en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

龚德瑜,男,1983年生。博士,高级工程师,主要从事石油地质与地球化学研究。E-mail:deyugong@petrochina.com.cn。

参考文献
Bernard B B, Brooks J, Sackett W M. 1978. Light hydrocarbons in recent Texas continental shelf and slope sediments. Journal of Geophysical Research Atmospheres, 83: 4053~4061.
参考文献
Berner U, Faber E. 1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Organic Geochemistry, 24(10-11): 947~955.
参考文献
Burruss R C, Laughrey C D. 2010. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons. Organic Geochemistry, 41(12): 1285~1296.
参考文献
Cao Jian, Wang Xulong, Sun, Pin'an, Zhang Yueqian, Tang Yong, Xiang Baoli, Lan Wenfang. 2012. Geochemistry and origins of natural gases in the central Junggar basin, Northwest China. Organic Geochemistry, 53: 166~176.
参考文献
Cao Jian, Xia Liuwen, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Science Reviews, 202.
参考文献
Cao Zhenglin, Li Pan, Wang Ruiju. 2022. Sequence architecture, slope-break development and hydrocarbon implications of the Mahu sag during the P-T transition, Junggar basin. Natural Gas Geoscience, 33(5): 807~819 (in Chinese with English abstract).
参考文献
Carroll A R, Graham S A, Hendrix M S, Ying Dong, Zhou Dan. 1995. Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins. Geological Society of America Bulletin, 107(5): 571~594.
参考文献
Chen Zhonghong, Cao Yingchang, Ma Zunjing, Zhen Yuanshui. 2014. Geochemistry and origins of natural gases in the Zhongguai area of Junggar basin, China. Journal of Petroleum Science and Engineering 119: 17~27.
参考文献
Chung H M, Gormly J R, Squires R M. 1988. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. Chemical Geology: 71: 97~103.
参考文献
Dai Jinxing. 1992. Identification and distinction of various alkane gases. Science China (Series B), 35: 1246~1257.
参考文献
Dai Jinxing. 1999. Significantprogress in the study of coal formed gas in China over the past twenty years. Petroleum Exploration and Development, (3): 21~30+3+11 (in Chinese with English abstract).
参考文献
Dai Jinxing. 2014. Giant Coal-Derived Gas Fields and Their Gas Source in China. Beijing: Science Press, 266~285 (in Chinese with English abstract).
参考文献
Dai Jinxing, Xia Xinyu, Qin Shengfei, Zhao Jiangzhou. 2004. Origins of partially reversed alkane δ13C values for biogenic gases in China. Organic Geochemistry, 35: 405~411.
参考文献
Dai Jinxing, Li Jian, Luo Xia, Zhang Wenzheng, Hu Guoyi, Ma Chenghua, Guo Jianmin, Ge Shuoguo. 2005a. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos basin, China. Organic Geochemistry, 36: 1617~1635.
参考文献
Dai Jinxing, Yang Shufeng, Chen Hanlin, Shen Xiaohua. 2005b. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Organic Geochemistry, 36(12): 1664~1688.
参考文献
Dai Jinxing, Zou Caineng, Zhang Shuichang, Li Jian, Ni Yunyan, Hu Guoyi, Luo Xia, Tao Shizhen, Zhu Guangyou, Mi Jingkui, Li Zhisheng, Hu Anping, Yang Chun, Zhou Qinghua, Shuai Yanhua, Zhang Ying, Ma Chenghua. 2008. Identification of inorganic and organic alkane gases. Chinese Science (Part D: Earth Sciences), (11): 1329~1341 (in Chinese with English abstract).
参考文献
Dai Jinxing, Ni Yunyan, Zou Caineng. 2012. Stable carbon and hydrogen isotopes of natural gases source from the Xujiahe Formation in the Sichuan basin, China. Organic Geochemistry, 43(1): 103~111.
参考文献
Dai Jinxing, Gong Deyu, Ni Yunyan, Huang Shipeng, Wu Wei. 2014. Stable carbon isotopes of coal derived gases sourced from the Mesozoic coal measures in China. Organic Geochemistry, 74: 123~142.
参考文献
Des Marais D J, Donchin J H, Nehring N L, Truesdell A H. 1981. Molecular carbon isotope evidence for the origin of geothermal hydrocarbon. Nature, 292: 826~828.
参考文献
Du Jinhu, et al. 2010. Petroleum Exploration for Volcanic Reservoirs in the Northern Xinjiang. Beijing: Petroleum Industry Press (in Chinese).
参考文献
Etiope G, Lollar B S. 2013. Abiotic methane on earth. Reviews of Geophysics, 51(2): 276~299.
参考文献
Faber E. 1987. Zur isotopengeochemie gasförmiger kohlenwasser stoffe. Erdöl erdgas Kohle, 103: 210~218.
参考文献
Feng Ziqi, Liu Dan, Huang Shipeng, Gong Deyu, Peng Weilong. 2016. Geochemical characteristics and genesis of natural gas in the Yan'an gas field, Ordos basin, China. Organic Geochemistry, 102: 67~76.
参考文献
Galimov E M. 1988. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chemical Geology, 71: 77~95.
参考文献
Galimov E M. 2006. Isotope organic geochemistry. Organic Geochemistry, 37: 1200~1262.
参考文献
Gang Wenzhe, Gao Gang, Hao Shisheng, Huang Zhilong, Zhu Lei. 1997. Application ofethane carbon isotopes in the study of natural gas genetic types. Petroleum Experimental Geology, (2): 164~167 (in Chinese with English abstract).
参考文献
Gong Deyu, Li Jianzhong, Ablimit I, He Wenjun, Lu Shan, Liu Deguang, Fang Chenchen. 2018. Geochemical characteristics of natural gases related to Late Paleozoic coal measures in China. Marine and Petroleum Geology, 96: 474~500.
参考文献
Gong Deyu, Wei Yanzhao, Zhang Lijun Cui Huajuan. 2019. Geochemical characteristics of Carboniferous coaly source rocks and natural gases in the southeastern Junggar basin, NW China: Implications for new hydrocarbon explorations. International Journal of Coal Geology, 202: 171~189.
参考文献
Gong Deyu, Wang Xulong, Zhou Chuanmin, Zheng Menglin, Jiang Wenlong, Wu Wei'an. 2021. Discovery of Carboniferous scale Source rock in the southeast of the Junggar basin and its natural gas exploration potential. Journal of Petroleum, 42(7): 836~852 (in Chinese with English abstract).
参考文献
Gong Deyu, Zhao Changyong, He Wenjun, Zhao Long, Kong Yumei, Ma Liya, Wang Ruiju, Wu Wei'an. 2022. Origin and exploration potential of natural gas in the northwest margin of the Junggar basin. Petroleum and Natural Gas Geology, 43(1): 161~174 (in Chinese with English abstract).
参考文献
Han Yigui, Zhao Guochun. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129~152.
参考文献
Hao Fang, Guo Tonglou, Zhu Yangming. 2008. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan basin, China. American Association of Petroleum Geologists Bulletin, 92: 611~637.
参考文献
He Dengfa, Chen Xinfa, Kuang Jun, Yuan Hang, Fan Chun, Tang Yong, Wu Xiaozhi. 2010. Distribution of Carboniferous source rocks and petroleum systems in the Junggar basin. Petroleum Exploration and Development, 37(4): 397~408.
参考文献
He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018. Tectonic evolution stages and features of the Junggar basin. Oil & Gas Geology, 39(5): 845~861 (in Chinese with English abstract).
参考文献
Hosgormez H, Etiope G, Yalçin M N. 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): A large onshore seepage of abiogenic gas. Geofluids, 8: 263~273.
参考文献
Hou Lianhua, Zou Caineng, Liu Lei, Wen Baihong, Wu Xiaozhi, Wei Yanzhao, Mao Zhiguo. 2012. Petroleum geological conditions of weathered crust of Carboniferous volcanic rocks in northern Dzungaria. Journal of Petroleum, 33 (4): 533~540 (in Chinese with English abstract).
参考文献
Hou Lianhua, Luo Xia, Wang Jinghong, Yang Fan, Zhao Xia, Mao Zhiguo. 2013. Volcanic rock weathering crust and its oil and gas geological significance—Taking Carboniferous volcanic rock weathering crust in northern Dzungaria as an example. Petroleum Exploration and Development, 40 (3): 257~265+274 (in Chinese with English abstract).
参考文献
Hu Suyun, Wang Xiaojun, Cao Zhenglin, Li Jianzhong, Gong Deyu, Xu Yang. 2019. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar basin, NW China. Petroleum Exploration and Development, 47(2): 247~259 (in Chinese with English abstract).
参考文献
Huang Yun, Liang Shuyi, Xia Yu, Li Yanping, Gu Xinping, Fu Xiaopeng. 2019. Sedimentary filling characteristics and petroleum geological significance of the Early Carboniferous in the Dibei uplift of the Junggar basin. Journal of Paleogeography, 21(4): 637~646 (in Chinese with English abstract).
参考文献
James A T. 1990. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. Bulletin of the American Association of Petroleum Geologists, 74: 1441~1458.
参考文献
Jenden P D, Kaplan I R, Poreda R. 1988. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochimica et Cosmochimica Acta, 52: 851~861.
参考文献
Kuang Lichun, Lv Huantong, Wang Xulong, Yang Disheng, Sun Zhongchun, Ling Lisu. 2010. Natural gas exploration practice in Junggar basin and the discovery of Kramei gas field. Natural Gas Industry, 30(2): 1~6+133 (in Chinese with English abstract).
参考文献
Li Di. 2016. Carboniferous tectonic framework and sedimentary filling evolution in the Junggar basin and adjacent area, NW China. Doctoral dissertation thesis of China University of Geosciences(Beijing)(in Chinese with English abstract).
参考文献
Li Di, He Dengfa, Fan Chun, Tang Yong, Yang Xiaofa, Chang Qiusheng, Yuan Hang. 2012a. Geochemical characteristics and tectonic significance of Carboniferous basalt in Kelameili gas field, the Junggar basin. Journal of Petrology, 28(3): 981~992 (in Chinese with English abstract).
参考文献
Li Di, He Dengfa, Tang Yong, Fan Chun, Kong Yuhua. 2012b. Genesis of Early Carboniferous volcanic rocks in Dinan uplift of the the Junggar basin and their constraints on the closing time of the Cramerican Ocean. Acta Petrologica Sinica, 28 (8): 2340~2354 (in Chinese with English abstract).
参考文献
Li Erting, Jin Jun, Wang Jian, Luo Zhengjiang, Ma Wanyun, Mi Julei, He Dan, Wang Ming. 2020. Source of Carboniferous natural gas in Kelameili area of the Junggar basin. Natural Gas Geoscience, 31(11): 1515~1523 (in Chinese with English abstract).
参考文献
Li Jianzhong, Zheng Ming, Guo Qiulin, Wang Shejiao. 2019. Fourth Assessement for Oil and Gas Resource. Beijing: Petroleum Industry Press, 297~330 (in Chinese with English abstract).
参考文献
Li Jinyi. 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China. Geological Review, 50(3): 304~322 (in Chinese with English abstract).
参考文献
Li Lin, Chen Shijia, Yang Disheng, Zhao Kebin, Lu Jungang, Xu Huaimin. 2013. Analysis of hydrocarbon generation capacity of Carboniferous source rocks in Dishuiquan sag in Junggar basin. Journal of China University of Petroleum (Natural Science Edition), 37(4): 52~58 (in Chinese with English abstract).
参考文献
Liang Digang, Zhang Shuichang, Chen Jianping, Wang Feiyu, Wang Peirong. 2003. Organic geochemistry of oil and gas in the Kuqa depression, Tarim basin, NW China. Organic Geochemistry, 34: 873~888.
参考文献
Liu Quanyou, Dai Jinxing, Li Jian, Zhou Qinghua. 2008. Hydrogen isotope composition of natural gases from the Tarim basin and its indication of depositional environments of the source rocks. Science China: Earth Sciences, 51(2): 300~311.
参考文献
Liu Wenhui, Zhang Dianwei, Wang Xiaofeng, Nan Qingyun. 2004. Geochemical study of gas source correlation. Journal of Sedimentology, (S1): 27~32 (in Chinese with English abstract).
参考文献
Lu Jungang, Luo Zhaoyang, Zou Hongliang, Li Yanping, Hu ZhengZhou, Zhou Zengyuan, Zhu Jiang, Han Meimei, Zhao Liping, Lin Zonghui. 2021. Geochemical characteristics, origin, and mechanism of differential accumulation of natural gas in the Carboniferous Kelameili gas field in Junggar basin, China. Journal of Petroleum Science and Engineering, 203.
参考文献
Prinzhofer A A, Huc A Y. 1995. Genetic post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, 126: 281~290.
参考文献
Proskurowski G, Lilley M D, Seewald J S, Fruh-Green G L, Olson E J, Lupton J E, Sylva S P, Kelley D S. 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319: 604~607.
参考文献
Rooney M A, Claypool G E, Chung H M. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology, 126(3~4): 219~232.
参考文献
Şengör A, Natal'in B, Burtman V. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.
参考文献
Sherwood Lollar B, Westgate T D, Ward J A, Slater G F, Lacrampe-Couloume G. 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source of global hydrocarbon reservoirs. Nature, 416: 522~524.
参考文献
Sherwood Lollar B, Lacrampe-Couloume G, Slater G F, Ward J A, Moser D P, Gihring T M, Lin L H, Onstott T C. 2006. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chemical Geology, 26: 328~339.
参考文献
Shi Xinpu, Qin Jianqiang, Ding Yanxue, Yang Dan, Shi Quandang, Hu Qingxiong, Li Bo, Qi Hongyan, Zhang Jihui, Sun Deqiang, Zhao Zhen, Rao Yuan, Xi Chengwei. 2018. Main controlling factors and reservoir forming models of volcanic gas reservoirs in Dinan uplift, the Junggar basin. Natural Gas Geoscience, 29(12): 1706~1714 (in Chinese with English abstract).
参考文献
Stahl W J, Carey Jr B D. 1975. Source rock identification by isotope analyses of natural gases from fields in the Val Verde and the Delaware basin, West Texas. Chemical Geology, 16(4): 257~267.
参考文献
Sun Ping'an, Wang Yuce, Leng Kun, Li Hui, Ma Wanyun, Cao Jian. 2016. Geochemistry and origin of natural gas in the eastern Junggar basin, NW China. Marine and Petroleum Geology, 75: 240~251.
参考文献
Tilley B, Muehlenbachs K. 2006. Gas maturity and alteration systematics across the eastern Canada sedimentary basin from four mud gas isotope depth profiles. Organic Geochemistry, 37: 1857~1868.
参考文献
Tilley B, Muehlenbachs K. 2013. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chemical Geology, 339: 194~204.
参考文献
Wang Shiqian. 1994. Geochemical characteristics of Jurassic-Sinian natural gas in Sichuan basin. Natural Gas Industry, 14(6): 1~5 (in Chinese with English abstract).
参考文献
Wang Shufang, Zou Caineng, Hou Lianhua, Wei Yanzhao, Luo Xia, Guo Zhaojie. 2013. Petroleum geological characteristics and favorable exploration directions of Carboniferous volcanic gas reservoirs in the eastern Junggar basin. Geoscience Frontiers, 20(2): 226~236 (in Chinese with English abstract).
参考文献
Wang Xulong, Zhao Mengjun, Xiang Baoli, Da Jiang, Jiang Yiqin, Liu Cuimin. 2010. Carboniferous source rocks in Ludong-Wucaiwan area, Junggar basin. Petroleum Exploration and Development, 37(5): 523~530 (in Chinese with English abstract).
参考文献
Wang Xulong, Zhi Dongming, Wang Yutao, Chen Jianping, Qin Zhijun, Liu Deguang, Xiang Ying, Lan Wenfang, Li Na. 2013. Organic Geochemistry of Source Rocks and Hydrocarbons in the Junggar Basin. Beijing: Petroleum Industry Press (in Chinese).
参考文献
Whiticar M J. 1994. Correlation of natural gases with their sources. In: Magoon L B, Dow W G, eds. The Petroleum System—From Source to Trap. American Association Petroleum Geologists, 60: 261~284.
参考文献
Wu Xiaoqi, Liu Deliang, Li Zhensheng. 2012. Main controlling factors of natural gas enrichment in volcanic rocks in Ludong-Wucaiwan area of the Junggar basin. Journal of Geology of Universities, 18(2): 318~327 (in Chinese with English abstract).
参考文献
Xiao Zhihua, Xie Zengye, Li Zhisheng, Ma Chenghua, Sun Qingwu. 2008. Natural gas geochemical characteristics of Xujiahe Formation in central and southern Sichuan. Journal of Southwest Petroleum University (Natural Science Edition), (4): 27~30+18+17 (in Chinese with English abstract).
参考文献
Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253~273.
参考文献
Xu Xingyou. 2005. Study on carboniferous source rocks in Kramei area of eastern Junggar basin. Petroleum Geology and Recovery Efficiency, (1): 38~41+84 (in Chinese with English abstract).
参考文献
Yang Disheng, Chen Shijia, Li Lin, Lu Jungang. 2012. Origin and reservoir formation characteristics of oil and gas in Kela Meili gas field. Natural Gas Industry, 32(2): 27~31+113 (in Chinese with English abstract).
参考文献
Yang Hao, Li Di, Hou Shuoqin, Fan Dan, He Dengfa. 2023. Carboniferous chronostratigraphic framework in the northeastern margin of the Junggar basin: Implications for the closure time of Karamaili Ocean. Chinese Journal of Geology, 58(1): 105~123 (in Chinese with English abstract).
参考文献
Yang Xusong, Tian Xiaobo, Windley B F, Zhao Liang, Lu Yifan, Yuan Huaiyu, Xiao Wenjiao. 2022. The role of multiple trapped oceanic basins in continental growth: Seismic evidence from the southern Altaids. Geophysical Research Letters, 49: e2022GL098548.
参考文献
Yi Zejun, He Dengfa. 2018. Tectonic stratigraphic sequence and basin evolution in the eastern Junggar basin. Petroleum and Natural Gas Geology, 39(5): 932~942 (in Chinese with English abstract).
参考文献
Yu Shuang, Wang Xulong, Xiang Baoli, Ren Jiangling, Li Ertin, Wang Jun, Huang Pan, Wang Guobin, Xu Hao, Pan Changchun. 2017. Molecular and carbon isotopic geochemistry of crude oils and extracts from Permian source rocks in the northwestern and central Junggar basin, China. Organic Geochemistry, 113: 27~42.
参考文献
Yuen G, Blair N, Des Marais D J, Chang S. 1984. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature, 307(5948): 252~254.
参考文献
Zhang Ji'en, Xiao Wenjiao, Han Chunming, Ao Songjian, Yuan Chao, Sun Min, Geng Hongyan, Zhao Guochun, Guo Qianqian, Ma Chong. 2011. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in western Junggar, NW China. Gondwana Research, 19(4): 95~974.
参考文献
Zhang Ji'en, Chen Yichao, Xiao Wenjiao, Yan Zhen. 2021. Ophiolite and ophiolite melange structure. Geological Science, 56(2): 560~595 (in Chinese with English abstract).
参考文献
Zhang Lei, He Dengfa, Yi Zejun, Li Di. 2020. Tectonic relationship between the Kelameili range and the Dajing depression: Insights into the Carboniferous tectonic-sedimentary framework. Petroleum Exploration and Development, 47(1): 29~44 (in Chinese with English abstract).
参考文献
Zhang Shiya, Gao Jianjun, Jiang Tairan. 1988. A new method for identifying natural gas types using carbon isotopes of methane and hexane. In: Institute of Petroleum Geology, Ministry of Geology and Mineral Resources, ed. Collected Works on Petroleum and Natural Gas Geology. Volume 1: Research on Coal Formed Gas in China. Beijing: Geological Publishing House, 48~58 (in Chinese).
参考文献
Zhao Mengjun, Wang Xulong, Da Jiang, Xiang Baoli, Song Yan, Qin Shengfei. 2011. Analysis on the origin and accumulation process of natural gas in Dinan uplift Wucaiwan area of the Junggar basin. Natural Gas Geoscience, 22(4): 595~601 (in Chinese with English abstract).
参考文献
Zhi Dongming, Song Yong, Zheng Menglin, Qin Zhijun, Gong Deyu. 2021. Genetic types, origins, and accumulation process of natural gas from the southwestern Junggar basin. Marine and Petroleum Geology, 123.
参考文献
Zhi Dongming, Wang Xiaojun, Song Yong. 2022. Geneses, sources and accumulation process of natural gases in the hinterland of the Junggar basin. Frontiers in Earth Science, doi: 10. 3389/feart. 2022. 843245.
参考文献
Zou Caineng, Hou Lianhua, Tao Shizhen, Yuan Xuanjun, Zhu Rukai, Zhang Xiangxiang, Li Fuheng, Pang Zhenglian. 2011. Structure of Carboniferous large-scale volcanic rock weathering body and formation hydrocarbon accumulation mechanism in northern Dzungaria. Chinese Science: Earth Sciences, 41(11): 1613~1626 (in Chinese with English abstract).
参考文献
Zumberge J, Ferworn K, Brown S. 2012. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Marine and Petroleum Geology, 31: 43~52.
参考文献
曹正林, 李攀, 王瑞菊. 2022. 准噶尔盆地玛湖凹陷P—T转换期层序结构、坡折发育及油气地质意义. 天然气地球科学, 33(5): 807~819.
参考文献
戴金星. 1999. 中国煤成气研究二十年的重大进展. 石油勘探与开发, (3): 21~30+3+11.
参考文献
戴金星. 2014. 中国煤成大气田及气源. 北京: 科学出版社, 266~285.
参考文献
戴金星, 邹才能, 张水昌, 李剑, 倪云燕, 胡国艺, 罗霞, 陶士振, 朱光有, 米敬奎, 李志生, 胡安平, 杨春, 周庆华, 帅燕华, 张英, 马成华. 2008. 无机成因和有机成因烷烃气的鉴别. 中国科学(D辑: 地球科学), (11): 1329~1341.
参考文献
杜金虎, 等. 2010. 新疆北部石炭系火山岩油气勘探. 北京: 石油工业出版社.
参考文献
刚文哲, 高岗, 郝石生, 黄志龙, 朱雷. 1997. 论乙烷碳同位素在天然气成因类型研究中的应用. 石油实验地质, (2): 164~167.
参考文献
龚德瑜, 王绪龙, 周川闽, 郑孟林, 蒋文龙, 吴卫安. 2021. 准噶尔盆地东南部石炭系规模烃源岩的发现及天然气勘探潜力. 石油学报, 42(7): 836~852.
参考文献
龚德瑜, 赵长永, 何文军, 赵龙, 孔玉梅, 马丽亚, 王瑞菊, 吴卫安. 2022. 准噶尔盆地西北缘天然气成因来源及勘探潜力. 石油与天然气地质, 43(1): 161~174.
参考文献
何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.
参考文献
侯连华, 邹才能, 刘磊, 文百红, 吴晓智, 卫延召, 毛治国. 2012. 新疆北部石炭系火山岩风化壳油气地质条件. 石油学报, 33(4): 533~540.
参考文献
侯连华, 罗霞, 王京红, 杨帆, 赵霞, 毛治国. 2013. 火山岩风化壳及油气地质意义——以新疆北部石炭系火山岩风化壳为例. 石油勘探与开发, 40(3): 257~265+274.
参考文献
胡素云, 王小军, 曹正林, 李建忠, 龚德瑜, 徐洋. 2019. 准噶尔盆地大中型气田(藏)形成条件与勘探方向. 石油勘探与开发, 47(2): 247~259.
参考文献
黄芸, 梁舒艺, 夏雨, 李艳平, 谷新萍, 伏小鹏. 2019. 准噶尔盆地滴北凸起早石炭世沉积充填特征及油气地质意义. 古地理学报, 21(4): 637~646.
参考文献
匡立春, 吕焕通, 王绪龙, 杨迪生, 孙中春, 凌立苏. 2010. 准噶尔盆地天然气勘探实践与克拉美丽气田的发现. 天然气工业, 30(2): 1~6+133.
参考文献
李涤. 2016. 准噶尔盆地及邻区石炭纪构造格架与沉积充填演化. 中国地质大学(北京)博士学位论文.
参考文献
李涤, 何登发, 樊春, 唐勇, 阳孝法, 常秋生, 袁航. 2012a. 准噶尔盆地克拉美丽气田石炭系玄武岩的地球化学特征及构造意义. 岩石学报, 28(3): 981~992.
参考文献
李涤, 何登发, 唐勇, 樊春, 孔玉华. 2012b. 准噶尔盆地滴南凸起早石炭世火山岩的成因及其对克拉美丽洋闭合时限的约束. 岩石学报, 28(8): 2340~2354.
参考文献
李锦轶. 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304~322.
参考文献
李二庭, 靳军, 王剑, 罗正江, 马万云, 米巨磊, 何丹, 王明. 2020. 准噶尔盆地克拉美丽地区石炭系天然气来源. 天然气地球科学, 31(11): 1515~1523.
参考文献
李建忠, 郑明, 郭秋麟, 王社教. 2019. 第四次油气资源评价. 北京: 石油工业出版社, 294~330.
参考文献
李林, 陈世加, 杨迪生, 赵克斌, 路俊刚, 徐怀民. 2013. 准噶尔盆地滴水泉凹陷石炭系烃源岩生烃能力分析. 中国石油大学学报(自然科学版), 37(4): 52~58.
参考文献
刘文汇, 张殿伟, 王晓锋, 南青云. 2004. 天然气气~源对比的地球化学研究. 沉积学报, (S1): 27~32.
参考文献
石新朴, 覃建强, 丁艳雪, 杨丹, 史全党, 胡清雄, 李波, 齐洪岩, 张吉辉, 孙德强, 赵振, 饶远, 习成威. 2018. 准噶尔盆地滴南凸起火山岩气藏成藏主控因素与成藏模式. 天然气地球科学, 29(12): 1706~1714.
参考文献
王世谦. 1994. 四川盆地侏罗系—震旦系天然气的地球化学特征. 天然气工业, 14(6): 1~5.
参考文献
王淑芳, 邹才能, 侯连华, 卫延召, 罗霞, 郭召杰. 2013. 准噶尔盆地东部石炭系火山岩气藏石油地质特征及有利勘探方向分析. 地学前缘, 20(2): 226~236.
参考文献
王绪龙, 赵孟军, 向宝力, 达江, 蒋宜勤, 刘翠敏. 2010. 准噶尔盆地陆东—五彩湾地区石炭系烃源岩. 石油勘探与开发, 37(5): 523~530.
参考文献
王绪龙, 支东明, 王屿涛, 陈建平, 秦志军, 刘德光, 向英, 兰文芳, 李娜. 2013. 准噶尔盆地烃源岩与油气地球化学. 北京: 石油工业出版社.
参考文献
吴小奇, 刘德良, 李振生. 2012. 准噶尔盆地陆东—五彩湾地区火山岩中天然气富集的主控因素. 高校地质学报, 18(2): 318~327.
参考文献
肖芝华, 谢增业, 李志生, 马成华, 孙庆伍. 2008. 川中川南地区须家河组天然气地球化学特征. 西南石油大学学报(自然科学版), (4): 27~30+18+17.
参考文献
徐兴友. 2005. 准噶尔盆地东部克拉美丽地区石炭系烃源岩研究. 油气地质与采收率, (1): 38~41+84.
参考文献
杨迪生, 陈世加, 李林, 路俊刚. 2012. 克拉美丽气田油气成因及成藏特征. 天然气工业, 32(2): 27~31+113.
参考文献
杨浩, 李涤, 侯烁钦, 樊丹, 何登发. 2023. 准噶尔盆地东北缘石炭系年代-地层格架: 对卡拉麦里洋闭合时限的启示. 地质科学, 58(1): 105~123.
参考文献
易泽军, 何登发. 2018. 准噶尔盆地东部构造地层层序及盆地演化. 石油与天然气地质, 39(5): 932~942.
参考文献
张继恩, 陈艺超, 肖文交, 闫臻. 2021. 蛇绿岩与蛇绿混杂带结构. 地质科学, 56(2): 560~595.
参考文献
张磊, 何登发, 易泽, 李涤. 2020. 克拉美丽山与大井坳陷的构造关系: 兼论石炭纪构造—沉积格局. 石油勘探与开发, 47(1): 29~44.
参考文献
张士亚, 郜建军, 蒋泰然. 1988. 利用甲、已烷碳同位素判识天然气类型的一种新方法. 见: 地矿部石油地质所编. 石油与天然气地质文集. 第一集《中国煤成气研究》. 北京: 地质出版社, 48~58.
参考文献
赵孟军, 王绪龙, 达江, 向宝力, 宋岩, 秦胜飞. 2011. 准噶尔盆地滴南凸起—五彩湾地区天然气成因与成藏过程分析. 天然气地球科学, 22(4): 595~601.
参考文献
邹才能, 侯连华, 陶士振, 袁选俊, 朱如凯, 张响响, 李富恒, 庞正炼. 2011. 新疆北部石炭系大型火山岩风化体结构与地层油气成藏机制. 中国科学: 地球科学, 41(11): 1613~1626.
目录contents

    摘要

    石炭系是目前准噶尔盆地最重要也是最现实的天然气勘探目标。针对石炭系烃源岩的勘探主要围绕上石炭统巴塔玛依内山组展开,而理论上规模更大的下石炭统滴水泉组烃源岩的有效性尚无定论。同时,石炭纪火山作用频繁,盆地内部具备生成无机成因烷烃气的地质条件,但相关研究甚少。本次研究基于准噶尔盆地东部东道海子-五彩湾凹陷和白家海凸起天然气的分子组成和碳同位素特征,系统分析了天然气的成因来源和潜在的次生改造作用,共识别出4种不同类型的天然气:① 来自滴水泉组的煤成气;② 来自巴塔玛依内山组的煤成气;③ 无机成因甲烷和热成因天然气的混源气;④ 发生渗漏的热成因天然气。研究结果证实了准噶尔盆地东部下石炭统烃源岩的有效性,发现了无机成因烷烃气的踪迹,有望开辟盆地深层—超深层天然气勘探新领域,并提供了一个鉴别“同型不同源”天然气的典型案例。

    Abstract

    Explorations of Carboniferous petroleum system mainly focuses on the source rocks of the Upper Carboniferous Batamayineishan Formation. In contrast, the validity of the theoretically better-developed source rocks of the Lower Carboniferous Dishuiquan Formation is still inconclusive. Meanwhile, the frequent Carboniferous volcanism in the basin possesses the geological background for generating abiogenic alkane gas, but there are few related studies. Based on the molecular and stable carbon isotopic compositions of natural gas from the Dongdaohaizi-Wucaiwan sag and Baijiahai uplift in the eastern Junggar basin, this study systematically analyzed its genetic origin and potential secondary alteration and identified four different types of natural gases: ① coal-derived gas from the Dishuiquan Formation; ② coal-derived gas from the Batamayineishan Formation; ③ abiogenic methane mixed with thermogenic alkane gas; ④ leaked thermogenic gas. These results confirm the validity of the Lower Carboniferous source rocks in the eastern Junggar basin and also identify traces of abiogenic alkane gas, which opens up a new field of gas exploration in the deep and ultra-deep basin and also provides a typical case of identifying “homogeneous and hetero-origin” gas.

  • 准噶尔盆地油气资源十分丰富,被开采利用已超130年。1955年,准噶尔盆地更是诞生了新中国第一个大油田——克拉玛依油田。至2022年,准噶尔盆地石油年产量达到1409×104 t,天然气37.5×108 m3,油气产量已经连续21年超1000×104 t,成为我国油气增储上产的主力军。

  • 尽管准噶尔盆地目前以石油生产为主,但同样蕴藏着丰富的天然气资源,资源量达2.3×1012 m3李建忠等,2019)。然而,截止2019年,盆地仅探明天然气2092×108 m3胡素云等,2019),探明率不足10%,仍处于勘探早期阶段。已探明的天然气储量主要集中在石炭系含油气系统中,占比达52.6%。2006年在盆地东部发现的克拉美丽气田(图1a),探明天然气储量832.4×108 m3,是迄今盆地发现的最大气田(匡立春等,2010王绪龙等,2010)。此后,在盆地西北缘(Chen Zhonghong et al.,2014Zhi Dongming et al.,2021龚德瑜等,2022)、腹部(Cao Jian et al.,2012Zhi Dongming et al.,2022)和东部(Sun Ping'an et al.,2016Lu Jungang et al.,2021)均发现了来自石炭系烃源岩的天然气,证实其在全盆地广泛分布。目前,石炭系已成为准噶尔盆地最重要也是最现实的天然气勘探领域。

  • 在克拉美丽气田发现后,又先后在滴南凸起南带、阜康凹陷东斜坡和白家海凸起发现了一批石炭系气藏(图1a),但至今未获规模突破(胡素云等,2019Gong Deyu et al.,2019Lu Jungang et al.,2021)。这一方面表明盆地东部石炭系整体含气,具备良好的勘探潜力,但也说明石炭系含油气系统十分复杂。

  • 准噶尔盆地东部石炭系发育上统巴塔玛依内山组(C2b)和下统滴水泉组(C1d)两套烃源岩(徐兴友等,2005王绪龙等,2010李林等,2013)(图1c)。C2b是一套受火山作用影响较为明显的陆相烃源岩(王绪龙等,2013龚德瑜等,2021),长期以来被认为是盆地东部的主力气源岩(Sun Ping'an et al.,2016Lu Jungang et al.,2021)。C1d烃源岩在盆地东部以浅海相—海陆过渡相沉积为主,有机质类型与C2b烃源岩接近(王绪龙等,2013),理论上也具备生成煤成气的潜力。然而,对于该套烃源岩在盆地东部的有效性,目前多以推测为主(赵孟军等,2011杨迪生等,2012李林等,2013黄芸等,2019李二庭等,2020),尚未开展系统的地球化学研究。一方面,这是由于C1d烃源岩目前仅见于盆地东缘的地面露头和零星钻井,在地震资料上几乎没有显示(王绪龙等,2013);另一方面,在盆地东部,C1d和C2b烃源岩同属于腐殖型烃源岩(徐兴友等,2005王绪龙等,2010李林等,2013),同型(腐殖型)不同源(C1d或C2b来源)天然气往往不易区分。位于盆地东部的东道海子-五彩湾凹陷和白家海凸起已发现多个石炭系气藏(图1b)。除C2b烃源岩外,该区在CC2井和CS1井还钻遇了较厚的C1d烃源岩(图1b)(王绪龙等,2013),这为我们探索C1d烃源岩的有效性提供了一个理想的试验场。

  • 图1 准噶尔盆地东部地质纲要图

  • Fig.1 Geological setting of eastern Junggar basin

  • (a)—准噶尔盆地构造单元与研究区概况;(b)—不同成因天然气平面分布图;(c)—研究区地层综合柱状图;①—滴水泉凹陷;②—滴南凸起;③—五彩湾凹陷;④—东道海子凹陷;⑤—白家海凸起;⑥—阜康凹陷

  • (a) —the structural units of the Junggar basin and a brief introduction of the study area; (b) —the lateral distribution of natural gases with different genetic types in the study area; (c) —comprehensive stratiraphic column of the study area;①—Dishuiquan sag; ②—Dinan uplift; ③—Wucaiwan sag; ④—Dongdaohaizi sag; ⑤—Baijiahai uplift; ⑥—Fukang sag

  • 除热成因烷烃气外,无机成因烷烃气也是天然气的一种重要类型(戴金星等,2008;Etiope and Sherwood Lollar,2013),其形成主要通过火山和热液环境下的高温岩浆作用或较低温度下的气—水—岩相互作用(主要为低温蛇纹石化作用)两大途径(Etiope and Sherwood Lollar,2013)。准噶尔盆地东部在石炭纪火山作用频繁,露头区发现规模蛇纹岩带(李涤等,2012a2012b张继恩等,2021),总体具备形成无机成因烷烃气的地质条件。目前,准噶尔盆地东部地区关于无机成因气的研究也还处于空白阶段。

  • 针对上述问题,以准噶尔盆地东部东道海子-五彩湾凹陷和白家海凸起为研究对象,系统分析了天然气的分子组成和稳定碳同位素组成特征,明确了天然气的成因来源和潜在的次生改造作用,查明了C1d烃源岩的有效性,探索了盆地东部下石炭统天然气的勘探潜力,寻觅了无机成因天然气的踪迹。研究成果为拓展盆地深层天然气勘探战略接替领域,推动盆地勘探早日开创“油气并举”崭新局面提供了重要的理论依据。

  • 1 地质背景

  • 准噶尔盆地在大地构造上位于哈萨克斯坦板块、塔里木板块和西伯利亚板块的拼接处,由稳定地块与周缘褶皱带构成,面积约为13.4×104 km2Carroll et al.,1995; Cao Jian et al.,2020)。盆地是在前寒武系结晶基底和晚古生代褶皱基底之上形成的多旋回叠合盆地,经历了早石炭世沟弧盆、晚石炭世—二叠纪断-坳复合、三叠纪—白垩纪统一坳陷和古近纪—第四纪再生前陆4个演化阶段(何登发等,2018曹正林等,2022)。结合石炭系褶皱基底顶面和中二叠世的隆坳格局,盆地可以划分为6个一级构造单元和44个二级构造单元。研究区位于一级构造单元——中央坳陷的东部,由五彩湾凹陷、东道海子凹陷和白家海凸起3个二级构造单元构成(图1a、b)。

  • 研究区地层较全,自下而上为石炭系、二叠系、三叠系、侏罗系、白垩系、古近系和新近系(图1c)。石炭系为构成本区基底的最上层岩系,其顶界与上覆地层呈角度不整合接触(李涤等,2012a2012b)。下石炭统滴水泉组主要出露于滴水泉、六棵树以南和双井子及以东地区。在研究区,滴水泉组为一套浅海相—海陆过渡相沉积,岩性主要为灰色—灰绿色砂岩和粉砂岩、灰—深灰色泥岩、灰黑色碳质泥岩,局部夹凝灰岩、凝灰质泥岩及煤线,与上覆巴塔玛依内山组呈不整合接触(易泽军和何登发,2018)(图1c)。上石炭统巴塔玛依内山组可以分为上(C2b3)、中(C2b2)、下(C2b1)三段:下段岩性以火山岩为主,发育基性—中酸性火山岩序列;中段主要以沉积岩为主,夹少量火山岩,岩性以灰黑色碳质泥岩、浅灰色—灰色凝灰质细砂岩、凝灰质砂砾岩为主,夹玄武安山岩和灰黑色沉凝灰岩,是C2b烃源岩的主要发育段;上段主要为火山岩相和陆相沉积,岩性特征主要为中性、基性及酸性火山岩、火山碎屑岩夹泥岩、砂岩、砾岩和煤线(杜金虎等,2010)(图1c)。

  • 石炭系上覆的二叠系和三叠系厚层泥岩是良好的区域盖层,而石炭系内幕不同旋回、期次的不同岩性也能形成很好的局部储盖组合(吴小奇等,2012石新朴等,2018)(图1c)。其中,二叠系区域性泥岩盖层对石炭系风化壳油气藏的保存最为有利(赵孟军等,2011王淑芳等,2013)。

  • 2 样品采集和实验方法

  • 本次研究对白家海凸起和东道海子-五彩湾凹陷38口井的54个天然气样品进行了组分和稳定碳同位素组成分析。天然气样品采用排水集气法在井口分离器采集,在平面上囊括了研究区的主要含气构造,纵向上涵盖了下石炭统滴水泉组、上石炭统巴塔玛依内山组、上二叠统上乌尔禾组、下侏罗统八道湾组和三工河组、中侏罗统西山窑组和头屯河组、下白垩统吐谷鲁群等8个层组。样品的平面分布如图1b所示,分析结果见表1。

  • 通过Agilent 6890N气体气相色谱仪来测定气体样品的分子组成,该气相色谱仪配有火焰离子检测器和热导检测器。使用毛细管柱(Plot Al2O350 m×0.53 mm)对从甲烷到戊烷(C1~C5)的单体烃气体组分进行分离。气相色谱仪炉温最初设置为30℃,持续10 min,然后以10℃/min的速率上升到最高温度180℃,并保持20~30 min。

  • 天然气的单体烃稳定碳同位素比值是通过Finnigan Mat Delta S质谱仪与HP 5890II气相色谱仪联用测定的。气体组分在气相色谱仪上以氦气分离,在燃烧界面转化为二氧化碳,然后引入质谱仪。使用二氧化硅毛细管柱(Plot Q 30 m×0.32 mm)分离单体烃化合物组分(C1~C5)。色谱仪的初始炉温设定为35℃,以8℃/min的速率上升到80℃,然后再以5℃/min的速率上升到260℃,保持10 min。稳定碳同位素值采用VPDB标准,分析精度为±0.3‰。

  • 3 实验结果

  • 3.1 天然气组分特征

  • 研究区天然气组分以烷烃气为主,分布区间较宽,为34.4%~99.4%(平均93.4%)(表1)。烷烃气中,甲烷占绝对优势,主频分布在80%~95%,占样品总数的63.4%(图2,表1)。DN15和C504等井甲烷含量较低,分布在30.6%~62.1%。研究区天然气的重烃气含量(∑C2-4)较低,为0.4%~32.1%,平均6.3%(表1)。通常将干燥系数(C1/∑C1-4)大于0.95的天然气定义为干气,小于0.95则定义为湿气(戴金星等,2014Dai Jinxing et al.,2014)。研究区天然气的干燥系数变化较大,为0.63~1.0,平均0.93,干气占样品总数的61.5%(图2,表1)。

  • 天然气中的非烃气体主要由氮气和二氧化碳构成。前者的含量为0~52.2%(平均5.3%),主频分布在0~5%,占样品总数的74.5%;后者的含量为0.02%~1.6%(平均0.3%)(图2,表1)。研究区天然气中氮气含量显著高于二氧化碳,这也与准噶尔盆地其他气藏中非烃气体组分特征一致(Zhi Dongming et al.,2021龚德瑜等,2022)(图2)。

  • 3.2 天然气稳定碳同位素组成特征

  • 研究区天然气甲烷碳同位素组成(δ13C1)介于-38.9‰~-11.2‰,平均-31.0‰(图3,表1)。总体而言,δ13C1普遍较重,主要分布在-32.0‰~-28.0‰,占所有样品的67.2%。乙烷碳同位素组成(δ13C2)主频分布在-28.0‰~-24.0‰,平均值为-26.4‰(图3,表1)。天然气丙烷和丁烷的碳同位素组成(δ13C3和δ13C4)分别为-28.2‰~-20.5‰(平均-25.3‰)和-28.4‰~-20.4‰(平均-25.3‰),二者的主频均分布在-28.0‰~-22.0‰(图3,表1)。

  • 根据同位素动力学分馏效应,热成因气的δ13C值随着碳原子数的增加而更加富集13C(δ13C1 < δ13C2 < δ13C3 < δ13C4),称为正碳同位素系列(Des Marais,1981)。在一些无机成因气和页岩气中发现了与之截然相反的情况(δ13C1 > δ13C2 > δ13C3 >δ13C4),称为负碳同位素系列(Des Marais et al.,1981Yuen et al.,1984Dai Jinxing et al.,2004Zumberge et al.,2012Tilley and Muehlenbachs,2013)。当天然气碳同位素不符合以上两种情况,而出现不规则排列则称之为碳同位素倒转(Chung et al.,1988Dai Jinxing et al.,2004)。

  • 图2 准噶尔盆地东部天然气分子组成频率分布直方图

  • Fig.2 Histogram chart of molecular compositions of natural gases in the eastern Junggar basin

  • 研究区天然气大部分表现为正碳同位素系列,占样品总数的59.3%(图4)。同时,也有相当一部分天然气碳同位素组成发生了倒转(图4),其中以丙烷和丁烷的倒转最为普遍(δ13C1 < δ13C2 < δ13C3 > δ13C4),占样品总数的24.1%,其次为乙烷和丙烷的倒转(δ13C1 < δ13C2 >δ13C3 > δ13C4或δ13C1 < δ13C2 > δ13C3 < δ13C4),占样品总数的11.1%(图4)。有2个天然气样品发生了甲烷和乙烷碳同位素的倒转,其中C504井天然气样品表现为负碳同位素系列(图4,表2)。

  • 表1 准噶尔盆地东部天然气地球化学参数表

  • Table1 Geochemical characteristics of natural gases in the eastern Junggar basin

  • 注:天然气分子组成为最小值~最大值/平均值。

  • 表2 世界典型无机成因烷烃气与准噶尔盆地东部疑似无机成因天然气地球化学参数表

  • Table2 Geochemical characteristics of typical abiogenic alkane gas in the world and suspected abiogenic gas in the eastern Junggar basin

  • 注:n. d. 无数据。

  • 图3 准噶尔盆地东部天然气稳定碳同位素组成频率分布直方图

  • Fig.3 Histogram chart of stable carbon isotopic compositions of natural gases in the eastern Junggar basin

  • 烷烃气碳同位素倒转的成因主要有以下几种:① 有机成因烷烃气和无机成因烷烃气的混合;② 煤成气和油型气的混合;③ 同型不同源天然气的混合;④ 同源不同期天然气的混合;⑤ 天然气的某一或某些组分被细菌氧化;⑥ 硫酸盐热还原反应(TSR)(Dai Jinxing et al.,2004Liu Quanyou et al.,2008Hao Fang et al.,2008)。研究区烷烃气碳同位素的倒转主要为第①和第③种成因,本文第4章将做详细阐述。

  • 4 讨论

  • 4.1 天然气成因

  • 根据天然气碳同位素特征以及碳同位素与分子组成之间的相互关系,本次研究在研究区共识别出4种不同类型的天然气。

  • 4.1.1 第Ⅰ类天然气

  • 煤系烃源岩主要由富含芳香结构的Ⅱ2型和Ⅲ型干酪根组成,其碳同位素组成相对富集13C;腐泥型烃源岩主要由富含脂肪族结构的Ⅱ1型和I型干酪根组成,其碳同位素组成相对贫13C(Stahl and Carey 1975; Jenden et al.,1988; Galimov,19882006Dai Jinxing,1992)。烃源岩在相同或相近成熟度进行成气作用时,生成天然气的碳同位素组成相对于母质具有继承性:煤系烃源岩生成的煤成气单体烃碳同位素组成比腐泥型烃源岩生成的油型气更加富集13C(刘文汇等,2004)。第Ⅰ类天然气δ13C1值为-38.9‰~-22.5‰(平均-35.8‰),在相近成熟度(C1/C2+3值)下,其碳同位素组成是4类天然气中最轻的,反映出其母质具备相对更好的有机质类型;该类天然气C1/C2+3值为12.67~267.86(平均76.34),是4类天然气中最高的,说明天然气具备相对更高的热成熟度(图5,表1)。

  • 图4 准噶尔盆地东部天然气碳同位素分布特征

  • Fig.4 Distribution patterns of stable carbon isotopic compositions of natural gases in the eastern Junggar basin

  • (a)—Δ(δ13C213C1)vs. Δ(δ13C313C2)交会图;(b)—Δ(δ13C313C2)vs. Δ(δ13C413C3)交会图

  • (a) —crossplot of Δ (δ13C213C1) vs. Δ (δ13C313C2) ; (b) —crossplot of Δ (δ13C313C2) vs. Δ (δ13C413C3)

  • 相较于甲烷,重烃气(C2-4)的碳同位素组成受成熟度影响较小,更多地反映其母质碳同位素组成的差异,是区别煤成气和油型气的有效指标(Dai Jinxing et al.,2005a2014)。受样本数量、区域沉积环境差异和有机质非均质性等因素的影响,不同学者提出的区分标准有一定差别,但两类天然气δ13C2-4的界线总体分布在-28.0‰±1‰(张士亚等,1988王世谦,1994刚文哲等,1997戴金星等,1999Liang Digang et al.,2003; 肖芝华等,2008Dai Jinxing et al.,2012; Gong Deyu et al.,2018)。第Ⅰ类天然气δ13C2、δ13C3和δ13C4值分别为-27.9‰~-23.4‰(平均-26.2‰)、-26.3‰~-20.5‰(平均-24.4‰)和-28.4‰~-20.4‰(平均-24.5‰),普遍具有较重的碳同位素组成,在δ13C113C213C3天然气成因鉴别图版中位于煤成气分布区域(Dai Jinxing,1992Dai Jinxing et al.,2014;图6)。需要注意的是,图5中第Ⅰ类天然气并没有完全落在典型的III型干酪根生成的煤成气趋势线上,说明这类煤成气的母质有更多细菌和藻类生源输入,和单纯以高等植物生源输入的母质表现出一定差别。

  • 图5 准噶尔盆地东部天然气δ13C1 vs. C1/C2+3交会图(底图据Bernard et al.,1978Whiticar,1994修改)

  • Fig.5 Crossplot of δ13C1 vs. C1/C2+3 of natural gases in the eastern Junggar basin (modified after Bernard et al., 1978; Whiticar, 1994)

  • 4.1.2 第Ⅱ类天然气

  • 第Ⅱ类天然气的δ13C1和C1/C2+3值分别为-32.0‰~-28.7‰(平均-30.3‰)和11.36~52.06(平均32.92),落在了III型干酪根生成的煤成气趋势线上(图5,表1)。和第Ⅰ类天然气相比,其δ13C1平均值重5.5‰左右,C1/C2+3平均值却低了43.42,说明两类天然气虽然同属于煤成气却可能来自两套不同的腐殖型烃源岩,为同型不同源天然气(图5,表1)。其中,第Ⅱ类天然气的母质来源中高等植物生源输入比例更高,导致其生成的天然气中δ13C1值更加富集13C,同时其成熟度略低于第Ⅰ类天然气。

  • 第Ⅱ类天然气δ13C2、δ13C3和δ13C4值分别为-29.1‰~-24.6‰(平均-26.7‰)、-28.2‰~-24.3‰(平均-25.9‰)和-28.0‰~-24.4‰(平均-25.9‰),也都表现出煤成气特征,在δ13C113C213C3天然气成因鉴别图版中(Dai Jinxing,1992Dai Jinxing et al.,2014)和第Ⅰ类天然气一起落在了煤成气分布区域(图6,表1)。

  • 对于原生热成因气而言,随着成熟度的增加,其碳同位素组成会逐渐富集重碳(13C)(Stahl and Carey 1975; Galimov,1988; Dai Jinxing,1992)。大量油田现场实例和热模拟实验均证实,不同成因来源的天然气具有不同的同位素动力学演化路径,常用天然气不同组分δ13C之间的相关关系来表示(Faber,1987; Jenden et al.,1988; James,1990; Dai Jinxing,1992; Rooney et al.,1995; Berner and Faber,1996; Tilley et al.,2006)。在图6中,尽管第Ⅰ类和第Ⅱ类天然气均落在了煤成气区域,但其δ13C113C2和δ13C113C3相关关系却表现出显著差别,再次说明它们来自两套不同的腐殖型烃源岩。

  • Yu Shuang et al.(2017) 通过对与天然气伴生原油的生物标志物特征分析,在准噶尔盆地东部识别出两类原油:第一类原油Pr/n-C17和Ph/n-C18比值、甾烷和萜烷含量、C24四环萜烷相对于C23和C26三环萜烷的比值、C20/(C20+C23)三环萜烷和C21/(C21+C23)三环萜烷比值相对较低;C30重排藿烷/(C30重排藿烷+C30藿烷)、Ts/(Ts+Tm)、C23三环萜烷/(C23三环萜烷+C30藿烷)和C21/(C21+ΣC29)甾烷比值相对较高,第二类原油的生物标志物特征则截然相反。这两类原油分别对应了本次研究的第Ⅰ类和第Ⅱ类天然气,印证了本次研究的结论。

  • 图6 准噶尔盆地东部天然气δ13C113C213C3交会图(底图据Dai Jinxing,1992Dai Jinxing et al.,2014修改)

  • Fig.6 Crossplot of δ13C113C213C3 of natural gases in the eastern Junggar basin (modified after Dai Jinxing, 1992; Dai Jinxing et al., 2014)

  • 4.1.3 第Ⅲ类天然气

  • 第Ⅲ类天然气具有4类天然气中最重的δ13C1值,为-26.8‰~-11.2‰(平均-21.6‰),与典型无机成因甲烷的碳同位素组成(通常大于-25.0‰)接近(Sherwood Lollar et al.,2006)(图5~7,表2)。其中,C504井样品的δ13C1值重达-11.2‰,表现出明显的无机成因甲烷特征,与土耳其奇梅拉(Chimaera)天然气渗漏和位于大西洋亚特兰蒂斯地体(Atlantis Massif)的失城(Lost City)热液区中发现的无机成因甲烷具有十分相似的碳同位素组成(Proskurowski et al.,2008; Hosgormez et al.,2008),与其他3类天然气的甲烷碳同位素组成表现出明显差别(图5~7,表1,表2)。此外,该样品表现为负碳同位素系列,同样是无机成因烷烃气的一个典型特征(图2a,图7,表2)(Sherwood Lollar et al.,2002; 2006; Dai Jinxing et al.,2005b; Proskurowski et al.,2008)。尽管一些研究表明,高过成熟阶段有机成因天然气的混合作用或瑞利分馏作用也会导致天然气表现为负碳同位素系列(Burruss and Laughrey,2010; Zumberge et al.,2012; Tilley and Muehlenbachs,2013Feng Ziqi et al.,2016),但这种情况下,甲烷的碳同位素相较无机成因甲烷要轻的多,通常小于-25.0‰。

  • C2012井和DN17井两个样品δ13C1值分别为-26.7‰和-26.8‰,尽管较C504样品偏轻,但仍明显重于本次研究的其他样品(图7,表1,表2),其δ13C1和δ13C2值十分接近,甚至发生倒转,与其他3类天然气表现出较为明显的区别(图2a,图6,图7,表2),极可能是混入了无机成因甲烷的结果。

  • 图7 准噶尔盆地东部天然气与世界典型无机成因烷烃气碳同位素连线图

  • Fig.7 Carbon isotopic compositions of natural gases in the eastern Junggar basin and abiogenic alkane gases worldwide

  • Berner and Faber(1996) 研究认为热成因天然气的δ13C2和δ13C3值总体分别分布在-38.7‰~-25.8‰和-35.1‰~-28.1‰。相反,纯无机成因烷烃气的δ13C2和δ13C3值总体较重(Dai Jinxing et al.,2005b; Sherwood Lollar et al.,20022006; Proskurowski et al.,2008)。例如,Proskurowski et al.(2008) 研究发现大西洋失城热液区中纯无机成因烷烃气的δ13C2和δ13C3值分别为-15.2‰~-13.1‰(平均-14.2‰)和-16.0‰~-13.4‰(平均-14.5‰),相较于准噶尔盆地东部第Ⅲ类天然气,明显富集13C(图7,表2)。据此推断,第Ⅲ类天然气中无机成因甲烷比例较高,其中C504井天然气以无机成因甲烷为主,而重烃气组分则以有机成因烷烃气为主。研究表明土耳其奇梅拉天然气渗漏的天然气中,甲烷以无机成因为主,而重烃气以有机成因为主(Hosgormez et al.,2008),表现出与中国准噶尔盆地东部第Ⅲ类天然气相似的碳同位素分布特征(图7),这也进一步证实了我们的推测。

  • 无机成因烷烃气的碳同位素组成和有机成因气有着很大的重叠区间,加之自然界中的无机成因烷烃气在绝大部分情况下都会和有机成因气发生混合作用,因此确定无机成因气是一项极具挑战的工作(Etiope and Sherwood Lollar,2013)。除了常用的稳定碳同位素分析以外,还需要更多的证据支撑,如稳定氢同位素、团簇同位素和伴生稀有气体同位素等(Etiope and Sherwood Lollar,2013)。遗憾的是,由于样品采集时间较早,仅开展了组分和碳同位素分析,现已无法补充更多的分析项目。本次研究所提供的无机成因烷烃气的线索还有待今后更系统的采样和分析来进一步证实。

  • 4.1.4 第Ⅳ类天然气

  • 第Ⅳ类天然的δ13C1值与第Ⅱ类天然气相近,为-31.5‰~-28.3‰(平均-30.3‰),即便是对于碳同位素组成相对富集13C的煤成气而言,也对应了较高的热成熟度,若对应油型气,则反映的成熟度更高。然而此类天然气的C1/C2+3值却明显低于其他3类天然气,仅为2.16~8.07(平均5.33),干燥系数为0.63~0.87(平均0.79),反映出天然气的热演化程度较低(图5,表1)。显然,天然气的组分和稳定碳同位素组成各自反映的热演化阶段是不一致的,暗示此类天然气可能遭受了某种次生改造作用。

  • 4.2 天然气来源

  • 研究区在石炭纪发育C2b和C1d两套烃源岩,前者是一套陆相沉积,而后者是一套浅海相—海陆过渡相沉积(杜金虎等,2010王绪龙等,2013何登发等,2018)。总体上,二者均是以碳质泥岩/煤系泥岩为主的腐殖型烃源岩(王绪龙等,2013Gong Deyu et al.,2019)。本次研究对比分析了准东地区83个C2b烃源岩岩芯样品和51个C1d烃源岩露头样品的干酪根碳同位素特征。结果表明,C2b烃源岩干酪根碳同位素分布在-26.8‰~-19.6‰(平均-23.8‰),C1d烃源岩干酪根碳同位素分布在-28.6‰~-24.0‰(平均-26.1‰),二者平均值相差2.5‰,反映出后者有机质类型略好(图8)。Yu Shuang et al.(2017)基于对两套烃源岩抽提物中生物标志化合物的系统分析发现,相较于C1d烃源岩,研究区C2b烃源岩C19~C21三环萜烷和C24四环萜烷丰度较高,C23三环萜烷/(C23三环萜烷+C30藿烷)和C21/(C21+ΣC29)甾烷比值较低,具有相对更高的C29甾烷和更低的C27甾烷丰度,重排甾烷和伽马蜡烷含量较低。上述特征反映出C2b烃源岩处于一个偏氧化沉积环境,以陆源有机质输入为主,而C1d烃源岩沉积期水体还原性相对较强,盐度更高,有一定的海相浮游生物输入,成熟度也更高。根据上述特点,第Ⅰ类天然气很好地对应了C1d烃源岩,而第Ⅱ类天然气则对应C2b烃源岩。

  • 图8 准噶尔盆地东部石炭系巴塔玛依内山组和滴水泉组烃源岩干酪根碳同位素频率分布直方图

  • Fig.8 Histogram chart of stable carbon isotopic compositions of kerogen in the Carboniferous Batamayineishan Formation and Dishuiquan Formation source rocks in the eastern Junggar basin

  • 第Ⅲ类天然气——无机成因天然气的形成通常有两大途径,一类是岩浆成因,另一类是独立于岩浆作用的气—水—岩反应,如基于费托反应的低温蛇纹石化作用等(Etiope and Sherwood Lollar,2013)。准噶尔盆地东部在石炭纪火山作用频繁,滴水泉组和巴塔玛依内山组均发育大套火山岩地层(图1c),为生成岩浆成因无机天然气提供了地质条件。此外,在东部露头区已发现规模蛇绿岩带(李涤等,2012a2012b张继恩等,2021),推测地下同样存在通过气—水—岩相互作用形成无机成因天然气的可能。对于第Ⅲ类天然气的确切成因仍有待更多的样品和分析手段来进一步研究。

  • 当天然气藏的封盖条件较差时,往往会发生渗漏作用。由于甲烷相对于重烃气分子量更小,因此渗漏相的气体将更加富集甲烷,而残留相气体中重烃气的含量更高(Prinzhofer and Huc,1995)。此外,鉴于12C相对于13C更容易逸散,相较于渗漏相的天然气,残留相天然气的稳定碳同位素组成往往更加富集13C,且在甲烷中最为明显(Prinzhofer and Huc,1995)。因此,发生渗漏作用后仍然滞留在储层中的残留相气体,将表现出相对较低的C1/C2[ln(C1/C2)]比值以及较重的δ13C1值[(δ13C113C2)值增大](Prinzhofer and Huc,1995)。如图9所示,第Ⅳ类天然气相较于第Ⅰ类天然气,C1/C2比值较小,(δ13C113C2)值增大,表现出第Ⅰ类天然气经过渗漏作用后残留气体的特征,这反映出这些气藏保存条件差,成藏后普遍遭受了强烈的改造作用。

  • 第Ⅳ类天然气相对第Ⅱ类天然气仅仅是组分的变化,而碳同位素并没有发生显著的分馏,据此推断,其并非第Ⅱ类天然气发生渗漏后的残余气体。同理,第Ⅱ类和第Ⅲ类天然气相对于第Ⅰ类天然气,仅仅是发生了碳同位素的分馏,而组分变化不大,与渗漏作用导致的结果不符,三者的差异更可能是成因类型的差别所致。

  • 图9 准噶尔盆地东部天然气ln(C1/C2)与Δ(δ13C113C2)交会图(底图据Prinzhofer and Huc,1995修改)

  • Fig.9 Crossplot of ln (C1/C2) vs. Δ (δ13C113C2) of natural gases in the eastern Junggar basin (modified after Prinzhofer and Huc, 1995)

  • 4.3 勘探启示

  • 前人研究表明,准噶尔盆地东部天然气藏主体是以C2b火山岩为储层,下伏石炭系烃源岩为源的自生自储型气藏(图1c)(匡立春等,2010王绪龙等,2010Yu Shuang et al.,2017Lu Jungang et al.,2021)。对于此类天然气藏而言,烃源岩的分布和有效性直接决定了勘探领域和目标的选择(邹才能等,2011侯连华等,2012)。

  • 大量钻井、露头和地震资料都已证实了C2b这套烃源岩的有效性(徐兴友等,2005王绪龙等,2010李林等,2013)。目前盆地东部的天然气勘探主要也都围绕着C2b生烃源灶展开(杜金虎等,2010侯连华等,2013)。在巴塔玛依内山组沉积期,盆地东北部进入后碰撞伸展阶段,受地壳拆沉作用等影响,早期相互拼贴的增生楔和岛弧地体等被不同程度拉伸,形成一系列小型断陷盆地。这些小型断陷盆地(因比例尺太小在图10a中无法显示)通常成群分布,组合后构成乌伦古盆地和三塘湖盆地等(图10a)。此外,该期位于陆南-卡拉麦里缝合带南侧的卡拉麦里残余洋为弧后伸展盆地,其在平面上大致呈条带沿近东西向分布(图10a)。这些伸展/断陷盆地通常是有利的烃源岩分布区,但因后期褶皱变形与改造强烈,最终多数为“残留生烃凹陷”(He Dengfa et al.,2010何登发等,2018张磊等,2020)(图10a)。这就导致了准噶尔盆地东部C2b生烃凹陷的规模相对有限。相反,在下石炭统滴水泉组沉积期,准噶尔盆地整体为多岛洋背景,广泛发育沟-弧-盆体系(图10b)。其中,海沟盆地、弧前前陆盆地、弧后前陆盆地和弧间盆地等均是有利的烃源岩富集区。这些潜在的生烃凹陷/中心由于规模较大且埋藏较深,受后期褶皱变形改造较弱,其天然气勘探潜力更大。北疆地区早石炭世海相盆地的沉积范围达41.25×104 km2(图10b),远远大于现今盆地面积。因此,C1d烃源岩在理论上较之于C2b烃源岩分布范围更广,连续性也更好,更具勘探潜力。本次研究在准噶尔盆地东部发现了滴水泉组来源的天然气,证实了下石炭统烃源岩的有效性,揭示了盆地深层—超深层一个崭新的天然气勘探领域。

  • 无机成因烷烃气不仅本身是一种重要的矿产资源,其往往还和高丰度的氦气气藏和氢气气藏伴生,因此对于无机成因天然气的研究具有重要的战略意义。

  • 5 结论

  • 准噶尔盆地东部东道海子-五彩湾凹陷和白家海凸起存在4种不同类型的天然气。第Ⅰ类和第Ⅱ类天然气的稳定碳同位素组成总体上富集13C,表现为煤成气的特征。和第Ⅰ类天然气相比,第Ⅱ类天然气的δ13C1平均值重5.5‰左右,C1/C2+3平均值却低了43.42,说明两类天然气来自两套不同的腐殖型烃源岩。前者对应有机质类型相对更好的滴水泉组浅海相—海陆过渡相烃源岩,而后者对应巴塔玛依内山组陆相烃源岩。第Ⅲ类天然气具有4类天然气中最重的δ13C1值,平均-21.6‰,δ13C1和δ13C2发生倒转或数值十分接近,表现出无机成因甲烷特征,而重烃气碳同位素特征与热成因气相似,推测发生了两类天然气的混合。第Ⅳ类天然气相较于第Ⅰ类天然气,C1/C2比值较小,δ13C113C2值增大,为第Ⅰ类天然气发生渗漏作用后的残留相气体。这反映出这些气藏保存条件差,成藏后普遍遭受了强烈的改造。本次研究在盆地东部发现了来自下石炭统滴水泉组烃源岩的天然气,证实了其有效性,同时也发现了研究区存在无机成因甲烷的地球化学证据,揭示了盆地深层—超深层崭新的天然气勘探领域。

  • 图10 北疆地区晚石炭世(a)和早石炭世早期(b)构造-古地理图(据Şengör et al.,1993; 李锦轶,2004Xiao Wenjiao et al.,2010; He Dengfa et al.,2010; Zhang Ji'en et al.,2011; 李涤,2016;Han et al.,2018; 张磊等,2020Yang Xusong et al.,2022; 杨浩等,2023修编)

  • Fig.10 Tectono-paleogeographic map of Late Carboniferous (a) and early Early Carboniferous (b) in northern Xinjiang (modified from Şengör et al., 1993; Li Jinyi,2004Xiao Wenjiao et al., 2010; He Dengfa et al., 2010; Zhang Ji'en et al., 2011; Li Di,2016;Han et al., 2018; Zhang Lei et al.,2020Yang Xusong et al., 2022; Yang Hao et al.,2023)

  • 致谢:本文得到了中国石油勘探开发研究院戴金星院士、中国石油新疆油田分公司王绪龙和郑孟林教授级高工的悉心指导,谨致谢意。

  • 参考文献

    • Bernard B B, Brooks J, Sackett W M. 1978. Light hydrocarbons in recent Texas continental shelf and slope sediments. Journal of Geophysical Research Atmospheres, 83: 4053~4061.

    • Berner U, Faber E. 1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Organic Geochemistry, 24(10-11): 947~955.

    • Burruss R C, Laughrey C D. 2010. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons. Organic Geochemistry, 41(12): 1285~1296.

    • Cao Jian, Wang Xulong, Sun, Pin'an, Zhang Yueqian, Tang Yong, Xiang Baoli, Lan Wenfang. 2012. Geochemistry and origins of natural gases in the central Junggar basin, Northwest China. Organic Geochemistry, 53: 166~176.

    • Cao Jian, Xia Liuwen, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Science Reviews, 202.

    • Cao Zhenglin, Li Pan, Wang Ruiju. 2022. Sequence architecture, slope-break development and hydrocarbon implications of the Mahu sag during the P-T transition, Junggar basin. Natural Gas Geoscience, 33(5): 807~819 (in Chinese with English abstract).

    • Carroll A R, Graham S A, Hendrix M S, Ying Dong, Zhou Dan. 1995. Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins. Geological Society of America Bulletin, 107(5): 571~594.

    • Chen Zhonghong, Cao Yingchang, Ma Zunjing, Zhen Yuanshui. 2014. Geochemistry and origins of natural gases in the Zhongguai area of Junggar basin, China. Journal of Petroleum Science and Engineering 119: 17~27.

    • Chung H M, Gormly J R, Squires R M. 1988. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. Chemical Geology: 71: 97~103.

    • Dai Jinxing. 1992. Identification and distinction of various alkane gases. Science China (Series B), 35: 1246~1257.

    • Dai Jinxing. 1999. Significantprogress in the study of coal formed gas in China over the past twenty years. Petroleum Exploration and Development, (3): 21~30+3+11 (in Chinese with English abstract).

    • Dai Jinxing. 2014. Giant Coal-Derived Gas Fields and Their Gas Source in China. Beijing: Science Press, 266~285 (in Chinese with English abstract).

    • Dai Jinxing, Xia Xinyu, Qin Shengfei, Zhao Jiangzhou. 2004. Origins of partially reversed alkane δ13C values for biogenic gases in China. Organic Geochemistry, 35: 405~411.

    • Dai Jinxing, Li Jian, Luo Xia, Zhang Wenzheng, Hu Guoyi, Ma Chenghua, Guo Jianmin, Ge Shuoguo. 2005a. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos basin, China. Organic Geochemistry, 36: 1617~1635.

    • Dai Jinxing, Yang Shufeng, Chen Hanlin, Shen Xiaohua. 2005b. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Organic Geochemistry, 36(12): 1664~1688.

    • Dai Jinxing, Zou Caineng, Zhang Shuichang, Li Jian, Ni Yunyan, Hu Guoyi, Luo Xia, Tao Shizhen, Zhu Guangyou, Mi Jingkui, Li Zhisheng, Hu Anping, Yang Chun, Zhou Qinghua, Shuai Yanhua, Zhang Ying, Ma Chenghua. 2008. Identification of inorganic and organic alkane gases. Chinese Science (Part D: Earth Sciences), (11): 1329~1341 (in Chinese with English abstract).

    • Dai Jinxing, Ni Yunyan, Zou Caineng. 2012. Stable carbon and hydrogen isotopes of natural gases source from the Xujiahe Formation in the Sichuan basin, China. Organic Geochemistry, 43(1): 103~111.

    • Dai Jinxing, Gong Deyu, Ni Yunyan, Huang Shipeng, Wu Wei. 2014. Stable carbon isotopes of coal derived gases sourced from the Mesozoic coal measures in China. Organic Geochemistry, 74: 123~142.

    • Des Marais D J, Donchin J H, Nehring N L, Truesdell A H. 1981. Molecular carbon isotope evidence for the origin of geothermal hydrocarbon. Nature, 292: 826~828.

    • Du Jinhu, et al. 2010. Petroleum Exploration for Volcanic Reservoirs in the Northern Xinjiang. Beijing: Petroleum Industry Press (in Chinese).

    • Etiope G, Lollar B S. 2013. Abiotic methane on earth. Reviews of Geophysics, 51(2): 276~299.

    • Faber E. 1987. Zur isotopengeochemie gasförmiger kohlenwasser stoffe. Erdöl erdgas Kohle, 103: 210~218.

    • Feng Ziqi, Liu Dan, Huang Shipeng, Gong Deyu, Peng Weilong. 2016. Geochemical characteristics and genesis of natural gas in the Yan'an gas field, Ordos basin, China. Organic Geochemistry, 102: 67~76.

    • Galimov E M. 1988. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chemical Geology, 71: 77~95.

    • Galimov E M. 2006. Isotope organic geochemistry. Organic Geochemistry, 37: 1200~1262.

    • Gang Wenzhe, Gao Gang, Hao Shisheng, Huang Zhilong, Zhu Lei. 1997. Application ofethane carbon isotopes in the study of natural gas genetic types. Petroleum Experimental Geology, (2): 164~167 (in Chinese with English abstract).

    • Gong Deyu, Li Jianzhong, Ablimit I, He Wenjun, Lu Shan, Liu Deguang, Fang Chenchen. 2018. Geochemical characteristics of natural gases related to Late Paleozoic coal measures in China. Marine and Petroleum Geology, 96: 474~500.

    • Gong Deyu, Wei Yanzhao, Zhang Lijun Cui Huajuan. 2019. Geochemical characteristics of Carboniferous coaly source rocks and natural gases in the southeastern Junggar basin, NW China: Implications for new hydrocarbon explorations. International Journal of Coal Geology, 202: 171~189.

    • Gong Deyu, Wang Xulong, Zhou Chuanmin, Zheng Menglin, Jiang Wenlong, Wu Wei'an. 2021. Discovery of Carboniferous scale Source rock in the southeast of the Junggar basin and its natural gas exploration potential. Journal of Petroleum, 42(7): 836~852 (in Chinese with English abstract).

    • Gong Deyu, Zhao Changyong, He Wenjun, Zhao Long, Kong Yumei, Ma Liya, Wang Ruiju, Wu Wei'an. 2022. Origin and exploration potential of natural gas in the northwest margin of the Junggar basin. Petroleum and Natural Gas Geology, 43(1): 161~174 (in Chinese with English abstract).

    • Han Yigui, Zhao Guochun. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129~152.

    • Hao Fang, Guo Tonglou, Zhu Yangming. 2008. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan basin, China. American Association of Petroleum Geologists Bulletin, 92: 611~637.

    • He Dengfa, Chen Xinfa, Kuang Jun, Yuan Hang, Fan Chun, Tang Yong, Wu Xiaozhi. 2010. Distribution of Carboniferous source rocks and petroleum systems in the Junggar basin. Petroleum Exploration and Development, 37(4): 397~408.

    • He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018. Tectonic evolution stages and features of the Junggar basin. Oil & Gas Geology, 39(5): 845~861 (in Chinese with English abstract).

    • Hosgormez H, Etiope G, Yalçin M N. 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): A large onshore seepage of abiogenic gas. Geofluids, 8: 263~273.

    • Hou Lianhua, Zou Caineng, Liu Lei, Wen Baihong, Wu Xiaozhi, Wei Yanzhao, Mao Zhiguo. 2012. Petroleum geological conditions of weathered crust of Carboniferous volcanic rocks in northern Dzungaria. Journal of Petroleum, 33 (4): 533~540 (in Chinese with English abstract).

    • Hou Lianhua, Luo Xia, Wang Jinghong, Yang Fan, Zhao Xia, Mao Zhiguo. 2013. Volcanic rock weathering crust and its oil and gas geological significance—Taking Carboniferous volcanic rock weathering crust in northern Dzungaria as an example. Petroleum Exploration and Development, 40 (3): 257~265+274 (in Chinese with English abstract).

    • Hu Suyun, Wang Xiaojun, Cao Zhenglin, Li Jianzhong, Gong Deyu, Xu Yang. 2019. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar basin, NW China. Petroleum Exploration and Development, 47(2): 247~259 (in Chinese with English abstract).

    • Huang Yun, Liang Shuyi, Xia Yu, Li Yanping, Gu Xinping, Fu Xiaopeng. 2019. Sedimentary filling characteristics and petroleum geological significance of the Early Carboniferous in the Dibei uplift of the Junggar basin. Journal of Paleogeography, 21(4): 637~646 (in Chinese with English abstract).

    • James A T. 1990. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. Bulletin of the American Association of Petroleum Geologists, 74: 1441~1458.

    • Jenden P D, Kaplan I R, Poreda R. 1988. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochimica et Cosmochimica Acta, 52: 851~861.

    • Kuang Lichun, Lv Huantong, Wang Xulong, Yang Disheng, Sun Zhongchun, Ling Lisu. 2010. Natural gas exploration practice in Junggar basin and the discovery of Kramei gas field. Natural Gas Industry, 30(2): 1~6+133 (in Chinese with English abstract).

    • Li Di. 2016. Carboniferous tectonic framework and sedimentary filling evolution in the Junggar basin and adjacent area, NW China. Doctoral dissertation thesis of China University of Geosciences(Beijing)(in Chinese with English abstract).

    • Li Di, He Dengfa, Fan Chun, Tang Yong, Yang Xiaofa, Chang Qiusheng, Yuan Hang. 2012a. Geochemical characteristics and tectonic significance of Carboniferous basalt in Kelameili gas field, the Junggar basin. Journal of Petrology, 28(3): 981~992 (in Chinese with English abstract).

    • Li Di, He Dengfa, Tang Yong, Fan Chun, Kong Yuhua. 2012b. Genesis of Early Carboniferous volcanic rocks in Dinan uplift of the the Junggar basin and their constraints on the closing time of the Cramerican Ocean. Acta Petrologica Sinica, 28 (8): 2340~2354 (in Chinese with English abstract).

    • Li Erting, Jin Jun, Wang Jian, Luo Zhengjiang, Ma Wanyun, Mi Julei, He Dan, Wang Ming. 2020. Source of Carboniferous natural gas in Kelameili area of the Junggar basin. Natural Gas Geoscience, 31(11): 1515~1523 (in Chinese with English abstract).

    • Li Jianzhong, Zheng Ming, Guo Qiulin, Wang Shejiao. 2019. Fourth Assessement for Oil and Gas Resource. Beijing: Petroleum Industry Press, 297~330 (in Chinese with English abstract).

    • Li Jinyi. 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China. Geological Review, 50(3): 304~322 (in Chinese with English abstract).

    • Li Lin, Chen Shijia, Yang Disheng, Zhao Kebin, Lu Jungang, Xu Huaimin. 2013. Analysis of hydrocarbon generation capacity of Carboniferous source rocks in Dishuiquan sag in Junggar basin. Journal of China University of Petroleum (Natural Science Edition), 37(4): 52~58 (in Chinese with English abstract).

    • Liang Digang, Zhang Shuichang, Chen Jianping, Wang Feiyu, Wang Peirong. 2003. Organic geochemistry of oil and gas in the Kuqa depression, Tarim basin, NW China. Organic Geochemistry, 34: 873~888.

    • Liu Quanyou, Dai Jinxing, Li Jian, Zhou Qinghua. 2008. Hydrogen isotope composition of natural gases from the Tarim basin and its indication of depositional environments of the source rocks. Science China: Earth Sciences, 51(2): 300~311.

    • Liu Wenhui, Zhang Dianwei, Wang Xiaofeng, Nan Qingyun. 2004. Geochemical study of gas source correlation. Journal of Sedimentology, (S1): 27~32 (in Chinese with English abstract).

    • Lu Jungang, Luo Zhaoyang, Zou Hongliang, Li Yanping, Hu ZhengZhou, Zhou Zengyuan, Zhu Jiang, Han Meimei, Zhao Liping, Lin Zonghui. 2021. Geochemical characteristics, origin, and mechanism of differential accumulation of natural gas in the Carboniferous Kelameili gas field in Junggar basin, China. Journal of Petroleum Science and Engineering, 203.

    • Prinzhofer A A, Huc A Y. 1995. Genetic post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, 126: 281~290.

    • Proskurowski G, Lilley M D, Seewald J S, Fruh-Green G L, Olson E J, Lupton J E, Sylva S P, Kelley D S. 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319: 604~607.

    • Rooney M A, Claypool G E, Chung H M. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology, 126(3~4): 219~232.

    • Şengör A, Natal'in B, Burtman V. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.

    • Sherwood Lollar B, Westgate T D, Ward J A, Slater G F, Lacrampe-Couloume G. 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source of global hydrocarbon reservoirs. Nature, 416: 522~524.

    • Sherwood Lollar B, Lacrampe-Couloume G, Slater G F, Ward J A, Moser D P, Gihring T M, Lin L H, Onstott T C. 2006. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chemical Geology, 26: 328~339.

    • Shi Xinpu, Qin Jianqiang, Ding Yanxue, Yang Dan, Shi Quandang, Hu Qingxiong, Li Bo, Qi Hongyan, Zhang Jihui, Sun Deqiang, Zhao Zhen, Rao Yuan, Xi Chengwei. 2018. Main controlling factors and reservoir forming models of volcanic gas reservoirs in Dinan uplift, the Junggar basin. Natural Gas Geoscience, 29(12): 1706~1714 (in Chinese with English abstract).

    • Stahl W J, Carey Jr B D. 1975. Source rock identification by isotope analyses of natural gases from fields in the Val Verde and the Delaware basin, West Texas. Chemical Geology, 16(4): 257~267.

    • Sun Ping'an, Wang Yuce, Leng Kun, Li Hui, Ma Wanyun, Cao Jian. 2016. Geochemistry and origin of natural gas in the eastern Junggar basin, NW China. Marine and Petroleum Geology, 75: 240~251.

    • Tilley B, Muehlenbachs K. 2006. Gas maturity and alteration systematics across the eastern Canada sedimentary basin from four mud gas isotope depth profiles. Organic Geochemistry, 37: 1857~1868.

    • Tilley B, Muehlenbachs K. 2013. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chemical Geology, 339: 194~204.

    • Wang Shiqian. 1994. Geochemical characteristics of Jurassic-Sinian natural gas in Sichuan basin. Natural Gas Industry, 14(6): 1~5 (in Chinese with English abstract).

    • Wang Shufang, Zou Caineng, Hou Lianhua, Wei Yanzhao, Luo Xia, Guo Zhaojie. 2013. Petroleum geological characteristics and favorable exploration directions of Carboniferous volcanic gas reservoirs in the eastern Junggar basin. Geoscience Frontiers, 20(2): 226~236 (in Chinese with English abstract).

    • Wang Xulong, Zhao Mengjun, Xiang Baoli, Da Jiang, Jiang Yiqin, Liu Cuimin. 2010. Carboniferous source rocks in Ludong-Wucaiwan area, Junggar basin. Petroleum Exploration and Development, 37(5): 523~530 (in Chinese with English abstract).

    • Wang Xulong, Zhi Dongming, Wang Yutao, Chen Jianping, Qin Zhijun, Liu Deguang, Xiang Ying, Lan Wenfang, Li Na. 2013. Organic Geochemistry of Source Rocks and Hydrocarbons in the Junggar Basin. Beijing: Petroleum Industry Press (in Chinese).

    • Whiticar M J. 1994. Correlation of natural gases with their sources. In: Magoon L B, Dow W G, eds. The Petroleum System—From Source to Trap. American Association Petroleum Geologists, 60: 261~284.

    • Wu Xiaoqi, Liu Deliang, Li Zhensheng. 2012. Main controlling factors of natural gas enrichment in volcanic rocks in Ludong-Wucaiwan area of the Junggar basin. Journal of Geology of Universities, 18(2): 318~327 (in Chinese with English abstract).

    • Xiao Zhihua, Xie Zengye, Li Zhisheng, Ma Chenghua, Sun Qingwu. 2008. Natural gas geochemical characteristics of Xujiahe Formation in central and southern Sichuan. Journal of Southwest Petroleum University (Natural Science Edition), (4): 27~30+18+17 (in Chinese with English abstract).

    • Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253~273.

    • Xu Xingyou. 2005. Study on carboniferous source rocks in Kramei area of eastern Junggar basin. Petroleum Geology and Recovery Efficiency, (1): 38~41+84 (in Chinese with English abstract).

    • Yang Disheng, Chen Shijia, Li Lin, Lu Jungang. 2012. Origin and reservoir formation characteristics of oil and gas in Kela Meili gas field. Natural Gas Industry, 32(2): 27~31+113 (in Chinese with English abstract).

    • Yang Hao, Li Di, Hou Shuoqin, Fan Dan, He Dengfa. 2023. Carboniferous chronostratigraphic framework in the northeastern margin of the Junggar basin: Implications for the closure time of Karamaili Ocean. Chinese Journal of Geology, 58(1): 105~123 (in Chinese with English abstract).

    • Yang Xusong, Tian Xiaobo, Windley B F, Zhao Liang, Lu Yifan, Yuan Huaiyu, Xiao Wenjiao. 2022. The role of multiple trapped oceanic basins in continental growth: Seismic evidence from the southern Altaids. Geophysical Research Letters, 49: e2022GL098548.

    • Yi Zejun, He Dengfa. 2018. Tectonic stratigraphic sequence and basin evolution in the eastern Junggar basin. Petroleum and Natural Gas Geology, 39(5): 932~942 (in Chinese with English abstract).

    • Yu Shuang, Wang Xulong, Xiang Baoli, Ren Jiangling, Li Ertin, Wang Jun, Huang Pan, Wang Guobin, Xu Hao, Pan Changchun. 2017. Molecular and carbon isotopic geochemistry of crude oils and extracts from Permian source rocks in the northwestern and central Junggar basin, China. Organic Geochemistry, 113: 27~42.

    • Yuen G, Blair N, Des Marais D J, Chang S. 1984. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature, 307(5948): 252~254.

    • Zhang Ji'en, Xiao Wenjiao, Han Chunming, Ao Songjian, Yuan Chao, Sun Min, Geng Hongyan, Zhao Guochun, Guo Qianqian, Ma Chong. 2011. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in western Junggar, NW China. Gondwana Research, 19(4): 95~974.

    • Zhang Ji'en, Chen Yichao, Xiao Wenjiao, Yan Zhen. 2021. Ophiolite and ophiolite melange structure. Geological Science, 56(2): 560~595 (in Chinese with English abstract).

    • Zhang Lei, He Dengfa, Yi Zejun, Li Di. 2020. Tectonic relationship between the Kelameili range and the Dajing depression: Insights into the Carboniferous tectonic-sedimentary framework. Petroleum Exploration and Development, 47(1): 29~44 (in Chinese with English abstract).

    • Zhang Shiya, Gao Jianjun, Jiang Tairan. 1988. A new method for identifying natural gas types using carbon isotopes of methane and hexane. In: Institute of Petroleum Geology, Ministry of Geology and Mineral Resources, ed. Collected Works on Petroleum and Natural Gas Geology. Volume 1: Research on Coal Formed Gas in China. Beijing: Geological Publishing House, 48~58 (in Chinese).

    • Zhao Mengjun, Wang Xulong, Da Jiang, Xiang Baoli, Song Yan, Qin Shengfei. 2011. Analysis on the origin and accumulation process of natural gas in Dinan uplift Wucaiwan area of the Junggar basin. Natural Gas Geoscience, 22(4): 595~601 (in Chinese with English abstract).

    • Zhi Dongming, Song Yong, Zheng Menglin, Qin Zhijun, Gong Deyu. 2021. Genetic types, origins, and accumulation process of natural gas from the southwestern Junggar basin. Marine and Petroleum Geology, 123.

    • Zhi Dongming, Wang Xiaojun, Song Yong. 2022. Geneses, sources and accumulation process of natural gases in the hinterland of the Junggar basin. Frontiers in Earth Science, doi: 10. 3389/feart. 2022. 843245.

    • Zou Caineng, Hou Lianhua, Tao Shizhen, Yuan Xuanjun, Zhu Rukai, Zhang Xiangxiang, Li Fuheng, Pang Zhenglian. 2011. Structure of Carboniferous large-scale volcanic rock weathering body and formation hydrocarbon accumulation mechanism in northern Dzungaria. Chinese Science: Earth Sciences, 41(11): 1613~1626 (in Chinese with English abstract).

    • Zumberge J, Ferworn K, Brown S. 2012. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Marine and Petroleum Geology, 31: 43~52.

    • 曹正林, 李攀, 王瑞菊. 2022. 准噶尔盆地玛湖凹陷P—T转换期层序结构、坡折发育及油气地质意义. 天然气地球科学, 33(5): 807~819.

    • 戴金星. 1999. 中国煤成气研究二十年的重大进展. 石油勘探与开发, (3): 21~30+3+11.

    • 戴金星. 2014. 中国煤成大气田及气源. 北京: 科学出版社, 266~285.

    • 戴金星, 邹才能, 张水昌, 李剑, 倪云燕, 胡国艺, 罗霞, 陶士振, 朱光有, 米敬奎, 李志生, 胡安平, 杨春, 周庆华, 帅燕华, 张英, 马成华. 2008. 无机成因和有机成因烷烃气的鉴别. 中国科学(D辑: 地球科学), (11): 1329~1341.

    • 杜金虎, 等. 2010. 新疆北部石炭系火山岩油气勘探. 北京: 石油工业出版社.

    • 刚文哲, 高岗, 郝石生, 黄志龙, 朱雷. 1997. 论乙烷碳同位素在天然气成因类型研究中的应用. 石油实验地质, (2): 164~167.

    • 龚德瑜, 王绪龙, 周川闽, 郑孟林, 蒋文龙, 吴卫安. 2021. 准噶尔盆地东南部石炭系规模烃源岩的发现及天然气勘探潜力. 石油学报, 42(7): 836~852.

    • 龚德瑜, 赵长永, 何文军, 赵龙, 孔玉梅, 马丽亚, 王瑞菊, 吴卫安. 2022. 准噶尔盆地西北缘天然气成因来源及勘探潜力. 石油与天然气地质, 43(1): 161~174.

    • 何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.

    • 侯连华, 邹才能, 刘磊, 文百红, 吴晓智, 卫延召, 毛治国. 2012. 新疆北部石炭系火山岩风化壳油气地质条件. 石油学报, 33(4): 533~540.

    • 侯连华, 罗霞, 王京红, 杨帆, 赵霞, 毛治国. 2013. 火山岩风化壳及油气地质意义——以新疆北部石炭系火山岩风化壳为例. 石油勘探与开发, 40(3): 257~265+274.

    • 胡素云, 王小军, 曹正林, 李建忠, 龚德瑜, 徐洋. 2019. 准噶尔盆地大中型气田(藏)形成条件与勘探方向. 石油勘探与开发, 47(2): 247~259.

    • 黄芸, 梁舒艺, 夏雨, 李艳平, 谷新萍, 伏小鹏. 2019. 准噶尔盆地滴北凸起早石炭世沉积充填特征及油气地质意义. 古地理学报, 21(4): 637~646.

    • 匡立春, 吕焕通, 王绪龙, 杨迪生, 孙中春, 凌立苏. 2010. 准噶尔盆地天然气勘探实践与克拉美丽气田的发现. 天然气工业, 30(2): 1~6+133.

    • 李涤. 2016. 准噶尔盆地及邻区石炭纪构造格架与沉积充填演化. 中国地质大学(北京)博士学位论文.

    • 李涤, 何登发, 樊春, 唐勇, 阳孝法, 常秋生, 袁航. 2012a. 准噶尔盆地克拉美丽气田石炭系玄武岩的地球化学特征及构造意义. 岩石学报, 28(3): 981~992.

    • 李涤, 何登发, 唐勇, 樊春, 孔玉华. 2012b. 准噶尔盆地滴南凸起早石炭世火山岩的成因及其对克拉美丽洋闭合时限的约束. 岩石学报, 28(8): 2340~2354.

    • 李锦轶. 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304~322.

    • 李二庭, 靳军, 王剑, 罗正江, 马万云, 米巨磊, 何丹, 王明. 2020. 准噶尔盆地克拉美丽地区石炭系天然气来源. 天然气地球科学, 31(11): 1515~1523.

    • 李建忠, 郑明, 郭秋麟, 王社教. 2019. 第四次油气资源评价. 北京: 石油工业出版社, 294~330.

    • 李林, 陈世加, 杨迪生, 赵克斌, 路俊刚, 徐怀民. 2013. 准噶尔盆地滴水泉凹陷石炭系烃源岩生烃能力分析. 中国石油大学学报(自然科学版), 37(4): 52~58.

    • 刘文汇, 张殿伟, 王晓锋, 南青云. 2004. 天然气气~源对比的地球化学研究. 沉积学报, (S1): 27~32.

    • 石新朴, 覃建强, 丁艳雪, 杨丹, 史全党, 胡清雄, 李波, 齐洪岩, 张吉辉, 孙德强, 赵振, 饶远, 习成威. 2018. 准噶尔盆地滴南凸起火山岩气藏成藏主控因素与成藏模式. 天然气地球科学, 29(12): 1706~1714.

    • 王世谦. 1994. 四川盆地侏罗系—震旦系天然气的地球化学特征. 天然气工业, 14(6): 1~5.

    • 王淑芳, 邹才能, 侯连华, 卫延召, 罗霞, 郭召杰. 2013. 准噶尔盆地东部石炭系火山岩气藏石油地质特征及有利勘探方向分析. 地学前缘, 20(2): 226~236.

    • 王绪龙, 赵孟军, 向宝力, 达江, 蒋宜勤, 刘翠敏. 2010. 准噶尔盆地陆东—五彩湾地区石炭系烃源岩. 石油勘探与开发, 37(5): 523~530.

    • 王绪龙, 支东明, 王屿涛, 陈建平, 秦志军, 刘德光, 向英, 兰文芳, 李娜. 2013. 准噶尔盆地烃源岩与油气地球化学. 北京: 石油工业出版社.

    • 吴小奇, 刘德良, 李振生. 2012. 准噶尔盆地陆东—五彩湾地区火山岩中天然气富集的主控因素. 高校地质学报, 18(2): 318~327.

    • 肖芝华, 谢增业, 李志生, 马成华, 孙庆伍. 2008. 川中川南地区须家河组天然气地球化学特征. 西南石油大学学报(自然科学版), (4): 27~30+18+17.

    • 徐兴友. 2005. 准噶尔盆地东部克拉美丽地区石炭系烃源岩研究. 油气地质与采收率, (1): 38~41+84.

    • 杨迪生, 陈世加, 李林, 路俊刚. 2012. 克拉美丽气田油气成因及成藏特征. 天然气工业, 32(2): 27~31+113.

    • 杨浩, 李涤, 侯烁钦, 樊丹, 何登发. 2023. 准噶尔盆地东北缘石炭系年代-地层格架: 对卡拉麦里洋闭合时限的启示. 地质科学, 58(1): 105~123.

    • 易泽军, 何登发. 2018. 准噶尔盆地东部构造地层层序及盆地演化. 石油与天然气地质, 39(5): 932~942.

    • 张继恩, 陈艺超, 肖文交, 闫臻. 2021. 蛇绿岩与蛇绿混杂带结构. 地质科学, 56(2): 560~595.

    • 张磊, 何登发, 易泽, 李涤. 2020. 克拉美丽山与大井坳陷的构造关系: 兼论石炭纪构造—沉积格局. 石油勘探与开发, 47(1): 29~44.

    • 张士亚, 郜建军, 蒋泰然. 1988. 利用甲、已烷碳同位素判识天然气类型的一种新方法. 见: 地矿部石油地质所编. 石油与天然气地质文集. 第一集《中国煤成气研究》. 北京: 地质出版社, 48~58.

    • 赵孟军, 王绪龙, 达江, 向宝力, 宋岩, 秦胜飞. 2011. 准噶尔盆地滴南凸起—五彩湾地区天然气成因与成藏过程分析. 天然气地球科学, 22(4): 595~601.

    • 邹才能, 侯连华, 陶士振, 袁选俊, 朱如凯, 张响响, 李富恒, 庞正炼. 2011. 新疆北部石炭系大型火山岩风化体结构与地层油气成藏机制. 中国科学: 地球科学, 41(11): 1613~1626.

  • 参考文献

    • Bernard B B, Brooks J, Sackett W M. 1978. Light hydrocarbons in recent Texas continental shelf and slope sediments. Journal of Geophysical Research Atmospheres, 83: 4053~4061.

    • Berner U, Faber E. 1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Organic Geochemistry, 24(10-11): 947~955.

    • Burruss R C, Laughrey C D. 2010. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons. Organic Geochemistry, 41(12): 1285~1296.

    • Cao Jian, Wang Xulong, Sun, Pin'an, Zhang Yueqian, Tang Yong, Xiang Baoli, Lan Wenfang. 2012. Geochemistry and origins of natural gases in the central Junggar basin, Northwest China. Organic Geochemistry, 53: 166~176.

    • Cao Jian, Xia Liuwen, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Science Reviews, 202.

    • Cao Zhenglin, Li Pan, Wang Ruiju. 2022. Sequence architecture, slope-break development and hydrocarbon implications of the Mahu sag during the P-T transition, Junggar basin. Natural Gas Geoscience, 33(5): 807~819 (in Chinese with English abstract).

    • Carroll A R, Graham S A, Hendrix M S, Ying Dong, Zhou Dan. 1995. Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins. Geological Society of America Bulletin, 107(5): 571~594.

    • Chen Zhonghong, Cao Yingchang, Ma Zunjing, Zhen Yuanshui. 2014. Geochemistry and origins of natural gases in the Zhongguai area of Junggar basin, China. Journal of Petroleum Science and Engineering 119: 17~27.

    • Chung H M, Gormly J R, Squires R M. 1988. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. Chemical Geology: 71: 97~103.

    • Dai Jinxing. 1992. Identification and distinction of various alkane gases. Science China (Series B), 35: 1246~1257.

    • Dai Jinxing. 1999. Significantprogress in the study of coal formed gas in China over the past twenty years. Petroleum Exploration and Development, (3): 21~30+3+11 (in Chinese with English abstract).

    • Dai Jinxing. 2014. Giant Coal-Derived Gas Fields and Their Gas Source in China. Beijing: Science Press, 266~285 (in Chinese with English abstract).

    • Dai Jinxing, Xia Xinyu, Qin Shengfei, Zhao Jiangzhou. 2004. Origins of partially reversed alkane δ13C values for biogenic gases in China. Organic Geochemistry, 35: 405~411.

    • Dai Jinxing, Li Jian, Luo Xia, Zhang Wenzheng, Hu Guoyi, Ma Chenghua, Guo Jianmin, Ge Shuoguo. 2005a. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos basin, China. Organic Geochemistry, 36: 1617~1635.

    • Dai Jinxing, Yang Shufeng, Chen Hanlin, Shen Xiaohua. 2005b. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Organic Geochemistry, 36(12): 1664~1688.

    • Dai Jinxing, Zou Caineng, Zhang Shuichang, Li Jian, Ni Yunyan, Hu Guoyi, Luo Xia, Tao Shizhen, Zhu Guangyou, Mi Jingkui, Li Zhisheng, Hu Anping, Yang Chun, Zhou Qinghua, Shuai Yanhua, Zhang Ying, Ma Chenghua. 2008. Identification of inorganic and organic alkane gases. Chinese Science (Part D: Earth Sciences), (11): 1329~1341 (in Chinese with English abstract).

    • Dai Jinxing, Ni Yunyan, Zou Caineng. 2012. Stable carbon and hydrogen isotopes of natural gases source from the Xujiahe Formation in the Sichuan basin, China. Organic Geochemistry, 43(1): 103~111.

    • Dai Jinxing, Gong Deyu, Ni Yunyan, Huang Shipeng, Wu Wei. 2014. Stable carbon isotopes of coal derived gases sourced from the Mesozoic coal measures in China. Organic Geochemistry, 74: 123~142.

    • Des Marais D J, Donchin J H, Nehring N L, Truesdell A H. 1981. Molecular carbon isotope evidence for the origin of geothermal hydrocarbon. Nature, 292: 826~828.

    • Du Jinhu, et al. 2010. Petroleum Exploration for Volcanic Reservoirs in the Northern Xinjiang. Beijing: Petroleum Industry Press (in Chinese).

    • Etiope G, Lollar B S. 2013. Abiotic methane on earth. Reviews of Geophysics, 51(2): 276~299.

    • Faber E. 1987. Zur isotopengeochemie gasförmiger kohlenwasser stoffe. Erdöl erdgas Kohle, 103: 210~218.

    • Feng Ziqi, Liu Dan, Huang Shipeng, Gong Deyu, Peng Weilong. 2016. Geochemical characteristics and genesis of natural gas in the Yan'an gas field, Ordos basin, China. Organic Geochemistry, 102: 67~76.

    • Galimov E M. 1988. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chemical Geology, 71: 77~95.

    • Galimov E M. 2006. Isotope organic geochemistry. Organic Geochemistry, 37: 1200~1262.

    • Gang Wenzhe, Gao Gang, Hao Shisheng, Huang Zhilong, Zhu Lei. 1997. Application ofethane carbon isotopes in the study of natural gas genetic types. Petroleum Experimental Geology, (2): 164~167 (in Chinese with English abstract).

    • Gong Deyu, Li Jianzhong, Ablimit I, He Wenjun, Lu Shan, Liu Deguang, Fang Chenchen. 2018. Geochemical characteristics of natural gases related to Late Paleozoic coal measures in China. Marine and Petroleum Geology, 96: 474~500.

    • Gong Deyu, Wei Yanzhao, Zhang Lijun Cui Huajuan. 2019. Geochemical characteristics of Carboniferous coaly source rocks and natural gases in the southeastern Junggar basin, NW China: Implications for new hydrocarbon explorations. International Journal of Coal Geology, 202: 171~189.

    • Gong Deyu, Wang Xulong, Zhou Chuanmin, Zheng Menglin, Jiang Wenlong, Wu Wei'an. 2021. Discovery of Carboniferous scale Source rock in the southeast of the Junggar basin and its natural gas exploration potential. Journal of Petroleum, 42(7): 836~852 (in Chinese with English abstract).

    • Gong Deyu, Zhao Changyong, He Wenjun, Zhao Long, Kong Yumei, Ma Liya, Wang Ruiju, Wu Wei'an. 2022. Origin and exploration potential of natural gas in the northwest margin of the Junggar basin. Petroleum and Natural Gas Geology, 43(1): 161~174 (in Chinese with English abstract).

    • Han Yigui, Zhao Guochun. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129~152.

    • Hao Fang, Guo Tonglou, Zhu Yangming. 2008. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan basin, China. American Association of Petroleum Geologists Bulletin, 92: 611~637.

    • He Dengfa, Chen Xinfa, Kuang Jun, Yuan Hang, Fan Chun, Tang Yong, Wu Xiaozhi. 2010. Distribution of Carboniferous source rocks and petroleum systems in the Junggar basin. Petroleum Exploration and Development, 37(4): 397~408.

    • He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018. Tectonic evolution stages and features of the Junggar basin. Oil & Gas Geology, 39(5): 845~861 (in Chinese with English abstract).

    • Hosgormez H, Etiope G, Yalçin M N. 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): A large onshore seepage of abiogenic gas. Geofluids, 8: 263~273.

    • Hou Lianhua, Zou Caineng, Liu Lei, Wen Baihong, Wu Xiaozhi, Wei Yanzhao, Mao Zhiguo. 2012. Petroleum geological conditions of weathered crust of Carboniferous volcanic rocks in northern Dzungaria. Journal of Petroleum, 33 (4): 533~540 (in Chinese with English abstract).

    • Hou Lianhua, Luo Xia, Wang Jinghong, Yang Fan, Zhao Xia, Mao Zhiguo. 2013. Volcanic rock weathering crust and its oil and gas geological significance—Taking Carboniferous volcanic rock weathering crust in northern Dzungaria as an example. Petroleum Exploration and Development, 40 (3): 257~265+274 (in Chinese with English abstract).

    • Hu Suyun, Wang Xiaojun, Cao Zhenglin, Li Jianzhong, Gong Deyu, Xu Yang. 2019. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar basin, NW China. Petroleum Exploration and Development, 47(2): 247~259 (in Chinese with English abstract).

    • Huang Yun, Liang Shuyi, Xia Yu, Li Yanping, Gu Xinping, Fu Xiaopeng. 2019. Sedimentary filling characteristics and petroleum geological significance of the Early Carboniferous in the Dibei uplift of the Junggar basin. Journal of Paleogeography, 21(4): 637~646 (in Chinese with English abstract).

    • James A T. 1990. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. Bulletin of the American Association of Petroleum Geologists, 74: 1441~1458.

    • Jenden P D, Kaplan I R, Poreda R. 1988. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochimica et Cosmochimica Acta, 52: 851~861.

    • Kuang Lichun, Lv Huantong, Wang Xulong, Yang Disheng, Sun Zhongchun, Ling Lisu. 2010. Natural gas exploration practice in Junggar basin and the discovery of Kramei gas field. Natural Gas Industry, 30(2): 1~6+133 (in Chinese with English abstract).

    • Li Di. 2016. Carboniferous tectonic framework and sedimentary filling evolution in the Junggar basin and adjacent area, NW China. Doctoral dissertation thesis of China University of Geosciences(Beijing)(in Chinese with English abstract).

    • Li Di, He Dengfa, Fan Chun, Tang Yong, Yang Xiaofa, Chang Qiusheng, Yuan Hang. 2012a. Geochemical characteristics and tectonic significance of Carboniferous basalt in Kelameili gas field, the Junggar basin. Journal of Petrology, 28(3): 981~992 (in Chinese with English abstract).

    • Li Di, He Dengfa, Tang Yong, Fan Chun, Kong Yuhua. 2012b. Genesis of Early Carboniferous volcanic rocks in Dinan uplift of the the Junggar basin and their constraints on the closing time of the Cramerican Ocean. Acta Petrologica Sinica, 28 (8): 2340~2354 (in Chinese with English abstract).

    • Li Erting, Jin Jun, Wang Jian, Luo Zhengjiang, Ma Wanyun, Mi Julei, He Dan, Wang Ming. 2020. Source of Carboniferous natural gas in Kelameili area of the Junggar basin. Natural Gas Geoscience, 31(11): 1515~1523 (in Chinese with English abstract).

    • Li Jianzhong, Zheng Ming, Guo Qiulin, Wang Shejiao. 2019. Fourth Assessement for Oil and Gas Resource. Beijing: Petroleum Industry Press, 297~330 (in Chinese with English abstract).

    • Li Jinyi. 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China. Geological Review, 50(3): 304~322 (in Chinese with English abstract).

    • Li Lin, Chen Shijia, Yang Disheng, Zhao Kebin, Lu Jungang, Xu Huaimin. 2013. Analysis of hydrocarbon generation capacity of Carboniferous source rocks in Dishuiquan sag in Junggar basin. Journal of China University of Petroleum (Natural Science Edition), 37(4): 52~58 (in Chinese with English abstract).

    • Liang Digang, Zhang Shuichang, Chen Jianping, Wang Feiyu, Wang Peirong. 2003. Organic geochemistry of oil and gas in the Kuqa depression, Tarim basin, NW China. Organic Geochemistry, 34: 873~888.

    • Liu Quanyou, Dai Jinxing, Li Jian, Zhou Qinghua. 2008. Hydrogen isotope composition of natural gases from the Tarim basin and its indication of depositional environments of the source rocks. Science China: Earth Sciences, 51(2): 300~311.

    • Liu Wenhui, Zhang Dianwei, Wang Xiaofeng, Nan Qingyun. 2004. Geochemical study of gas source correlation. Journal of Sedimentology, (S1): 27~32 (in Chinese with English abstract).

    • Lu Jungang, Luo Zhaoyang, Zou Hongliang, Li Yanping, Hu ZhengZhou, Zhou Zengyuan, Zhu Jiang, Han Meimei, Zhao Liping, Lin Zonghui. 2021. Geochemical characteristics, origin, and mechanism of differential accumulation of natural gas in the Carboniferous Kelameili gas field in Junggar basin, China. Journal of Petroleum Science and Engineering, 203.

    • Prinzhofer A A, Huc A Y. 1995. Genetic post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, 126: 281~290.

    • Proskurowski G, Lilley M D, Seewald J S, Fruh-Green G L, Olson E J, Lupton J E, Sylva S P, Kelley D S. 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319: 604~607.

    • Rooney M A, Claypool G E, Chung H M. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology, 126(3~4): 219~232.

    • Şengör A, Natal'in B, Burtman V. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.

    • Sherwood Lollar B, Westgate T D, Ward J A, Slater G F, Lacrampe-Couloume G. 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source of global hydrocarbon reservoirs. Nature, 416: 522~524.

    • Sherwood Lollar B, Lacrampe-Couloume G, Slater G F, Ward J A, Moser D P, Gihring T M, Lin L H, Onstott T C. 2006. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chemical Geology, 26: 328~339.

    • Shi Xinpu, Qin Jianqiang, Ding Yanxue, Yang Dan, Shi Quandang, Hu Qingxiong, Li Bo, Qi Hongyan, Zhang Jihui, Sun Deqiang, Zhao Zhen, Rao Yuan, Xi Chengwei. 2018. Main controlling factors and reservoir forming models of volcanic gas reservoirs in Dinan uplift, the Junggar basin. Natural Gas Geoscience, 29(12): 1706~1714 (in Chinese with English abstract).

    • Stahl W J, Carey Jr B D. 1975. Source rock identification by isotope analyses of natural gases from fields in the Val Verde and the Delaware basin, West Texas. Chemical Geology, 16(4): 257~267.

    • Sun Ping'an, Wang Yuce, Leng Kun, Li Hui, Ma Wanyun, Cao Jian. 2016. Geochemistry and origin of natural gas in the eastern Junggar basin, NW China. Marine and Petroleum Geology, 75: 240~251.

    • Tilley B, Muehlenbachs K. 2006. Gas maturity and alteration systematics across the eastern Canada sedimentary basin from four mud gas isotope depth profiles. Organic Geochemistry, 37: 1857~1868.

    • Tilley B, Muehlenbachs K. 2013. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chemical Geology, 339: 194~204.

    • Wang Shiqian. 1994. Geochemical characteristics of Jurassic-Sinian natural gas in Sichuan basin. Natural Gas Industry, 14(6): 1~5 (in Chinese with English abstract).

    • Wang Shufang, Zou Caineng, Hou Lianhua, Wei Yanzhao, Luo Xia, Guo Zhaojie. 2013. Petroleum geological characteristics and favorable exploration directions of Carboniferous volcanic gas reservoirs in the eastern Junggar basin. Geoscience Frontiers, 20(2): 226~236 (in Chinese with English abstract).

    • Wang Xulong, Zhao Mengjun, Xiang Baoli, Da Jiang, Jiang Yiqin, Liu Cuimin. 2010. Carboniferous source rocks in Ludong-Wucaiwan area, Junggar basin. Petroleum Exploration and Development, 37(5): 523~530 (in Chinese with English abstract).

    • Wang Xulong, Zhi Dongming, Wang Yutao, Chen Jianping, Qin Zhijun, Liu Deguang, Xiang Ying, Lan Wenfang, Li Na. 2013. Organic Geochemistry of Source Rocks and Hydrocarbons in the Junggar Basin. Beijing: Petroleum Industry Press (in Chinese).

    • Whiticar M J. 1994. Correlation of natural gases with their sources. In: Magoon L B, Dow W G, eds. The Petroleum System—From Source to Trap. American Association Petroleum Geologists, 60: 261~284.

    • Wu Xiaoqi, Liu Deliang, Li Zhensheng. 2012. Main controlling factors of natural gas enrichment in volcanic rocks in Ludong-Wucaiwan area of the Junggar basin. Journal of Geology of Universities, 18(2): 318~327 (in Chinese with English abstract).

    • Xiao Zhihua, Xie Zengye, Li Zhisheng, Ma Chenghua, Sun Qingwu. 2008. Natural gas geochemical characteristics of Xujiahe Formation in central and southern Sichuan. Journal of Southwest Petroleum University (Natural Science Edition), (4): 27~30+18+17 (in Chinese with English abstract).

    • Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253~273.

    • Xu Xingyou. 2005. Study on carboniferous source rocks in Kramei area of eastern Junggar basin. Petroleum Geology and Recovery Efficiency, (1): 38~41+84 (in Chinese with English abstract).

    • Yang Disheng, Chen Shijia, Li Lin, Lu Jungang. 2012. Origin and reservoir formation characteristics of oil and gas in Kela Meili gas field. Natural Gas Industry, 32(2): 27~31+113 (in Chinese with English abstract).

    • Yang Hao, Li Di, Hou Shuoqin, Fan Dan, He Dengfa. 2023. Carboniferous chronostratigraphic framework in the northeastern margin of the Junggar basin: Implications for the closure time of Karamaili Ocean. Chinese Journal of Geology, 58(1): 105~123 (in Chinese with English abstract).

    • Yang Xusong, Tian Xiaobo, Windley B F, Zhao Liang, Lu Yifan, Yuan Huaiyu, Xiao Wenjiao. 2022. The role of multiple trapped oceanic basins in continental growth: Seismic evidence from the southern Altaids. Geophysical Research Letters, 49: e2022GL098548.

    • Yi Zejun, He Dengfa. 2018. Tectonic stratigraphic sequence and basin evolution in the eastern Junggar basin. Petroleum and Natural Gas Geology, 39(5): 932~942 (in Chinese with English abstract).

    • Yu Shuang, Wang Xulong, Xiang Baoli, Ren Jiangling, Li Ertin, Wang Jun, Huang Pan, Wang Guobin, Xu Hao, Pan Changchun. 2017. Molecular and carbon isotopic geochemistry of crude oils and extracts from Permian source rocks in the northwestern and central Junggar basin, China. Organic Geochemistry, 113: 27~42.

    • Yuen G, Blair N, Des Marais D J, Chang S. 1984. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature, 307(5948): 252~254.

    • Zhang Ji'en, Xiao Wenjiao, Han Chunming, Ao Songjian, Yuan Chao, Sun Min, Geng Hongyan, Zhao Guochun, Guo Qianqian, Ma Chong. 2011. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in western Junggar, NW China. Gondwana Research, 19(4): 95~974.

    • Zhang Ji'en, Chen Yichao, Xiao Wenjiao, Yan Zhen. 2021. Ophiolite and ophiolite melange structure. Geological Science, 56(2): 560~595 (in Chinese with English abstract).

    • Zhang Lei, He Dengfa, Yi Zejun, Li Di. 2020. Tectonic relationship between the Kelameili range and the Dajing depression: Insights into the Carboniferous tectonic-sedimentary framework. Petroleum Exploration and Development, 47(1): 29~44 (in Chinese with English abstract).

    • Zhang Shiya, Gao Jianjun, Jiang Tairan. 1988. A new method for identifying natural gas types using carbon isotopes of methane and hexane. In: Institute of Petroleum Geology, Ministry of Geology and Mineral Resources, ed. Collected Works on Petroleum and Natural Gas Geology. Volume 1: Research on Coal Formed Gas in China. Beijing: Geological Publishing House, 48~58 (in Chinese).

    • Zhao Mengjun, Wang Xulong, Da Jiang, Xiang Baoli, Song Yan, Qin Shengfei. 2011. Analysis on the origin and accumulation process of natural gas in Dinan uplift Wucaiwan area of the Junggar basin. Natural Gas Geoscience, 22(4): 595~601 (in Chinese with English abstract).

    • Zhi Dongming, Song Yong, Zheng Menglin, Qin Zhijun, Gong Deyu. 2021. Genetic types, origins, and accumulation process of natural gas from the southwestern Junggar basin. Marine and Petroleum Geology, 123.

    • Zhi Dongming, Wang Xiaojun, Song Yong. 2022. Geneses, sources and accumulation process of natural gases in the hinterland of the Junggar basin. Frontiers in Earth Science, doi: 10. 3389/feart. 2022. 843245.

    • Zou Caineng, Hou Lianhua, Tao Shizhen, Yuan Xuanjun, Zhu Rukai, Zhang Xiangxiang, Li Fuheng, Pang Zhenglian. 2011. Structure of Carboniferous large-scale volcanic rock weathering body and formation hydrocarbon accumulation mechanism in northern Dzungaria. Chinese Science: Earth Sciences, 41(11): 1613~1626 (in Chinese with English abstract).

    • Zumberge J, Ferworn K, Brown S. 2012. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Marine and Petroleum Geology, 31: 43~52.

    • 曹正林, 李攀, 王瑞菊. 2022. 准噶尔盆地玛湖凹陷P—T转换期层序结构、坡折发育及油气地质意义. 天然气地球科学, 33(5): 807~819.

    • 戴金星. 1999. 中国煤成气研究二十年的重大进展. 石油勘探与开发, (3): 21~30+3+11.

    • 戴金星. 2014. 中国煤成大气田及气源. 北京: 科学出版社, 266~285.

    • 戴金星, 邹才能, 张水昌, 李剑, 倪云燕, 胡国艺, 罗霞, 陶士振, 朱光有, 米敬奎, 李志生, 胡安平, 杨春, 周庆华, 帅燕华, 张英, 马成华. 2008. 无机成因和有机成因烷烃气的鉴别. 中国科学(D辑: 地球科学), (11): 1329~1341.

    • 杜金虎, 等. 2010. 新疆北部石炭系火山岩油气勘探. 北京: 石油工业出版社.

    • 刚文哲, 高岗, 郝石生, 黄志龙, 朱雷. 1997. 论乙烷碳同位素在天然气成因类型研究中的应用. 石油实验地质, (2): 164~167.

    • 龚德瑜, 王绪龙, 周川闽, 郑孟林, 蒋文龙, 吴卫安. 2021. 准噶尔盆地东南部石炭系规模烃源岩的发现及天然气勘探潜力. 石油学报, 42(7): 836~852.

    • 龚德瑜, 赵长永, 何文军, 赵龙, 孔玉梅, 马丽亚, 王瑞菊, 吴卫安. 2022. 准噶尔盆地西北缘天然气成因来源及勘探潜力. 石油与天然气地质, 43(1): 161~174.

    • 何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.

    • 侯连华, 邹才能, 刘磊, 文百红, 吴晓智, 卫延召, 毛治国. 2012. 新疆北部石炭系火山岩风化壳油气地质条件. 石油学报, 33(4): 533~540.

    • 侯连华, 罗霞, 王京红, 杨帆, 赵霞, 毛治国. 2013. 火山岩风化壳及油气地质意义——以新疆北部石炭系火山岩风化壳为例. 石油勘探与开发, 40(3): 257~265+274.

    • 胡素云, 王小军, 曹正林, 李建忠, 龚德瑜, 徐洋. 2019. 准噶尔盆地大中型气田(藏)形成条件与勘探方向. 石油勘探与开发, 47(2): 247~259.

    • 黄芸, 梁舒艺, 夏雨, 李艳平, 谷新萍, 伏小鹏. 2019. 准噶尔盆地滴北凸起早石炭世沉积充填特征及油气地质意义. 古地理学报, 21(4): 637~646.

    • 匡立春, 吕焕通, 王绪龙, 杨迪生, 孙中春, 凌立苏. 2010. 准噶尔盆地天然气勘探实践与克拉美丽气田的发现. 天然气工业, 30(2): 1~6+133.

    • 李涤. 2016. 准噶尔盆地及邻区石炭纪构造格架与沉积充填演化. 中国地质大学(北京)博士学位论文.

    • 李涤, 何登发, 樊春, 唐勇, 阳孝法, 常秋生, 袁航. 2012a. 准噶尔盆地克拉美丽气田石炭系玄武岩的地球化学特征及构造意义. 岩石学报, 28(3): 981~992.

    • 李涤, 何登发, 唐勇, 樊春, 孔玉华. 2012b. 准噶尔盆地滴南凸起早石炭世火山岩的成因及其对克拉美丽洋闭合时限的约束. 岩石学报, 28(8): 2340~2354.

    • 李锦轶. 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304~322.

    • 李二庭, 靳军, 王剑, 罗正江, 马万云, 米巨磊, 何丹, 王明. 2020. 准噶尔盆地克拉美丽地区石炭系天然气来源. 天然气地球科学, 31(11): 1515~1523.

    • 李建忠, 郑明, 郭秋麟, 王社教. 2019. 第四次油气资源评价. 北京: 石油工业出版社, 294~330.

    • 李林, 陈世加, 杨迪生, 赵克斌, 路俊刚, 徐怀民. 2013. 准噶尔盆地滴水泉凹陷石炭系烃源岩生烃能力分析. 中国石油大学学报(自然科学版), 37(4): 52~58.

    • 刘文汇, 张殿伟, 王晓锋, 南青云. 2004. 天然气气~源对比的地球化学研究. 沉积学报, (S1): 27~32.

    • 石新朴, 覃建强, 丁艳雪, 杨丹, 史全党, 胡清雄, 李波, 齐洪岩, 张吉辉, 孙德强, 赵振, 饶远, 习成威. 2018. 准噶尔盆地滴南凸起火山岩气藏成藏主控因素与成藏模式. 天然气地球科学, 29(12): 1706~1714.

    • 王世谦. 1994. 四川盆地侏罗系—震旦系天然气的地球化学特征. 天然气工业, 14(6): 1~5.

    • 王淑芳, 邹才能, 侯连华, 卫延召, 罗霞, 郭召杰. 2013. 准噶尔盆地东部石炭系火山岩气藏石油地质特征及有利勘探方向分析. 地学前缘, 20(2): 226~236.

    • 王绪龙, 赵孟军, 向宝力, 达江, 蒋宜勤, 刘翠敏. 2010. 准噶尔盆地陆东—五彩湾地区石炭系烃源岩. 石油勘探与开发, 37(5): 523~530.

    • 王绪龙, 支东明, 王屿涛, 陈建平, 秦志军, 刘德光, 向英, 兰文芳, 李娜. 2013. 准噶尔盆地烃源岩与油气地球化学. 北京: 石油工业出版社.

    • 吴小奇, 刘德良, 李振生. 2012. 准噶尔盆地陆东—五彩湾地区火山岩中天然气富集的主控因素. 高校地质学报, 18(2): 318~327.

    • 肖芝华, 谢增业, 李志生, 马成华, 孙庆伍. 2008. 川中川南地区须家河组天然气地球化学特征. 西南石油大学学报(自然科学版), (4): 27~30+18+17.

    • 徐兴友. 2005. 准噶尔盆地东部克拉美丽地区石炭系烃源岩研究. 油气地质与采收率, (1): 38~41+84.

    • 杨迪生, 陈世加, 李林, 路俊刚. 2012. 克拉美丽气田油气成因及成藏特征. 天然气工业, 32(2): 27~31+113.

    • 杨浩, 李涤, 侯烁钦, 樊丹, 何登发. 2023. 准噶尔盆地东北缘石炭系年代-地层格架: 对卡拉麦里洋闭合时限的启示. 地质科学, 58(1): 105~123.

    • 易泽军, 何登发. 2018. 准噶尔盆地东部构造地层层序及盆地演化. 石油与天然气地质, 39(5): 932~942.

    • 张继恩, 陈艺超, 肖文交, 闫臻. 2021. 蛇绿岩与蛇绿混杂带结构. 地质科学, 56(2): 560~595.

    • 张磊, 何登发, 易泽, 李涤. 2020. 克拉美丽山与大井坳陷的构造关系: 兼论石炭纪构造—沉积格局. 石油勘探与开发, 47(1): 29~44.

    • 张士亚, 郜建军, 蒋泰然. 1988. 利用甲、已烷碳同位素判识天然气类型的一种新方法. 见: 地矿部石油地质所编. 石油与天然气地质文集. 第一集《中国煤成气研究》. 北京: 地质出版社, 48~58.

    • 赵孟军, 王绪龙, 达江, 向宝力, 宋岩, 秦胜飞. 2011. 准噶尔盆地滴南凸起—五彩湾地区天然气成因与成藏过程分析. 天然气地球科学, 22(4): 595~601.

    • 邹才能, 侯连华, 陶士振, 袁选俊, 朱如凯, 张响响, 李富恒, 庞正炼. 2011. 新疆北部石炭系大型火山岩风化体结构与地层油气成藏机制. 中国科学: 地球科学, 41(11): 1613~1626.