en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李向东,男,1973年生。副教授,从事流体机制沉积学研究。E-mail:lixiangdong614@163.com。

参考文献
Bian Peng, Sha Xin, Ma Li, He Zhaoxiang, Wang Jinrong, Zhai Xinwei. 2016. Tectonic significance of Kawa ophiolite found in the western North Qilian area. Journal of Lanzhou University (Natural Sciences), 52(1): 142~144 (in Chinese with English abstract).
参考文献
Brand U. 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: An evaluation of original seawater-chemistry proxies. Chemical Geology, 204: 23~44.
参考文献
Burke W H, Denison R E, Hethermgton E A, Koepnick R B, Nelson H F, Otto J B. 1982. Variation of seawater 87Sr/86Sr throughout Phanerzoic time. Geology, 10 (10): 516~519.
参考文献
Chao Huangchun, You Chenfeng, Liu Houchun, Chung Huang. 2015. Evidence for stable Sr isotope fractionation by silicate weathering in a small sedimentary watershed in southwestern Taiwan. Geochimica et Cosmochimica Acta, 165: 324~341.
参考文献
Chen Qiang, Zhang Huiyuan, Li Wenhou, Hao Songli, Liu Zhuo. 2012. Characteristics of carbon and oxygen isotopes of the Ordovician carbonate rocks in Ordos and their implication. Journal of Palaeogeography, 14 (1): 117~124 (in Chinese with English abstract).
参考文献
Chen Xuqi, Zeng Zhen, Yu Huimin, Huang Fang. 2021. High precision analytical method for stable strontium isotopes. Geological Journal of China Universities, 27 (3): 264~274 (in Chinese with English abstract).
参考文献
Cui Huang, Kaufman A J, Zou H, Kattan F H, Trusler P, Smith J, Ivantsov A Y, Rich T H, Qubsani A A, Yazedi A, Liu Xiaoming, Johnson P, Goderis S, Claeys P, Vickers-Rich P. 2020. Primary or secondary? A dichotomy of the strontium isotope anomalies in the Ediacaran carbonates of Saudi Arabia. Precambrian Research, 343: 105720.
参考文献
Deng Kun, Zhou Lifa, Hu Peng, Yang Wenjing, Zhang Yikai. 2007. Geochemical characteristics and tectonic setting of diabase in Xiangshan Group, Ningxia. Geotectonica et Metallogenia, 31 (3): 365~371 (in Chinese with English abstract).
参考文献
Derry L A, Brasier M D, Corfield R M. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth and Planetary Science Letters, 128(3-4): 671~681.
参考文献
Guacaneme C, Babinski M, Bedoya-Rueda C, Paula-Santos G M, Caetano-Filho S, Kuchenbecker M, Reis H L S, Trindade R I F. 2021. Tectonically-induced strontium isotope changes in ancient restricted seas: The case of the Ediacaran-Cambrian Bambuí foreland basin system, east Brazil. Gondwana Research, 93: 275~290.
参考文献
Guo Yanru, Zhao Zhenyu, Fu Jinhua, Xu Wangling, Shi Xiaoying, Sun Liuyi, Gao Jianrong, Zhang Yanling, Zhang Yueqiao, Liu Junbang, Liu Hong. 2012. Equence lithofacies paleogeography of the Ordovician in Ordos basin, China. Acta Petrolei Sinica, 33(S2): 95~109 (in Chinese with English abstract).
参考文献
Ha Youngji, Satish-Kumar M, Park K-H, Song Yongsun, Liu Shuwen. 2021. Carbon, oxygen and strontium isotope geochemistry of the late Neoproterozoic carbonate platform deposit Hyangsanni dolomite of the Okcheon metamorphic belt, Korea. Lithos, 106219: 396~397.
参考文献
He Xiubin. 1997. Recent advances in the trace. Element and isotopic geochemistry of Strontium and the application perspectives. Advance in Earth Sciences, 12 (1): 15~19 (in Chinese with English abstract).
参考文献
He Xunyun, Shou Jianfeng, Shen Anjiang, Wu Xingning, Wang Yongsheng, Hu Yuanyuan, Zhu Yin, Wei Dongxiao. 2014. Geochemical characteristics and origin of dolomite: A case study from the middle assemblage of Majiagou Formation Member 5 of the west of Jingbian gas field, Ordos basin, North China. Petroleum Exploration and Development, 41 (3): 375~384 (in Chinese with English abstract).
参考文献
Hersi O S, Abbasi I A, Al-Harthy A. 2016. Sedimentology, rhythmicity and basin-fill architecture of a carbonate ramp depositional system with intermittent terrigenous influx: The Albian Kharfot Formation of the Jeza-Qamar basin, Dhofar, Southern Oman. Sedimentary Geology, 331: 114~131.
参考文献
Huang Sijing, Shi He, Liu Jie, Shen Licheng. 2001. Progress in strontium isotope stratigraphy. Advance in Earth Sciences, 16(2): 194~200 (in Chinese with English abstract).
参考文献
Huang Sijing, Liu Shugen, Li Guorong, Zhang Meng, Wu Wenhui. 2004. Strontium isotope composition of marine carbonate and the influence of diagenetic fluid on it in Ordovician. Journal of Chengdu University of Technology (Science & Technology Edition), 1: 1~7 (in Chinese with English abstract).
参考文献
Huo Fucheng. 1989. Geological Characteristics and Prospecting Potential of Xilaokou Gold Deposit, Shandong Province. Beijing: Science Press, 43~68 (in Chinese with English abstract).
参考文献
Jiang Suyang, Zhang Yongsheng, Huang Wenhui, Xing Enyuan, Gui Baolin, Peng Xuan, Zhao Haitong, Shang Wenjun. 2019. Geochemical characteristics of Ordovician strontium isotope in the Ordos basin. Acta Geologica Sinica, 93 (11): 2889~2903 (in Chinese with English abstract).
参考文献
Kaufman A J, Jacobsen S B, Knoll A H. 1993. The vendian record of Sr and C isotope variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120 (3-4): 409~430.
参考文献
Keith M H, Weber J N. 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28 (2): 1787~1816.
参考文献
Kietzmann D A, Palma R M, Riccardi A C, Martín-Chivelet J, López-Gómez J. 2014. Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the southern Mendoza area of the Neuquén basin, Argentina. Sedimentary Geology, 302: 64~86.
参考文献
Li Baichan, Feng Lanping, Wang Qian, Tao Yun, Zhou Lian. 2018. Advances of stable strontium isotopes in marine geochemical cycle. Geological Science and Technology Information, 37 (4): 100~105 (in Chinese with English abstract).
参考文献
Li Sanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Shaocong, Yan Zhen, Li Zonghui, Yu Shengyao, Lan Haoyuan. 2016. ProtoTehtys Ocean in East Asia (I): Northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32 (9): 2609~2627 (in Chinese with English abstract).
参考文献
Li Tianbin. 1997. Rediscussion on stratigraphic age of Xiangshan Group, Ningxia. Northwestern Geology, 18 (2): 1~9 (in Chinese with English abstract).
参考文献
Li Wenjie, Chen Jia, Hakim A J, Myrow P M. 2021. Middle Ordovician mass-transport deposits from western Inner Mongolia, China: Mechanisms and implications for basin evolution. Sedimentology, doi: 10. 1111/sed. 12949.
参考文献
Li Xiangdong, He Youbin, Wang Dan, Gao Zhenzhong, Zheng Zhaochang. 2009a. Internal-wave and internal-tide deposits of the Middle Ordovician Xiangshan Group Xujiajuan Formation, Ningxia. Journal of Palaeogeography, 11 (5): 513~523 (in Chinese with English abstract).
参考文献
Li Xiangdong, He Youbin, Wang Dan, Luo Jinxiong, Li Hua, Zheng Zhaochang. 2009b. Analysis on palaeocurrent in the Xujiajuan Formation, Xiangshan Group, Middle Ordovician, in southern Helan Mountains. Geological Review, 55 (5): 653~662 (in Chinese with English abstract).
参考文献
Li Xiangdong, He Youbin. 2019a. Geochemical characteristics and their epochal significance of limestones at the top of Xujiajuan Formation, Xiangshan Group in the Ningxia Autonomous Region, China. Geochimica, 48 (4): 325~341 (in Chinese with English abstract).
参考文献
Li Xiangdong, Huan Yaqi. 2019b. Deposition of warm contour current and its geological significance on oil and gas in Lower Ordovician Kelimoli Formation, Zhuozishan area. Petroleum Geology and Recovery Efficiency, 26(4): 15~23.
参考文献
Li Xiangdong, He Youbin. 2020a. REE geochemistry and their indicators of sedimentary aqueous media at the top of Xujiajuan Formation, Xiangshan Group in Ningxia Autonomous Region, China. Journal of Jilin University (Earth Science Edition), 50 (1): 139~157 (in Chinese with English abstract).
参考文献
Li Xiangdong, Chen Haiyan. 2020b. Palaeocurrent direction analysis and ponded turbidity currents recognition in deep-water environment: A case study of the Upper Ordovician Lashenzhong Formation in Zhuozishan area, Ordos basin. Acta Petrolei Sinica, 41 (11): 1348~1365 (in Chinese with English abstract).
参考文献
Li Xiangdong, Wei Zeyi, Chen Haiyan. 2023a. Geochemical characteristics analyses of terrigenous clasticrocks in deep-water ponded basin: A case study from Upper Ordovician Lashenzhong Formation in Zhuozishan area, Ordos basin. Journal of China University of Mining & Technology, https: //link. cnki. net/urlid/32. 1152. TD. 20231101. 1027. 002 (in Chinese with English abstract).
参考文献
Li Xiangdong, Wei Zeyi, Chen Hongda. 2023b. Genetic analysis of internal-wave and internal-tide deposits in the Upper Ordovician Lashenzhong Formation, western Ordos basin. Acta Geologica Sinica, 97(4): 1278~1294 (in Chinese with English abstract).
参考文献
Liu Deliang, Sun Xianru, Li Zhensheng, Tang Nanan, Tan Ying. 2007. Carbon and oxygen isotope analysis of fluid inclusions in Ordovician carbonate veins of Ordos basin. Acta Petrolei Sinica, 28(3): 68~74 (in Chinese with English abstract).
参考文献
Liu Xun, You Guoqin. 2015. Tectonic zoning of the East China Sea. Geology in China, 42 (1): 1~17 (in Chinese with English abstract).
参考文献
Lukoczki G, Haas J, Gregg J M, Machel H G, Kele S, John C M. 2019. Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine-peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data. Marine and Petroleum Geology, 101: 440~458.
参考文献
Parkinson D, Curry G B, Cusack M, Fallick A E. 2005. Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells. Chemical Geology, 219 (2): 193~235.
参考文献
Peucker-Ehrenbrink B, Fiske G J. 2019. A continental perspective of the seawater 87Sr/86Sr record: A review. Chemical Geology, 510: 140~165.
参考文献
Phan T T, Hakala J A, Lopano C L, Sharma S. 2019. Rare earth elements and radiogenic strontium isotopes in carbonate minerals reveal diagenetic influence in shales and limestones in the Appalachian basin. Chemical Geology, 509: 194~212.
参考文献
Romer R L, Förster H J, Hahne K. 2012. Strontium isotopes—A persistent tracer for the recycling of Gondwana crust in the Variscan orogen. Gondwana Research, 22: 262~278.
参考文献
Scher H D, Griffith E M, Buckley Jr W P. 2014. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations. Geochemistry Geophysics Geosystems, 15 (2): 499~508.
参考文献
Shao Longyi. 1994. The relation of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc. Journal of China University of Mining & Technology, 23 (1): 39~45 (in Chinese with English abstract).
参考文献
Soler M, Serra T, Casamitjana X, Colomer J. 2009. High sedimentation rates in a karstic lake associated with hydrothermal turbid plumes (Lake Banyoles, Catalonia, NE Spain). Sedimentary Geology, 222 (1-2): 5~15.
参考文献
Sun Jiaopeng, Dong Yunpeng. 2020. Ordovician tectonic shift in the western North China Craton constrained by stratigraphic and geochronological analyses. Basin Research, 32 (6): 1413~1440.
参考文献
Tucker M E, Gallagher J, Leng M J. 2009. Are beds in shelf carbonates millennial-scale cycles? An example from the mid-Carboniferous of northern England. Sedimentary Geology, 214 (1-4): 19~34.
参考文献
van der Meer D G, van Saparoea A P H, van den Berg, van Hinsbergen D J J, van de Weg R M B, Godderis Y, Hir G L, Donnadieu Y. 2017. Reconstructing first-order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes. Gondwana Research, 44: 22~34.
参考文献
Veizer J, Compston W. 1974. 87Sr/86Sr composition of seawater during the Phanerozoic. Geochimica et Cosmochimica Acta, 38 (9): 1461~1484.
参考文献
Wang Yuxin, Han Zheng, Han Yuchun. 1995. Carbon isotope stratigraphy of Ordovician, the southern margin of Ordos. Journal of Hebei College of Geology, 18 (3): 217~223 (in Chinese with English abstract).
参考文献
Wang Zhenfan, Zheng Zhaochang. 1998. The age of the Xiangshan Group in Ningxia. Regional Geology of China, 17 (1): 69~73 (in Chinese with English abstract).
参考文献
Wei Gangjian. 1995. Evolution of the Sr isotope of the sea-water, implications for palaeoenvironment and application of the strontium isotope stratigraphy. Marine Sciences, 1: 23~25 (in Chinese with English abstract).
参考文献
Wickman F E. 1948. Isotope ratios: A clue to the age of certain marine sediments. Journal of Geology, 56 (1): 61~66.
参考文献
Xia Linqi, Xia Zuchun, Xu Xueyi. 2003. Magmagenesis of Ordovician back-arc basins in the northern Qilian Mountains. Geology in China, 30(1): 48~60 (in Chinese with English abstract).
参考文献
Xu Liming, Zhou Lifa, Zhang Yikai, Yang Wenjing, Lu Bin. 2006. Record of deposition-magmatism of Xiangshan Group and the reflection of tectonic environment. Journal of Northwest University (Natural Science Edition), 36(3): 442~448 (in Chinese with English abstract).
参考文献
Xu Shumei, Feng Huaiwei, Li Sanmeng, Li Meng. 2016. Study on Caledonian Movement in Helanshan and its surrounding area. Acta Petrologica Sinica, 32(7): 2137~2150 (in Chinese with English abstract).
参考文献
Yang Xiyan, Bao Hongping, Ren Junfeng, Ma Zhanrong, 2015. Types of dolomite sand characteristics of stable isotope from the Ma 55 Sub-member of Ordovician Majiagou Formation in Ordos basin. Natural Gas Geoscience, 26 (4): 650~656 (in Chinese with English abstract).
参考文献
Zhang Jin, Li Jinyi, Liu Jianfeng, Li Yanfeng, Qu Junfeng, Feng Qianwen. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912~2934 (in Chinese with English abstract).
参考文献
Zhang Xiaoyu, Zhang Fuyuan, Zhang Weiyan. 2003. Regional variation of 87Sr/86Sr ratio and compositions of the surface sediment in the eastern South China Sea. Acta Oceanologica Sinica, 4: 43~49 (in Chinese with English abstract).
参考文献
Zhang Yinggang, Yang Tan, Hohl S V, Zhu Bi, Jiang Shaoyong. 2020. Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim basin. Precambrian Research, 345: 105769.
参考文献
Zhang Yuandong, Zhan Renbin, Yuan Wenwei, Tang Peng, Li Yue, Wang Zhihao, Zhou Zhiyi, Fang Xiang, Li Wenjie, Cheng Junfeng. 2021. Lithostratigraphic subdivision and correlation of the Ordovician in China. Journal of Stratigraphy, 45(3): 250~270 (in Chinese with English abstract).
参考文献
Zhao Xiaochen, Liu Chiyang, Zhao Yan, Zhang Qihang, Luo Wei. 2017a. Geochemical characteristics and its geological implications of the cherts in the Xiangshan Group of the eastern Hexi Corridor Belt, NW China. Geological Journal of China Universities, 23 (1): 83~94 (in Chinese with English abstract).
参考文献
Zhao Xiaochen, Liu Chiyang, Wang J Q, Duan Liang, Zhao Yan, Zhang Qihang, Luo Wei. 2017b. Petrology, geochemistry and zircon U-Pb geochronology of the Xiangshan Group in the eastern Hexi Corridor Belt: Implications for provenance and tectonic evolution. Acta Geologica Sinica (English Edition), 91 (5): 1680~1703.
参考文献
Zhou Yun, Duan Qifa, Cao Liang, Yu Yushuai, Gan Jinmu. 2017. Journal of stratigraphy strontium isotope compositions of the lower Cambrian Qingxudong Formation and Pb-Zn deposits in Huayuan, western Hunan: Implications for hydrothermal mineralization. Journal of Stratigraphy, 41: 335~343 (in Chinese with English abstract).
参考文献
Zhou Zhiqiang, Xiao Peixi. 2010. Discussion on age of Xiangshan Group. Northwest Geology, 43(1): 54~59 (in Chinese with English abstract).
参考文献
边鹏, 沙鑫, 马骊, 何兆祥, 王金荣, 翟新伟. 2016. 北祁连西段卡瓦蛇绿岩的发现及其构造意义. 兰州大学学报(自然科学版), 52(1): 142~144.
参考文献
陈强, 张慧元, 李文厚, 郝松立, 刘卓. 2012. 鄂尔多斯奥陶系碳酸盐岩碳氧同位素特征及其意义. 古地理学报, 14 (1): 117~124.
参考文献
陈栩琦, 曾振, 于慧敏, 黄方. 2021. 高精度稳定锶同位素分析方法综述. 高校地质学报, 27 (3): 264~274.
参考文献
邓昆, 周立发, 胡朋, 杨文敬, 张义楷. 2007. 香山群辉绿岩地球化学特征及其构造背景. 大地构造与成矿学, 31 (3): 365~371.
参考文献
郭彦如, 赵振宇, 付金华, 徐旺林, 史晓颖, 孙六一, 高建荣, 张延玲, 张月巧, 刘俊榜, 刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报, 33 (增刊2): 95~109.
参考文献
贺秀斌. 1997. 微量元素锶及其同位素的地球化学研究与应用前景. 地球科学进展, 12 (1): 15~19.
参考文献
贺训云, 寿建峰, 沈安江, 吴兴宁, 王永生, 胡圆圆, 朱吟, 韦东晓. 2014. 白云岩地球化学特征及成因——以鄂尔多斯盆地靖西马五段中组合为例. 石油勘探与开发, 41 (3): 375~384.
参考文献
黄思静, 石和, 刘洁, 沈立成. 2001. 锶同位素地层学研究进展. 地球科学进展, 16(2): 194~200.
参考文献
黄思静, 刘树根, 李国蓉, 张萌, 武文慧. 2004. 奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响. 成都理工大学学报(自然科学版), 1: 1~7.
参考文献
霍福臣. 1989. 宁夏地质概论. 北京: 科学出版社, 43~68.
参考文献
蒋苏扬, 张永生, 黄文辉, 邢恩袁, 桂宝玲, 彭渊, 赵海彤, 商雯君. 2019. 鄂尔多斯盆地奥陶系锶同位素地球化学特征. 地质学报, 93 (11): 2889~2903.
参考文献
李百蝉, 冯兰平, 王倩, 陶云, 周炼. 2018. 稳定锶同位素在海洋地球化学循环中的研究进展. 地质科技情报, 37 (4): 100~105.
参考文献
李三忠, 赵淑娟, 李玺瑶, 曹花花, 刘鑫, 郭晓玉, 肖文交, 赖绍聪, 闫臻, 李宗会, 于胜尧, 兰浩圆. 2016. 东亚原特提斯洋: Ⅰ: 南北边界和俯冲极性. 岩石学报, 32 (9): 2609~2627.
参考文献
李天斌. 1997. 宁夏香山群地层时代的再讨论. 西北地质, 18 (2): 1~9.
参考文献
李向东, 何幼斌, 王丹, 高振中, 郑昭昌. 2009a. 宁夏香山群徐家圈组内波和内潮汐沉积. 古地理学报, 11 (5): 513~523.
参考文献
李向东, 何幼斌, 王丹, 罗进雄, 李华, 郑昭昌. 2009b. 贺兰山以南中奥陶统香山群徐家圈组古水流分析. 地质论评, 55 (5): 653~662.
参考文献
李向东, 何幼斌. 2019a. 宁夏香山群徐家圈组顶部石灰岩地球化学特征及其时代意义. 地球化学, 48 (4): 325~341.
参考文献
李向东, 郇雅棋. 2019b. 桌子山地区奥陶系克里摩里组下段等深暖流沉积及其油气地质意义. 油气地质与采收率, 26 (4): 15~23.
参考文献
李向东, 何幼斌. 2020a. 宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析. 吉林大学学报(地球科学版), 50 (1): 139~157.
参考文献
李向东, 陈海燕. 2020b. 深水环境下古水流方向分析和阻塞浊流沉积的识别——以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 石油学报, 41 (11): 1348~1365.
参考文献
李向东, 魏泽昳, 陈海燕. 2023a. 深水阻塞盆地陆源碎屑岩地球化学特征分析——以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 中国矿业大学学报, https: //link. cnki. net/urlid/32. 1152. TD. 20231101. 1027. 002.
参考文献
李向东, 魏泽昳, 陈洪达. 2023b. 鄂尔多斯盆地西缘上奥陶统拉什仲组内波、内潮汐沉积成因分析. 地质学报, 97(4): 1278~1294.
参考文献
刘德良, 孙先如, 李振生, 唐南安, 谈迎. 2007. 鄂尔多斯盆地奥陶系碳酸盐岩脉流体包裹体碳氧同位素分析. 石油学报, 28(3): 68~74.
参考文献
刘训, 游国庆. 2015. 中国的板块构造区划. 中国地质, 42 (1): 1~17.
参考文献
邵龙义. 1994. 碳酸盐岩氧、碳同位素与古温度等的关系. 中国矿业大学学报, 23 (1): 39~45.
参考文献
王玉新, 韩征, 韩宇春. 1995. 鄂尔多斯南缘奥陶系碳同位素地层学研究. 河北地质学院学报, (3): 217~223.
参考文献
王振藩, 郑昭昌. 1998. 宁夏香山群的时代探讨. 中国区域地质, 17 (1): 69~73.
参考文献
韦刚健. 1995. 海水中Sr同位素组成变化的环境意义与Sr同位素地层学. 海洋科学, 1: 23~25.
参考文献
夏林圻, 夏祖春, 徐学义. 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因. 中国地质, 30(1): 48~60.
参考文献
徐黎明, 周立发, 张义楷, 杨文敬, 鲁彬.2006.香山群沉积岩浆记录及其反映的大地构造环境.西北大学学报(自然科学版), 36(3): 442~448.
参考文献
许淑梅, 冯怀伟, 李三忠, 李萌. 2016. 贺兰山及周边地区加里东运动研究. 岩石学报, 32 (7): 2137~2150.
参考文献
杨西燕, 包洪平, 任军峰, 马占荣. 2015. 鄂尔多斯盆地马家沟组马五5亚段白云岩类型及稳定同位素特征. 天然气地球科学, 26 (4): 650~656.
参考文献
张进, 李锦轶, 刘建峰, 李岩峰, 曲军峰, 冯乾文. 2012. 早古生代阿拉善地块与华北地块之间的关系: 来自阿拉善东缘中奥陶统碎屑锆石的信息. 岩石学报, 28 (9): 2912~2934.
参考文献
张霄宇, 张富元, 章伟艳. 2003. 南海东部海域表层沉积物锶同位素物源示踪研究. 海洋学报, 4: 43~49.
参考文献
张元动, 詹仁斌, 袁文伟, 唐鹏, 李越, 王志浩, 周志毅, 方翔, 李文杰, 成俊峰. 2021. 中国奥陶纪岩石地层划分和对比. 地层学杂志, 45 (3): 250~270.
参考文献
赵晓辰, 刘池洋, 赵岩, 张启航, 罗伟. 2017a. 河西走廊过渡带东部香山群硅质岩地球化学特征及其地质意义. 高校地质学报, 23 (1): 83~94.
参考文献
周云, 段其发, 曹亮, 于玉帅, 甘金木. 2017. 湘西花垣下寒武统清虚洞组灰岩与锶同位素研究. 地层学杂志, 41: 335~343.
参考文献
周志强, 校培喜. 2010. 对香山群时代的商榷. 西北地质, 43 (1): 54~59.
目录contents

    摘要

    宁夏香山群主体为一套深水浊流沉积的灰绿色细砂岩夹泥岩,在鄂尔多斯盆地西缘及河西走廊地区下古生界占有重要的位置,其时代归属对于北祁连地区大地构造演化、宁夏区域地质和鄂尔多斯盆地西缘海相深水油气勘探均具有重要意义。本文采用沉积学和沉积地球化学的方法,着重分析了香山群徐家圈组顶部薄层石灰岩锶同位素的特征,结果表明:① 薄层石灰岩受成岩蚀变程度较小,87Sr/86Sr值基本可代表沉积时海水的特征;② 87Sr/86Sr值在0.71057~0.71356之间,平均值为0.71189,远大于寒武纪和奥陶纪海水87Sr/86Sr值;③ 87Sr/86Sr值和盐度呈较好的负线性相关,和温度及Mn/Sr比值呈较好的正线性相关;④ 87Sr/86Sr值和Si含量略具负线性相关趋势,和Al含量及Mg含量具有较弱的负线性相关性。结合鄂尔多斯盆地西缘早古生代大地构造演化和香山群相关研究成果认为:徐家圈组顶部薄层石灰岩可能沉积于受古陆或水下隆起阻隔的局限海盆深水环境,沉积时海水主要受和硅铝质岩石进行充分锶同位素交换的海底热液及流经喀斯特风化壳的地表径流影响,与同期大洋海水相比具有高的87Sr/86Sr值。

    Abstract

    Xiangshan Group in Ningxia is mainly composed of grayish-green, fine-grained sandstones interbedded with mudstones induced by deep-water turbidity currents. Determining the geological age of the Xiangshan Group is crucial for understanding the tectonic evolution in the northern Qilian area, regional geology in Ningxia, and marine deep-water petroleum exploration in the western Ordos basin. Here we focus on the characteristics of strontium isotope in thin-bedded limestones at the top of the Xujiajuan Formation. We employ sedimentology and sedimentary geochemistry methods to investigate this. The results reveal that: ① the weak degree of diagenetic alteration in the thin-bedded limestones suggests that the measured 87Sr/86Sr values can represent the coeval seawater Sr isotope composition; ② the 87Sr/86Sr ratios range from 0.71057 to 0.71356, with an average value of 0.71189. These ratios are significantly higher than those observed in Cambrian and Ordovician ocean water; ③ there is an average negative linear correlation between the 87Sr/86Sr ratios and sea water salinities (Z values caculated with carbon and oxygen isotopes). Additionally, a strong and average positive linear correlation is observed between the 87Sr/86Sr ratios and sea water temperatures (oxygen isotope temperature) and Mn/Sr ratios, respectively; ④ the 87Sr/86Sr ratios also display a negative nonlinear correlation with silicon contents and a weak negative linear correlation with aluminium and magnesium contents. Considering the Early Paleozoic tectonic evolution in the western Ordos basin and some previous research on the Xiangshan Group, it is plausible to suggest that the thin-bedded limestones at the top of the Xujiajuan Formation were possibly deposited in a deep-water environment within a restricted marine basin. This basin may have been confined by a small paleocontinent or underwater uplift from the open sea. The influence of coeval confined seawater in the basin could have included submarine hydrothermal solutions and surface runoff. Both of these factors may have contributed to the high 87Sr/86Sr ratios observed, owing to strontium isotope exchange with siallite and flow through karst weathering crusts, respectively. Consequently, the restricted marine basin water exhibited higher 87Sr/86Sr ratios compared to coeval oceanic water.

  • 自锶同位素地层学提出后(Wickman,1948黄思静等,2001),早期(1980年代以前)经历了碳酸盐岩与古海水之间锶同位素平衡及相关应用研究(Veizer et al.,1974贺秀斌,1997),随着高精度质谱计的出现和地史时期海水87Sr/86Sr比值随时间演化曲线的绘制(Burke et al.,1982),锶同位素研究逐步从岩浆、热液等领域转向沉积学领域。2000年以来,随着高精度稳定Sr同位素分析方法的发展以及87Sr/86Sr和δ88/86Sr的联合使用(Scher et al.,2014李百蝉等,2018陈栩琦等,2021),锶同位素广泛应用于同位素地层学(van der Meer et al.,2017Zhang Yinggang et al.,2020Ha Youngji et al.,2021)、大陆风化过程示踪(张霄宇等,2003Chao Huangchun et al.,2015)、沉积岩成岩作用(黄思静等,2004Lukoczki et al.,2019Phan et al.,2019Cui Huang et al.,2020)、海洋锶循环(Brand,2004Peucker-Ehrenbrink et al.,2019)和锶同位素来源(物源分析)(Romer et al.,2012Guacaneme et al.,2021)等与沉积学相关的研究领域。锶同位素在沉积学中的应用原理主要基于以下2个方面:一是锶在海水中的残留时间(约1000 ka)远长于海水的混合时间(约1 ka),从而导致地质历史中海水的锶同位素组成在某一时期内是均一的(全球范围),且87Sr/86Sr比值是时间的函数(Guacaneme et al.,2021);二是海水的锶同位素组成主要受壳源和幔源2个来源锶的控制,壳源锶主要由大陆古老岩石风化提供,幔源锶主要由洋中脊热液系统提供,其方式主要有河流带入、海底水岩交换和成岩后淋滤,3种方式的通量比约为10∶4∶1(韦刚健,1995)。

  • 鄂尔多斯盆地奥陶系碳酸盐岩发育,在盆地本部为马家沟组,在盆地西缘为桌子山组和天景山组,地质时代大致为达瑞威尔期,在西缘地区则包括大坪期(张元动等,2021),其锶同位素的研究主要运用于成岩作用的识别与划分(贺训云等,2014杨西燕等,2015),但近年来也报道了未经成岩作用影响的碳酸盐岩锶同位素数据(蒋苏扬等,2019)。本文主要对鄂尔多斯盆地西缘宁夏香山群徐家圈组顶部的薄层石灰岩进行了锶同位素研究,着重探讨其形成的古地理和古大地构造特征,对于约束香山群的时代归属,进而研究北祁连地区大地构造演化和鄂尔多斯盆地西缘深水油气勘探均具有重要意义。

  • 1 区域地质背景

  • 在大地构造位置上,研究区属于鄂尔多斯盆地西缘,位于华北克拉通西部(刘训等,2015),南、北分别为中央造山带和中亚造山带所限(图1a),处于阿拉善地块、鄂尔多斯地块(盆地)和祁连山之间(图1b)。鄂尔多斯盆地西缘在中、晚奥陶世发生了大地构造属性的转化,伴随着阿拉善地块和华北地块之间的拼接(张进等,2012许淑梅等,2016)以及北祁连洋的向北俯冲(李三忠等,2016Zhao Xiaochen et al.,2017b)或古亚洲洋的向南俯冲(Sun Jiaopeng et al.,2020),逐步从被动大陆边缘转化为主动大陆边缘,形成沟-弧-盆体系(李三忠等,2016)或弧后前陆盆地(Sun Jiaopeng et al.,2020)。发生转换的时间大约为467 Ma(Sun Jiaopeng et al.,2020),即奥陶纪达瑞威尔期,和北祁连地区北部俯冲带型蛇绿岩年龄吻合,如甘肃景泰老虎山地区发育的典型弧后扩张脊型熔岩全岩Sm-Nd等时线年龄为453.56±4.44 Ma(夏林圻等,2003),卡瓦蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄为462±19 Ma(边鹏等,2016)。在地层响应上则有可能对应于北部内蒙古桌子山地区乌拉力克组砾屑石灰岩或称为碳酸盐岩块体搬运沉积(Li Wenjie et al.,2021)和南部宁夏香山地区米钵山组砾屑石灰岩和砾岩,即桌子山地区克里摩里组沉积于大地构造属性转化之前,而香山群沉积于大地构造属性转化之后。

  • 图1 研究区及华北克拉通西部地质略图(据Sun Jiaopeng et al.,2020

  • Fig.1 Geological sketch of western North China craton and study area (after Sun Jiaopeng et al.,2020)

  • (a)—华北克拉通西部大地构造位置;(b)—华北克拉通西部地质略图;(c)—研究区中、上奥陶统分布图

  • (a) —tectonic location of western North China craton; (b) —sketch map illustrating the geological framework of the western North China craton; (c) —map showing the strata distribution of Middle and Upper Ordovician in study area

  • 香山群为一套遭受轻微区域变质的陆源碎屑岩,并夹有少量碳酸盐岩和硅质岩,主要为深水沉积作用形成的产物(王振藩等,1998),自下而上可分为徐家圈组、狼嘴子组和磨盘井组(图1c),3个组之间为整合接触(李向东等,2020a)。徐家圈组底部和下伏米钵山组接触关系尚存在争议,主要有断层(周志强等,2010)、整合(李天斌,1997)、拼接(许淑梅等,2016)和似整合接触(霍福臣,1989李向东等,2020a)等4种观点;磨盘井组顶部和志留系照花井组呈角度不整合接触。香山群底界接触关系的不明确和地层中化石稀少和混杂现象(王振藩等,1998周志强等,2010),导致了香山群自发现以来70多年的时代争议,经过长期的探索研究,现主要有以下3个观点:① 寒武纪苗岭世至芙蓉世或苗岭统沉积时期(相当于华北地区张夏组沉积时期)(徐黎明等,2006许淑梅等,2016);② 中、晚奥陶世达瑞威尔末期至凯迪期(王振藩等,1998李向东等,2019a);③ 横跨寒武纪—奥陶纪的巨厚沉积地层(Zhao Xiaochen et al.,2017b)或以寒武纪沉积为主,但不排除有奥陶纪沉积(周志强等,2010)。

  • 2 研究方法

  • 在野外对研究区内的香山群,特别是徐家圈组进行了详细的岩石学、沉积学和地层学观察和描述,并采集岩石薄片样品,在室内进行薄片鉴定工作。所有地球化学样品均采自康拉拜剖面徐家圈组顶部的薄层石灰岩(图2),采样位置选在中部薄层石灰岩集中发育的层位,向下及向上石灰岩层较稀疏的层位没有采样。采样岩层选择横向上延伸远且连续性较好的中层或薄层的石灰岩,尽量避开沉积构造及方解石脉发育的部位,岩性均为泥晶石灰岩。

  • 所有样品测试工作在澳实分析检测(广州)有限公司测试完成,Sr、C、O同位素测试由澳实(ALS)同位素实验室完成。样品破碎后缩分出300 g研磨至75 μm(200目),检测环境条件为温度25℃,相对湿度50%。Sr同位素采用HNO3+HCl+HF酸溶解,溶液蒸干后进行Sr-IRM01碱熔消解分离,使用NEPTUNE Plus多接收等离子体质谱仪(MC-ICP-MS)进行锶同位素测量。C、O同位素采用CO-ISTP01浓磷酸消解,同位素质谱仪测定方解石和碳酸盐矿物δ13C和δ18O,其中δ13C基于VPDB,δ18O基于VSMOW。此外,主量元素采用ME-XRF26X荧光光谱仪熔融法(硼酸锂-硝酸锂熔融)测定;微量元素采用ME-MS81(×10-6)熔融法(硼酸锂)电感耦合等离子体质谱仪测定。有关测试数据如表1所示。

  • 表1 宁夏香山群徐家圈组薄层状石灰岩锶同位素及相关元素测试结果

  • Table1 The strontium isotope and related values of thin-bedded limestone of Xiangshan Group Xujiajuan Formation in Ningxia

  • 注:表中δ18O已换算成PDB标准数据;Mn值采用公式Mn2+=MnO×54.938/(54.938+15.994)计算。

  • 3 岩性特征与沉积环境分析

  • 香山群下伏地层为米钵山组,下部(原米钵山组)为深灰色薄层泥晶石灰岩、灰绿色泥岩(板岩)及砾屑石灰岩,软沉积物变形发育,显示出斜坡重力作用特征;上部以灰绿色含钙(钙质)泥岩(钙泥质板岩)、砾屑石灰岩(呈大型透镜体形态)为主,含有深灰色页岩和泥晶石灰岩(图2)。其中深灰色泥晶石灰岩可能为深水原地悬浮沉积,发育有层间滑动,反映了大陆斜坡沉积环境。

  • 徐家圈组主体为灰绿色中—厚层细粒石英砂岩、含长石石英砂岩、粉砂岩和黏土岩(板岩),砂岩发育鲍玛序列及槽模,并发育有大量原地沉积的灰绿色页岩,从下到上页岩逐渐增多,砂岩逐渐减少。该组可分为3段(图2):第1段以块状至厚层细砂岩为主,常见正粒序,且往往形成砂岩叠置层,发育单层砂岩厚度从下向上逐渐变薄序列,总体砂、泥岩比为2.46,反映出浊流水下水道沉积特征。第2段下部为灰绿色中—厚层细砂岩夹薄层灰绿色泥岩岩组与灰绿色泥岩互层,上覆大段灰绿色泥岩,总体砂泥比为0.57,具有浊流水下天然堤沉积特征;上部为灰绿色细砂岩夹灰绿色泥岩岩组与灰绿色泥岩互层,泥岩中常含有发育交错层理和双向交错层理的薄层钙质粉砂岩,反映出深水内波、内潮汐的沉积特征(李向东等,2009a)。第3段岩性为灰绿色泥岩与深灰色薄层状泥晶石灰岩互层,夹有少量灰绿色中层钙质细砂岩,为本文研究层位(图2),其沉积特征详见下文。

  • 图2 宁夏米钵山地区香山群地层综合柱状示意图

  • Fig.2 Schematic stratigraphic column of the Xiangshan Group in the Miboshan area of Ningxia

  • 1 —砾岩;2—角砾岩;3—砂岩;4—粉砂岩;5—泥岩(板岩);6—硅质岩;7—硅质白云岩;8—含粉砂石灰岩;9—泥晶石灰岩;10—泥晶石灰岩透镜体;11—砾屑石灰岩透镜体;12—辉绿岩;13—槽模;14—粒序层;15—交错层理;16—滑塌变形构造

  • 1 —conglomerate; 2—breccia; 3—sandstone; 4—siltstone; 5—mudstone (slate) ; 6—siliceous rock; 7—siliceous dolomite; 8—silty limestone; 9—micrite; 10—micrite lens; 11—calcirudite lens; 12—diabase; 13—flute cast; 14—graded layer; 15—cross-bedding; 16—slump deformation structure

  • 狼嘴子组也可分为3段(图2)。第1段下部为灰绿色中—厚层长石石英细砂岩夹灰绿色泥岩,在部分地区,如狼嘴子以北的汪家园子,发育有再沉积的鲕状石灰岩和砾屑石灰岩,在其中发现有少量化石(图2);上部为灰绿色泥岩夹深灰色薄层泥晶石灰岩,显示出低密度浊流沉积与深水原地沉积交替的特征。第2段为灰绿色中—厚层长石石英细砂岩与泥岩互层,并出现较厚的杂色页岩(泥岩),杂色页岩的上部发育有薄至极薄的泥岩颜色韵律层,表现为低密度浊流沉积向深水原地沉积的演化,具有深海平原沉积特征;顶部发育有顺层侵入的辉绿岩,其地球化学特征显示了伸展作用的构造背景(邓昆等,2007)。第3段(黄河井段)为浅灰、灰白、紫红色薄—中层硅质岩、浅灰色中层硅质白云岩与灰绿色泥岩互层,其中硅质岩地球化学特征表明,紫红色硅质岩具有热水效应的影响,而浅灰色与灰白色硅质岩以正常沉积作用占主导(赵晓辰等,2017a)。

  • 磨盘井组主要由黄绿、灰绿色厚层至块状长石石英杂砂岩与灰绿色泥岩组成的韵律层,该组上部砂岩占绝对优势,总体上显示单层砂岩向上粒度变粗和厚度变厚的垂向序列,反映了近物源水体变浅的特征(图2)。

  • 徐家圈组顶部的薄层石灰岩在米钵山地区(图1c)由南向北变厚,整体上呈向北发散的“扫帚”状,由多组薄层石灰岩组组成,单个石灰岩组会向南尖灭于灰绿色页岩之中,岩组与岩组之间相互叠置或为页岩隔开(图3a);单个石灰岩组中各单层石灰岩层相互交错,较厚的岩层相对平直,延伸相对较远,但也很难顺层长距离追踪,较薄的岩层则交织在一起,其间为薄的灰绿色页岩;石灰岩多呈小型透镜状,或上、下界面不平整,具有瘤状石灰岩特征,透镜体岩层可叠置在一起,也可分散于页岩之中,岩层之间为较厚的页岩相隔(图3b);较厚的单层石灰岩(中层)的物质组成并不单一,其中可发育脉状、波状及透镜状复合层理,透镜体由石灰岩组成;在薄层石灰岩的顶部,石灰岩层中出现硅质结核(图3c),结核边界光滑,无切割层理现象,相邻结核可连在一起形成不规则的带状,薄层石灰岩之上则出现数层硅质岩。

  • 徐家圈组顶部薄层石灰岩主要由灰泥石灰岩和粉屑石灰岩组成,灰泥与粉屑的含量可呈过渡。石灰岩中的方解石脉非常发育,即使在比较均一的手标本中,在岩石薄片中也可以见到比较细微的方解石脉,同时也可以观察到缝合线构造(图3d)。无论在灰泥石灰岩还是在粉屑石灰岩中,重结晶现象均较为普遍,但是重结晶的程度有限,基本上保留了原岩的特征(图3e)。在徐家圈组上部,粉砂岩、含灰粉砂岩、灰质粉砂岩到粉砂质石灰岩、含粉砂石灰岩到石灰岩可呈连续过渡,在顶部的薄层状石灰岩中,也可见到陆源碎屑物质(主要为石英)。依据17件岩石薄片鉴定结果:陆源碎屑含量小于5%的11件,占64.7%,陆源碎屑含量在5%~15%之间的5件,占29.4%,只有1件样品,陆源碎屑含量为30%,占5.9%。薄层石灰岩中的陆源碎屑颗粒一般为细砂级颗粒,最大的可达到细砂级颗粒的上限(0.25 mm),一般呈“漂浮”状存在于灰泥或粉屑之中(图3f)。图3f中的石英颗粒具有波状消光,大小约为0.19 mm。

  • 图3 宁夏香山群徐家圈组顶部薄层石灰岩沉积特征

  • Fig.3 Sedimentary characteristics of thin-bedded limestone in the top of Xiangshan Group Xujiajuan Formation in Ningxia

  • (a)—薄层石灰岩侧向上尖灭于页岩之中及石灰岩层向北叠置增厚现象,箭头所示为北北西方向;(b)—夹于灰绿色页岩之中的深灰色薄层石灰岩,单层错落分布,难以顺层追踪;(c)—呈小型透镜体形态的薄层石灰岩;(d)—灰泥石灰岩,具有方解石细脉和缝合线构造;(e)—灰泥石灰岩弱的重结晶现象;(f)—灰泥石灰岩中的陆源碎屑

  • (a) —the lateral pinching of the thin limestone into the shale, along with the overlaying and thickening of the limestone layer to the north, as shown by the arrows in the north-NW direction; (b) —a thin layer of dark grey limestone sandwiched between gray-green shales, with scattered single layers that are difficult to trace along the layers; (c) —thin layers of limestone with small lenses; (d) —limestone with calcite veins and sutures; (e) —weak recrystallization of limestone; (f) —terrigenous debris in limestone

  • 薄层石灰岩以薄的单层厚度(一般小于30 cm)、高旋回性(米级旋回)和石灰岩-页岩对区别于台地相的厚层—块状石灰岩,其沉积环境一般解释为斜坡至深水盆地(Kietzmann et al.,2014Hersi et al.,2016)。徐家圈组顶部的薄层石灰岩单层厚度以薄层(小于10 cm)为主,兼有少数薄的中层(小于30 cm),单层之间为灰绿色泥岩,只是由于薄层石灰岩层之间的相互交织,没有形成明显的石灰岩-页岩对,其沉积环境应为深水环境。结合米钵山组与香山群的沉积环境演化,米钵山组为大陆斜坡环境,发育明显的层间滑动(软沉积物变形);徐家圈组第1、2段分别形成浊流水下水道和天然堤沉积;狼嘴子组第1段显示出低密度浊流沉积与深水原地沉积交替的特征,第2段中的杂色页岩和第3段中的硅质岩则指示了深海平原的沉积环境;磨盘井组发育砂岩向上变粗变厚的浊积岩沉积序列,表明水体变浅。因此可以推测,徐家圈组顶部薄层状石灰岩沉积环境可能为深水下斜坡,由于坡度较缓,重力作用不明显,但是底流和地形会发生强烈的作用。

  • 薄层石灰岩组向南尖灭于灰绿色页岩之中,向北呈发散状增厚以及石灰岩本身由灰泥或粉屑构成,而无直接从水中沉淀形成的方解石晶粒,则说明沉积时具有物质的搬运。散点状分布于灰泥或粉屑之中的陆源颗粒则指示了沉积时的水动力状况,可搬运细砂级陆源颗粒。石灰岩呈小型连续的透镜体形态及上、下界面的不规则可能与深水环境中沉积物的有限供给有关,同时也反映了底流作用的存在(Tucker et al.,2009)。脉状、波状和透镜状复合层理则说明在石灰岩沉积期灰泥或泥屑与悬浮的黏土之间的交互沉积。综上所述,徐家圈组顶部的薄层状石灰岩可能为深水底流搬运的灰泥、粉屑物质再沉积形成,考虑到水动力的强度,灰泥和粉屑可能以絮凝集合体的形式发生沉积(Soler et al.,2009)。

  • 4 锶同位素测试结果

  • 4.1 碳、氧同位素测温及其与锶同位素的关系

  • 由于徐家圈组薄层石灰岩沉积时受海底热液影响(李向东等,2019a),为进一步探求沉积时海水锶同位素的影响因素,对样品进行了碳、氧同位素测试并计算了沉积时的海水温度,结果如表2所示,海水温度变化范围为52.2~62.6℃,平均56.0℃,和已报道的平均温度57.5℃相近(李向东等,2019a)。现就碳、氧同位素测温说明如下:

  • 石灰岩氧同位素测温主要受成岩作用和水体盐度2个因素影响。香山群虽然普遍遭受轻微的区域变质作用,但在砂岩薄片鉴定中只发现少量绿帘石、绿泥石等浅变质矿物以及伊利石开始向白云母转化等现象,碎屑颗粒多以线接触为主,出现少量云母弯曲、颗粒碎裂和边缘溶蚀等现象,石灰岩薄片中也观察到缝合线(图3d),说明成岩作用以压实为主。石灰岩中重结晶现象有限,并不强烈(图3d、e),说明成岩作用中温度作用有限,对氧同位素不会造成较大的影响。在Sr含量和Mn/Sr比值交汇图中所有点落入Ⅰ区(图4a),说明不受表生作用阶段大气淡水淋滤的影响。在盐度方面,目前所使用的氧同位素温度计算经验公式只有在正常海相沉积环境中才成立,而广泛应用于前侏罗系中的古盐度计算公式为:Z=2.048(δ13C+50)+0.498(δ18O+50),当Z>120时为海相石灰岩,当Z<120时为淡水石灰岩(Keith et al.,1964)。计算结果显示,Z值变化范围为117.65~130.65,平均122.34,基本符合测温要求。

  • 表2 宁夏香山群徐家圈组薄层状石灰岩氧同位素测温结果

  • Table2 The calculated temperature derived from δ18O values of thin-bedded limestone of Xiangshan Group Xujiajuan Formation in Ningxia

  • 图4 宁夏香山群徐家圈组薄层石灰岩碳氧同位素测温相关参数图

  • Fig.4 Plots to calculated temperature of δ13C and δ18O values of thin-bedded limestone of Xiangshan Group Xujiajuan Formation in Ningxia

  • (a)—Sr含量和Mn/Sr比值交汇图,从Ⅰ到Ⅴ成岩作用的影响逐渐增强(据李向东等,2019a);(b)—碳同位素和氧同位素交汇图;(c)—碳同位素和锶同位素交汇图;(d)—氧同位素和锶同位素交汇图;(e)—盐度Z值和锶同位素交汇图;(f)—氧同位素计算的沉积时海水温度和锶同位素交汇图

  • (a) —plot of Sr and Mn/Sr showed that the influence of diagenesis gradually increased from Ⅰ to Ⅴ (after Li Xiangdong et al., 2019a) ; (b) —plot of carbon isotope and oxygen isotope; (c) —intersection diagram of carbon and strontium isotopes; (d) —plot of oxygen and strontium isotopes; (e) —plot of salinity Z-values and strontium isotopes; (f) —plot of contemporary seawater temperatures (calculated by oxygen isotopes) and strontium isotopes

  • 石灰岩氧同位素测温的前提是沉积物与水体(海水)之间氧同位素交换达到平衡,一般可根据石灰岩中δ18O和δ13C之间有无线性关系来判断(Derry et al.,1994),在图4b中两者无线性关系,说明沉积时氧同位素交换抵达平衡。由于δ18O具有年代效应,越老的地层中其值越低(邵龙义,1994),因此在计算温度之前要对测试的δ18O值进行校正,目前关于古生代石灰岩的校正值多采用-5.1‰(邵龙义,1994),广泛应用于古水温的计算公式(Parkinson et al.,2005)为:T(℃)=16.9-4.38(δ18O+0.27)+0.10(δ18O+0.27)2。本文也采用该校正值和计算公式,计算结果如表2所示。此外,尽管一般认为当δ18O值低于-10‰(或-11‰)时,碳同位素的原始组成可能发生了明显改变,其碳、氧同位素数据不宜使用(Derry et al.,1994)。但是鄂尔多斯盆地奥陶系石灰岩中流体包裹体氧同位素分析结果显示成岩流体的δ18O值介于-30.06‰~-22.12‰之间(刘德良等,2007),远小于徐家圈组薄层石灰岩测试值,因此,氧同位素计算的温度不应代表成岩期的埋藏古温度。

  • 碳、氧同位素与锶同位素交汇图分别表现出较弱和良好的线性负相关性(图4c、d),说明影响碳、氧同位素的因素同样也影响着锶同位素(Ha Youngji et al.,2021)。碳同位素的分馏主要受介质的氧化还原条件和盐度的控制,为此对代表沉积时水体盐度的Z值和锶同位素做了交汇图,与δ13C-87Sr/86Sr相关性类似,表现为较弱的线性负相关性(图4e),其线性相关系数和δ13C-87Sr/86Sr交汇图近于相同(分别为0.71和0.68),说明沉积海水盐度对碳、锶同位素均有较大的影响。鉴于锶同位素在海洋中几乎不发生分馏和残留时间远长于海水混合时间的特点,这种盐度的影响对锶同位素来说应该来自淡水和海水的混合。局限海环境由于和大洋的连通性较差,最有可能在海底长期保持这种具有淡水化趋势的海水,从而导致锶同位素值随盐度的降低而增加(图4e)。氧同位素分馏主要受温度和盐度控制,为此做了温度和锶同位素交汇图,表现为良好的正线性相关性(图4f),相关系数与δ18O-87Sr/86S交汇图的相关系数相等,均为0.89,说明锶同位素值同样受热液影响,但是随温度的增加而增加,原因详见后文。

  • 4.2 锶同位素组成及其海水代表性的评估

  • 鄂尔多斯盆地西缘宁夏香山群徐家圈组顶部薄层石灰岩锶同位素组成分析结果显示,所有样品的87Sr/86Sr值在0.71057~0.71356之间,平均值为0.71189(表1),远大于寒武纪和奥陶纪海水87Sr/86Sr值,且变化范围较早古生代海水演化曲线变化范围要大(图5)。在宏观、微观岩性观察(图3)和碳、氧稳定同位素分析(图4)的基础上,为进一步检验样品87Sr/86Sr测试值是否代表石灰岩沉积时海水的87Sr/86Sr组成,以下着重从相关地球化学元素和样品87Sr/86Sr测试值的关系分析成岩作用对石灰岩87Sr/86Sr组成的影响及其程度(图6)。

  • 海水和淡水相比具有较高的Sr含量和较低的Mn含量,海相碳酸盐的成岩作用是一个Sr含量减少和Mn含量增加的过程,因此,样品中锶含量越高、锰含量越小,Mn/Sr比值越小,样品对原始海水信息的封存性就越高(蒋苏扬等,2019)。目前判别海相石灰岩成岩蚀变程度时采用的Sr含量下限值和Mn含量上限值分别为200×10-6和250×10-6,Mn/Sr比值则一般小于2(Burke et al.,1982Kaufman et al.,1993)。徐家圈组顶部薄层石灰岩Sr含量在710×10-6~1145×10-6之间,平均861×10-6,远高于200×10-6,在87Sr/86Sr-Sr交汇图中线性关系较弱,87Sr/86Sr值随Sr含量的增大而减小(图6a);Mn含量在232×10-6~697×10-6之间,平均465×10-6,基本上大于250×10-6,在87Sr/86Sr-Mn交汇图中略具线性趋势,87Sr/86Sr值随Mn含量的增高而增大(图6b);Mn/Sr比值在0.44~1.58之间,平均1.01,小于2,在87Sr/86Sr-Mn/Sr交汇图中线性关系较强,87Sr/86Sr值随Mn/Sr比值的增大而增大(图6c)。依据Sr含量和Mn/Sr比值,结合鄂尔多斯盆地奥陶系石灰岩中成岩流体的C、O同位素特征(刘德良等,2007),可以判断徐家圈组顶部薄层石灰岩的成岩蚀变程度较低,较高的Mn含量和87Sr/86Sr-Mn/Sr交汇图(图6c)中较强的线性关系可能指示了沉积时的海水受到了淡水的影响,与图4e所示结果一致。

  • 图5 全球奥陶纪海水锶同位素演化曲线和宁夏香山群徐家圈组薄层石灰岩测试值

  • Fig.5 The strontium isotope curve for Ordovician global sea water and the measured values of thin-bedded limestones of Xiangshan Group Xujiajuan Formation in Ningxia

  • 在成岩作用中,非海相影响因素是造成海相碳酸盐岩87Sr/86Sr值偏离海水的主要原因,主要包括埋藏成岩过程中铝硅酸盐矿物的溶解、表生成岩过程中的大气淡水作用和深部流体作用(黄思静等,2004)。在主量元素中,Si和Al可用来评估陆源碎屑物质在溶解过程中对海相碳酸盐岩锶同位素的影响,Mg可用于反映石灰岩成岩中白云化作用的强弱程度(蒋苏扬等,2019),而白云化流体既可来自淡水和海水的混合,也可有深部流体参与(黄思静等,2004周云等,2017)。徐家圈组顶部薄层石灰岩中SiO2、Al2O3和MgO含量均较低,其变化范围分别为5.60%~12.50%、0.28%~1.57%和0.50%~1.28%,平均值分别为8.23%、0.86%和0.78%,在和锶同位素交汇图中,相关性均较差(图6d~f),进一步说明了徐家圈组薄层石灰岩的成岩蚀变程度较低。但是在交汇图中,87Sr/86Sr值随着SiO2、Al2O3和MgO含量的增加而具有弱的减小趋势,与鄂尔多斯盆地马家沟组5段及桌子山组石灰岩中弱的增加趋势相反(蒋苏扬等,2019)。

  • 5 分析与讨论

  • 5.1 局限海盆地深水环境

  • 宁夏香山群徐家圈组顶部薄层石灰岩受成岩蚀变影响的程度较小,其锶同位素值基本可以代表沉积时海水的锶同位素值。然而,其测试值远大于同时期(寒武纪或奥陶纪)全球海水锶同位素值,且其变化幅度为0.00299,大于全球寒武纪和奥陶纪海水锶同位素演化曲线的幅度(图5)。依据石灰岩中(La/Nd)N比值(澳洲后太古宙页岩标准化后比值)估算的水深为400~500 m(李向东等,2020a),其水深较北部桌子山地区克里摩里组石灰岩估算的200~300 m要深(李向东等,2019b)。碳同位素值变化范围在-1.49‰~4.66‰,平均值为0.73‰,负值样品数3个,占50.00%(表1),其变化剧烈,幅度高达6.15‰。而克里摩里组碳同位素值变化范围在-0.35‰~1.08‰,平均值为0.16‰,负值样品数为2个,仅占10.53%(李向东等,2019b),变化平稳,幅度为1.43‰,变化幅度小于鄂尔多斯盆地南缘奥陶系台地相石灰岩变化幅度1.50‰(王玉新等,1995),平均值小于鄂尔多斯盆地西缘奥陶系平凉组的0.27‰(陈强等,2012)。总之,克里摩里组碳同位素值特征与鄂尔多斯盆地奥陶系石灰岩的普遍特征一致,也显示出广海性质,基本保留了原始海洋的同位素组成,即碳同位素值分布于-7.30‰~2.26‰之间(陈强等,2012);而徐家圈组顶部薄层石灰岩碳同位素的剧烈变化和负值样品占比高的特点可能为与广海阻隔的局限海盆深水环境。在这种相对的阻塞环境中,淡水的输入和保存,使局限海盆中海水的87Sr/86Sr值和大洋有所差异。薄层石灰岩87Sr/86Sr测试值和壳源87Sr/86Sr全球平均值相近,较大幅度地大于奥陶系石灰岩87Sr/86Sr平均值,也不同于鄂尔多斯盆地奥陶系马家沟组5段泥晶石灰岩,但远小壳源硅铝质岩石87Sr/86Sr平均值(图7a),说明了沉积时海水的锶同位素组成可能和壳源硅铝质岩有密切关系。

  • 图6 宁夏香山群徐家圈组薄层石灰岩成岩蚀变对锶同位素影响检验图

  • Fig.6 Discrimination diagrams of diagenetic alteration degree for strontium isotope of thin-bedded limestone of Xiangshan Group Xujiajuan Formation in Ningxia

  • (a)—Sr含量与87Sr/86Sr交汇图;(b)—Mn含量与87Sr/86Sr交汇图;(c)—Mn/Sr比值与87Sr/86Sr交汇图;(d)—Si含量与87Sr/86Sr交汇图;(e)—Al含量与87Sr/86Sr交汇图;(f)—Mg含量与87Sr/86Sr交汇图;Si、Al和Mg含量均由表1中相对应的氧化物含量计算获得

  • Plots of 87Sr/86Sr vs. Sr (a) , Mn (b) , Mn/Sr (c) , Si (d) , Al (e) , Mg (f) ; the Si, Al and Mg contents were calculated from the corresponding oxide contents in Table1

  • 和塔里木盆地北部奥陶系风化壳中非沉积碳酸盐矿物的锶同位素组成(黄思静等,2004)相比,构造和非构造裂隙中的方解石锶同位素平均值略高于徐家圈组薄层石灰岩锶同位素的最低测试值,而与古喀斯特作用有关的方解石和与大气淡水作用带硅质结核有关的方解石中的锶同位素平均值落入测试值范围中,且后者与平均测试值相近(图7b),说明沉积时海水的锶同位素组成可能与古喀斯特风化有关。鄂尔多斯盆地本部在马家沟组沉积之后(达瑞威尔末期)隆升为陆,发育碳酸盐岩风化壳,而徐家圈组中浊积砂岩指向沉积构造古水流分析结果显示,物源方向来自NNE向,正好为古喀斯特区域(李向东等,2009b)。

  • 图7 宁夏香山群徐家圈组薄层石灰岩锶同位素组成

  • Fig.7 Isotope composition of strontium of thin-bedded limestone in Xiangshan Group Xujiajuan Formation of Ningxia

  • (a)—与不同锶同位素来源平均值对比图:A—徐家圈组石灰岩测试值,B—鄂尔多斯盆地马家沟组马五5亚段泥晶石灰岩锶同位素值,C—鄂尔多斯盆地陕北坳陷镇钾1井马家沟组五段泥晶石灰岩锶同位素值(据蒋苏扬等,2019);(b)—不同碳酸盐岩锶同位素值直方图(据黄思静等,2004):1—晚奥陶世末海水,2—受淡水影响的沉积碳酸盐,3—非构造成因裂隙中的方解石,4—构造裂隙中的方解石,5—与古喀斯特作用有关的方解石,6—与大气淡水作用带硅质结核有关的方解石,7—徐家圈组石灰岩最小值,8—徐家圈组石灰岩最大值,9—徐家圈组石灰岩平均值

  • (a) —comparison plot with the average values of different sources of strontium isotopes: A—the measured value of limestone from Xujiajuan Formation, B—the strontium isotope value of micrite from 5th Submember of 5th Member of Majiagou Formation, Ordos basin, C—the strontium isotope value of micrite from 5th Member of Majiagou Formation, well Zhenya-1, Shenbei depression, Ordos basin (after Jiang Suyang et al., 2019) ; (b) —histograms of strontium isotope values in different carbonate rocks (after Huang Sijing et al., 2004) : 1—Late Ordovician seawater, 2—sedimentary carbonates influenced by fresh water, 3—nontectonic calcite in fractures, 4—tectonic calcite, 5—calcite associated with paleo-karstic processes, 6—calcite associated with siliceous nodules in the zones of atmospheric freshwater processes, 7—the minimum value of Xujiajuan Formation limestone, 8—the maximum value of Xujiajuan Formation limestone, 9—the average value of Xujiajuan Formation limestone

  • 在鄂尔多斯盆地西缘中部,前人通过地层对比认为在现今宁夏银川—吴忠一带存在地层缺失,可能发育有次级古陆将弧后盆地分割为2个或多个小型盆地(郭彦如等,2012);在北部,通过拉什仲组浊积岩中指向沉积构造古水流分析发现该组中存在浊流反射现象,说明其可能沉积于受水下隆起或古陆阻隔的局限海盆地深水环境(李向东等,2020b);在南部,香山群上部磨盘井组直接和发育在河西走廊甘肃武威—张掖一带的大黄山组浊积岩相接,可能揭示了局限海盆地中浊流溢出沉积现象。以上研究成果及相关地质现象则可为徐家圈组薄层石灰岩沉积时海水中可能存在较高的87Sr/86Sr值提供佐证。

  • 5.2 沉积水体锶同位素来源

  • 徐家圈组顶部薄层石灰岩氧同位素值变化范围在-14.07‰~-12.32‰之间,平均值为-12.97‰(表1),有2个样品值略低于原始海洋同位素组成,即氧同位素值分布于-13.14‰~-1.94‰之间(陈强等,2012),测温结果为52.2~62.6℃,平均56.0℃(表2)。北部桌子山地区克里摩里组氧同位素值变化范围在-8.32‰~-4.28‰之间,平均值为-7.28‰,均在原始海洋氧同位素组成范围内,测温结果为22.2~30.7℃,平均为26.4℃,解释为风海流引起的等深暖流沉积(李向东等,2019b)。鄂尔多斯盆地西缘奥陶系台地相石灰岩氧同位素平均值为-6.82‰,深水沉积的平凉组石灰岩平均值为-7.37‰,与碳同位素类似,克里摩里组氧同位素与整个鄂尔多斯盆地沉积环境演化保持一致,而徐家圈组顶部薄层石灰岩氧同位素值具有一定的特殊性,可能受到海底热液的影响(李向东等,2019a)。

  • 虽然局限海盆深水环境中海水介质特征研究较为薄弱,但在桌子山地区上奥陶统拉什仲组的研究中也发现了盆地底部水体的淡水化现象,即海水存在盐度倒置(李向东等,2023a2023b),这里结合前期对徐家圈组顶部薄层石灰岩沉积时海水介质的相关研究成果(李向东等,2020a),对徐家圈组薄层石灰岩沉积时局限海盆深水环境中水体锶同位素特征进行简要的分析,结果如表3所示。

  • 依据徐家圈组薄层石灰岩锶同位素测试结果,其值远大于同时期海水87Sr/86Sr值和幔源锶同位素平均值(图5,图7),故受幔源物质或深部流体影响的可能性较小,但是和壳源硅铝质岩锶同位素平均值相比则要小得多,故受其影响的可能性较大(表3)。结合前面论述,薄层石灰岩沉积时局限海盆地中海水87Sr/86Sr值受壳源硅铝质岩和古喀斯特风化壳影响,这2种来源均使海水中87Sr/86Sr值增大。依据Mn和Sr含量判别结果,徐家圈组薄层石灰岩可能并没有经过表生淋滤成岩阶段(图4a),87Sr/86Sr值和Mg含量的弱负相关(图6f)也说明了成岩阶段白云化流体中混入淡水的可能性不大(黄思静等,2004),因此,无论是壳源硅铝质岩还是古喀斯特风化壳,通过大气淡水淋滤的作用方式改变徐家圈组薄层石灰岩锶同位素组成的可能性并不大(表3)。

  • 表3 宁夏香山群徐家圈组薄层石灰岩锶同位素来源和影响因素分析

  • Table3 Analysis of the sources and influential factors affecting the strontium isotope composition of thin-bedded limestone in Xiangshan Group Xujiajuan Formation of Ningxia

  • 由于锶同位素在通常的物理和生物作用过程中一般不发生分馏作用,故淡水和海水混合作用是改变水体锶同位素组成的一种重要方式。徐家圈组薄层石灰岩中Sr/Ba比值波动较大,变化范围为6.06~35.15(李向东等,2020a),虽然均为海相(Sr/Ba>1.0),但盐度变化大,也说明了可能存在局限海盆和淡水的频繁混合作用。薄层石灰岩87Sr/86Sr值和盐度负相关性较好(图4e),同时和Sr含量呈弱的负相关(图6a),和Mn含量呈弱的正相关(图6b),和Mn/Sr比值呈较好的正相关(图6c),均说明了淡水和海水混合对沉积时海水的锶同位素组成具有重要的影响(表3,图8)。此外,徐家圈组薄层石灰岩沉积时受到较明显的海底热液影响,而87Sr/86Sr值和海水温度呈良好的正线性相关性,说明海底热液作用同样影响着沉积时海水的锶同位素组成(表3),正相关可能说明热液本身的87Sr/86Sr值高于海水,指示了非深部幔源流体的特征,该流体可能和上地壳的硅铝层有关(图8)。

  • 结合鄂尔多斯盆地西缘和北祁连地区早古生代的大地构造演化,从中奥陶世达瑞威尔期开始,北部的古亚洲洋和南部的古特提斯洋(北祁连段)均发生了俯冲(许淑梅等,2016李三忠等,2016Zhao Xiaochen et al.,2017bSun Jiaopeng et al.,2020),区域上总体为主动大陆边缘挤压环境,但也不排除弧后的局部拉伸环境(图8)。考虑到热液本身的87Sr/86Sr值可能高于海水(图4f、表3),其热液可能来自拉张环境下的海底渗流,而非岛弧的火山喷发(图8)。如果香山群沉积于中、晚奥陶世(王振藩等,1998李向东等,2019a),则广大的宁夏南部地区无寒武系,可能存在古陆,也可能和其后奥陶纪的银川-吴忠古陆(郭彦如等,2012)相关,这样天景山组可能沉积于古老的硅铝质岩石之上,两者之间也可能存在不整合界面(图8)。经过碳酸盐岩古风化壳的大气淡水向下渗流,通过硅铝质岩石达到地壳深处加热后,又通过张断层或裂隙上升到海底,形成海底热液,这样的海底热液则有可能具有高的87Sr/86Sr值,从而导致局限海盆中海水具有较高的87Sr/86Sr值。此外,流经碳酸盐岩古风化壳的地表径流也具有较高的87Sr/86Sr值,也会使局限海盆中海水87Sr/86Sr值升高(图8)。

  • 图8 宁夏香山群徐家圈组薄层石灰岩沉积时局限海盆海水高锶同位素值形成示意图

  • Fig.8 Sketch showing high strontium isotope values of sea water in restricted marine basin in coeval of thin-bedded limestone of Xiangshan Group Xujiajuan Formation in Ningxia

  • 6 结论

  • (1)宁夏香山群徐家圈组顶部薄层石灰岩的成岩蚀变程度较低,可代表其沉积时海水的87Sr/86Sr值远高于同期大洋海水,且变化幅度大于早古生代全球海水锶同位素演化曲线的幅度,可能说明该薄层石灰岩沉积于受古陆或水下隆起阻隔的局限海盆深水环境,其海水锶同位素值和同期大洋海水存在明显的差异,且受局部因素影响较大。

  • (2)徐家圈组顶部薄层石灰岩沉积的局限海盆地海水具有高的87Sr/86Sr值,主要受局部拉张环境下海底渗流热液影响,其次受地表径流(淡水)和海水混合的影响。海底渗流热液可能由大气淡水向下渗流,经加热后回返形成,在形成过程中充分地和硅铝质岩石进行了锶同位素交换,因而具有高的87Sr/86Sr值;地表径流由于流经喀斯特风化壳,也具有较高的87Sr/86Sr值。

  • (3)宁夏香山群徐家圈组顶部薄层石灰岩沉积于局限海盆深水环境,对于进一步研究香山群的时代归属、北祁连地区大地构造演化和鄂尔多斯盆地西缘中、晚奥陶世古地理格局及该地区的海相深水油气勘探均具有重要的意义。

  • 参考文献

    • Bian Peng, Sha Xin, Ma Li, He Zhaoxiang, Wang Jinrong, Zhai Xinwei. 2016. Tectonic significance of Kawa ophiolite found in the western North Qilian area. Journal of Lanzhou University (Natural Sciences), 52(1): 142~144 (in Chinese with English abstract).

    • Brand U. 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: An evaluation of original seawater-chemistry proxies. Chemical Geology, 204: 23~44.

    • Burke W H, Denison R E, Hethermgton E A, Koepnick R B, Nelson H F, Otto J B. 1982. Variation of seawater 87Sr/86Sr throughout Phanerzoic time. Geology, 10 (10): 516~519.

    • Chao Huangchun, You Chenfeng, Liu Houchun, Chung Huang. 2015. Evidence for stable Sr isotope fractionation by silicate weathering in a small sedimentary watershed in southwestern Taiwan. Geochimica et Cosmochimica Acta, 165: 324~341.

    • Chen Qiang, Zhang Huiyuan, Li Wenhou, Hao Songli, Liu Zhuo. 2012. Characteristics of carbon and oxygen isotopes of the Ordovician carbonate rocks in Ordos and their implication. Journal of Palaeogeography, 14 (1): 117~124 (in Chinese with English abstract).

    • Chen Xuqi, Zeng Zhen, Yu Huimin, Huang Fang. 2021. High precision analytical method for stable strontium isotopes. Geological Journal of China Universities, 27 (3): 264~274 (in Chinese with English abstract).

    • Cui Huang, Kaufman A J, Zou H, Kattan F H, Trusler P, Smith J, Ivantsov A Y, Rich T H, Qubsani A A, Yazedi A, Liu Xiaoming, Johnson P, Goderis S, Claeys P, Vickers-Rich P. 2020. Primary or secondary? A dichotomy of the strontium isotope anomalies in the Ediacaran carbonates of Saudi Arabia. Precambrian Research, 343: 105720.

    • Deng Kun, Zhou Lifa, Hu Peng, Yang Wenjing, Zhang Yikai. 2007. Geochemical characteristics and tectonic setting of diabase in Xiangshan Group, Ningxia. Geotectonica et Metallogenia, 31 (3): 365~371 (in Chinese with English abstract).

    • Derry L A, Brasier M D, Corfield R M. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth and Planetary Science Letters, 128(3-4): 671~681.

    • Guacaneme C, Babinski M, Bedoya-Rueda C, Paula-Santos G M, Caetano-Filho S, Kuchenbecker M, Reis H L S, Trindade R I F. 2021. Tectonically-induced strontium isotope changes in ancient restricted seas: The case of the Ediacaran-Cambrian Bambuí foreland basin system, east Brazil. Gondwana Research, 93: 275~290.

    • Guo Yanru, Zhao Zhenyu, Fu Jinhua, Xu Wangling, Shi Xiaoying, Sun Liuyi, Gao Jianrong, Zhang Yanling, Zhang Yueqiao, Liu Junbang, Liu Hong. 2012. Equence lithofacies paleogeography of the Ordovician in Ordos basin, China. Acta Petrolei Sinica, 33(S2): 95~109 (in Chinese with English abstract).

    • Ha Youngji, Satish-Kumar M, Park K-H, Song Yongsun, Liu Shuwen. 2021. Carbon, oxygen and strontium isotope geochemistry of the late Neoproterozoic carbonate platform deposit Hyangsanni dolomite of the Okcheon metamorphic belt, Korea. Lithos, 106219: 396~397.

    • He Xiubin. 1997. Recent advances in the trace. Element and isotopic geochemistry of Strontium and the application perspectives. Advance in Earth Sciences, 12 (1): 15~19 (in Chinese with English abstract).

    • He Xunyun, Shou Jianfeng, Shen Anjiang, Wu Xingning, Wang Yongsheng, Hu Yuanyuan, Zhu Yin, Wei Dongxiao. 2014. Geochemical characteristics and origin of dolomite: A case study from the middle assemblage of Majiagou Formation Member 5 of the west of Jingbian gas field, Ordos basin, North China. Petroleum Exploration and Development, 41 (3): 375~384 (in Chinese with English abstract).

    • Hersi O S, Abbasi I A, Al-Harthy A. 2016. Sedimentology, rhythmicity and basin-fill architecture of a carbonate ramp depositional system with intermittent terrigenous influx: The Albian Kharfot Formation of the Jeza-Qamar basin, Dhofar, Southern Oman. Sedimentary Geology, 331: 114~131.

    • Huang Sijing, Shi He, Liu Jie, Shen Licheng. 2001. Progress in strontium isotope stratigraphy. Advance in Earth Sciences, 16(2): 194~200 (in Chinese with English abstract).

    • Huang Sijing, Liu Shugen, Li Guorong, Zhang Meng, Wu Wenhui. 2004. Strontium isotope composition of marine carbonate and the influence of diagenetic fluid on it in Ordovician. Journal of Chengdu University of Technology (Science & Technology Edition), 1: 1~7 (in Chinese with English abstract).

    • Huo Fucheng. 1989. Geological Characteristics and Prospecting Potential of Xilaokou Gold Deposit, Shandong Province. Beijing: Science Press, 43~68 (in Chinese with English abstract).

    • Jiang Suyang, Zhang Yongsheng, Huang Wenhui, Xing Enyuan, Gui Baolin, Peng Xuan, Zhao Haitong, Shang Wenjun. 2019. Geochemical characteristics of Ordovician strontium isotope in the Ordos basin. Acta Geologica Sinica, 93 (11): 2889~2903 (in Chinese with English abstract).

    • Kaufman A J, Jacobsen S B, Knoll A H. 1993. The vendian record of Sr and C isotope variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120 (3-4): 409~430.

    • Keith M H, Weber J N. 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28 (2): 1787~1816.

    • Kietzmann D A, Palma R M, Riccardi A C, Martín-Chivelet J, López-Gómez J. 2014. Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the southern Mendoza area of the Neuquén basin, Argentina. Sedimentary Geology, 302: 64~86.

    • Li Baichan, Feng Lanping, Wang Qian, Tao Yun, Zhou Lian. 2018. Advances of stable strontium isotopes in marine geochemical cycle. Geological Science and Technology Information, 37 (4): 100~105 (in Chinese with English abstract).

    • Li Sanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Shaocong, Yan Zhen, Li Zonghui, Yu Shengyao, Lan Haoyuan. 2016. ProtoTehtys Ocean in East Asia (I): Northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32 (9): 2609~2627 (in Chinese with English abstract).

    • Li Tianbin. 1997. Rediscussion on stratigraphic age of Xiangshan Group, Ningxia. Northwestern Geology, 18 (2): 1~9 (in Chinese with English abstract).

    • Li Wenjie, Chen Jia, Hakim A J, Myrow P M. 2021. Middle Ordovician mass-transport deposits from western Inner Mongolia, China: Mechanisms and implications for basin evolution. Sedimentology, doi: 10. 1111/sed. 12949.

    • Li Xiangdong, He Youbin, Wang Dan, Gao Zhenzhong, Zheng Zhaochang. 2009a. Internal-wave and internal-tide deposits of the Middle Ordovician Xiangshan Group Xujiajuan Formation, Ningxia. Journal of Palaeogeography, 11 (5): 513~523 (in Chinese with English abstract).

    • Li Xiangdong, He Youbin, Wang Dan, Luo Jinxiong, Li Hua, Zheng Zhaochang. 2009b. Analysis on palaeocurrent in the Xujiajuan Formation, Xiangshan Group, Middle Ordovician, in southern Helan Mountains. Geological Review, 55 (5): 653~662 (in Chinese with English abstract).

    • Li Xiangdong, He Youbin. 2019a. Geochemical characteristics and their epochal significance of limestones at the top of Xujiajuan Formation, Xiangshan Group in the Ningxia Autonomous Region, China. Geochimica, 48 (4): 325~341 (in Chinese with English abstract).

    • Li Xiangdong, Huan Yaqi. 2019b. Deposition of warm contour current and its geological significance on oil and gas in Lower Ordovician Kelimoli Formation, Zhuozishan area. Petroleum Geology and Recovery Efficiency, 26(4): 15~23.

    • Li Xiangdong, He Youbin. 2020a. REE geochemistry and their indicators of sedimentary aqueous media at the top of Xujiajuan Formation, Xiangshan Group in Ningxia Autonomous Region, China. Journal of Jilin University (Earth Science Edition), 50 (1): 139~157 (in Chinese with English abstract).

    • Li Xiangdong, Chen Haiyan. 2020b. Palaeocurrent direction analysis and ponded turbidity currents recognition in deep-water environment: A case study of the Upper Ordovician Lashenzhong Formation in Zhuozishan area, Ordos basin. Acta Petrolei Sinica, 41 (11): 1348~1365 (in Chinese with English abstract).

    • Li Xiangdong, Wei Zeyi, Chen Haiyan. 2023a. Geochemical characteristics analyses of terrigenous clasticrocks in deep-water ponded basin: A case study from Upper Ordovician Lashenzhong Formation in Zhuozishan area, Ordos basin. Journal of China University of Mining & Technology, https: //link. cnki. net/urlid/32. 1152. TD. 20231101. 1027. 002 (in Chinese with English abstract).

    • Li Xiangdong, Wei Zeyi, Chen Hongda. 2023b. Genetic analysis of internal-wave and internal-tide deposits in the Upper Ordovician Lashenzhong Formation, western Ordos basin. Acta Geologica Sinica, 97(4): 1278~1294 (in Chinese with English abstract).

    • Liu Deliang, Sun Xianru, Li Zhensheng, Tang Nanan, Tan Ying. 2007. Carbon and oxygen isotope analysis of fluid inclusions in Ordovician carbonate veins of Ordos basin. Acta Petrolei Sinica, 28(3): 68~74 (in Chinese with English abstract).

    • Liu Xun, You Guoqin. 2015. Tectonic zoning of the East China Sea. Geology in China, 42 (1): 1~17 (in Chinese with English abstract).

    • Lukoczki G, Haas J, Gregg J M, Machel H G, Kele S, John C M. 2019. Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine-peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data. Marine and Petroleum Geology, 101: 440~458.

    • Parkinson D, Curry G B, Cusack M, Fallick A E. 2005. Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells. Chemical Geology, 219 (2): 193~235.

    • Peucker-Ehrenbrink B, Fiske G J. 2019. A continental perspective of the seawater 87Sr/86Sr record: A review. Chemical Geology, 510: 140~165.

    • Phan T T, Hakala J A, Lopano C L, Sharma S. 2019. Rare earth elements and radiogenic strontium isotopes in carbonate minerals reveal diagenetic influence in shales and limestones in the Appalachian basin. Chemical Geology, 509: 194~212.

    • Romer R L, Förster H J, Hahne K. 2012. Strontium isotopes—A persistent tracer for the recycling of Gondwana crust in the Variscan orogen. Gondwana Research, 22: 262~278.

    • Scher H D, Griffith E M, Buckley Jr W P. 2014. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations. Geochemistry Geophysics Geosystems, 15 (2): 499~508.

    • Shao Longyi. 1994. The relation of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc. Journal of China University of Mining & Technology, 23 (1): 39~45 (in Chinese with English abstract).

    • Soler M, Serra T, Casamitjana X, Colomer J. 2009. High sedimentation rates in a karstic lake associated with hydrothermal turbid plumes (Lake Banyoles, Catalonia, NE Spain). Sedimentary Geology, 222 (1-2): 5~15.

    • Sun Jiaopeng, Dong Yunpeng. 2020. Ordovician tectonic shift in the western North China Craton constrained by stratigraphic and geochronological analyses. Basin Research, 32 (6): 1413~1440.

    • Tucker M E, Gallagher J, Leng M J. 2009. Are beds in shelf carbonates millennial-scale cycles? An example from the mid-Carboniferous of northern England. Sedimentary Geology, 214 (1-4): 19~34.

    • van der Meer D G, van Saparoea A P H, van den Berg, van Hinsbergen D J J, van de Weg R M B, Godderis Y, Hir G L, Donnadieu Y. 2017. Reconstructing first-order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes. Gondwana Research, 44: 22~34.

    • Veizer J, Compston W. 1974. 87Sr/86Sr composition of seawater during the Phanerozoic. Geochimica et Cosmochimica Acta, 38 (9): 1461~1484.

    • Wang Yuxin, Han Zheng, Han Yuchun. 1995. Carbon isotope stratigraphy of Ordovician, the southern margin of Ordos. Journal of Hebei College of Geology, 18 (3): 217~223 (in Chinese with English abstract).

    • Wang Zhenfan, Zheng Zhaochang. 1998. The age of the Xiangshan Group in Ningxia. Regional Geology of China, 17 (1): 69~73 (in Chinese with English abstract).

    • Wei Gangjian. 1995. Evolution of the Sr isotope of the sea-water, implications for palaeoenvironment and application of the strontium isotope stratigraphy. Marine Sciences, 1: 23~25 (in Chinese with English abstract).

    • Wickman F E. 1948. Isotope ratios: A clue to the age of certain marine sediments. Journal of Geology, 56 (1): 61~66.

    • Xia Linqi, Xia Zuchun, Xu Xueyi. 2003. Magmagenesis of Ordovician back-arc basins in the northern Qilian Mountains. Geology in China, 30(1): 48~60 (in Chinese with English abstract).

    • Xu Liming, Zhou Lifa, Zhang Yikai, Yang Wenjing, Lu Bin. 2006. Record of deposition-magmatism of Xiangshan Group and the reflection of tectonic environment. Journal of Northwest University (Natural Science Edition), 36(3): 442~448 (in Chinese with English abstract).

    • Xu Shumei, Feng Huaiwei, Li Sanmeng, Li Meng. 2016. Study on Caledonian Movement in Helanshan and its surrounding area. Acta Petrologica Sinica, 32(7): 2137~2150 (in Chinese with English abstract).

    • Yang Xiyan, Bao Hongping, Ren Junfeng, Ma Zhanrong, 2015. Types of dolomite sand characteristics of stable isotope from the Ma 55 Sub-member of Ordovician Majiagou Formation in Ordos basin. Natural Gas Geoscience, 26 (4): 650~656 (in Chinese with English abstract).

    • Zhang Jin, Li Jinyi, Liu Jianfeng, Li Yanfeng, Qu Junfeng, Feng Qianwen. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912~2934 (in Chinese with English abstract).

    • Zhang Xiaoyu, Zhang Fuyuan, Zhang Weiyan. 2003. Regional variation of 87Sr/86Sr ratio and compositions of the surface sediment in the eastern South China Sea. Acta Oceanologica Sinica, 4: 43~49 (in Chinese with English abstract).

    • Zhang Yinggang, Yang Tan, Hohl S V, Zhu Bi, Jiang Shaoyong. 2020. Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim basin. Precambrian Research, 345: 105769.

    • Zhang Yuandong, Zhan Renbin, Yuan Wenwei, Tang Peng, Li Yue, Wang Zhihao, Zhou Zhiyi, Fang Xiang, Li Wenjie, Cheng Junfeng. 2021. Lithostratigraphic subdivision and correlation of the Ordovician in China. Journal of Stratigraphy, 45(3): 250~270 (in Chinese with English abstract).

    • Zhao Xiaochen, Liu Chiyang, Zhao Yan, Zhang Qihang, Luo Wei. 2017a. Geochemical characteristics and its geological implications of the cherts in the Xiangshan Group of the eastern Hexi Corridor Belt, NW China. Geological Journal of China Universities, 23 (1): 83~94 (in Chinese with English abstract).

    • Zhao Xiaochen, Liu Chiyang, Wang J Q, Duan Liang, Zhao Yan, Zhang Qihang, Luo Wei. 2017b. Petrology, geochemistry and zircon U-Pb geochronology of the Xiangshan Group in the eastern Hexi Corridor Belt: Implications for provenance and tectonic evolution. Acta Geologica Sinica (English Edition), 91 (5): 1680~1703.

    • Zhou Yun, Duan Qifa, Cao Liang, Yu Yushuai, Gan Jinmu. 2017. Journal of stratigraphy strontium isotope compositions of the lower Cambrian Qingxudong Formation and Pb-Zn deposits in Huayuan, western Hunan: Implications for hydrothermal mineralization. Journal of Stratigraphy, 41: 335~343 (in Chinese with English abstract).

    • Zhou Zhiqiang, Xiao Peixi. 2010. Discussion on age of Xiangshan Group. Northwest Geology, 43(1): 54~59 (in Chinese with English abstract).

    • 边鹏, 沙鑫, 马骊, 何兆祥, 王金荣, 翟新伟. 2016. 北祁连西段卡瓦蛇绿岩的发现及其构造意义. 兰州大学学报(自然科学版), 52(1): 142~144.

    • 陈强, 张慧元, 李文厚, 郝松立, 刘卓. 2012. 鄂尔多斯奥陶系碳酸盐岩碳氧同位素特征及其意义. 古地理学报, 14 (1): 117~124.

    • 陈栩琦, 曾振, 于慧敏, 黄方. 2021. 高精度稳定锶同位素分析方法综述. 高校地质学报, 27 (3): 264~274.

    • 邓昆, 周立发, 胡朋, 杨文敬, 张义楷. 2007. 香山群辉绿岩地球化学特征及其构造背景. 大地构造与成矿学, 31 (3): 365~371.

    • 郭彦如, 赵振宇, 付金华, 徐旺林, 史晓颖, 孙六一, 高建荣, 张延玲, 张月巧, 刘俊榜, 刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报, 33 (增刊2): 95~109.

    • 贺秀斌. 1997. 微量元素锶及其同位素的地球化学研究与应用前景. 地球科学进展, 12 (1): 15~19.

    • 贺训云, 寿建峰, 沈安江, 吴兴宁, 王永生, 胡圆圆, 朱吟, 韦东晓. 2014. 白云岩地球化学特征及成因——以鄂尔多斯盆地靖西马五段中组合为例. 石油勘探与开发, 41 (3): 375~384.

    • 黄思静, 石和, 刘洁, 沈立成. 2001. 锶同位素地层学研究进展. 地球科学进展, 16(2): 194~200.

    • 黄思静, 刘树根, 李国蓉, 张萌, 武文慧. 2004. 奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响. 成都理工大学学报(自然科学版), 1: 1~7.

    • 霍福臣. 1989. 宁夏地质概论. 北京: 科学出版社, 43~68.

    • 蒋苏扬, 张永生, 黄文辉, 邢恩袁, 桂宝玲, 彭渊, 赵海彤, 商雯君. 2019. 鄂尔多斯盆地奥陶系锶同位素地球化学特征. 地质学报, 93 (11): 2889~2903.

    • 李百蝉, 冯兰平, 王倩, 陶云, 周炼. 2018. 稳定锶同位素在海洋地球化学循环中的研究进展. 地质科技情报, 37 (4): 100~105.

    • 李三忠, 赵淑娟, 李玺瑶, 曹花花, 刘鑫, 郭晓玉, 肖文交, 赖绍聪, 闫臻, 李宗会, 于胜尧, 兰浩圆. 2016. 东亚原特提斯洋: Ⅰ: 南北边界和俯冲极性. 岩石学报, 32 (9): 2609~2627.

    • 李天斌. 1997. 宁夏香山群地层时代的再讨论. 西北地质, 18 (2): 1~9.

    • 李向东, 何幼斌, 王丹, 高振中, 郑昭昌. 2009a. 宁夏香山群徐家圈组内波和内潮汐沉积. 古地理学报, 11 (5): 513~523.

    • 李向东, 何幼斌, 王丹, 罗进雄, 李华, 郑昭昌. 2009b. 贺兰山以南中奥陶统香山群徐家圈组古水流分析. 地质论评, 55 (5): 653~662.

    • 李向东, 何幼斌. 2019a. 宁夏香山群徐家圈组顶部石灰岩地球化学特征及其时代意义. 地球化学, 48 (4): 325~341.

    • 李向东, 郇雅棋. 2019b. 桌子山地区奥陶系克里摩里组下段等深暖流沉积及其油气地质意义. 油气地质与采收率, 26 (4): 15~23.

    • 李向东, 何幼斌. 2020a. 宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析. 吉林大学学报(地球科学版), 50 (1): 139~157.

    • 李向东, 陈海燕. 2020b. 深水环境下古水流方向分析和阻塞浊流沉积的识别——以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 石油学报, 41 (11): 1348~1365.

    • 李向东, 魏泽昳, 陈海燕. 2023a. 深水阻塞盆地陆源碎屑岩地球化学特征分析——以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 中国矿业大学学报, https: //link. cnki. net/urlid/32. 1152. TD. 20231101. 1027. 002.

    • 李向东, 魏泽昳, 陈洪达. 2023b. 鄂尔多斯盆地西缘上奥陶统拉什仲组内波、内潮汐沉积成因分析. 地质学报, 97(4): 1278~1294.

    • 刘德良, 孙先如, 李振生, 唐南安, 谈迎. 2007. 鄂尔多斯盆地奥陶系碳酸盐岩脉流体包裹体碳氧同位素分析. 石油学报, 28(3): 68~74.

    • 刘训, 游国庆. 2015. 中国的板块构造区划. 中国地质, 42 (1): 1~17.

    • 邵龙义. 1994. 碳酸盐岩氧、碳同位素与古温度等的关系. 中国矿业大学学报, 23 (1): 39~45.

    • 王玉新, 韩征, 韩宇春. 1995. 鄂尔多斯南缘奥陶系碳同位素地层学研究. 河北地质学院学报, (3): 217~223.

    • 王振藩, 郑昭昌. 1998. 宁夏香山群的时代探讨. 中国区域地质, 17 (1): 69~73.

    • 韦刚健. 1995. 海水中Sr同位素组成变化的环境意义与Sr同位素地层学. 海洋科学, 1: 23~25.

    • 夏林圻, 夏祖春, 徐学义. 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因. 中国地质, 30(1): 48~60.

    • 徐黎明, 周立发, 张义楷, 杨文敬, 鲁彬.2006.香山群沉积岩浆记录及其反映的大地构造环境.西北大学学报(自然科学版), 36(3): 442~448.

    • 许淑梅, 冯怀伟, 李三忠, 李萌. 2016. 贺兰山及周边地区加里东运动研究. 岩石学报, 32 (7): 2137~2150.

    • 杨西燕, 包洪平, 任军峰, 马占荣. 2015. 鄂尔多斯盆地马家沟组马五5亚段白云岩类型及稳定同位素特征. 天然气地球科学, 26 (4): 650~656.

    • 张进, 李锦轶, 刘建峰, 李岩峰, 曲军峰, 冯乾文. 2012. 早古生代阿拉善地块与华北地块之间的关系: 来自阿拉善东缘中奥陶统碎屑锆石的信息. 岩石学报, 28 (9): 2912~2934.

    • 张霄宇, 张富元, 章伟艳. 2003. 南海东部海域表层沉积物锶同位素物源示踪研究. 海洋学报, 4: 43~49.

    • 张元动, 詹仁斌, 袁文伟, 唐鹏, 李越, 王志浩, 周志毅, 方翔, 李文杰, 成俊峰. 2021. 中国奥陶纪岩石地层划分和对比. 地层学杂志, 45 (3): 250~270.

    • 赵晓辰, 刘池洋, 赵岩, 张启航, 罗伟. 2017a. 河西走廊过渡带东部香山群硅质岩地球化学特征及其地质意义. 高校地质学报, 23 (1): 83~94.

    • 周云, 段其发, 曹亮, 于玉帅, 甘金木. 2017. 湘西花垣下寒武统清虚洞组灰岩与锶同位素研究. 地层学杂志, 41: 335~343.

    • 周志强, 校培喜. 2010. 对香山群时代的商榷. 西北地质, 43 (1): 54~59.

  • 参考文献

    • Bian Peng, Sha Xin, Ma Li, He Zhaoxiang, Wang Jinrong, Zhai Xinwei. 2016. Tectonic significance of Kawa ophiolite found in the western North Qilian area. Journal of Lanzhou University (Natural Sciences), 52(1): 142~144 (in Chinese with English abstract).

    • Brand U. 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: An evaluation of original seawater-chemistry proxies. Chemical Geology, 204: 23~44.

    • Burke W H, Denison R E, Hethermgton E A, Koepnick R B, Nelson H F, Otto J B. 1982. Variation of seawater 87Sr/86Sr throughout Phanerzoic time. Geology, 10 (10): 516~519.

    • Chao Huangchun, You Chenfeng, Liu Houchun, Chung Huang. 2015. Evidence for stable Sr isotope fractionation by silicate weathering in a small sedimentary watershed in southwestern Taiwan. Geochimica et Cosmochimica Acta, 165: 324~341.

    • Chen Qiang, Zhang Huiyuan, Li Wenhou, Hao Songli, Liu Zhuo. 2012. Characteristics of carbon and oxygen isotopes of the Ordovician carbonate rocks in Ordos and their implication. Journal of Palaeogeography, 14 (1): 117~124 (in Chinese with English abstract).

    • Chen Xuqi, Zeng Zhen, Yu Huimin, Huang Fang. 2021. High precision analytical method for stable strontium isotopes. Geological Journal of China Universities, 27 (3): 264~274 (in Chinese with English abstract).

    • Cui Huang, Kaufman A J, Zou H, Kattan F H, Trusler P, Smith J, Ivantsov A Y, Rich T H, Qubsani A A, Yazedi A, Liu Xiaoming, Johnson P, Goderis S, Claeys P, Vickers-Rich P. 2020. Primary or secondary? A dichotomy of the strontium isotope anomalies in the Ediacaran carbonates of Saudi Arabia. Precambrian Research, 343: 105720.

    • Deng Kun, Zhou Lifa, Hu Peng, Yang Wenjing, Zhang Yikai. 2007. Geochemical characteristics and tectonic setting of diabase in Xiangshan Group, Ningxia. Geotectonica et Metallogenia, 31 (3): 365~371 (in Chinese with English abstract).

    • Derry L A, Brasier M D, Corfield R M. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth and Planetary Science Letters, 128(3-4): 671~681.

    • Guacaneme C, Babinski M, Bedoya-Rueda C, Paula-Santos G M, Caetano-Filho S, Kuchenbecker M, Reis H L S, Trindade R I F. 2021. Tectonically-induced strontium isotope changes in ancient restricted seas: The case of the Ediacaran-Cambrian Bambuí foreland basin system, east Brazil. Gondwana Research, 93: 275~290.

    • Guo Yanru, Zhao Zhenyu, Fu Jinhua, Xu Wangling, Shi Xiaoying, Sun Liuyi, Gao Jianrong, Zhang Yanling, Zhang Yueqiao, Liu Junbang, Liu Hong. 2012. Equence lithofacies paleogeography of the Ordovician in Ordos basin, China. Acta Petrolei Sinica, 33(S2): 95~109 (in Chinese with English abstract).

    • Ha Youngji, Satish-Kumar M, Park K-H, Song Yongsun, Liu Shuwen. 2021. Carbon, oxygen and strontium isotope geochemistry of the late Neoproterozoic carbonate platform deposit Hyangsanni dolomite of the Okcheon metamorphic belt, Korea. Lithos, 106219: 396~397.

    • He Xiubin. 1997. Recent advances in the trace. Element and isotopic geochemistry of Strontium and the application perspectives. Advance in Earth Sciences, 12 (1): 15~19 (in Chinese with English abstract).

    • He Xunyun, Shou Jianfeng, Shen Anjiang, Wu Xingning, Wang Yongsheng, Hu Yuanyuan, Zhu Yin, Wei Dongxiao. 2014. Geochemical characteristics and origin of dolomite: A case study from the middle assemblage of Majiagou Formation Member 5 of the west of Jingbian gas field, Ordos basin, North China. Petroleum Exploration and Development, 41 (3): 375~384 (in Chinese with English abstract).

    • Hersi O S, Abbasi I A, Al-Harthy A. 2016. Sedimentology, rhythmicity and basin-fill architecture of a carbonate ramp depositional system with intermittent terrigenous influx: The Albian Kharfot Formation of the Jeza-Qamar basin, Dhofar, Southern Oman. Sedimentary Geology, 331: 114~131.

    • Huang Sijing, Shi He, Liu Jie, Shen Licheng. 2001. Progress in strontium isotope stratigraphy. Advance in Earth Sciences, 16(2): 194~200 (in Chinese with English abstract).

    • Huang Sijing, Liu Shugen, Li Guorong, Zhang Meng, Wu Wenhui. 2004. Strontium isotope composition of marine carbonate and the influence of diagenetic fluid on it in Ordovician. Journal of Chengdu University of Technology (Science & Technology Edition), 1: 1~7 (in Chinese with English abstract).

    • Huo Fucheng. 1989. Geological Characteristics and Prospecting Potential of Xilaokou Gold Deposit, Shandong Province. Beijing: Science Press, 43~68 (in Chinese with English abstract).

    • Jiang Suyang, Zhang Yongsheng, Huang Wenhui, Xing Enyuan, Gui Baolin, Peng Xuan, Zhao Haitong, Shang Wenjun. 2019. Geochemical characteristics of Ordovician strontium isotope in the Ordos basin. Acta Geologica Sinica, 93 (11): 2889~2903 (in Chinese with English abstract).

    • Kaufman A J, Jacobsen S B, Knoll A H. 1993. The vendian record of Sr and C isotope variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120 (3-4): 409~430.

    • Keith M H, Weber J N. 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28 (2): 1787~1816.

    • Kietzmann D A, Palma R M, Riccardi A C, Martín-Chivelet J, López-Gómez J. 2014. Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the southern Mendoza area of the Neuquén basin, Argentina. Sedimentary Geology, 302: 64~86.

    • Li Baichan, Feng Lanping, Wang Qian, Tao Yun, Zhou Lian. 2018. Advances of stable strontium isotopes in marine geochemical cycle. Geological Science and Technology Information, 37 (4): 100~105 (in Chinese with English abstract).

    • Li Sanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Shaocong, Yan Zhen, Li Zonghui, Yu Shengyao, Lan Haoyuan. 2016. ProtoTehtys Ocean in East Asia (I): Northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32 (9): 2609~2627 (in Chinese with English abstract).

    • Li Tianbin. 1997. Rediscussion on stratigraphic age of Xiangshan Group, Ningxia. Northwestern Geology, 18 (2): 1~9 (in Chinese with English abstract).

    • Li Wenjie, Chen Jia, Hakim A J, Myrow P M. 2021. Middle Ordovician mass-transport deposits from western Inner Mongolia, China: Mechanisms and implications for basin evolution. Sedimentology, doi: 10. 1111/sed. 12949.

    • Li Xiangdong, He Youbin, Wang Dan, Gao Zhenzhong, Zheng Zhaochang. 2009a. Internal-wave and internal-tide deposits of the Middle Ordovician Xiangshan Group Xujiajuan Formation, Ningxia. Journal of Palaeogeography, 11 (5): 513~523 (in Chinese with English abstract).

    • Li Xiangdong, He Youbin, Wang Dan, Luo Jinxiong, Li Hua, Zheng Zhaochang. 2009b. Analysis on palaeocurrent in the Xujiajuan Formation, Xiangshan Group, Middle Ordovician, in southern Helan Mountains. Geological Review, 55 (5): 653~662 (in Chinese with English abstract).

    • Li Xiangdong, He Youbin. 2019a. Geochemical characteristics and their epochal significance of limestones at the top of Xujiajuan Formation, Xiangshan Group in the Ningxia Autonomous Region, China. Geochimica, 48 (4): 325~341 (in Chinese with English abstract).

    • Li Xiangdong, Huan Yaqi. 2019b. Deposition of warm contour current and its geological significance on oil and gas in Lower Ordovician Kelimoli Formation, Zhuozishan area. Petroleum Geology and Recovery Efficiency, 26(4): 15~23.

    • Li Xiangdong, He Youbin. 2020a. REE geochemistry and their indicators of sedimentary aqueous media at the top of Xujiajuan Formation, Xiangshan Group in Ningxia Autonomous Region, China. Journal of Jilin University (Earth Science Edition), 50 (1): 139~157 (in Chinese with English abstract).

    • Li Xiangdong, Chen Haiyan. 2020b. Palaeocurrent direction analysis and ponded turbidity currents recognition in deep-water environment: A case study of the Upper Ordovician Lashenzhong Formation in Zhuozishan area, Ordos basin. Acta Petrolei Sinica, 41 (11): 1348~1365 (in Chinese with English abstract).

    • Li Xiangdong, Wei Zeyi, Chen Haiyan. 2023a. Geochemical characteristics analyses of terrigenous clasticrocks in deep-water ponded basin: A case study from Upper Ordovician Lashenzhong Formation in Zhuozishan area, Ordos basin. Journal of China University of Mining & Technology, https: //link. cnki. net/urlid/32. 1152. TD. 20231101. 1027. 002 (in Chinese with English abstract).

    • Li Xiangdong, Wei Zeyi, Chen Hongda. 2023b. Genetic analysis of internal-wave and internal-tide deposits in the Upper Ordovician Lashenzhong Formation, western Ordos basin. Acta Geologica Sinica, 97(4): 1278~1294 (in Chinese with English abstract).

    • Liu Deliang, Sun Xianru, Li Zhensheng, Tang Nanan, Tan Ying. 2007. Carbon and oxygen isotope analysis of fluid inclusions in Ordovician carbonate veins of Ordos basin. Acta Petrolei Sinica, 28(3): 68~74 (in Chinese with English abstract).

    • Liu Xun, You Guoqin. 2015. Tectonic zoning of the East China Sea. Geology in China, 42 (1): 1~17 (in Chinese with English abstract).

    • Lukoczki G, Haas J, Gregg J M, Machel H G, Kele S, John C M. 2019. Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine-peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data. Marine and Petroleum Geology, 101: 440~458.

    • Parkinson D, Curry G B, Cusack M, Fallick A E. 2005. Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells. Chemical Geology, 219 (2): 193~235.

    • Peucker-Ehrenbrink B, Fiske G J. 2019. A continental perspective of the seawater 87Sr/86Sr record: A review. Chemical Geology, 510: 140~165.

    • Phan T T, Hakala J A, Lopano C L, Sharma S. 2019. Rare earth elements and radiogenic strontium isotopes in carbonate minerals reveal diagenetic influence in shales and limestones in the Appalachian basin. Chemical Geology, 509: 194~212.

    • Romer R L, Förster H J, Hahne K. 2012. Strontium isotopes—A persistent tracer for the recycling of Gondwana crust in the Variscan orogen. Gondwana Research, 22: 262~278.

    • Scher H D, Griffith E M, Buckley Jr W P. 2014. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations. Geochemistry Geophysics Geosystems, 15 (2): 499~508.

    • Shao Longyi. 1994. The relation of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc. Journal of China University of Mining & Technology, 23 (1): 39~45 (in Chinese with English abstract).

    • Soler M, Serra T, Casamitjana X, Colomer J. 2009. High sedimentation rates in a karstic lake associated with hydrothermal turbid plumes (Lake Banyoles, Catalonia, NE Spain). Sedimentary Geology, 222 (1-2): 5~15.

    • Sun Jiaopeng, Dong Yunpeng. 2020. Ordovician tectonic shift in the western North China Craton constrained by stratigraphic and geochronological analyses. Basin Research, 32 (6): 1413~1440.

    • Tucker M E, Gallagher J, Leng M J. 2009. Are beds in shelf carbonates millennial-scale cycles? An example from the mid-Carboniferous of northern England. Sedimentary Geology, 214 (1-4): 19~34.

    • van der Meer D G, van Saparoea A P H, van den Berg, van Hinsbergen D J J, van de Weg R M B, Godderis Y, Hir G L, Donnadieu Y. 2017. Reconstructing first-order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes. Gondwana Research, 44: 22~34.

    • Veizer J, Compston W. 1974. 87Sr/86Sr composition of seawater during the Phanerozoic. Geochimica et Cosmochimica Acta, 38 (9): 1461~1484.

    • Wang Yuxin, Han Zheng, Han Yuchun. 1995. Carbon isotope stratigraphy of Ordovician, the southern margin of Ordos. Journal of Hebei College of Geology, 18 (3): 217~223 (in Chinese with English abstract).

    • Wang Zhenfan, Zheng Zhaochang. 1998. The age of the Xiangshan Group in Ningxia. Regional Geology of China, 17 (1): 69~73 (in Chinese with English abstract).

    • Wei Gangjian. 1995. Evolution of the Sr isotope of the sea-water, implications for palaeoenvironment and application of the strontium isotope stratigraphy. Marine Sciences, 1: 23~25 (in Chinese with English abstract).

    • Wickman F E. 1948. Isotope ratios: A clue to the age of certain marine sediments. Journal of Geology, 56 (1): 61~66.

    • Xia Linqi, Xia Zuchun, Xu Xueyi. 2003. Magmagenesis of Ordovician back-arc basins in the northern Qilian Mountains. Geology in China, 30(1): 48~60 (in Chinese with English abstract).

    • Xu Liming, Zhou Lifa, Zhang Yikai, Yang Wenjing, Lu Bin. 2006. Record of deposition-magmatism of Xiangshan Group and the reflection of tectonic environment. Journal of Northwest University (Natural Science Edition), 36(3): 442~448 (in Chinese with English abstract).

    • Xu Shumei, Feng Huaiwei, Li Sanmeng, Li Meng. 2016. Study on Caledonian Movement in Helanshan and its surrounding area. Acta Petrologica Sinica, 32(7): 2137~2150 (in Chinese with English abstract).

    • Yang Xiyan, Bao Hongping, Ren Junfeng, Ma Zhanrong, 2015. Types of dolomite sand characteristics of stable isotope from the Ma 55 Sub-member of Ordovician Majiagou Formation in Ordos basin. Natural Gas Geoscience, 26 (4): 650~656 (in Chinese with English abstract).

    • Zhang Jin, Li Jinyi, Liu Jianfeng, Li Yanfeng, Qu Junfeng, Feng Qianwen. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912~2934 (in Chinese with English abstract).

    • Zhang Xiaoyu, Zhang Fuyuan, Zhang Weiyan. 2003. Regional variation of 87Sr/86Sr ratio and compositions of the surface sediment in the eastern South China Sea. Acta Oceanologica Sinica, 4: 43~49 (in Chinese with English abstract).

    • Zhang Yinggang, Yang Tan, Hohl S V, Zhu Bi, Jiang Shaoyong. 2020. Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim basin. Precambrian Research, 345: 105769.

    • Zhang Yuandong, Zhan Renbin, Yuan Wenwei, Tang Peng, Li Yue, Wang Zhihao, Zhou Zhiyi, Fang Xiang, Li Wenjie, Cheng Junfeng. 2021. Lithostratigraphic subdivision and correlation of the Ordovician in China. Journal of Stratigraphy, 45(3): 250~270 (in Chinese with English abstract).

    • Zhao Xiaochen, Liu Chiyang, Zhao Yan, Zhang Qihang, Luo Wei. 2017a. Geochemical characteristics and its geological implications of the cherts in the Xiangshan Group of the eastern Hexi Corridor Belt, NW China. Geological Journal of China Universities, 23 (1): 83~94 (in Chinese with English abstract).

    • Zhao Xiaochen, Liu Chiyang, Wang J Q, Duan Liang, Zhao Yan, Zhang Qihang, Luo Wei. 2017b. Petrology, geochemistry and zircon U-Pb geochronology of the Xiangshan Group in the eastern Hexi Corridor Belt: Implications for provenance and tectonic evolution. Acta Geologica Sinica (English Edition), 91 (5): 1680~1703.

    • Zhou Yun, Duan Qifa, Cao Liang, Yu Yushuai, Gan Jinmu. 2017. Journal of stratigraphy strontium isotope compositions of the lower Cambrian Qingxudong Formation and Pb-Zn deposits in Huayuan, western Hunan: Implications for hydrothermal mineralization. Journal of Stratigraphy, 41: 335~343 (in Chinese with English abstract).

    • Zhou Zhiqiang, Xiao Peixi. 2010. Discussion on age of Xiangshan Group. Northwest Geology, 43(1): 54~59 (in Chinese with English abstract).

    • 边鹏, 沙鑫, 马骊, 何兆祥, 王金荣, 翟新伟. 2016. 北祁连西段卡瓦蛇绿岩的发现及其构造意义. 兰州大学学报(自然科学版), 52(1): 142~144.

    • 陈强, 张慧元, 李文厚, 郝松立, 刘卓. 2012. 鄂尔多斯奥陶系碳酸盐岩碳氧同位素特征及其意义. 古地理学报, 14 (1): 117~124.

    • 陈栩琦, 曾振, 于慧敏, 黄方. 2021. 高精度稳定锶同位素分析方法综述. 高校地质学报, 27 (3): 264~274.

    • 邓昆, 周立发, 胡朋, 杨文敬, 张义楷. 2007. 香山群辉绿岩地球化学特征及其构造背景. 大地构造与成矿学, 31 (3): 365~371.

    • 郭彦如, 赵振宇, 付金华, 徐旺林, 史晓颖, 孙六一, 高建荣, 张延玲, 张月巧, 刘俊榜, 刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报, 33 (增刊2): 95~109.

    • 贺秀斌. 1997. 微量元素锶及其同位素的地球化学研究与应用前景. 地球科学进展, 12 (1): 15~19.

    • 贺训云, 寿建峰, 沈安江, 吴兴宁, 王永生, 胡圆圆, 朱吟, 韦东晓. 2014. 白云岩地球化学特征及成因——以鄂尔多斯盆地靖西马五段中组合为例. 石油勘探与开发, 41 (3): 375~384.

    • 黄思静, 石和, 刘洁, 沈立成. 2001. 锶同位素地层学研究进展. 地球科学进展, 16(2): 194~200.

    • 黄思静, 刘树根, 李国蓉, 张萌, 武文慧. 2004. 奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响. 成都理工大学学报(自然科学版), 1: 1~7.

    • 霍福臣. 1989. 宁夏地质概论. 北京: 科学出版社, 43~68.

    • 蒋苏扬, 张永生, 黄文辉, 邢恩袁, 桂宝玲, 彭渊, 赵海彤, 商雯君. 2019. 鄂尔多斯盆地奥陶系锶同位素地球化学特征. 地质学报, 93 (11): 2889~2903.

    • 李百蝉, 冯兰平, 王倩, 陶云, 周炼. 2018. 稳定锶同位素在海洋地球化学循环中的研究进展. 地质科技情报, 37 (4): 100~105.

    • 李三忠, 赵淑娟, 李玺瑶, 曹花花, 刘鑫, 郭晓玉, 肖文交, 赖绍聪, 闫臻, 李宗会, 于胜尧, 兰浩圆. 2016. 东亚原特提斯洋: Ⅰ: 南北边界和俯冲极性. 岩石学报, 32 (9): 2609~2627.

    • 李天斌. 1997. 宁夏香山群地层时代的再讨论. 西北地质, 18 (2): 1~9.

    • 李向东, 何幼斌, 王丹, 高振中, 郑昭昌. 2009a. 宁夏香山群徐家圈组内波和内潮汐沉积. 古地理学报, 11 (5): 513~523.

    • 李向东, 何幼斌, 王丹, 罗进雄, 李华, 郑昭昌. 2009b. 贺兰山以南中奥陶统香山群徐家圈组古水流分析. 地质论评, 55 (5): 653~662.

    • 李向东, 何幼斌. 2019a. 宁夏香山群徐家圈组顶部石灰岩地球化学特征及其时代意义. 地球化学, 48 (4): 325~341.

    • 李向东, 郇雅棋. 2019b. 桌子山地区奥陶系克里摩里组下段等深暖流沉积及其油气地质意义. 油气地质与采收率, 26 (4): 15~23.

    • 李向东, 何幼斌. 2020a. 宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析. 吉林大学学报(地球科学版), 50 (1): 139~157.

    • 李向东, 陈海燕. 2020b. 深水环境下古水流方向分析和阻塞浊流沉积的识别——以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 石油学报, 41 (11): 1348~1365.

    • 李向东, 魏泽昳, 陈海燕. 2023a. 深水阻塞盆地陆源碎屑岩地球化学特征分析——以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 中国矿业大学学报, https: //link. cnki. net/urlid/32. 1152. TD. 20231101. 1027. 002.

    • 李向东, 魏泽昳, 陈洪达. 2023b. 鄂尔多斯盆地西缘上奥陶统拉什仲组内波、内潮汐沉积成因分析. 地质学报, 97(4): 1278~1294.

    • 刘德良, 孙先如, 李振生, 唐南安, 谈迎. 2007. 鄂尔多斯盆地奥陶系碳酸盐岩脉流体包裹体碳氧同位素分析. 石油学报, 28(3): 68~74.

    • 刘训, 游国庆. 2015. 中国的板块构造区划. 中国地质, 42 (1): 1~17.

    • 邵龙义. 1994. 碳酸盐岩氧、碳同位素与古温度等的关系. 中国矿业大学学报, 23 (1): 39~45.

    • 王玉新, 韩征, 韩宇春. 1995. 鄂尔多斯南缘奥陶系碳同位素地层学研究. 河北地质学院学报, (3): 217~223.

    • 王振藩, 郑昭昌. 1998. 宁夏香山群的时代探讨. 中国区域地质, 17 (1): 69~73.

    • 韦刚健. 1995. 海水中Sr同位素组成变化的环境意义与Sr同位素地层学. 海洋科学, 1: 23~25.

    • 夏林圻, 夏祖春, 徐学义. 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因. 中国地质, 30(1): 48~60.

    • 徐黎明, 周立发, 张义楷, 杨文敬, 鲁彬.2006.香山群沉积岩浆记录及其反映的大地构造环境.西北大学学报(自然科学版), 36(3): 442~448.

    • 许淑梅, 冯怀伟, 李三忠, 李萌. 2016. 贺兰山及周边地区加里东运动研究. 岩石学报, 32 (7): 2137~2150.

    • 杨西燕, 包洪平, 任军峰, 马占荣. 2015. 鄂尔多斯盆地马家沟组马五5亚段白云岩类型及稳定同位素特征. 天然气地球科学, 26 (4): 650~656.

    • 张进, 李锦轶, 刘建峰, 李岩峰, 曲军峰, 冯乾文. 2012. 早古生代阿拉善地块与华北地块之间的关系: 来自阿拉善东缘中奥陶统碎屑锆石的信息. 岩石学报, 28 (9): 2912~2934.

    • 张霄宇, 张富元, 章伟艳. 2003. 南海东部海域表层沉积物锶同位素物源示踪研究. 海洋学报, 4: 43~49.

    • 张元动, 詹仁斌, 袁文伟, 唐鹏, 李越, 王志浩, 周志毅, 方翔, 李文杰, 成俊峰. 2021. 中国奥陶纪岩石地层划分和对比. 地层学杂志, 45 (3): 250~270.

    • 赵晓辰, 刘池洋, 赵岩, 张启航, 罗伟. 2017a. 河西走廊过渡带东部香山群硅质岩地球化学特征及其地质意义. 高校地质学报, 23 (1): 83~94.

    • 周云, 段其发, 曹亮, 于玉帅, 甘金木. 2017. 湘西花垣下寒武统清虚洞组灰岩与锶同位素研究. 地层学杂志, 41: 335~343.

    • 周志强, 校培喜. 2010. 对香山群时代的商榷. 西北地质, 43 (1): 54~59.