合成金刚石的氮、氢杂质实验进展与地质应用
doi: 10.19762/j.cnki.dizhixuebao.2023190
鲁智云1 , 杨经绥1,2 , 连东洋2 , 吴魏伟3 , 杨彧4
1. 浙江大学地球科学学院,浙江杭州, 310058
2. 南京大学地球科学与工程学院,江苏南京, 210023
3. 中国科学院地质与地球物理研究所,北京, 100029
4. 中国地质科学院,北京, 100037
基金项目: 本文为国家自然科学基金项目(编号92062215, 42272068, 42330306)资助的成果
Experimental progress and geological application of nitrogen and hydrogen impurities in diamond
LU Zhiyun1 , YANG Jingsui1,2 , LIAN Dongyang2 , WU Weiwei3 , YANG Yu4
1. School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 , China
2. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023 , China
3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 , China
4. Chinese Academy of Geological Sciences, Beijing 100037 , China
摘要
天然金刚石中普遍存在氮、氢杂质,其存在形式、含量及分布特征对理解深部地幔物质循环、金刚石在地幔中的滞留过程具有重要参考意义。自从第一颗人造金刚石被通过高温高压法(HPHT)合成以来,前人在不同压力、温度(P-T)及介质组分的金刚石合成实验中积累了大量的数据。本文对前人在金属-碳、碳酸盐-碳、碳酸盐-硅酸盐-碳、硫化物-碳、氮化物-碳、氮化物-硫化物等体系合成的金刚石氮、氢杂质的存在形式及含量进行了系统性总结。此外,本文还从金刚石晶体结构的角度分析了[111]和[100]生长取向差异对金刚石中氮、氢含量的影响差异性原因;讨论了P-T条件、组分对合成金刚石中氮、氢杂质存在形式的影响;回顾了金刚石晶格中的氮缺陷Ib→IaA , IaA→IaB聚合的二级动力学过程。通过对比不同类型天然金刚石中的典型氮、氢杂质存在形式及含量,为研究天然金刚石的形成环境提供新的借鉴。
Abstract
The occurrence, content and distribution characteristics of nitrogen and hydrogen impurities, which are widely present in natural diamonds, are of great significance for understanding the material cycle and for estimating the residence time of diamond in the deep mantle. Since the first diamond crystal was produced by the high temperature and high pressure (HPHT) method, researchers have obtained a large amount of data on diamonds synthesized at different pressures, temperatures (P-T), and media components. This paper systematically summarizes the occurrences and contents of nitrogen and hydrogen impurities in diamond crystals synthesized in the metal-carbon, carbonate-carbon, carbonate-silicate-carbon, sulfide-carbon, nitride-carbon, and nitride-sulfide systems. In addition, the influence of [111] and [100] orientations on the nitrogen and hydrogen content in diamonds is analyzed from the perspective of diamond crystal structure. We also discuss the effects of P-T conditions, components on the existence forms of nitrogen and hydrogen impurities in synthetic diamonds. It is also reviewed that the aggregation of Ib→IaA, IaA→IaB nitrogen defect in diamond lattice follows a secondary kinetic process of conversion. Combining the typical forms and contents of nitrogen and hydrogen impurities in different types of natural diamonds, this article can provide further research directions for the formation environment of natural diamonds from the perspective of nitrogen and hydrogen impurities.
天然金刚石因其极高的硬度和化学稳定性可以携带大量的深部地球物质信息,是目前人类研究深部地幔-过渡带-下地幔物质组成及反应的重要窗口(Litvin,2017; Nestola,2017; Zedgenizov et al.,2019)。金刚石晶体是碳原子以sp3杂化形成的单质矿物,其晶体结构内部的C-C单键按照键长约0.154 nm,键角约109°28′互相连接组成立体网状结构(Yan et al.,2004; Wei Qiuping et al.,2015)。金刚石在形成的过程中,其晶体结构内的碳原子位置很容易被周围环境中原子半径相似或更小的氮、氢、硼、硅等杂质原子替代,其中氮和氢杂质广泛发现于多种不同地质背景产出的天然金刚石中(Dobrzhinetskaya et al.,2022; Stachel et al.,2022)。天然金刚石晶体中的氮、氢杂质的存在形式、含量、分布特征对反演金刚石形成的地幔环境具有重要的参考意义。然而,单独研究不同类型天然金刚石中的氮、氢杂质所给出的金刚石形成环境特征非常有限。自从第一枚金刚石晶体在1955年被GE公司在高温高压条件下合成以来,通过在高温高压条件下模拟天然金刚石的生长过程,探究其形成的地质环境特征、地幔流体组成及化学反应已经成为了实验岩石学的重要分支(Luth et al.,2022; Nimis,2022)。前人已经在岩石圈上地幔P-T条件下的金属-碳、硅酸盐-碳、C-O-H流体、碳酸盐及熔体、碳化物-碳、硫化物-碳等体系中合成了一系列的金刚石晶体,并对这些金刚石的内部的氮、氢杂质进行了大量的数据积累。本文旨在系统性回顾高温高压实验中的温度、压力、生长介质组分对合成金刚石内部氮、氢杂质的存在形式、含量、分布特征进行详细的总结,同时对比不同地质背景产出的天然金刚石中的氮、氢杂质特征,本文旨在将实验岩石学中已经建立的氮、氢杂质含量及分布规律应用于天然金刚石的形成过程及地幔滞留过程研究中。
1 金刚石中氮、氢杂质的存在形式及表征
金刚石在形成的过程中,其晶体结构内的碳原子位置很容易被杂质氮原子替代从而形成含有氮原子杂质的Ⅰ型金刚石(Wang Wuyi et al.,2015)。氮以孤原子替代碳原子形式(N0/+s)存在的为Ⅰb型金刚石,高压高温合成金刚石中的氮大部分均以这种形式存在,天然金刚石中仅约0.1%的氮杂质为Ib型(Smit et al.,2016b)。以双氮原子对形式(N20)存在的为IaA型,氮以四原子氮围绕一个空穴色心形式(N4V0)存在的为IaB型(Taylor et al.,1996; Dobrinets 2013)。大多数天然 Ia 型金刚石均同时含有IaA型和IaB型氮。这些金刚石通常被描述为 IaAB 型。此外,同时含有孤氮和双氮原子对的天然金刚石更适合归类为Ib-IaA型(Lai Meiyan et al.,2020b)。这些不同类型的氮杂质在红外波段会产生特定的光学吸收中心。Ib型金刚石晶体结构中的孤原子氮在红外光谱单声子区域产生1130 cm-1和1344 cm-1处特征的C吸收中心(Huang Guofeng et al.,2011)。IaA型金刚石中的双原子氮和IaB型金刚石中的四原子氮+空穴色心则分别在红外光谱中1282 cm-1和1175 cm-1处产生特征的A心和B心吸收。按照每1 cm-1对应16.2×10-6±1×10-6,79.4×10-6±8×10-6,25.0×10-6±2×10-6的换算系数,可以分别计算出金刚石晶体内部A、B、C光学吸收中心对应的氮浓度(Kiflawi et al.,1994; Boyd et al.,1995)。除此之外,在部分辐照和退火的Ib型金刚石的红外光谱中还可见1332 cm-1处的带正电荷的孤原子氮的N+吸收中心,其浓度对应5.5×10-6±1×10-6 cm-1的换算系数(Lawson et al.,1999)。除了以上金刚石晶体结构中的氮杂质之外,在天然和合成金刚石中还可见以N2包裹体形式存在的氮杂质,表现为显微拉曼光谱中2327 cm-1处的散射峰(Tomilenko et al.,2001)。
金刚石晶体结构中的空穴缺陷与氮杂质结合会形成一系列的氮-空位色心,其中最常见的NV0/-(575 / 637 nm)、N2V0/-(H3: 503 nm / H2: 986 nm)、N3V0(N3: 415 nm)、N4V20(H4: 496 nm)。除了在 Ia 型金刚石中几乎无处不在的N3(N3V0)缺陷之外,这些与氮空位相关的中心通常是在辐照和退火过程中引入的,例如,大量的H3中心通常出现在天然辐照成因的绿色金刚石中,但少量的这些色心也可能以低浓度存在于天然金刚石中(Zaitsev et al.,2018),因此,伴随有大量A、B中心出现大量的N3中心,可能存在少量的H2、H3、H4色心通常被认为是天然金刚石的鉴定特征。
除了氮杂质之外,氢是金刚石晶格中的最为常见的杂质,一些天然金刚石的氢含量可超过 1000×10-6Hudson et al.,1977),但宝石级单晶合成金刚石中的氢含量通常小于50×10-6。由于检测技术的限制,目前很难测定金刚石晶体结构中不同形式氢的准确含量。例如,经过辐照和退火的化学气相沉积(CVD)金刚石会产生高浓度的 NVH0/-光学吸收中心,这表明金刚石中仍有大量潜在的氢来源尚未确定。在升高的温度和压力条件下,氢杂质可以扩散到金刚石晶格中捕获并破坏NV0/-形成NVH0/-光学吸收中心(Chevallier et al.,1998)。在进一步升高的温度、压力或者漫长地质时间的作用下,NVH0/-吸收中心可能会进一步与金刚石中的氮杂质聚合形成VN3H0吸收中心,表现为红外光谱中3107 cm-1处的吸收(图1)。
1金刚石中常见的氮、氢缺陷的光学吸收中心
Table1Optical absorption center of nitrogen and hydrogen defects in diamond
注:N—氮原子; V—空穴;H—氢原子;s—单个原子;+/-/0—带正电荷/负电荷/电中性;下划线为光学吸收中心的特征峰。
2 压力、温度对金刚石中氮、氢杂质的影响
在高温高压的金属-碳体系中,适当提高温度会增加氮杂质在金属溶剂中的溶解度,从而使得合成的金刚石晶体内部的氮杂质含量(Nc)降低(Kanda et al.,1995Burns et al.,1999Tian Yu et al.,2009)。与温度提升的影响类似,压力的提高也会提高熔融溶剂/催化剂中氮杂质的溶解度,使得进入到金刚石晶体内部的氮杂质含量降低(Fang Shuai et al.,2021)。
温度条件的提升对金刚石内部氢杂质的影响主要体现在氢杂质的存在形式。在5~6 GPa,1300~1400℃的金属-碳-氢、金属-硅酸盐-水-碳体系中合成的金刚石中的氢杂质主要以-CH2、-CH3、R1-CH(R2)-OH 基团的形式存在于晶体的表面、微观裂隙表面等缺陷处(Palyanov et al.,2012; Fang Chao et al.,2016; Lu Zhiyun et al.,20212022)。除了碳氢化合物-CH,-CH2,-CH3的形式外,在~0.1 atm,800~1200℃亚稳态条件下合成的CVD金刚石中还广泛存在NVH0/-缺陷(Dischler et al.,1993; Glover et al.,2003)。在2100~2650℃下对含金属-碳-氢体系合成的Ib型金刚石的退火实验中,-CH2、-CH3、NVH0/-等缺陷则会逐渐转化为VN3H0缺陷(Kiflawi et al.,1996; Zedgenizov et al.,2016)。而对经过辐照的Ib型金刚石,经过~1900℃的高温退火便可形成明显的VN3H0缺陷(Goss et al.,2014)。因为金刚石晶体结构中的VN3H0至少在2300℃下是稳定的,因此天然金刚石中最常见的VN3H0可能代表了NV0/-→NVH0/-→VN3H0的系列聚合过程在地质时间尺度上的终点(Zaitsev et al.,2018)。
1金刚石结构内部的氮、氢杂质随时间和温度的演化模式及光学吸收中心
Fig.1Evolution patterns of nitrogen and hydrogen impurities inside the diamond structure with time and temperature and their optical absorption centers
3 组分差异对金刚石中氮、氢含量的影响
在高温高压的生长过程中,金刚石中的氮结合效率主要取决于溶剂-催化剂的性质(Kanda et al.,1999)。使用Fe、Ni、Co、Mn等过渡金属元素及其合金作为溶剂/催化剂时,合成的金刚石内部的氮杂质浓度通常为100×10-6~400×10-6Strong,1963; 胡美华等,2013; 贾晓鹏,2020)。而以Ti、Al、Mg、V为代表的金属添加剂可以在高温高压条件下与金属-碳体系中的氮杂质反应形成更为稳定的氮化物,从而可以大幅降低进入到金刚石晶体内部的氮杂质含量,使得合成的金刚石内部的氮杂质含量低于典型红外光谱的检出限,即IIa型高纯金刚石(Wakatsuki,1966; Kanda,2005)。与此相反的是,BN、NaN3、Ba(N32、CaCN2、P3N5、C3H6N6、C6N6H6等含氮添加剂的使用可以大幅提升合成大颗粒金刚石内部的氮杂质含量至~1500×10-6Chen Liangchao et al.,2018),短时间内合成的~1 mm的小颗粒金刚石晶体内部的氮杂质甚至可达~3400×10-6Liu Xiaobing et al.,2016)。随着金刚石晶体内部的孤原子氮杂质含量逐渐升高,金刚石晶体的颜色也从无色透明逐渐变为浅黄色、黄色、黄绿色和绿色。结合后期的高温高压退火处理,可以间接合成高氮含量的Ia型类天然金刚石晶体(Fang Chao et al.,2018; 贾晓鹏,2020)(图2)。
当合成体系中不存在金属溶剂/触媒时,在6.3 GPa,1250~1570℃和7.5 GPa,1300~1700℃的条件下,从富含 CO2 的Na2CO3熔体体系(Na2CO3-CO2-C)中合成的金刚石的氮杂质含量为50×10-6~150×10-6,在Na2CO3-C体系中合成金刚石的氮杂质含量为100×10-6~200×10-6,略微高于不含CO2的碳酸盐熔体体系。因此,高温高压下CO2流体可能会降低合成金刚石中的氮杂质含量(Palyanov et al.,2016)。而在7.0 GPa,1750~1850℃条件下,通过碳酸盐-硅酸盐MgCO3-SiO2、MgCO3-Na2CO3-SiO2的交代反应形成的金刚石内部的氮杂质含量为300×10-6~800×10-6Pal'yanov et al.,2002),略高于Na2CO3-C体系中合成的金刚石的氮杂质含量。6.3 GPa,1650~1750℃条件下的碳酸盐-硅酸盐-硫化物MgCO3-SiO2-Al2O3-FeS体系中合成的金刚石的氮含量可进一步增加至~1500×10-6Palyanov et al.,2007)。6.3~7.5 GPa,1550~2000℃条件下的S-C体系中合成的金刚石的氮含量分布在10×10-6~1500×10-6Pal'yanov et al.,2001)。7.0 GPa,~1900℃条件下的(Fe,Ni)9S8-C体系中合成的金刚石的氮含量最高可达~1000×10-6Palyanov et al.,2006)。因此,碳酸盐-硅酸盐-硫化物体系中合成的金刚石大幅增加的氮杂质含量可能与硫化物的添加相关。而在7.0 GPa,1550~1850℃条件下的Fe3N-C体系中生长的金刚石中的氮含量可达~3300×10-6Borzdov et al.,2002)。7.8 GPa,1600~1800℃条件下的氮化物-硫化物Fe3N-FeS体系中生长的金刚石也具有较高的2100×10-6~2600×10-6的氮杂质含量(Sokol et al.,2019)。通过以上报道,我们可以发现非金属体系中生长的金刚石内部的氮杂质含量可能遵循Nc(Fe3N)>Nc(硫化物)>Nc(碳酸盐-硅酸盐)>Nc(碳酸盐-碳)>Nc(碳酸盐-CO2-碳)的规律,但目前非金属体系内合成的这些金刚石中氮杂质差异性的原因并不清楚,可能和不同非金属介质溶解氮的差异性有关。除此之外,将0.15%的CaCN2分别添加非金属的Na2CO3-CO2-C以及金属-碳体系中,合成的{111}金刚石的典型氮含量分别为~800×10-6和<400×10-6,非金属溶剂相比金属溶剂更有利于金刚石中氮的结合,其具体原因可能也与不同溶剂的氮溶解度有关(Palyanov et al.,2010; Khokhryakov et al.,2016
2不同体系合成金刚石晶体的氮杂质含量
Table2Nitrogen impurity content of diamond crystals synthesized in different systems
高温高压条件下金属-非金属混合体系中金刚石的生长可以用来模拟深部地球(>250 km)中部分金刚石的结晶过程。目前已经报道了在6.0 GPa和1450℃条件下的Fe-S-С体系中合成了~30×10-6 的低氮含量Ib-IIa型金刚石(Zhimulev et al.,2020)。在5.5 GPa和1350~1380℃条件下的金属-硅酸盐-水-碳体系中合成了氮杂质含量随水含量增加而逐渐从200×10-6~220×10-6降低至40×10-6~60×10-6的低氮金刚石(Palyanov et al.,2012; Lu Zhiyun et al.,2021)。
作为天然金刚石中大量存在的杂质之一,金刚石中氢杂质的存在形式及引入方式同时引起了前人的注意。如图3所示,天然金刚石中的氢杂质多以H2O、CH4包裹体的形式存在(Tomilenko et al.,2001; Smit et al.,2016a),少量氢可以以表面的-CH2、-CH3基团形式存在(Moe et al.,2017),基本不可见H2包裹体形式存在的氢杂质(Ishibashi et al.,2012)。使用金属触媒催化剂合成金刚石中的氢杂质多以内部的CH4、H2包裹体及表面的-CH2、-CH3基团形式存在(Smith et al.,2016)。天然金刚石与使用金属触媒合成的金刚石内部的这种氢杂质类型的差异性,可能与两者结晶体系中C-O-H流体的组分差异及背后代表的氧逸度差异有关(Sokol et al.,2001; Ishibashi et al.,2012)。
2具有不同氮、氢杂质的合成金刚石晶体外观特征
Fig.2Appearance characteristics of synthetic diamond crystals with different content of nitrogen and hydrogen impurities
(a)—淡黄色外观的Ib型金刚石Nc=200×10-6~300×10-6;(b)—图2a退火处理后的淡黄色IaA-Ib型金刚石;(c)—淡绿色外观的高氮Ib-IaA型金刚石Nc=800×10-6~1000×10-6;(d)—图2c退火处理后的无色-淡绿色IaA-Ib型金刚石;(e)—深绿色外观的高氮、氢杂质含量的金刚石Nc=1800×10-6~2000×10-6;(f)—图2e退火处理后的无色-淡黄色IaAB-Ib型金刚石(修改自Fang Chao et al.,2018
(a) —a type Ib diamond crystal with a yellow appearance and Nc=200×10-6~300×10-6; (b) —annealed light yellowish diamond in Fig.2a; (c) —a greenish diamond crystal with type Ib-IaA nitrogen and Nc=800×10-6~1000×10-6; (d) —annealed colorless-light greenish diamond in Fig.2c; (e) —dark greenish diamond crystal with Ib-IaA nitrogen and Nc=1800×10-6~2000×10-6; (f) —annealed diamond crystal in Fig.2e with a colorless-yellowish appearance and type IaAB-Ib nitrogen (modified from Fang Chao et al., 2018)
天然金刚石中氢的浓度可达500×10-6~3500×10-6,高压高温合成金刚石中氢的浓度通常为 200×10-6~900×10-6,但CVD法可以合成~50×10-6氢含量的高纯单晶金刚石和100×10-6~200×10-6氢含量的多晶金刚石(Sideras-Haddad et al.,2001)。在5~6 GPa和1300~1400℃条件下的金属-碳、金属-硅酸盐-碳体系中添加碳氢化合物合成金刚石的高温高压实验中,氢被发现以-CH2或-CH3的形式存在于金刚石的表面(Fang Chao et al.,2018)。在金属-硅酸盐-碳体系中添加水时,除了液态水分子包裹体外,氢被发现还可以-CH3基团、-CH2基团、R1-CH(R2)-OH 基团中的C-H键、C-O-H键以及等形式存在于金刚石的表面、裂隙与内部缺陷表面。而金刚石中的这些碳氢基团还会降低金刚石中的氮杂质含量,这可能与高温高压下C-H键、C-O-H键的形成会与氮杂质进入金刚石晶体结构产生竞争的机制有关(Lu Zhiyun et al.,2022)(图4)。在 6.3 GPa,1500℃条件下,通过向金属-碳体系中添加含氮化合物P3N5可以直接合成出带有VN3H0色心的Ib-IaA型金刚石晶体,而传统金属-碳体系中不添加氮直接合成的Ib型金刚石中基本不含有VN3H0缺陷,这说明聚集态的氮有助于直接在类地幔的温度压力条件下不经过退火直接形成VN3H0缺陷(Yan Bingmin et al.,2014)。
天然金刚石因其产出地质背景的复杂性而表现出内部氮、氢杂质含量的显著差异性。橄榄岩型(P型)金刚石和榴辉岩型(E型)金刚石内部的氮杂质含量大多小于600×10-6,其中E型金刚石的氮杂质含量整体上略高于P型(Deines et al.,1993),而纤维状金刚石内部的氮杂质含量多分布于600×10-6Nc≤1200×10-6的范围内(Cartigny,2005)。而来自地幔过渡带-下地幔超深成因金刚石则含有较高比例的低氮含量金刚石(<20×10-6)(Thomson et al.,2014),变质成因金刚石的氮杂质含量波动范围最大,最高可达~11150×10-6,其平均氮杂质含量显著高于其他起源的金刚石(Cartigny et al.,2001)。而在单个金刚石内部的不同生长条带中,也可以识别出超过几百×10-6氮杂质含量的急剧变化或振荡。这种突变或振荡可能反映了天然金刚石生长过程中物理化学条件的变化(Cartigny,2005)。
4 晶体生长取向对金刚石中氮、氢杂质含量的影响
除了高温高压实验条件的影响之外,氮杂质掺入金刚石晶体结构的效率以及氮杂质在晶体内部的分布也与生长扇区密切相关。对于大多数高温高压合成金刚石,不同生长区的孤立氮缺陷浓度遵循Nc{111}>Nc{100}>Nc{113}>Nc{110}的规律(Strong et al.,1971; Burns et al.,19901999; Green et al.,2022)。例如,在5.5 GPa,1300~1400℃条件下使用Fe-Co 熔体合成金刚石的{111}生长扇区含有100×10-6~300×10-6的氮,而{100}生长扇区中的氮杂质仅约一半。在非金属的Na2CO3-CO2-C-N体系合成金刚石的{100}和{111}生长扇区的氮浓度分别为100×10-6~150×10-6和800×10-6Khokhryakov et al.,2016),金属-硅酸盐-水-碳体系中合成的八面体金刚石的氮杂质含量(36×10-6~117×10-6)也高于立方体金刚石的氮杂质(21×10-6~100×10-6)。而这种氮杂质含量的分区差异性不仅仅发生在金属-碳合成金刚石中,在部分具有八面体(1695×10-6~1997×10-6)和立方体(1570×10-6~1718×10-6)混合生长习性的天然金刚石中也发现了类似的氮杂质分区差异性,其八面体生长区相比立方体生长区的氮含量高90×10-6~300×10-6Zedgenizov et al.,2004)。而津巴布韦克拉通产出的IaAB 型混合晶型的金刚石的八面体生长扇区的氮含量(971×10-6~2627×10-6,均值为2040×10-6)大部分均高于长方体扇区(1001×10-6~2196×10-6,均值为1655×10-6),氮含量相差可达700×10-6Smit et al.,2016a)。土耳其Pozanti-Karsanti蛇绿岩型(PKO)金刚石的{111}生长区氮杂质含量在181×10-6~541×10-6的范围内,均值为313×10-6n=18),而{100}生长区的氮杂质含量为7×10-6~78×10-6,均值为49×10-6n=21)(Lian Dongyang et al.,2018)。当在低温下生长时,{100}和{111}生长区的氮杂质可能发生逆转(Satoh et al.,1990),并将氮杂质含量提高至~1000×10-6,因为在较低温度下氮在熔体中的溶解度会降低。
3不同体系天然及合成金刚石中代表性的氢杂质
Fig.3Typical hydrogen impurities in natural and synthetic diamonds of different systems
(a、b)—西伯利亚天然金刚石中富含N2,CH4和CO2的包裹体;(c、d)—混合晶型金刚石中的CH4和CO2包裹体;(e、f)—高温高压合成金刚石中的CH4和H2包裹体(修改自Tomilenko et al.,2001; Smit et al.,2016a; Smith and Wang Wuyi,2016
(a, b) —inclusions rich in N2, CH4 and CO2 in natural diamond from northeastern Siberian platform; (c, d) —mixed CH4 and CO2 fluids inclusions in mixed habit diamonds from Zimbabwe; (e, f) —fluid CH4 and H2 trapped around metallic inclusions in HPHT synthetic diamond (modified after Tomilenko et al., 2001; Smit et al., 2016a; Smith and Wang Wuyi, 2016)
4金属-硅酸盐-水-碳体系金刚石晶体结构中C-H键、 C-O-H键的形成对C-N键形成的竞争机制模式图(修改自 Lu Zhiyun et al.,2021
Fig.4Competing pattern created by the formation of C-H bonds, C-O-H bonds for the entering of nitrogen atoms in the diamond's lattice (modified from Lu Zhiyun et al., 2021)
图5所示,氮杂质浓度的分区特征可以在阴极荧光或者Diamond View的紫外荧光下被明显察觉(Shigley et al.,1993)。由于这种分布是内在生长结构的结果,即使合成的金刚石晶体经历了切割和抛光加工,高温高压合成金刚石中与分区相关的杂质掺入会导致荧光图案的分区,通常呈现独特的方形或十字形,但天然成因金刚石荧光通常显示为八面体生长模式,极少显示为立方八面体相关的十字形荧光图案(D'Haenens-Johansson et al.,2022)。在中国西藏罗布莎、俄罗斯极地乌拉尔等地区发现的蛇绿岩型金刚石的晶型呈现出与高温高压合成金刚石类似的立方八面体晶型,可能其荧光特征也具有分区模式,但其晶体大小通常为100~500 μm,与宝石级金刚石的大小具有显著区分(Moe et al.,2017; Galimov et al.,2021; Yang Jingsui et al.,2021)。因此,珠宝检测过程仍然可以基于这种独特的荧光分区模式来判定大颗粒宝石级金刚石的高温高压来源。
与氮杂质含量的晶体取向差异性类似,氢杂质在金刚石晶体结构内部的分布也表现出与结晶取向相关的依赖性。如图6a所示,在金属-硅酸盐-水-碳体系中以[111]和[100]取向分别合成金刚石时,[100]方向生长的金刚石的-CH2、-CH3以及C-OH基团的吸收强度显著高于[111]方向,这可能与[100]生长取向相比[111]具有更多的活性边缘台阶密度密切相关(Sque et al.,2006; Wang Xianfen et al.,2011; Lu Zhiyun et al.,2022)(图7)。而在6 GPa和2200℃条件下对立方体和八面体金刚石晶体的退火实验中,立方体金刚石在退火后的红外光谱中VN3H0吸收中心(3107 cm-1)的强度显著增加,这可能也与{100}生长扇区相比{111}具有更多的氢以及空穴色心缺陷相关(Zedgenizov et al.,2016)。津巴布韦克拉通产出的天然混合晶型金刚石的立方体扇区的VN3H0吸收中心强度显著高于八面体扇区,这也可以用氢优先分配到立方体生长扇区来解释(Smit et al.,2016a)(图6b)。
5 金刚石晶体结构中不同种类氮、氢杂质的转化
氮、氢杂质可以以多种形式的缺陷存在于金刚石的晶体结构中。在实验室时间尺度上,高压高温合成金刚石中的孤氮原子Ns0会在大约 1700℃ 时聚合形成双原子氮N20,其扩散聚集过程符合二级动力学特征(Chrenko et al.,1977)。即金刚石晶格内的初始的孤氮缺陷浓度(Ncinitial)、退火温度(T)和时间(tER)满足以下动力学方程:ln(k2)=ln{ [(Ncinitial/Ncfinal)-1] / [Ncinitial·tER]},k2=Ae(-Ea/RT,其中Ncfinal为时间tER 时金刚石晶体内部的C心氮浓度,速率常数k2为与温度和阿累尼乌斯常数呈指数关系的常数,A为阿累尼乌斯常数,Ea为活化能(Evans et al.,1982)。金刚石晶格内的初始C心氮浓度、退火温度和时间的增加均有助于提高Ib型的孤原子氮向Ia型氮聚合的速率以及平衡时的Ncfinal/(Ncinitial/Ncfinal)比值。
在 2400℃ 时,N20缺陷的形成和破坏速率在N20缺陷占比~95%时达到平衡(Evans et al.,1982; Collins et al.,2000)。例如,在7.0 GPa条件下对Ib型金刚石的高温高压退火实验中,随着退火温度从1700℃逐渐升高至1900℃,金刚石内部的氮原子聚集速率会从1.1 s-1显著提升至45.4 s-1。而在同样的退火温度、压力和时间条件下,八面体生长扇区的氮原子聚合速率1.1~45.4 s-1也显著高于立方体扇区0.1~0.5 s-1Huang Guofeng et al.,2012)。而退火过程中较高的压力条件则会阻碍氮原子的聚合过程(Chen Ning et al.,2018)。除此之外,通过在热退火前的辐照处理,在金刚石晶格中引入空位和间隙,可以大大增加氮的流动性,从而可以在较低的温度(~800℃)下显著提高C心→A心氮的聚合速率。
5金刚石{111}和{100}生长区氮含量的差异性
Fig.5Nitrogen content difference in different diamond sector
(a)—合成金刚石中C心氮缺陷浓度遵循Nc{111}>Nc{100}>Nc{113}>Nc{110}的规律;(b)~(d)—天然混合生长习性和蛇绿岩型金刚石的氮杂质浓度也呈Nc{111}>Nc{100}的规律(修改自Shigley et al.,1993; Zedgenizov et al.,2004; Smit et al.,2016a; Lian Dongyang et al.,2018
(a) —nitrogen concentration in synthetic diamond follows the pattern of Nc{111}>Nc{100}>Nc{113}>Nc{110}; (b) ~ (d) —nitrogen impurity concentration in natural mixed habited and ophiolite-type diamonds also show the pattern of Nc{111}>Nc{100} (modified from Shigley et al., 1993; Zedgenizov et al., 2004; Smit et al., 2016a; Lian Dongyang et al., 2018)
极少数天然Ib型金刚石含有100%的C中心,而这些金刚石中的大多数都经历了一些向A中心的聚合。超高压变质环境中形成的金刚石大部分都属于Ib-IaA的混合型(Dobretsov et al.,1995; De Corte et al.,1998; Dobrzhinetskaya et al.,2006)。可以利用这些天然Ib-IaA型金刚石伴生围岩的地球化学年龄数据来验证以上C心氮到A心氮的聚合过程(图8)。俄罗斯Yakutia地区产出的外观呈黄色的立方体和纤维状金刚石晶体内部具有~1000×10-6,~20%Ib型氮,假设地幔温度高于950℃,据此可以计算得出这些金刚石形成于金伯利岩岩浆喷发前~7 Ma的时间(Taylor et al.,19951996)。将此模型应用于哈萨克斯坦Kokchetav变质成因的Ib-IaA型微粒金刚石,可得到950℃的地幔温度和17 Ma的地幔滞留时间,这与通过地球化学方法得到的地幔滞留时间一致(Cartigny et al.,2001)。而罗布莎地区和俄罗斯极地乌拉尔蛇绿岩地幔橄榄岩中的产出的金刚石内部分别包含0~15% 和0~12%的IaA型氮(Howell et al.,2015; Griffin et al.,2016; Moe et al.,2017)。据此可以推测,蛇绿岩型金刚石在上地幔中的平均滞留时间较短,不太可能在软流圈地幔岩浆上涌之前就已经存在于上地幔中。
6金刚石(111)和(100)晶面的红外光谱中氢杂质吸收峰强度差异
Fig.6Hydrogen impurity absorption in the infrared spectra of diamond (111) and (100) faces
(a)—金属-硅酸盐-水-碳体系合成金刚石(100)晶面的-CH2、-CH3杂质吸收峰强度显著高于(111)晶面;(b)—津巴布韦产出的天然混合晶型金刚石的(100)晶面VN3H0缺陷吸收峰强度显著高于(111)晶面(修改自Smit et al.,2016a; Lu Zhiyun et al.,2022
(a) —absorption peaks of-CH2, -CH3 in (100) faces are significantly higher than in the (111) faces of diamond grown in the metal-silicate-water-carbon system; (b) —absorption peaks of VN3H0 defects are significantly higher in the (100) facet than in the (111) facet of the natural mixed-habited diamond produced in Zimbabwe (modified after Smit et al., 2016a; Lu Zhiyun et al., 2022)
除了金刚石晶体内部的C心氮向A心氮的聚合过程之外,天然岩石圈上地幔环境中产出的金刚石内部的氮缺陷多为IaAB型,可将上述公式变形为AtER=A0/(1+k2tERA0)用来衡量金刚石晶体结构中A心氮向B心氮聚合的过程,A0为初始的A心氮浓度,AtERtER时的A心氮浓度,据此可以用来讨论天然I型金刚石在地幔内部的平均驻留时间tER或者地幔温度(Evans et al.,1986; Taylor et al.,1996; Dobrinets 2013)(图9)。例如,新南威尔士Copeton金刚石由黄色的高氮金刚石亚群(>500×10-6)和无色的低氮金刚石亚群(<400×10-6)构成。假设1.6 Ga的地幔滞留时间时,这些金刚石的氮含量和聚合程度特征指示了l071~1149℃的地幔滞留温度。而根据氮含量218×10-6~631×10-6,IaA型氮占比95%~96%以及1.6 Ga的地幔滞留时间计算得到的Ellendale榴辉岩型金刚石起源于温度较低的1059~1075℃岩石圈地幔环境中,没有经历过阿盖尔金刚石的1223~1075℃的典型高温滞留过程(Taylor et al.,1990)。来自津巴布韦东部克拉通的IaAB型金刚石的{111}+{100}生长扇区具有~35%的B聚集体氮,据此计算出的平均地幔驻留温度在 1050~1100℃的低温范围内。将地幔滞留时间从10 Ga延长 20 Ga并不会显著影响温度的结果,因此,天然金刚石中的氮聚集度可以有效地用于金刚石地幔滞留温度的评估,但并不适合用作地幔滞留时间的参考。
7{100}和{111}金刚石微观结构表面的C-H键与C-OH键示意图
Fig.7Schematic diagram of C-H and C-OH bonds on the surface of {100} (a, b) and {111} (c) diamond
(a)、(b)—金刚石晶体表面[100]方向同时具有SA和SB型两种台阶边缘,其密度大于图7c所示的[111]方向台阶边缘(修改自Lu Zhiyun et al.,2022
(a) , (b) —the density of the step edge on [100] directions (SA and SB) is higher than that of [111] direction shown in Fig.7c (modified from Lu Zhiyun et al., 2022)
天然和合成的金刚石中还会广泛存在氢杂质,氢杂质通常可与氮杂质共存形成多种类型的缺陷,比如天然金刚石中最常见的VN3H0色心。对含-CH2,-CH3基团的Ib型金刚石在高温高压条件下的退火也可产生显著的VN3H0光学吸收中心,与此同时,金刚石内部的Ib型孤氮也被发现完全聚合形成了IaA型氮(Kupriyanov et al.,2020)。作为对比,对不含氢的Ib型金刚石进行高温高压退火时,除了一部分的孤氮聚集形成Ia型氮外,仍有相当含量的氮杂质仍以Ib型的分散态形式存在(贾晓鹏,2020),据此对比可以说明金刚石晶体结构中的氢有利于分散态氮向聚集态的IaA型氮转变。与高温高压实验过程类似,天然金刚石中的聚集态氮被推测是在地幔环境中经历长期高温高压退火聚合形成的,而氢杂质会加速这一聚合过程并最终以VN3H0色心的形式存在天然金刚石中(Howell et al.,2012; Goss et al.,2014; Lai Meiyan et al.,2020b)。但是VN3H0缺陷的形成可能会抑制A中心到B中心的进一步聚合,因为新形成的A中心被NVH0晶格缺陷捕获并形成 VN3H0色心(Lai Meiyan et al.,2020a)。
8假设金刚石内部氮杂质为500×10-6,根据{111}(a)和{100}(b)金刚石中不同的C心氮杂质占比(NIb/Ntotal),平均地幔温度计算得到的金刚石在地幔内的平均滞留时间(参考自Taylor et al.,1996
Fig.8Mantle residence time (Ntotal=500×10-6) for {111} (a) and {100} (b) diamonds with different NIb/Ntotal values and residence temperatures (modeled from Taylor et al., 1996)
虽然大量研究致力于氮、氢杂质在金刚石中的聚合行为,但仍有一些过程目前尚不清楚。在主要含孤氮杂质并随后被辐照的金刚石中,空穴可以促进孤氮到N2V0(H3色心)的聚合过程,即辐照过程中产生的空穴在700~800℃的条件下扩散到孤氮原子附近形成 NV0缺陷,而NV0色心在超过1400℃时可进一步扩散到剩余的孤氮原子周围形成 N2V0,在超过1800℃时,N2V0缺陷可能会排除空位形成A吸收中心。而对已含有聚合氮的金刚石晶体进行辐照会产生多种类型的缺陷。在受辐照的IaA型金刚石中,可以在~800℃的较低温度下通过A中心直接捕获临近的空位形成N2V0Collins et al.,19802009)。IaB型金刚石经过辐照,然后在类似的~800℃条件下退火,通过B中心旁边的空位捕获可以直接形成N4V20(H4色心),但即使在≥ 2400℃最终产生显著的B中心(N4V0)的金刚石中,N3V0的浓度通常也很低,因此,N3V0和N4V0的后续形成路线仍存在争议。
除了含氢的水、烃类化合物包裹体外,天然金刚石晶体结构中的氢杂质多以VN3H0缺陷的形式存在,而VN3H0缺陷具有显著的高温稳定性,因此含有这些缺陷的金刚石可能代表了其形成后在地幔内部经历了类似退火的长时间的滞留过程。天然蛇绿岩型金刚石中的H以-CH2和-CH3基团的形式存在(Moe et al.,2017),其红外光谱中缺失3107 cm-1处的VN3H0色心,由此我们可以认为其形成之后在地幔内部可能没有经历类似退火的长时间滞留过程。
6 未来研究展望
氮和氢是金刚石中最普遍存在的杂质,基于大量的高温高压合成及辐照、退火实验,目前人们已经掌握了金刚石中引入以及转化不同的氮、氢杂质缺陷的方法。但我们注意到,目前国内相关研究主要关注于合成金刚石中的氮、氢等杂质与天然金刚石的区分,以及如何利用除氮剂/含氮化合物有效地降低/增加金属-碳体系中合成金刚石中的氮浓度,而对于绝大多数天然金刚石形成涉及的非金属体系,目前并没有进行足够的实验数据积累。我们认为,在实验室中进一步开展硅酸盐、碳酸盐、氧化物、硫化物、氮化物、碳酸盐、地质流体组分中金刚石生长的高温高压实验,有利于了解这些组分对天然金刚石形成过程中氮、氢杂质的影响,并进一步探究合成金刚石与天然金刚石氮、氢杂质差异性背后的深层原因。除此之外,对于对金刚石中不同形式氮、氢杂质的引入及转化原理,即氮、氢杂质在高温高压条件下的熔体、流体中的溶解度及扩散过程,目前主要停留在概念模型阶段,仍然缺乏高温高压实验及热力学理论计算的支撑。我们相信,以上这些问题的深入研究将对从氮、氢杂质的角度探究不同地质背景天然金刚石的成因具有重要的参考意义。
9不同地幔滞留时间、不同氮杂质含量、IaA型氮占比(NIaA/Ntotal)的{111}金刚石对应的平均地幔温度(参考自Taylor et al.,1996
Fig.9Averaged residence temperatures for {111} diamonds with different residence time, nitrogen content and NIaA/Ntotal values (modeled after Taylor et al., 1996)
致谢:感谢两位匿名审稿人对本文提供的审稿意见。
1金刚石结构内部的氮、氢杂质随时间和温度的演化模式及光学吸收中心
Fig.1Evolution patterns of nitrogen and hydrogen impurities inside the diamond structure with time and temperature and their optical absorption centers
2具有不同氮、氢杂质的合成金刚石晶体外观特征
Fig.2Appearance characteristics of synthetic diamond crystals with different content of nitrogen and hydrogen impurities
3不同体系天然及合成金刚石中代表性的氢杂质
Fig.3Typical hydrogen impurities in natural and synthetic diamonds of different systems
4金属-硅酸盐-水-碳体系金刚石晶体结构中C-H键、 C-O-H键的形成对C-N键形成的竞争机制模式图(修改自 Lu Zhiyun et al.,2021
Fig.4Competing pattern created by the formation of C-H bonds, C-O-H bonds for the entering of nitrogen atoms in the diamond's lattice (modified from Lu Zhiyun et al., 2021)
5金刚石{111}和{100}生长区氮含量的差异性
Fig.5Nitrogen content difference in different diamond sector
6金刚石(111)和(100)晶面的红外光谱中氢杂质吸收峰强度差异
Fig.6Hydrogen impurity absorption in the infrared spectra of diamond (111) and (100) faces
7{100}和{111}金刚石微观结构表面的C-H键与C-OH键示意图
Fig.7Schematic diagram of C-H and C-OH bonds on the surface of {100} (a, b) and {111} (c) diamond
8假设金刚石内部氮杂质为500×10-6,根据{111}(a)和{100}(b)金刚石中不同的C心氮杂质占比(NIb/Ntotal),平均地幔温度计算得到的金刚石在地幔内的平均滞留时间(参考自Taylor et al.,1996
Fig.8Mantle residence time (Ntotal=500×10-6) for {111} (a) and {100} (b) diamonds with different NIb/Ntotal values and residence temperatures (modeled from Taylor et al., 1996)
9不同地幔滞留时间、不同氮杂质含量、IaA型氮占比(NIaA/Ntotal)的{111}金刚石对应的平均地幔温度(参考自Taylor et al.,1996
Fig.9Averaged residence temperatures for {111} diamonds with different residence time, nitrogen content and NIaA/Ntotal values (modeled after Taylor et al., 1996)
1金刚石中常见的氮、氢缺陷的光学吸收中心
Table1Optical absorption center of nitrogen and hydrogen defects in diamond
2不同体系合成金刚石晶体的氮杂质含量
Table2Nitrogen impurity content of diamond crystals synthesized in different systems
Borzdov Y, Pal'yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A. 2002. HPHT synthesis of diamond with high nitrogen content from an Fe3N-C system. Diamond and Related Materials, 11(11): 1863~1870.
Boyd S R, Kiflawi I, Woods G S. 1995. Infrared absorption by the B nitrogen aggregate in diamond. Philosophical Magazine, Part B, 72(3): 351~361.
Burns R C, Cvetkovic V, Dodge C N, Evans D J F, Rooney M L T, Spear P M, Welbourn C M. 1990. Growth-sector dependence of optical features in large synthetic diamonds. Journal of Crystal Growth, 104(2): 257~279.
Burns R C, Hansen J O, Spits R A, Sibanda M, Welbourn C M, Welch D L. 1999. Growth of high purity large synthetic diamond crystals. Diamondand Related Materials, 8(8~9): 1433~1437.
Cartigny P. 2005. Stable isotopes and the origin of diamond. Elements, 1(2): 79~84.
Cartigny P, De Corte K, Shatsky V S, Ader M, De Paepe P, Sobolev N V, Javoy M. 2001. The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: A nitrogen and carbon isotopic study. Chemical Geology, 176(1~4): 265~281.
Chen Liangchao, Miao Xinyuan, MaHongan, Guo Longsuo, Wang Zhanke, Yang Zhiqiang, Fang Chao, Jia Xiaopeng. 2018. Synthesis and characterization of diamonds with different nitrogen concentrations under high pressure and high temperature conditions. CrystEngComm, 20(44): 7164~7169.
Chen Ning, Ma Hongan, Yan Bingmin, Chen Liangchao, Chen Lixue, Guo Longsuo, Miao Xinyuan, Fang Chao, Jia Xiaopeng. 2018. Characterization of various centers in synthetic type Ib diamond under HPHT annealing. Crystal Growth & Design, 18(7): 3870~3876.
Chevallier J, Theys B, Lusson A, Grattepain C, Deneuville A, Gheeraert E. 1998. Hydrogen-boron interactions in p-type diamond. Physical Review B, 58: 7966~7969.
Chrenko R M, Tuft R E, Strong H M. 1977. Transformation of the state of nitrogen in diamond. Nature, 270: 141~144.
Collins A T. 1980. Vacancy enhanced aggregation of nitrogen in diamond. Journal of Physics C Solid State Physics, 13(14): 2641~2650.
Collins A T, Kanda H, Kitawaki H. 2000. Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diamond and Related Materials, 9(2): 113~122.
Collins A T, Kiflawi I. 2009. The annealing of radiation damage in type Ia diamond. Journal of Physics Condensed Matter, 21(36): 364209.
De Corte K, Cartigny P, Shatsky V S, Sobolev N V, Javoy M. 1998. Evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav massif, northern Kazakhstan. Geochimica et Cosmochimica Acta, 62(23~24): 3765~3773.
Deines P, Harris J W, Gurney J J. 1993. Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochimica et Cosmochimica Acta, 57(12): 2781~2796.
D'Haenens-Johansson U F S, Butler J E, Katrusha A N. 2022. Synthesis of diamonds and their identification. Reviews in Mineralogy and Geochemistry, 88(1): 689~753.
Dischler B, Wild C, Müller-Sebert W, Koidl P. 1993. Hydrogen in polycrystalline diamond. Physica B: Condensed Matter, 185(1~4): 217~221.
Dobretsov N L, Sobolev N V, Shatsky V S, Coleman R G, Ernst W G. 1995. Geotectonic evolution of diamondiferous paragneisses, Kokchetav Complex, northern Kazakhstan: The geologic enigma of ultrahigh-pressure crustal rocks within a Paleozoic foldbelt. Island Arc, 4(4): 267~279.
Dobrinets I A. 2013. HPHT-Treated Diamonds: Diamonds Forever. Berlin: Springer International Publishing, 511~597.
Dobrzhinetskaya L F, Liu Zhenxian, Cartigny P, Zhang Junfeng, Tchkhetia D, Hemley R J, Green H W. 2006. Synchrotron infrared and Raman spectroscopy of microdiamonds from Erzgebirge, Germany. Earth and Planetary Science Letters, 248(1~2): 340~349.
Dobrzhinetskaya L F, O'Bannon E F, Sumino H. 2022. Non-cratonic diamonds from UHP metamorphic terranes, ophiolites and volcanic sources. Reviews in Mineralogy and Geochemistry, 88(1): 191~255.
Evans T, Qi Z. 1982. The kinetics of the aggregation of nitrogen atoms in diamond. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 381: 159~178.
Evans T, Harris J W. 1986. Nitrogen aggregation, inclusion equilibration temperatures and the age of diamonds. Abstracts of Geological Society of Australia 16, 386~388.
Fang Chao, Jia Xiaopeng, Sun Shishuai, Yan Bingmin, Li Yadong, Chen Ning, Li Yong, Ma Hongan. 2016. Studying the effect of hydrogen on diamond growth by adding C10H10Fe under high pressures and high temperatures. High Pressure Research, 36(1): 42~54.
Fang Chao, Zhang Yuewen, Zhang Zhuangfei, Shan Chongxin, Shen Weixia, Jia Xiaopeng. 2018. Preparation of“natural” diamonds by HPHT annealing of synthetic diamonds. CrystEngComm, 20(4): 505~511.
Fang Shuai, Wang Yongkui, Chen Liangchao, Lu Zhiyun, Cai Zhenghao, Fang Chao, Zhao Zhandong, Ma Hongan, Jia Xiaopeng. 2021. The effect of pressure on synthetic diamond crystals at high temperatures and pressures in an Fe/Ni catalyst system. CrystEngComm, 23(6): 1406~1414.
Galimov E M, Kaminsky F V. 2021. Diamond in theoceanic lithosphere. Volcanic diamonds and diamonds in ophiolites. Geochemistry International, 59(1): 1~11.
Glover C, Newton M E, Martineau P, Twitchen D J, Baker J M. 2003. Hydrogen incorporation in diamond: The nitrogen-vacancy-hydrogen complex. Physical Review Letters, 90(18): 185507.
Goss J P, Briddon P R, Hill V, Jones R, Rayson M J. 2014. Identification of the structure of the 3107 cm (-1) H-related defect in diamond. Journal of Physics Condensed Matter: An Institute of Physics Journal, 26(14): 145801.
Green B L, Collins A T, Breeding C M. 2022. Diamond spectroscopy, defect centers, color, and treatments. Reviews in Mineralogy and Geochemistry, 88(1): 637~688.
Griffin W L, Afonso J C, Belousova E A, Gain S E, Gong X H, González-Jiménez J M, Howell D, Huang J X, McGowan N, Pearson N J, Satsukawa T, Shi R, Williams P, Xiong Q, Yang J S, Zhang M, O'Reilly S Y. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57(4): 655~684.
Howell D, O'Neill C J, Grant K J, Griffin W L, Pearson N J, O'Reilly S Y. 2012. μ-FTIR mapping: Distribution of impurities in different types of diamond growth. Diamond and Related Materials, 29: 29~36.
Howell D, Griffin W L, YangJ, Gain S, Stern R A, Huang J X, Jacob D E, Xu X, Stokes A J, O'Reilly S Y, Pearson N J. 2015. Diamonds in ophiolites: Contamination or a new diamond growth environment? Earth and Planetary Science Letters, 430: 284~295.
Hu Meihua, Bi Ning, Li Shangsheng, Su Taichao, Li Xiaolei, Hu Qiang, Jia Xiaopeng, Ma Hongan. 2013. Synthesis of gem diamond crystals by multiseed method using China-type cubic high-pressure apparatus. Acta Physica Sinica, 62(18): 457~461 (in Chinese with English abstract).
Huang Guofeng, Jia Xiaopeng, Li Yong, Hu Meihua, Li Zhanchang, Yan Bingmin, Ma Hongan. 2011. Growth of gem-grade nitrogen-doped diamond crystals heavily doped with the addition of Ba(N3)2. Chinese Physics B, 20(7): 078103.
Huang Guofeng, Yin Jiwen, Bai Hongbo, Hu Yiga, Kai Li, Jing Jing, Ma Hongan, Jia Xiaopeng. 2012. Influence of annealing treatment on as-grown Ib-type diamond crystal at a high temperature and high pressure. Chinese Physics B, 21(10): 108102.
Hudson P R W, Tsong I S T. 1977. Hydrogen impurity in natural gem diamond. Journal of Materials Science, 12(12): 2389~2395.
Ishibashi H, Kagi H, Sakuai H, Ohfuji H, Sumino H. 2012. Hydrous fluid as the growth media of natural polycrystalline diamond, carbonado: Implication from IR spectra and microtextural observations. American Mineralogist, 97(8~9): 1366~1372.
Jia Xiaopeng. 2020. Study on the synthesis of“natural” diamond at high temperature and high pressure. Journal of Atomic and Molecular Physics, 37: 909~915 (in Chinese with English abstract).
Kanda H. 2005. Crystal growth of diamond. In: Capper P, ed. Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials. Chichester: John Wiley & Sons, Ltd: 407~432.
Kanda H, Lawson S C. 1995. Growth temperature effects of impurities in HP/HT diamonds. Industrial Diamond Review, 55: 56~61.
Kanda H, Akaishi M, Yamaoka S. 1999. Synthesis of diamond with the highest nitrogen concentration. Diamond and Related Materials, 8(8~9): 1441~1443.
Khokhryakov A F, Palyanov Y N, Kupriyanov I N, Nechaev D V. 2016. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive. Journal of Crystal Growth, 449: 119~128.
Kiflawi I, Mayer A E, Spear P M, Van Wyk J A, Woods G S. 1994. Infrared absorption by the single nitrogen and A defect centres in diamond. Philosophical Magazine, Part B, 69(6): 1141~1147.
Kiflawi I, Fisher D, Kanda H, Sittas G. 1996. The creation of the 3107 cm-1 hydrogen absorption peak in synthetic diamond single crystals. Diamond and Related Materials, 5(12): 1516~1518.
Kupriyanov I N, Palyanov Y N, Kalinin A A, Shatsky V S. 2020. Effect of HPHT treatment on spectroscopic features of natural type Ib-IaA diamonds containing Y centers. Crystals, 10(5): 378.
Lai Meiyan, Breeding C M, Stachel T, Stern R A. 2020a. Spectroscopic features of natural and HPHT-treated yellow diamonds. Diamond and Related Materials, 101: 107642.
Lai Meiyan, Stachel T, Breeding C M, Stern R A. 2020b. Yellow diamonds with colourless cores-evidence for episodic diamond growth beneath Chidliak and the Ekati Mine, Canada. Mineralogy and Petrology, 114(2): 91~103.
Lawson S C, Fisher D, Hunt D C, Newton M E. 1999. On the existence of positively charged single-substitutional nitrogen in diamond. Journal of Physics Condensed Matter, 10(27): 6171~6180.
Lian Dongyang, Yang Jingsui, Wiedenbeck M, Dilek Y, Rocholl A, Wu Weiwei. 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey. Contributions to Mineralogy and Petrology, 173(9): 72.
Litvin Y A. 2017. Genesis of Diamonds and Associated Phases. Berlin: Springer.
Liu Xiaobing, Jia Xiaopeng, Fang Chao, MaHongan. 2016. Diamond crystallization and growth in N-H enriched environment under HPHT conditions. CrystEngComm, 18(43): 8506~8515.
Lu Zhiyun, Zhao Hongyu, Wang Yongkui, Fang Shuai, Cai Zhenghao, Wang Zhiwen, Ma Hongan, Chen Liangchao, Jia Hongsheng, Jia Xiaopeng. 2021. Diamond growth and characteristics in the metal-silicate-H2O-C system at HPHT conditions. Lithos, 404~405: 106470.
Lu Zhiyun, Wang Zhiwen, Wang Shengxue, Zhao Hongyu, Cai Zhenghao, Wang Yongkui, Ma Hongan, Chen Liangchao, Jia Xiaopeng. 2022. Orientational dependences of diamonds grown in the NiMnCo-silicate-H2O-C system under HPHT conditions and implications to natural diamonds. ACS Earth and Space Chemistry, 6(4): 987~998.
Luth R W, Palyanov Y N, Bureau H. 2022. Experimental petrology applied to natural diamond growth. Reviews in Mineralogy and Geochemistry, 88(1): 755~808.
Moe K S, Yang Jingsui, Johnson P, Xu Xiangzhen, Wang Wuyi. 2017. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite. Lithosphere,: L603. 1.
Nestola F. 2017. Inclusions in super-deep diamonds: Windows on the very deep Earth. Rendiconti Lincei, 28(4): 595~604.
Nimis P. 2022. Pressure and temperature data for diamonds. Reviews in Mineralogy and Geochemistry, 88(1): 533~565.
Pal'yanov Y, Borzdov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A. 2001. High-pressure synthesis and characterization of diamond from a sulfur-carbon system. Diamond and Related Materials, 10(12): 2145~2152.
Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sobolev N V. 2006. Sulfide melts-graphite interaction at HPHT conditions: Implications for diamond genesis. Earth and Planetary Science Letters, 250(1~2): 269~280.
Palyanov Y N, Borzdov Y M, Bataleva Y V, Sokol A G, Palyanova G A, Kupriyanov I N. 2007. Reducing role of sulfides and diamond formation in the Earth's mantle. Earth and Planetary Science Letters, 260(1~2): 242~256.
Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G. 2010. Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth & Design, 10(7): 3169~3175.
Palyanov Y N, Borzdov Y M, Kupriyanov I N, Khokhryakov A F. 2012. Effect of H2O on diamond crystal growth in metal-carbon systems. Crystal Growth & Design, 12(11): 5571~5578.
Palyanov Y N, Kupriyanov I N, Sokol A G, Borzdov Y M, Khokhryakov A F. 2016. Effect of CO2 on crystallization and properties of diamond from ultra-alkaline carbonate melt. Lithos, 265: 339~350.
Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Sobolev N V. 2002. Diamond formation through carbonate-silicate interaction. American Mineralogist, 87(7): 1009~1013.
Satoh S, Nakashima T, Tsuji K, Yazu S. 1990. Further study of the difference in nitrogen aggregation among (111) and (100) growth sectors of synthetic diamonds. High Pressure Research, 5(1~6): 926~928.
Shigley J E, Fritsch E, Koivula J I, Sobolev N V, Malinovsky I Y, Pal'yanov Y N. 1993. The gemological properties of Russian gem-quality synthetic yellow diamonds. Gems & Gemology, 29(4): 228~248.
Sideras-Haddad E, Connell S H, Sellschop J P F, Machi I Z, Rebuli D, Maclear R D, Doyle B P. 2001. Hydrogen and oxygen chemistry and dynamics in diamond studied by nuclear microscopic techniques. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 181(1~4): 419~425.
Smith E M, Wang Wuyi. 2016. Fluid CH4 and H2 trapped around metallic inclusions in HPHT synthetic diamond. Diamond and Related Materials, 68: 10~12.
Smit K V, Shirey S B, Stern R A, Steele A, Wang Wuyi. 2016a. Diamond growth from C-H-N-O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ13C-δ15N-N content in Marange mixed-habit diamonds. Lithos, 265: 68~81.
Smit K V, Shirey S B, Wang Wuyi. 2016b. Type Ib diamond formation and preservation in the West African lithospheric mantle: Re-Os age constraints from sulphide inclusions in Zimmi diamonds. Precambrian Research, 286: 152~166.
Sokol A G, Pal'yanov Y N, Pal'yanova G A, Khokhryakov A F, Borzdov Y M. 2001. Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions. Diamond and Related Materials, 10(12): 2131~2136.
Sokol A G, Khokhryakov A F, Borzdov Y M, Kupriyanov I N, Palyanov Y N. 2019. Solubility of carbon and nitrogen in a sulfur-bearing iron melt: Constraints for siderophile behavior at upper mantle conditions. American Mineralogist, 104(12): 1857~1865.
Sque S J, Jones R, Briddon P R. 2006. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Physical Review B, 73(8): 085313.
Stachel T, Cartigny P, Chacko T, Pearson D G. 2022. Carbon and nitrogen in mantle-derived diamonds. Reviews in Mineralogy and Geochemistry, 88(1): 809~875.
Strong H M. 1963. Catalyticeffects in the transformation of graphite to diamond. The Journal of Chemical Physics, 39(8): 2057~2062.
Strong H M, Chrenko R M. 1971. Diamond growth rates and physical properties of laboratory-made diamond. The Journal of Physical Chemistry, 75(12): 1838~1843.
Taylor W R, Jaques A L, Ridd M. 1990. Nitrogen-defect aggregation characteristics of some Australasian diamonds: Time-temperature constraints on the source regions of pipe and alluvial diamonds. American Mineralogist, 75(11~12): 1290~1310.
Taylor W R, Bulanova G P, Milledge H J. 1995. Quantitative nitrogen aggregation study of some Yakutian diamonds: constraints on the growth, thermal and deformation history of peridotitic and eclogitic diamonds. In International Kimberlite Conference: Extended Abstracts,608~610.
Taylor W R, Canil D, Judith M H. 1996. Kinetics of Ib to IaA nitrogen aggregation in diamond. Geochimica et Cosmochimica Acta, 60(23): 4725~4733.
Thomson A R, Kohn S C, Bulanova G P, Smith C B, Araujo D, Walter M J, EIMF. 2014. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 168(6): 1081.
Tian Yu, Jia Xiaopeng, Zang Chuanyi, Li Shangsheng, Xiao Hongyu, Zhang Yafei, Huang Guofeng, Li Rui, Han Qigang, Ma Liqiu, Li Yong, Chen Xiaozhou, Zhang Chong, Ma Hongan. 2009. Dependence of nitrogen concentration in type Ib diamonds on synthesis temperature. Chinese Science Bulletin, 54(9): 1459~1462.
Tomilenko A A, Ragozin A L, Shatskii V S, Shebanin A P. 2001. Variation in the fluid phase composition in the process of natural diamond crystallization. Doklady Earth Sciences, 379: 571~574.
Wakatsuki M. 1966. New catalysts for synthesis of diamond. Japanese Journal of Applied Physics, 5(4): 337.
Wang Wuyi, Smit K. 2015. Very large type Ib natural diamond. Gems & Gemology, 51: 430~431.
Wang Xianfen, Ruslinda A R, Ishiyama Y, Ishii Y, Kawarada H. 2011. Higher coverage of carboxylic acid groups on oxidized single crystal diamond (001). Diamondand Related Materials, 20(10): 1319~1324.
Wei Qiuping, Ma Li, Ye Jun, Yu Zhiming. 2015. Growth mechanism of icosahedral and other five-fold symmetric diamond crystals. Transactions of Nonferrous Metals Society of China, 25(5): 1587~1598.
Yan Bingmin, Jia Xiaopeng, Qin Jieming, Sun Shishuai, Zhou Zhenxiang, Fang Chao, Ma Hongan. 2014. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen Co-doped diamond crystals. Acta Physica Sinica, 63(4): 048101.
Yan X B, Xu T, Yang S R, Liu H W, Xue Q J. 2004. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. Journal of Physics D Applied Physics, 37(17): 2416~2424.
Yang Jingsui, Wu Weiwei, Lian Dongyang, Rui Huichao. 2021. Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2: 198~212.
Zaitsev A M, Moe K S, Wang W. 2018. Defect transformations in nitrogen-doped CVD diamond during irradiation and annealing. Diamond and Related Materials, 88: 237~255.
Zedgenizov D A, Harte B. 2004. Microscale variations of δ13C and N content within a natural diamond with mixed-habit growth. Chemical Geology, 205(1~2): 169~175.
Zedgenizov D A, Kalinin A A, Kalinina V V, Pal'yanov Y N, Shatsky V S. 2016. The transformation features of impurity defects in natural diamonds of various habits under high P-T conditions. Doklady Earth Sciences, 466(1): 32~37.
Zedgenizov D, Bogush I, Shatsky V, Kovalchuk O, Ragozin A, Kalinina V. 2019. Mixed-habit type Ib-IaA diamond from an udachnaya eclogite. Minerals, 9(12): 741.
Zhimulev E I, Babich Y V, Karpovich Z A, Chepurov A I, Pokhilenko N P. 2020. Low-nitrogen diamond growth in the Fe-C-S system. Doklady Earth Sciences, 494(1): 696~698.
胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 2013. 国产六面顶压机多晶种法合成宝石级金刚石单晶. 物理学报, 62(18): 457~461.
贾晓鹏. 2020. 类天然金刚石的高温高压合成研究. 原子与分子物理学报, 37(6): 909~915.