. 1999. Fractionation of trace elements during subduction-zone metamorphism: Impact of convergent margin thermal evolution. Earth and Planetary Science Letters, 171: 63~81.

    • Bebout G E, Nakamura E. 2003. Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology, 31: 407~410.

    • Bebout G E, Penniston-Dorland S C. 2016. Fluid and mass transfer at subduction interface--The field metamorphic record. Lithos, 240-243: 228~258.

    • Becker H, Jochum K P, Carlson R W. 1999. Constrains from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chemical Geology, 160: 291~308.

    • Beinlich A, Klemd R, John T, Gao Jun. 2010. Trace-element mobilization during Ca metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock interaction. Geochimica et Cosmochimica Acta, 74: 1892~1922.

    • Bekaert D V, Turner S J, Broadley M W, Barnes J D, Halldorsson S A, Labidi J, Wade J, Walowski K J, Barry P H. 2021. Subduction-driven volatile recycling: A global mass balance. Annual Review of Earth and Planetary Sciences, 49: 37~70.

    • Bénard A, Klimm K, Woodland A B, Arculus R J, Wilke M, Botcharnikov R E, Shimizu N, Nebel O, Rivard C, Ionov D A. 2018. Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas. Nature Communications, 9: 3500.

    • Bodner R J, Binns P R, Hall D L. 1989. Synthetic fluid inclusions. VI. Quantitative evaluation of the description behavior of fluid inclusions in quartz at one atmosphere confining pressure. Journal of Metamorphic Geology, 7: 229~242.

    • Brenan J M, Shaw H F, Ryerson R J. 1995a. Experimental evidence for the origin of lead enrichment in convergent margin magmas. Nature, 378: 54~56.

    • Brenan J M, Shaw H F, Ryerson F J, Phinney D L. 1995b. Mineral-aqueous fluid partitioning of trace elements at 900℃ and 2. 0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59: 3331~3350.

    • Brovarone A V, Sverjensky D A, Piccoli F, Ressico F, Giovannelli D, Daniel I. 2020. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nature Communications, 11: 3880.

    • Brown J L, Christy A G, Ellis D J, Arculus R J. 2014. Prograde sulfide metamorphism in blueschist and eclogite, New Caledonia. Journal of Petrology, 55: 643~670.

    • Brunsmann A, Franz G, Erzinger J, Landwehr D. 2000. Zoisite- and clinozoisite-segregations in metabasites (Tauern Window, Austria) as evidence for high-pressure fluid-rock interaction. Journal of Metamorphic Geology, 18: 1~21.

    • Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS, 106: 8123~8127.

    • Carswell D A. 1990. Eclogite Facies Rocks. London: England Blackie.

    • Carswell D A, Compagnoni R. 2003. Ultrahigh Pressure Metamorphism. EMU Notes in Mineralogy, vol. 5. Budapest: Eötvös University Press.

    • Cervantes P, Wallace P J. 2003. Role of H2O in subduction-zone magmatism: New insights from melt inclusions in high-Mg basalts from central Mexico. Geology, 31: 235~238.

    • Chan L H, Edmond J M, Thompson G, Gillis K. 1992. Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in ocean. Earth and Planetary Science Letters, 108: 151~160.

    • Chan L H, Leeman W P, You G F. 1999. Lithium isotopic composition of central American Volcanic Arc Lavas: Implications for modifications of subarc mantle by slab-derived fluids. Chemocal Geology, 160: 255~280.

    • Chen Shuo, Hin R C, John T, Brooker R, Bryan B, Niu Yaoling, Elliot T. 2019. Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration. Nature Communications, 10: 1~9.

    • Chiaradia M. 2020. Howmuch water in basaltic melts parental to porphyry copper deposits? Frontier Earth Science, 8: 138.

    • Connolly J A D. 1997. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. Journal of Geophysical Research, 102: 18149~18173.

    • Cook-Kollars J, Bebout G E, Collins N C, Angiboust S, Agard P. 2014. Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chemical Geology, 386: 31~48.

    • Crossley R J, Evans K A, Jeon H, Kilburn M R. 2018. Insights into sulfur cycling at subduction zones from in-situ isotopic analysis of sulfides in high-pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chemical Geology, 493: 359~378.

    • Davies J H. 1999. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature, 398: 142~145.

    • Debret B, Andreani M, Delacour A, Rouméjon S, Trcera N, Williams H. 2017. Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy. Earth and Planetary Science Letters, 466: 1~11.

    • De Hoog J C M, Mason P R D, van Bergen M J. 2001. Sulfur and chalcophile elements in subduction zones: Constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochimica et Cosmochimica Acta, 65: 3147~3164.

    • De Hoog J C M, Savov I P. 2018. Boron isotopes as a tracer of subduction zone processes. In: Marschall H, Foster G, eds. Boron Isotopes. Advances in Isotope Geochemistry. Cham: Springer, 217~247.

    • Dragovic B, Samanta L M, Baxter E F, Selverstone J. 2012. Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: An example from Sifnos, Greece. Chemcal Geology, 314~317: 9~22.

    • Edwards C M H, Morris J D, Thirlwall M F. 1993. Separating mantle from slab signature in arc lavas using B/Be and radiogenic isotope systematics. Nature, 362: 530~533.

    • Evans K A, Tomkins A G, Cliff J, Fiorentini M L. 2014. Insights into subduction zone sulfur recycling from isotopic analysis of eclogite-hosted sulfides. Chemical Geology, 365: 1~19.

    • Evans K A, Reddy S M, Tomkins A G, Crossley R J, Fros B R. 2017. Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. Lithos, 278: 26~42.

    • Frezzotti M L, Ferrando S. 2015. The chemical behavior of fluids released during deep subduction based on fluid inclusions. American Mineralogist, 100: 352~377.

    • Fryer P, Wheat C G, Mottl M J. 1999. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone. Geology, 27: 103~106.

    • Galvez M E, Connolly J A D, Manning C E. 2016. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature, 539: 420~424.

    • Gao Jun, Klemd R, Liu Shengwei. 2000. Eclogitization of glaucophanites by fluid infiltration. Science in China (D), 43 (supplement): 144~155.

    • Gao Jun, Klemd R. 2001. Primary fluids entrapped at blueschist to eclogite transition: Evidence from the Tianshan metasubduction complex in northwestern China. Contributions to Mineralogy and Petrology, 142: 1~14.

    • Gao Jun, John T, Klemd R, Xiong Xianming. 2007. Mobilisation of Ti-Nb-Ta during subduction: Evidence from rutile-bearing segregations and veins hosted in eclogites, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71: 4974~4996.

    • Gerrits A R, Inglis E C, Dragovic B, Starr P G, Baxter E F, Burton K W. 2019. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet. Nature Geoscience, 12: 1029~1033.

    • Giacometti F, Evans K A, Rebay G, Cliff J, Tomkins A G, Rossetti P, Vaggelli G, Adams D T. 2014. Sulfur isotope evolution in sulfide ores from Western Alps: Assessing the influence of subduction-related metamorphism. Geochemistry Geophysics Geosystems, 15: 3808~3829.

    • Giaramita M J, Sorensen S S. 1994. Primary fluids in low-temperature eclogites: Evidence from two subduction complexes (Dominican Republic and California, USA). Contributions to Mineralogy and Petrology, 117: 279~292.

    • Griffin W L, Begg G C, O'Reilly S Y. 2013. Continental-root control on the genesis of magmatic ore deposits. Nature Geoscience, 6: 905~910.

    • Guo Shun. 2021. Boron cycling in subduction-collision zones. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1049~1060 (in Chinese with English abstract).

    • Hacker B R, Peacock S M, Abers G A, Holloway S D. 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research, 108(B1): 2030.

    • Halama R, John T, Herms P, Hauff F, Schenk V. 2011. A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab. Chemical Geology, 281: 151~166.

    • Hawkesworth C J, Turner S P, McDermott F, Peate D W, Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.

    • Hedenquist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519~527.

    • Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399~417.

    • Hernández-Uribe D, Hernández-Montenegro J D, Cone K A, Palin R M. 2020. Oceanic slab-top melting during subduction: Implications for trace element recycling and adakite petrogenesis. Geology, 48: 216~220.

    • Holland T J B. 1979. High water activities in the generation of high pressure kyanite eclogites in the Tauern Window, Austria. Journal of Geology, 87: 1~27.

    • Huang Dezhi, Gao Jun, Dai Tageng. 2001. Geochemical tracking of the fluids in subduction zones. Earth Science Frontiers, 8(3): 131~140 (in Chinese with English abstract).

    • Huang Dezhi, Gao Jun, Dai Tageng, Zou Haiyang, Xiong Xianming, Klemd R. 2004. The source of fluids in the depth of the western Tianshan paleo-subduction. Science China Earth Sciences, 34(9): 835~844 (in Chinese).

    • Huang Dezhi, Gao Jun, Zhang Jinfu, Zhang Dexian, Dai Tageng. 2006. Study on oxygen isotope of high-pressure veins and host-rocks from western Tianshan in China: Implications for deep fluids flow and the characteristic of subduction. Acta Petrologica Sinica, 22(1): 74~82 (in Chinese with English abstract).

    • Ishikawa T, Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370: 205~208.

    • Jégo S, Dasgupta R. 2013. Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge. Geochimica et Cosmochimica Acta, 110: 106~134.

    • Jin Deshi, Xiao Yilin, Tan Dongbo, Wang Yangyang, Wang Xiaoxia, Li Wancai, Su Wen, Li Xiaoguang. 2023. Supercritical fluid in deep subduction zones as revealed by multiphase fluid inclusions in an ultrahigh-pressure metamorphic vein. PNAS, 120: e2219083120.

    • John T, Schenk V. 2006. Interrelations between intermediate depth earthquakes and fluid flow within subducting oceanic plates: Constraints from eclogite-facies pseudotachylytes. Geology, 34: 557~560.

    • John T, Klemd R, Gao Jun, Garbe-Schonberg C D. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos, 103: 1~24.

    • John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geoscience, 5: 489~492.

    • Jung H, Green H W, Dobrzhinetskaya L F. 2004. Intermediate depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428: 545~549.

    • Kastner M, Elderfield H, Martin J B. 1991. Fluids in convergent margins: What do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Philosophical Transactions of the Royal Society, Series A, 335: 243~259.

    • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H T, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. PNAS, 110: 9663~9668.

    • Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. PNAS, 112: 3997~4006.

    • Kelemen P B, Rilling J L, Parmentier Plank T, Manning G E. 2019. Subducting carbon. Nature, 574: 343~352.

    • Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237~240.

    • Kerrick D M, Connolly J A D. 1998. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 26: 375~378.

    • Kerrick D M, Connolly J A D. 2001a. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism an volatile recycling. Earth and Planetary Science Letters, 189: 19~29.

    • Kerrick D M, Connolly J A D. 2001b. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 411: 293~296.

    • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180 km depth. Nature, 437: 724~727.

    • King R L, Bebout G E, Moriguti T, Nakamura E. 2006. Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation: Obstacles to identification of fluid sources to arc volcanics. Earth and Planetary Science Letters, 246: 288~304.

    • Klemd R. 1989. P-T evolution and fluid inclusion characteristics of retrograded eclogites, Münchberg gneiss complex, Germany. Contributions to Mineralogy and Petrology, 102: 221~229.

    • Klemd R. 2004. Fluid inclusions in epidote minerals and fluid development in epidote-bearing rocks. Reviews in Mineralogy and Geochemistry, 56: 197~234.

    • König S, Rosca C, Kurzawa T, Varas-Reus M I, Dragovic B, Schoenberg R, John T. 2021. Selenium isotope evidence for pulsed flow of oxidative slab fluids. Geochemcal Perspectives Letters, 17: 27~32.

    • Konzett J, Krenn K, Hauzenberger C, Whitehouse M, Hoinkes G. 2012. High-pressure tourmaline formation and fluid activity in Fe-Ti-rich eclogites from the Kreuzeck Mountains, Eastern Alps, Austria. Journal of Petrology, 53: 99~125.

    • Krenn K, Konzett J, Hoinkes G. 2014. Re-equilibration of a high-pressure metamorphic fluid: Evidence from tourmaline-, apatite- and quartz-hosted fluid inclusions in an Eoalpine eclogite from the Eastern Alps. European Journal of Mineralogy, 26: 231~244.

    • Lan Chunyuan, Tao Renbiao, Zhang Lifei, Guo Shun. 2022. Carbon realsing mechanisms and flux estimation in subducting slabs: Problems and progress. Acta Petrologica Sinica, 38(5): 1523~1540 (in Chinese with English abstract).

    • Langseth M G, Moore J G. 1990. Introduction to special section on the role of fluids in sediment accretion, deformation, diagenesis and metamorphism in subduction zones. Journal of Geophysical Research, 95: 8737~8741.

    • Li Jilei, Gao Jun, John T, Klemd R, Su Wen. 2013. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits: Constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China). Geochimica et Cosmochimica Acta, 120: 326~362.

    • Li Jilei, Gao Jun, Klemd R, John T, Wang Xinshui. 2016. Redox processes in subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and veins (SW Tianshan, China). Contributions to Mineralogy and Petrology, 171(8-9): 72.

    • Li Jilei, Schwarzenbach E M, John T, Ague J J, Huang Fang, Gao Jun, Klemd R, Whitehouse M J, Wang Xinshui. 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, 11: 260.

    • Li Jilei, Schwarzenbach E M, John T, Ague J J, Tassara S, Gao Jun, Konecke B A. 2021a. Subduction zone sulfur mobilization and redistribution by intraslab fluid-rock interaction. Geochimica et Cosmochimica Acta, 297: 40~64.

    • Li Jilei, Klemd R, Huang Gaofeng, Ague J J, Gao Jun. 2021b. Unravelling slab δ34S compositions from in-situ sulphide δ34S studies of high-pressure metamorphic rocks. International Geology Review, 63: 109~129.

    • Li Jilei, Gao Jun, Huang Gaofeng, Ma Zhipei, Wang Xinshui. 2022. Geochemical behavior and recycling of sulfur in subduction zones. Acta Petrologica Sinica, 38(5): 1345~1359 (in Chinese with English abstract).

    • Li Wancai, Ni Huaiwei. 2020. Dehydration at subduction zones and the geochemistry of slab fluids. Science China Earth Sciences, 63(12): 1925~1937.

    • Liu Shengao. 2022. Tracking volatile recycling in subduction zones using metal stable isotopes. Acta Petrologica Sinica, 38(5): 1512~1522 (in Chinese with English abstract).

    • Locatelli M, Verlaguet A, Agard P, Federico L, Angiboust S. 2018. Intermediate-depth brecciation along the subduction plate interface (Monviso eclogite, W. Alps). Lithos, 320-321: 378~402.

    • Manning C E. 1998. Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Swiss Bulletin of Mineralogy and Petrology, 78: 225~242.

    • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223: 1~16.

    • Manning C E, Frezzotti M L. 2020. Subduction-zone fluids. Elements, 16: 395~400.

    • Marschall H R. 2018. Boron isotopes in the ocean floor realm and the mantle. In: Marschall H, Foster G, eds. Boron Isotopes. Advances in Isotope Geochemistry. Cham: Springer, 191~217.

    • Marschall H R, Ludwig T, Altherr R, Kalt A, Tonarini S. 2006. Syros metasomatic tourmaline: Evidence for very high-δ11B fluids in subduction zones. Journal of Petrology, 47: 1915~1942.

    • Martin L A J, Hermann J. 2018. Experimental phase relations in altered oceanic crust: Implications for carbon recycling at subduction zones. Journal of Petrology, 59: 299~320.

    • Maury R C, Defant M J, Joron J L. 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature, 360: 661~663.

    • McCulloch M T, Gamble A J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102: 358~374.

    • Menzel M D, Garrido C J, Sánchez-Vizcaíno V L, Hidas K, Marchesi C. 2019. Subduction metamorphism of serpentinite-hosted carbonates beyond antigorite-serpentinite dehydration (Nevado-Filábride Complex, Spain). Journal of Metamorphic Geology, 37: 681~715.

    • Mibe K, Yoshino T, Ono S, Yasuda A, Fujii T. 2003. Connectivity of aqueous fluid in eclogite and its implications for fluid migration in the Earth's interior. Journal of Geophysical Research, 108: 2295~3006.

    • Mibe K, Kawamoto T, Matsukage K N, Fei Y W, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. PNAS, 108: 8177~8182.

    • Morris J D, Leeman W P, Tera F. 1990. The subducted component in island arc lavas: Constraints from Be isotopes and B-Be systematics. Nature, 344: 31~36.

    • Nadeau S, Philippot P, Pineau F. 1993. Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogitic rocks as tracers of local fluid migration during high-pressure metamorphism. Earth and Planetary Science Letters, 114: 431~44.

    • Nelson B K. 1991. Sediment-derived fluids in subduction zones: Isotopic evidence from veins in blueschist and eclogite of the Franciscan complex, California. Geology, 19: 1033~1036.

    • Nelson B K. 1995. Fluid flow in subduction zones: Evidence from Nd- and Sr-isotope variations in metabasalts of the Franciscan complex, California. Contributions to Mineralogy and Petrology, 119: 247~262.

    • Newton R C. 1986. Metamorphic temperatures and pressures of Group B and C eclogites. Geological Society of America Memoir, 164: 17~30.

    • Ni Huaiwei, Zhang Li, Xiong Xiaolin, Mao Zhu, Wang Jingyun. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167: 62~71.

    • Peacock S M. 1990. Fluid processes in subduction zones. Science, 260: 664~667.

    • Peacock S M. 1993. The importance of blueschist to eclogite dehydration reactions in subducting oceanic crust. Geological Society of American Bulletins, 105: 684~694.

    • Peacock S M, Wang K L. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwester and Northeast Japan. Science, 286: 937~939.

    • Peng Weigang, Zhang Lifei, Tumiati S, Brovarone A V, Hu Han, Cai Yachun, Shen Tingting. 2021. Abiotic methane generation through reduction of serpentinite-hosted dolomite: Implications for carbon mobility in subduction zones. Geochimica et Cosmochimica Acta, 311: 119~140.

    • Philippot P. 1993. Fluid-melt-rock interaction in mafic eclogites and coesite-bearing metasediments: Constraints on volatile recycling during subduction. Chemcal Geology, 108: 93~112.

    • Philippot P, Selverstone J. 1991. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction. Contributions to Mineralogy and Petrology, 106: 417~430.

    • Philippot P, Agrinier P, Scambelluri M. 1998. Chlorite cycling during subduction of altered oceanic crust. Earth and Planetary Science Letters, 161: 33~44.

    • Piccoli F, Brovarone A V, Beyssac O, Martinez I, Ague J J, Chaduteau C. 2016. Carbonation by fluid-rock interaction at high-pressure conditions: Implications for carbon cycling in subduction zones. Earth and Planetary Science Letters, 445: 146~159.

    • Piccoli F, Hermann J, Pettke T, Connolly J A D, Kempf E D, Vieira-Duarte J F. 2019. Subducting serpentinites release reduced, not oxidized, aqueous fluids. Scientific Reports, 9: 1~7.

    • Pirard C, Hermann J. 2015. Focused fluid transfer through the mantle above subduction zones. Geology, 43: 915~918.

    • Plank T, Manning C E. 2019. Subducting carbon. Nature, 574: 343~352.

    • Plumper O, John T, Podladchikov Y Y, Vrijmoed J C, Scambelluri M. 2017. Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geoscience, 10: 150~155.

    • Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences, 30: 207~235.

    • Rawley A R, Holloway J R. 1993. Water sources for subduction zone volcanism: New experimental constraints. Science, 260: 664~667.

    • Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40: 1~26.

    • Rubatto D, Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67: 2173~2187.

    • Rustioni G, Audetat A, Keppler H. 2021. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contributions to Mineralogy and Petrology, 176: 51.

    • Ryan J G, Langmuir C H. 1993. The systematics of boron abudances in young volcanic rocks. Geochimica et Cosmochimica Acta, 57: 1489~1498.

    • Ryan J G, Morris J, Tera F, Leeman W P, Tsvetkov A. 1995. Cross-arc geochemical variations in the Lurile Arc as a function of slab depth. Science, 270: 625~627.

    • Scambelluri M, Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55: 213~227.

    • Scambelluri M, Muntener O, Ottolini L, Pettke T T, Vannucci R. 2004. The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 222: 217~234.

    • Scambelluri M, Bebout G E, Belmonte D, Gilio M, Campomenosi N, Collins N, Crispini L. 2016. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling. Earth Planetary Science Letters, 441: 155~166.

    • Scambelluri M, Pennacchioni G, Gilio M, Bestmann M, Plumer O, Nestola F. 2017. Fossil intermediate depth earthquakes in subducting slabs linked to differential stress release. Nature Geoscience, 10: 960~966.

    • Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927~1930.

    • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163: 361~379.

    • Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treatise on Geochemistry, 4: 669~701.

    • Schwarzenbach E M, Caddick M J, Petroff M, Gill B C, Cooperdock E H G, Barnes J D. 2018a. Sulphur and carbon cycling in the subduction zone mélange. Scientific Reports, 8: 15517.

    • Schwarzenbach E M, Gill B C, Johnston D T. 2018b. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere. Geochimica et Cosmochimica Acta, 223: 279~299.

    • Selverstone J, Franz G, Thomas S, Getty S. 1992. Fluid variability in 2 GPa eclogites as an indicator of fluid behaviour during subduction. Contributions to Mineralogy and Petrology, 112: 341~357.

    • Shen Ji, Wang Shuijiong, Qin Liping, Ni Huaiwei, Li Shuguang, Du Jinxuec, Shen Tingting, Zhang Lifei, Yu Huimin. 2021. Tracing serpentinite dehydration in a subduction channel: Chromium element and isotope evidence from subducted oceanic crust. Geochimica et Cosmochimica Acta, 313: 1~20.

    • Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184~197.

    • Smith H J, Spivack A J, Staugigel H, Hart S R. 1995. The boron isotopic composition of alter oceanic crust. Chemical Geology, 126: 119~135.

    • Sorensen S S, Barton M D. 1987. Metasomatism and partial melting in a subduction complex: Catalina Schist, southern California. Geology, 15: 115~118.

    • Spandler C, Hermann J. 2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos, 89: 135~153.

    • Spandler C, Pettke T, Rubatto D. 2011. Internal and external fluid sources for eclogite facies veins in the Monviso meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones. Journal of Petrology, 52: 1207~1236.

    • Staudigel H. 2003. Hydrothermal alteration processes in the oceanic crust. Treatise on Geochemistry, 3: 511~536.

    • Stewart E M, Ague J J. 2020. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nature Communications, 11: 6220.

    • Stolper E, Newman S. 1994. The role of water in the petrogenesis of Marina trough magmas. Earth and Planetary Science Letters, 121: 293~325.

    • Su Wen, Schwarzenbach E M, Chen Lei, Li Yibing, John T, Gao Jun, Chen Fei, Hu Xinmeng. 2019. Sulfur isotope compositions of pyrite from high-pressure metamorphic rocks and related veins (SW Tianshan, China): Implications for the sulfur cycle in subduction zones. Lithos, 348-349: 105212.

    • Svensen H, Jamtveit B, Yardley B, Engvik A K, Austrhein H, Broman C. 1999. Lead and bromine enrichment in eclogite-facies fluids extreme fractionation during lower-crustal hydration. Geology, 27: 467~470.

    • Sverjensky D A, Stagno V, Huang F. 2014. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nature Geoscience, 7: 909~913.

    • Taetz S, John T, Bröcker M, Spandler C, Stracke A. 2018. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth and Planetary Science Letters, 482: 33~43.

    • Tamblyn R, Zack T, Schmitt A K, Hand M, Kelsey D, Morrissey L, Pabste S, Savovf I P. 2019. Blueschist from the Mariana forearc records long-lived residence of material in the subduction channel. Earth and Planetary Science Letters, 519: 171~181.

    • Tao Renbiao, Zhang Lifei, Tian Meng, Zhu Jianjiang, Liu X, Liu Jinzhong, Hofer H E, Stagno V, Fei Yingwei. 2018. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochimica et Cosmochimica Acta, 239: 390~408.

    • Tatsumi Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research, 94: 4697~4707.

    • Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science.

    • Tollan P, Hermann J. 2019. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene. Nature Geoscience, 12: 667~671.

    • Tomkins A G, Evans K A. 2015. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth and Planetary Sciences Letters, 428: 73~83.

    • Touret J L R. 1992. Fluid inclusions in subducted rocks. Proc. Koninklijke Nederlandse van Wetenschappen, 95: 385~403.

    • Tribuzio R, Messiga B, Vannucc R, Bottazzi P. 1996. Rare earth element redistribution during high-pressure-low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): Implications for light REE mobility in subduction zones. Geology, 24: 711~714.

    • Tsay A, Zajacz Z, Ulmer P, Sanchez-Valle C. 2017. Mobility of major and trace elements in the eclogite-fluid system and element fluxes upon slab dehydration. Geochimica et Cosmochimica Acta, 198: 70~91.

    • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858~861.

    • Walters J B, Cruz-Uribe A M, Marschall H R. 2019. Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones. Geochemistry Geophysics Geosystems, 20: 3347~3374.

    • Walters J B, Cruz-Uribe A M, Marschall H R. 2020. Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation. Geochemical Perspectives Letters, 13: 36~41.

    • Wang Chao, Tao Renbiao, Walters J B, Höfer H E, Zhang Lifei. 2022. Favorable P-T-fo2 conditions for abiotic CH4 production in subducted oceanic crusts: A comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite. Geochimica et Cosmochimica Acta, 336: 269~290.

    • Wang Shuijiong, Teng Fangzhen, Li Shuguang, Zhang Lifei, Du Jinxue, He Yongsheng, Niu Yaoling. 2017. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 290~291: 94~103.

    • Watson E B, Brenan J M. 1987. Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth and Planetary Sciences Letters, 85: 497~515.

    • Widmer T, Thompson A B. 2001. Local origin of high pressure vein material in eclogite facies rocks of the Zermatt-Saas zone, Switzerland. American Journal of Science, 301: 627~656.

    • Wu Shengying, Xiao Yuanyuan. 2023. Various fluids and complex geochemical processes in the subduction channel: Constraints from the ultrahigh pressure metamorphic belt of Southwestern Tianshan, China. Lithos, 442-443: 107077.

    • Xia Qiongxia, Zheng Yongfei, Hu Zhaochu. 2010. Trace elements in zircon and coexisting minerals from low-T/UHP matagranite in the Dabie orogen: Implications for acrtion of supercritical fluid dueing continental subduction-zone metamorphism. Lithos, 114: 385~412.

    • Xiong Xianming, Gao Jun, Klemd R, Huang Dezhi. 2006a. Composition of hydrous fluids released by dehydration of oceanic island basalts during subduction: Constraints from the eclogite-facies high-pressure veins in the western Tianshan, NW China. Acta Petrologica Sinica, 22(1): 103~114 (in Chinese with English abstract).

    • Xiong Xianming, John T, Gao Jun, Klemd R, Huang Dezhi. 2006b. Trace element moblization in subducted slabs: Constraints on an eclogite-facies transprot vein from the western Tianshan, NW China. Acta Geologica Sinica, 80(1): 53~60 (in Chinese with English abstract).

    • Xiong Xiaolin, Liu Xingcheng, Li Li, Wang Jingtuan, Chen Wei, Ruan Mengfei, Xu Ting, Sun Zhongxing, Huang Fangfang, Li Jianping, Zhang Lei. 2020. The partitioning behavior of trace elements in subduction zones: Advances and prospects. Science China Earth Sciences, 63(12): 1938~1951.

    • Yang Jianjun, Huang Mengxi, Wu Qianyi, Zhang Haoran. 2014. Coesite-bearing eclogite breccia: Implication for coseismic ultrahigh-pressure metamorphism and the rate of the process. Contributions to Mineralogy and Petrology, 167: 1013~1030.

    • Zack T, Foley S F, Rivers T. 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). Journal of Petrology, 43: 1947~1974.

    • Zack T, John T. 2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chemical Geology, 239: 199~216.

    • Zhang Jianxin. 2020. The study of subduction channels: Progress, controversies and challenges. Science China Earth Sciences, 63(12): 1831~1851.

    • Zhang Lifei, Tao Renbiao, Zhu Jianjiang. 2017. Some problems of deep carbon cycle in subduction zone. Bulletin of Mineralogy, Petrology and Geochemistry, 36(2): 185~196 (in Chinese with English abstract).

    • Zhang Lijuan, Zhang Lifei, Tang Ming, Wang Xiao, Tao Renbiao, Xu Cheng, Bader T. 2023. Massive abiotic methane production in eclogite during cold subduction. National Science Review, 10: nwac207.

    • Zhang Yuxiang, Gazel E, Gaetani G A, Klein F. 2021. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7: eabj2515.

    • Zhang Zeming, Shen Kun, Sun Weidong, Liu Yongsheng, Liou J G, Shi Cao, Wang Jinli. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72: 3200~3228.

    • Zheng Yongfei. 2004. Fluid activity during exhumation process of deep-subducted continental plate. Science Bulletin, 49(10): 917~929 (in Chinese).

    • Zheng Yongfei. 2019. Subduction zone geochemistry. Geoscience Frontiers, 10: 1223~1254.

    • Zheng Yongfei, Chen Renxu, Xu Zheng, Zhang Shaobing. 2016. The transport of water in subduction zones. Science China Earth Sciences, 59: 651~681.

    • Zhu Jianjiang, Zhang Lifei, Tao Renbiao, Fei Yingwei. 2020. The formation of graphite-rich eclogite vein in S. W. Tianshan (China) and its implication for deep carbon cycling in subduction zone. Chemcal Geology, 533: 119430.

    • 高俊, Klemd R, 刘圣伟. 2000. 流体渗透下蓝闪石岩的榴辉岩化作用. 中国科学, 30(增刊): 29~37.

    • 郭顺. 2021. 俯冲—碰撞带硼循环. 矿物岩石地球化学通报, 40(5): 1049~1060.

    • 黄德志, 高俊, 戴塔根. 2001. 俯冲带流体作用的地球化学示踪. 地学前缘, 8(3): 131~140.

    • 黄德志, 高俊, 戴塔根, 邹海洋, 熊贤明, Klemd R. 2004. 西天山古俯冲带深部体来源. 中国科学(D辑), 34(9): 835~844.

    • 黄德志, 高俊, 张进富, 张德贤, 戴塔根, Klemd R. 2006. 西天山高压脉及主岩的氧同位素研究——古俯冲带深部流体及俯冲带特征的启示. 岩石学报, 22(1): 74~82.

    • 兰春元, 陶仁彪, 张立飞, 郭顺. 2022. 俯冲板片的脱碳机制及通量估算: 问题与进展. 岩石学报, 38(5): 1523~1540.

    • 李继磊, 高俊, 黄高风, 马智佩, 王信水. 2022. 俯冲带硫的地球化学行为及硫循环. 岩石学报, 38(5): 1345~1359.

    • 李万财, 倪怀玮. 2020. 俯冲带脱水作用与板片流体地球化学. 中国科学: 地球科学, 50(12): 1770~1784.

    • 刘盛遨. 2022. 金属稳定同位素示踪俯冲带挥发分循环. 岩石学报, 38(5): 1512~1522.

    • 熊贤明, 高俊, Klemd R, 黄德志. 2006a. 俯冲洋岛玄武岩脱水释放的水流体成分: 来自西天山榴辉岩相高压脉的约束. 岩石学报, 22(1): 103~144.

    • 熊贤明, John T, 高俊, Klemd R, 黄德志. 2006b. 俯冲板片中微量元素的活动性: 西天山榴辉岩相运输脉的制约. 地质学报, 80(1): 53~60.

    • 熊小林, 刘星成, 李立, 王锦团, 陈伟, 阮梦飞, 许婷, 孙众星, 黄芳芳, 李建平, 张磊. 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 1785~1798.

    • 张建新. 2020. 俯冲隧道研究: 进展、问题及其挑战. 中国科学: 地球科学, 50(12): 1671~1691.

    • 张立飞, 陶仁彪, 朱建江. 2017. 俯冲带深部碳循环: 问题与探讨. 矿物岩石地球化学通报, 36(2): 185~196.

    • 郑永飞. 2004. 深俯冲大陆板块折返过程中的流体活动. 科学通报, 49(10): 917~929.

    • 郑永飞, 陈仁旭, 徐峥, 张少兵. 2016. 俯冲带中的水迁移. 中国科学: 地球科学, 46(3): 253~286.